

APPROVAL SHEET

Title of Dissertation: Measuring and Monitoring Technical Debt

Name of Candidate: Yuepu Guo
 Doctor of Philosophy, 2016

Dissertation and Abstract Approved: ()
 Carolyn Seaman
 Associate Professor
 Department of Information Systems

Date Approved: ________________

ABSTRACT

Title of Document: MEASURING AND MONITORING

TECHNICAL DEBT

 Yuepu Guo, Ph.D., 2016

Directed By: Associate Professor Carolyn Seaman,

Department of Information Systems

Technical debt is a metaphor for the effects of delayed software development and

maintenance tasks. Due to the delay, software may carry immature artifacts in its

lifecycle, e.g., immature design, incomplete documentation, etc., which may affect

subsequent development and maintenance activities, and so can be seen as a type of

debt that the system developers owe the system. Incurring technical debt is common

for software projects and can often increase productivity in the short run. However,

like paying interest on the debt, such benefit is achieved at the cost of extra work in

future. In this sense the technical debt metaphor characterizes the relationship

between the short-term benefits of delaying certain software tasks or doing them

quickly and less carefully and the long-term cost of those delays or shortcuts. It

should be noted that the extra cost may not be realized if the portion of a system

containing technical debt will never be touched in the future. Therefore, the problem

boils down to managing risk and making informed decisions on which delayed tasks

need to be accomplished, and when. Currently, managers and leaders of software

maintenance carry out this risk analysis implicitly, if at all. However, on large

systems, it is too easy to lose track of delayed tasks or to misunderstand their impact.

The result is often unexpected delays and compromised quality. Therefore

identifying, measuring and monitoring technical debt would help managers make

informed decisions, resulting in higher quality of maintained software and greater

maintenance productivity. The objective of this research work is to contribute to a

comprehensive technical debt theory that characterizes the cost and benefit sides of

technical debt management. To achieve this objective, we carried out two types of

studies – retrospective study and case study – on real software projects. Through

decision simulation, the retrospective studies uncovered the benefits of explicit

technical debt management. The case studies revealed the costs of technical debt

management. The results from the studies provide insights into the technical debt

management problem, thus facilitating decision making in software projects and

practical application of technical debt management in the software industry.

MEASURING AND MONITORING TECHNICAL DEBT

By

Yuepu Guo

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

© Copyright by
Yuepu Guo

2016

 ii

Dedication

This dissertation is dedicated to my family in Wenxi, China – my parents, Dongchi

Guo and Xuexiang Xi, my sisters, my aunts, uncles, and cousins, who have supported

me and believed in me through all these years.

 iii

Acknowledgements

I thank my mentor Dr. Carolyn Seaman for her tremendous help, support, and

encouragement throughout my Ph.D. program, especially the hardest dissertation

phase. I also thank my colleagues – Liwei Dai, Susan Mitchell, Rodrigo Spinola,

Nico Zazworka and Tony Zhang who have supported me and helped me with my

dissertation in different ways. Lastly, I thank our industry collaborators, including

Xerox Corporation, Samsung Brazil, Kali Software, ABB and Fraunhofer for

inspiring my dissertation research and hosting the studies on technical debt

management.

 iv

Table of Contents

Table of Contents ... iv

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ... 1

1.1 Technical Debt Concept .. 3

1.2 Technical Debt Characteristics ... 6

1.3 Current Technical Debt Management Research and Practice 10

1.4 Research Questions ... 13

Chapter 2: Related Work .. 15

2.1 Technical Debt Literature .. 15

2.1.1 Definition and Classification ... 17

2.1.2 Causes and Impact ... 21

2.1.3 Management Approaches ... 24

2.2 Software Risk Management .. 35

2.2.1 Overview .. 35

2.2.2 Boehm’s Approach .. 37

2.2.3 SEI’s Approach .. 38

2.2.4 Risk Management Process ... 40

2.2.5 Risk Analysis ... 43

2.2.5.1 Risk Estimation ... 43

2.2.5.2 Risk Assessment ... 47

2.2.6 Empirical Study and Evaluation .. 52

2.2.7 Summary of Software Risk Management .. 56

2.3 Software Quality Assessment ... 58

2.3.1 Overview .. 59

 v

2.3.2 Quality Metrics .. 62

2.3.2.1 Design and Code Metrics .. 63

2.3.2.2 Metric Evaluation.. 67

2.3.3 Program Analysis and Code Smells ... 69

2.4 Software Effort Estimation ... 71

2.4.1 Software Size Metrics .. 72

2.4.2 Effort Estimation Techniques .. 75

2.4.2.1 Algorithmic Methods .. 76

2.4.2.2 Analogy-based Estimation .. 80

2.4.2.3 Expert Estimation.. 81

2.4.3 Summary of Cost Estimation ... 84

2.5 Summary of Literature Review ... 85

Chapter 3: Research Overview ... 88

3.1 The Proposed Technical Debt Management Approach 89

3.1.1 Identifying Technical Debt .. 92

3.1.2 Measuring Technical Debt ... 94

3.1.3 Decision Making .. 97

3.1.4 Summary of Proposed Approach ... 100

3.2 Research Design.. 102

3.2.1 The Retrospective Studies .. 103

3.2.1.1 Procedure .. 104

3.2.1.2 Data Collection ... 109

3.2.1.3 The SMB Study... 113

3.2.1.4 The Hadoop Study .. 114

3.2.2 The Case Studies .. 116

3.2.2.1 Procedure .. 116

3.2.2.2 Data Collection ... 117

3.2.2.3 The Tranship Case Study .. 118

 vi

3.2.2.4 The EducationHub Study .. 119

3.3 Summary ... 121

Chapter 4: The SMB Study ... 123

4.1 Overall Approach .. 123

4.2 The Subject Project and Technical Debt Item .. 124

4.3 Measurement ... 127

4.4 Data Collection ... 129

4.5 Data Analysis .. 132

4.6 Results ... 133

4.7 Conclusion .. 135

Chapter 5: The Hadoop Study... 137

5.1 Process .. 138

5.2 The Subject Project and Classes ... 139

5.3 Measurement ... 142

5.4 Data Collection ... 147

5.5 Data Analysis .. 147

5.6 Discussion ... 153

Chapter 6: The Tranship Study ... 159

6.1 Subject Project .. 159

6.2 Study Process .. 160

6.3 Data Collection ... 161

6.4 Data Analysis .. 168

6.5 Results and Findings ... 169

6.5.1 Costs of Technical Debt Management ... 171

6.5.2 Planning Process and Decision Factors ... 174

6.5.3 Benefits and Impact ... 177

6.6 Discussion ... 179

6.6.1 Costs and Benefits of Explicit Technical Debt Management 180

 vii

6.6.2 Limitations and Validity Threats ... 183

Chapter 7: The EducationHub Study .. 185

7.1 Subject Project .. 186

7.2 Study Process .. 187

7.3 Data Collection ... 190

7.4 Data Analysis .. 192

7.5 Results and Findings ... 195

7.5.1 Costs of Managing Technical Debt.. 195

7.5.2 Process Deviation ... 200

7.5.3 Obstacles .. 202

7.6 Discussion ... 206

7.6.1 Costs and Obstacles ... 206

7.6.2 Evaluation of Validity .. 209

7.6.3 Limitations ... 210

Chapter 8: Discussion ... 212

8.1 Retrospective Studies .. 214

8.2 Case Studies .. 217

8.3 Addressing the Research Questions .. 226

8.3.1 RQ1: Costs and Benefits .. 226

8.3.2 RQ2: Decision-making .. 230

8.4 Contributions... 231

8.5 Research Implications and Future Work ... 234

Bibliography ... 236

 viii

List of Tables

Table 1. ISO 9126 Quality Characteristics ... 59

Table 2. Technical Debt Item .. 91

Table 3. Cost and Benefit of the Simulated Decisions ... 108

Table 4. Total Cost of the Decision Alternatives .. 108

Table 5. Data Descriptions .. 112

Table 6. Effort to Change to ActiveSync (cost X) at D3 .. 130

Table 7. Effort Estimate to Change to ActiveSync at D1 (P) 131

Table 8. Interest Amount and Change Probability Estimates 132

Table 9. Class dfs.DFSck for Decision Simulation .. 148

Table 10. Class dfs.DFSClient for Decision Simulation .. 150

Table 11. Class mapred.TextInputFormat for Decision Simulation 151

Table 12. Class mapred.PhasedFileSystem for Decision Simulation 152

Table 13. Baseline Size and Productivity of the Project ... 162

Table 14. Main Codes of the Coding Scheme .. 169

Table 15. Technical Debt Items by Type .. 170

Table 16. Changes in the Technical Debt List over the Sprints 171

Table 17. Costs of Technical Debt Management Activities over the Sprints 172

Table 18. Coding Scheme ... 194

Table 19. Costs of Technical Debt Management .. 199

 ix

List of Figures

Figure 1. Technical Debt Quadrants ... 18

Figure 2. Cumulative Functionality of the Two Design Strategies 28

Figure 3. Cumulative Functionality in Two Scenarios ... 29

Figure 4. Development Investment Decision Approach ... 30

Figure 5. Cost/Benefit matrix for Nine God Classes .. 32

Figure 6. Boehm’s Risk Management Approach .. 38

Figure 7. SEI Continuous Risk Management (CRM) Paradigm................................. 40

Figure 8. Risk Analysis Matrix ... 47

Figure 9. A Decision Tree ... 49

Figure 10. Release Planning Process .. 98

Figure 11. An Initial Technical Debt Management Framework 101

Figure 12. Timeline of System W’s Events on Technical Debt Item A 105

Figure 13. Timeline of the SMB Evolution .. 125

Figure 14. Decision Simulation Pocess .. 133

Figure 15. Cost/benefit of T1 at Decision Points .. 134

Figure 16. Change Likelihood and No of Potential Technical Debt Instances 141

Figure 17. Code Churn History and Refactoring Decision 143

Figure 18. Data Collection Spreadsheet .. 166

Figure 19. Important Project and Case Study Dates ... 187

Figure 20. Technical Debt List Extract ... 191

Figure 21. Axial Coding ... 195

Figure 22. Cost Pattern of technical debt Management .. 207

Figure 23. Mapping of Cost Categories .. 220

 1

Chapter 1: Introduction

The past few decades have seen an advance in computer technologies, increased

expectations of software and a rapid change in the environments where software is

applied. All these factors constitute pressure on software evolution [1]. In fact, most

software systems have to be modified after delivery to fix bugs, to improve

performance or to adapt to new environments. Modification after delivery with these

purposes is called software maintenance, an essential part of the software lifecycle.

Maintenance of software systems will be carried out so long as the cost of replacing

them with new ones outweighs the cost of modification. For example, it is not

worthwhile to re-develop the whole system because of a new required formatting

change in the system generated reports. Therefore software systems usually have

multiple versions or releases in their lifecycle. The maintenance phase of some large

legacy systems may be as long as several decades.

Besides the long time span, software maintenance consumes the majority of the

overall life cycle costs [2-4]. A number of management and technical problems, such

as staff turnover, budgetary pressure and quality of system documentation, are tied to

the high cost and low speed of software maintenance [5]. On one hand, software

maintainers are usually not the persons who developed the system originally. It’s

difficult and time-consuming for them to comprehend the system, often with little

support from documentation. Therefore, software maintainers are often lacking in

thorough knowledge or understanding of the system, which leads to poor design and

implementation of modifications. On the other hand, maintenance is often performed

 2

under tight time and resource constraints. Software maintainers have to focus only on

current requirements, and often take shortcuts to save time and effort. In such

situations, long-term maintainability is given little attention or completely ignored. As

a result, more low quality components emerge, which in turn adds more constraints

on future maintenance tasks and makes modification more difficult and unpredictable.

Hereby the quality of maintained software diminishes over time, with respect to its

internal system structure, adherence to standards, documentation, understandability,

etc. [1].

This problem described above has been expressed with a metaphor called “technical

debt”, analogous to monetary debt in the finance domain. The problem is not new to

the software community. Actually it has been studied for decades from different

perspectives and by different people [1, 6, 7]. However, framing this phenomenon as

“debt” facilitates communications between technical and business stakeholders.

Moreover, with the technical debt metaphor, ideas from the financial domain can be

used to inspire new approaches to improving decision making in software

maintenance management.

This dissertation research focuses on the technical debt management problem with the

objective of uncovering the cost and benefit characteristics of managing technical

debt in an explicit manner. To achieve this research objective, we designed two types

of studies, each of which is targeted to one side, i.e. cost or benefit, of technical debt

management. A total of four studies have been carried out, which are presented from

Chapter 4 to Chapter 7 respectively. In the following subsections, we first introduce

 3

the technical debt concept, how it evolved and the characteristics of technical debt

compared to its financial counterpart. Then we discuss the current technical debt

management research and practice, which leads to the motivation of this dissertation

research. Based on the discussion, we introduce the research questions in the end of

this chapter.

1.1 Technical Debt Concept

Technical debt is a metaphor for the effects of delayed software development and

maintenance tasks. This metaphor is closely related to software quality. Since

technical debt refers to delayed software maintenance tasks, one of the consequences

of incurring technical debt is immature artifacts, such as immature design, incomplete

documentation or unfinished testing, in the software lifecycle. Immature artifacts are

those that currently work correctly in the system, but fail to meet certain quality

criteria of software projects. For example, a software system that, over time, becomes

highly coupled and contains many redundant modules may be currently functioning

properly, but any addition of new functionalities is difficult and requires extra effort

to deal with the coupling or redundancy issues. This design is considered immature if

extensibility is one of the requirements for the system. Although they do no harm in

the current stage, or may even have benefits such as reduced design time in the above

example, these immature artifacts may burden software maintenance in the future.

Therefore, the immature artifacts should be fixed, modified or changed sooner or

later, when the benefit they can bring does not outweigh the cost they incur. In this

sense, fixing the immature artifacts remaining in a system is a task left undone and

can thus be seen as a type of debt that the system developers owe the system.

 4

The presence of technical debt can be seen as a type of diminished software quality,

although not all software quality issues can be characterized as technical debt.

Software quality can be affected by many factors, but a common reason for the

quality decline is that maintenance is often performed under tight time and resource

constraints, with the minimal amount of effort and time required. Typically, there is a

gap between this minimal required amount of work and the amount required to make

the modification while also maintaining the level of software quality. The gap

represents shortcuts taken by managers or developers, intentionally or not, in order to

increase maintenance speed. In the case of intentionally taking shortcuts, software

managers make the decision on which modifications must be implemented without

compromise, which modifications can be done quickly with minimal effort and time

(and thus quality), and which modifications can be deferred. Hereby technical debt is

incurred as a strategy for software managers to trade off software quality with

productivity, which may have additional benefits such as that gained from earlier time

to market than their competitors. However, sometimes technical debt is incurred

unintentionally, e.g. by a novice developer who lacks the knowledge and experience

to perform the maintenance tasks without compromising quality. In such cases of

unintentional debt, the effect remains same as intentional debt because it’s likely to

take the developer more time and effort to fulfill the maintenance task while still

keeping the level of quality. Therefore, for technical debt, intentional or not, the

effect is that the maintenance time or cost is reduced in the current stage, i.e.,

technical debt speeds up software development in the short run. However, this benefit

is only one of the effects of technical debt on software maintenance.

 5

Like paying interest on a debt, such benefit is achieved at the cost of extra work in

future. Using the above coupling and redundancy example (a software system with

highly coupled and redundant modules functions properly at present, but faces the

challenge in adding new modules and requires extra effort to deal with the coupling

or redundancy issues.), the project may save time and effort in the design of

modifications (resulting in more coupling and redundancy), but the high coupling

level of the system will incur additional maintenance cost in future. Assuming that

four particular modules in this system are highly coupled with each other, when one

of those modules is modified to support new functionality, the other three modules

are affected and are likely to need modification as well. Therefore these four modules

should be refactored to lower the coupling level. At this point there are two choices:

refactoring these modules before any changes are requested to them, or postpone the

refactoring to sometime in future. The latter choice would incur technical debt. The

cost of the debt (“interest”) can be estimated by considering the probable future cost

of a change to one of these modules, under the two different decision options

(refactor now and refactor later). If the decision is to refactor now, then the future

cost of a change to one of the four modules is likely to be just the cost to change that

one module. If the decision is to refactor later, then the likely future cost of a change

to one module is the cost to change that module, plus the cost to change the other

three modules, because they are still highly coupled to the first module. So the

decision about whether to refactor now or later must take into account not only the

cost of refactoring (and whether that cost should be incurred now or later), but also

 6

the extra cost of modifying extra modules when a modification to one module is

required in the future.

 Accordingly, planning must take into account not only the short term advantage of

incurring technical debt, but also the longer-term costs. A strategy may become less

promising, even void, if the long term cost is too high. Given the long and short term

effects of technical debt, software managers have to balance the benefit of incurring

technical debt with the associated cost.

In summary, the concept of technical debt can be defined as the short term benefit

(usually in the form of reduced time) and the long term cost (usually in the form of

higher maintenance cost) of delaying or shortcutting development and maintenance

tasks, which prevents software from achieving its ideal quality and thus results in

immature software artifacts.

1.2 Technical Debt Characteristics

The word “debt” is defined as “something owed” in Webster’s dictionary. It can refer

to assets or moral obligations that a person owes others, but its most common form is

financial debt, which has become an indispensable part of modern life. By contrast,

“Technical Debt” is only a metaphor, which means that it is borrowed from or

inspired by concepts in other domains. Whether it is financial or technical, the use of

the word “debt” in the two terms suggests commonalities between them. Therefore a

close comparison of the two concepts will shed light on the essence of technical debt.

 7

For financial debt, a debtor is concerned about what the obligation is and how it can

be fulfilled. To be specific, the debtor should be clear about how much he borrowed,

the cost for the money borrowed and when it needs to be paid back. He could select

different payment methods, which bring different degrees of flexibility as well as

overall cost. The amount of money that the debtor borrowed is the principal, while the

cost of using the borrowed money is the interest on the debt. Likewise, technical debt

also has the same two elements. In the software world, the principal is the amount of

effort required to complete a task that was previously delayed, while the interest is the

potential penalty, in terms of increased effort and decreased productivity, that will

have to be paid in the future as a result of not completing the task in the present.

In spite of these similarities, big differences arise between the two in terms of the

precision of measurement and uncertainty. For those who borrow money from

financial firms or other persons, such as an auto loan or a mortgage, the amount of

money they want to borrow is predetermined. In addition, the debtors will be given

either an interest rate (fixed) or a rule that prescribes how the interest rate fluctuates

or what the fluctuation will be based on (adjustable). Once the debtors make their

payment plan, it is easy to precisely calculate the monthly payment as well as the

interest, i.e. the total cost, that the debtors will pay. Different payment plans can be

simulated easily to help the debtors find the most suitable one that can maximize the

debtors’ utility. By contrast, it is not easy to calculate the principal and interest on

technical debt. Even worse, even identifying technical debt is still a challenge both

technically and economically.

 8

Since it is what the developers owe the system, technical debt can be estimated by

measuring the effort required to pay off the debt, e.g., the effort to execute the

deferred test cases for a module. Since the 1960’s, various software effort estimation

techniques based on either formal estimation or expert estimation have been

proposed, such as COCOMO, function point analysis and Wideband Delphi [8-10].

The goal of the research in this area is to improve the accuracy of software effort

estimation. However, the accuracy of the existing approaches heavily depends on the

context where the approaches are applied [11]. In addition, some approaches are too

complicated to be applied though theoretically promising in their estimation accuracy.

Hence the dominant estimation approach is expert estimation [12]. The dominancy of

expert estimation indicates software effort estimation is still immature and subject to

estimation errors. Therefore, estimating technical debt by evaluating the required

effort may not produce precise results.

Incurring technical debt causes immature software artifacts, which fail to meet certain

software quality criteria. Therefore, technical debt can be identified by comparing the

quality of software artifacts with quality standards. However, software quality is a

complex concept. On one hand, software quality has many attributes and different

groups of people may have different views of software quality [13]. On the other

hand, some attributes of quality, e.g. maintainability and usability, are hard to assess

directly. Therefore, software quality standards usually take the form of guidelines or

heuristics. Thus using such guidelines or heuristics to detect technical debt has to rely

on human judgment and inevitably is subjective. Another approach to software

quality assessment is to use software quality metrics. A software metric is any type of

 9

measurement of a software attribute. No matter what metrics are used, the

relationships between the metrics and software quality attributes must be determined

so that it is clear that software quality can be properly measured using these metrics.

Unfortunately, it remains unknown what the relationship is between software quality

indicators and future maintenance cost and quality (i.e. interest). There is evidence

that they are correlated, but it’s not enough to derive from the evidence that

manipulating the values of these indicators will actually have an effect on reducing

interest. Given the difficulties presented above in using software quality indicators as

indicators of technical debt, identifying technical debt in this way would be a

complicated process.

For financial debt, it is known whether a debtor needs to pay the interest and if so, the

total amount of the interest can also be determined before he goes into debt. For

technical debt, this is not always the case. For example, if a certain portion of the

system in fact has no defects, then no harm is done in saving some time by not testing

it. Similarly, if a particular module is never going to be modified in the future, then

failing to update its related documentation will save some time during modification of

the module, without any adverse consequences. Therefore, technical debt involves

uncertainty that it may or may not have associated penalty. The likelihood that the

penalty is realized depends on whether changes will be requested on that artifact and

the kind of changes that will be made. This is unique to technical debt.

Ideally, software managers would incur technical debt only on those artifacts where

there will be no interest, or give low priority to these artifacts while focusing on those

 10

that are subject to penalty. However, the difficulty is that it is rarely known

beforehand if a particular portion of the system has defects or not, or if a particular

module is ever going to need modification, i.e. if it is going to incur interest. In this

sense, technical debt can be considered as a particular type of risk in software

maintenance as it has the basic elements of a risk – the potential loss/penalty and the

associated uncertainty. Therefore, the problem of measuring and managing technical

debt boils down to managing risk and making informed decisions about which

delayed tasks need to be accomplished, and when.

1.3 Current Technical Debt Management Research and Practice

The characteristics of technical debt imply a strong relationship with software quality

assessment, software development effort estimation and software risk management,

none of which is a new research area. In the discipline of software quality, a number

of metrics and models have been proposed to assess, monitor and predict software

quality. Research results from the area of software development effort estimation

facilitate software project planning, investment analyses and product pricing.

Software risk management has even been integrated into software development

processes to improve software quality and productivity. Although research

achievements are fruitful in each area, there is limited work that has leveraged the

power of approaches from all three areas to address the technical debt problem.

Therefore, we discuss key achievements in the three research areas in Chapter 2 to

identify approaches that can be applied to technical debt management. Actually this

dissertation research has drawn inspiration from the results and findings in these

areas, including using risk exposure analysis to prioritize technical debt instances and

 11

cost estimation techniques for technical debt evaluation. We expect that leveraging

the research results from these areas could further advance the research on technical

debt management.

Attention to the technical debt problem has not been only from the research

community. In fact this metaphor originated in the software industry, where technical

debt spreads widely, affects most software products and systems, and has reached the

level that cannot be ignored anymore. It has been reported that technical debt of an

average-sized application of 300,000 lines of code is $1,083,000, which means each

line of code carries $3.61 of debt [14]. These figures are based on the estimated cost

of paying off the debt, but does not take into account its impact if not paid off (i.e.

interest). Moreover, technical debt may be incurred under various conditions with

different reasons, which raises the difficulty in addressing this problem [15]. In a

recent interview study, practitioners reported that technical debt is unavoidable, and

thus effort should be made to manage it, not avoid it [16].

Now that technical debt is a common and recognized phenomenon in the software

industry and it could have serious impact on software projects if left unattended,

whether or not to manage technical debt is no longer a choice. The question that

remains is how to manage technical debt. In the context of improving software quality

and productivity, technical debt management refers to the practice of identifying the

technical debt currently existing in a software system, understanding its present and

future impact, and leveraging the technical debt information to make decisions about

the software project. In other words, technical debt management includes technical

 12

debt identification, measurement and decision making. It also includes continuous

monitoring of technical debt because technical debt changes as software evolves and

actions are taken on it. But decision making is the central problem of technical debt

management. All of the other activities and the information they gather serves this

purpose. In particular, the ultimate goal of this dissertation research is to help

software managers make informed decisions in their project management practice, by

integrating technical debt information into their software processes.

Currently, managers and leaders of software maintenance efforts carry out technical

debt analysis and management implicitly, if at all. Decisions are largely based on a

manager’s experience, or even gut feeling, rather than hard data gathered through

proper measurement. However, on large systems, it is too easy to lose track of

delayed tasks or to misunderstand their impact. The result is often unexpected delays

in completing required modifications, compromised quality and extreme cost

overruns. By framing the problem of delayed maintenance tasks as a type of “debt”,

the technical debt metaphor reveals the essence of the problem – it brings a short-term

benefit, such as higher productivity or shorter release time, but which might have to

be paid back with “interest,” later. Many practitioners find this metaphor intuitively

appealing and helpful in thinking about the issues. Discussions about this topic are

also pervasive on the web in such forms as personal blogs and online forums.

However, what is inadequate is an underlying theoretical basis upon which

management mechanisms can be built to support decision-making.

 13

1.4 Research Questions

The objective of this research is to contribute to the establishment of a theoretical

basis for technical debt management, using empirical research methods, that

characterizes the cost and benefit sides implicit in software management practice. The

emerging theory resulting from this empirical work describes the characteristics of

the costs and benefits of explicitly managing technical debt, as compared to the

implicit consideration of the issue in decision making, which is current industry

practice. The results of this work characterize the costs and benefits through analysis

of qualitative and quantitative data collected from practice. This cost-benefit

characterization leads to our research questions.

RQ1: What are the characteristics of the costs and benefits of measuring and

monitoring technical debt?

RQ2: In what ways does technical debt information contribute to decision

making?

Moreover, we also develop and evaluate, based on emerging theory, a technical debt

management mechanism for technical debt over the lifetime of a software system.

The mechanism (consisting of measures and procedures) will facilitate software

managers to keep track of the technical debt in their projects, understand better the

impact of the technical debt and make informed decisions.

To address these questions, we carried out two types of studies – retrospective studies

and case studies, on real software projects. Through decision simulation, the

retrospective studies uncovered the benefits of explicit technical debt management.

 14

The case studies revealed the costs of technical debt management by applying the

proposed technical debt management approach in real time.

The results of this research contribute to the advance of software maintenance

research and practice by providing insights, backed by empirical evidence, into the

phenomenon of technical debt, and mechanisms for operationalizing the concept (i.e.

providing decision support), of technical debt.

The remainder of this dissertation is organized as follows. Chapter 2 presents the

related work. This begins with a review of the recent studies on technical debt, key

findings and their influences on this research. Then it presents important work from

three related areas – software risk management, software development effort

estimation and software quality metrics, from which a risk management approach and

an effort estimation model are picked for this study. In Chapter 3, the research

methodology, including the proposed approach to technical debt management, and the

research methods, is described and followed by elaboration of the retrospective

studies and the case studies. From Chapter 4 to Chapter 7, the particulars of the

implementation of each study, along with the findings, are presented. Chapter 8

concludes this dissertation with discussion of the results and findings from the four

studies, the limitations and future work.

 15

Chapter 2: Related Work

Besides the scholarly research on technical debt, which has started growing in recent

years, the problem we are investigating is also related to existing concepts in other

established disciplines. This chapter first reviews discussions in the public domain

and foundational research work about the technical debt issue in section 2.1. Then

concepts and approaches from three supporting areas - risk management, software

quality assessment and software effort estimation - are reviewed in section 2.2, 2.3,

and 2.4.

2.1 Technical Debt Literature

The term “technical debt” was introduced by Cunningham in 1992, where he

presented the metaphor of “going into debt” every time a new release of a system is

shipped. The point was that a little debt can speed up software development in the

short run, but every extra minute spent on not-quite-right code counts as interest on

that debt [17]. Technical debt originally referred to delayed or “quick and dirty” work

in the design and implementation phases, resulting in immature code, but this

metaphor has been extended to include any immature artifacts in the software

development lifecycle.

Originally the technical debt metaphor has been mostly used as a communication

device as shifting the dialog from a technical vocabulary to a financial vocabulary

makes discussions clearer and easier to understand for non-technical people [18].

Discussions about this topic are pervasive on the web in such forms as personal blogs

and online forums. The foci of the discussions vary from technical debt classification

 16

and identification of technical debt, to solutions for controlling it. These discussions

serve as a platform to foster reflections on the essence of technical debt and facilitate

exchange of new ideas, thus providing opportunities for researchers to extract

important topics and then investigate them in a scientific manner.

In the software research community some studies have been conducted to understand

the causes (e.g. different code anomalies) and impacts (e.g. various aspects of

maintainability) of technical debt. Meanwhile, approaches have been proposed to

facilitate technical debt evaluation (e.g. quantification) and management. There is a

growing body of technical debt research focusing on technical debt identification.

Actually technical debt identification has become one of the most fruitful areas of

achievement in technical debt research [19]. Many approaches have been proposed or

adapted for technical debt identification. Specific tools and techniques have also been

developed based on these approaches. For example, Izurieta and Bieman’s work is

targeted to identifying “grime”, a metaphor for non-pattern related code that has a

negative impact on maintainability, accumulated in design pattern realizations [20].

Bohnet and Doellner proposed to use “Software Maps”, which visualize internal

software quality and risk, for technical debt identification [21]. Zazworka et al.’s

work on technical debt identification is based on code smells, which are patterns

indicating poor programming practices and bad design choices and thus can be used

as indicators of technical debt [22]. Similar to code smell detection but targeted to the

architectural level, extended augmented constraint networks (EACN) have been used

to transform software architectural models into dependency relations, which

facilitates detection of software architectural decay [23]. Technical debt identification

 17

is a significant area of technical debt research although it is not directly related to this

dissertation work.

Technical debt classification and studies of its causes and impacts are foundational

for this dissertation research. Investigation of the causes of technical debt further

have contributed to the literature on technical debt classification. Investigating

different ways that technical debt can be classified then facilitates understanding of

the nature of technical debt. Based on classification, strategies and approaches could

be developed to manage different types of technical debt, which is the objective of

this dissertation work. In addition, foundational work in technical debt classification,

causes, and impacts, also helps in understanding how technical debt manifests, and

thus facilitates development of technical debt identification techniques. Therefore, in

section 2.1.1, we first introduce technical debt definitions and classifications. Then in

section 2.1.2, we present the results from previous studies on the causes and impact of

technical debt. Finally in section 2.1.3 we discuss some technical debt management

approaches proposed by other researchers in this field.

2.1.1 Definition and Classification

Early work in this area focuses on establishing the foundation of technical debt

research by conceptualizing the phenomenon and classifying technical debt. There are

multiple dimensions by which technical debt can be classified. In McConnell’s

article, technical debt was categorized as unintentional and intentional debt [18].

Unintentional debt occurs due to a lack of attention, e.g. lack of adherence to

development standards or unnoticed low quality code that might be written by a

 18

novice programmer. Intentional debt is incurred proactively for tactical or strategic

reasons such as to meet a delivery deadline. The intentional debt was further broken

down to short term debt and long term debt. The short term debt refers to small

shortcuts, like credit card debt, while the long term debt may result from strategic

actions, like a mortgage. Based on this classification, Fowler created the technical

debt quadrants, as shown in Figure 1 [24]. The quadrants are formed by two

dimensions – deliberate/inadvertent and reckless/prudent. Each quadrant represents a

particular type of debt that takes the combination of the values from each dimension.

This type of classification is helpful in finding the causes of technical debt, which has

been demonstrated by Yli-Huumo et al.’s study [25]. In this study multiple causes of

the intentional and unintentional technical debt have been identified through

interview of the personnel working on two product lines in a software company.

Finding of the causes of technical debt could further lead to different identification

approaches. For example, for reckless and inadvertent debt, especially design debt,

source code analysis may be required to identify it.

Figure 1. Technical Debt Quadrants [24]

 19

Technical debt can also be classified in terms of the phase in which it occurs in the

software lifecycle – design debt, testing debt, defect debt, etc. [26]. Design debt refers

to the design that is insufficiently robust in some areas or the pieces of code that need

refactoring; testing debt refers to the tests that were planned but not exercised on the

source code. This type of classification sheds light on the possible sources and forms

of technical debt, each of which may need different measures for identification, and

approaches for management. For example, comparison to coding standards may be

required to identify and measure design debt, while testing debt measures require

information about expected testing adequacy criteria.

Moreover, this type of classifications makes it easy to associate technical debt with a

set of phenomena. Some of these phenomena manifest themselves in obvious ways.

For example

 documentation is partially missing,

 the project to-do list keeps growing,

 minor changes require disproportionately large effort,

 code cannot be updated because no one understands it anymore,

 it’s too difficult to keep different portions of the system architecturally

inconsistent.

These phenomena can be seen as symptoms of technical debt [27].

Revolving around the technical debt metaphor, much debate and discussion has

ensued on what technical debt is, the limits of the metaphor and how it should be

scoped [28, 29]. People from different perspectives, for example, industry software

 20

practitioners vs. academic researchers, have different points of view of this concept,

hence their understandings and emphases vary [30]. The lack of a proper definition

and scope has created difficulties in investigating technical debt and in

communicating among different research groups. In an effort to alleviate this

problem, Tom et al. conducted a comprehensive review of the technical debt

literature [31]. In Tom et al.’s work the technical debt concept was defined with a set

of dimensions, properties and outcomes by consolidating the work from different

research groups. The dimensions of technical debt proposed in their study largely

conform to the classification based on software lifecycle, including code debt, design

and architectural debt, knowledge distribution and documentation debt, and testing

debt. The only difference is the addition of “environmental debt”, which refers to the

debt incurred due to environmental changes such as technology advance. Critical

components for the technical debt concept were defined as “attributes”, which include

monetary cost, amnesty, bankruptcy, interest and principal, leverage, and repayment

and withdraw. According to the findings of their study, technical debt may impact

software quality, development productivity, project risk and team morale. To the best

of our knowledge, Tom et al.’s work is the first formal research that tries to

standardize the vocabulary of technical debt and its classifications. Similar to Tom et

al.’s work, Li et al. recently conducted a systematic literature review on technical debt

and its management [19]. In their work they compared the technical debt concepts

and classifications defined by different research groups, described their similarities

and conflicts, but they didn’t attempt to reconcile the conflicts to develop their own

technical debt classification. Ampatzoglou et al.’s work [32] is another systematic

 21

review on the technical debt literature, but it focuses on the financial aspect of

technical debt management. A technical debt financial glossary was developed

through synthesizing different ways of using the financial terms on technical debt,

merging similar terms and reconciling conflicts between the definitions of the terms

from different studies. The glossary contains terms such as Return on Investment,

option and hedging, providing a common vocabulary for technical people and project

managers and hence facilitating communications between them.

2.1.2 Causes and Impact

As discussed in Section 2.1.1, technical debt may be incurred by different causes.

Several studies aiming at this aspect have been performed by researchers. For

example, to identify these causes as well as the consequences of technical debt, Lim

et al. interviewed 35 software practitioners including managers, developers, and

quality assurance engineers [16]. Through the interview study they found that

time/budget constraints and bad decisions are the two primary causes although there

are others. Consequences of incurring technical debt vary with different types of

technical debt. This study helps understand the nature of technical debt by presenting

insights from the software practitioner’s point of view.

Investigation of the causes of technical debt may focus on a particular phase of the

software lifecycle, in which case the causes of technical debt are more specific. For

example, Wiklund et al. studies the technical debt regarding test automation in a

telecommunication system [33]. Through interview of the project personnel they

found out that non-transparency of their testing facility infrastructure and the lower

 22

quality of testing code than production code are the main contributors of technical

debt.

Another interview study on technical debt was conducted by Klinger et al. in

2011 [15]. Instead of focusing on the decisions made by individuals on the project

level, they approached the technical debt issue from an enterprise perspective. In this

study they explored the premise that incurring technical debt on the enterprise level is

more like using financial leverage than making a bad decision, which is often the case

when technical debt is incurred on the project level. The findings from their study

describe the complexity of incurring technical debt in the enterprise context and how

the causes of enterprise-level technical debt are different from those on the project

level.

Through a multiple case study Izurieta and Bieman investigated the causes and

impact of design pattern decay, deemed as a type of technical debt at the design

level [34]. The results of the study show that grime, i.e. the non-pattern related code,

is the primary cause of the design pattern decay, which eventually increased

dependencies between design pattern components, reduced pattern modularity, and

decreased testability and adaptability.

There are other studies that either investigated the technical debt issue in a particular

type of software organization, such as Giardino et al.’s study [35] on software startup

companies, or gathered the perceptions and experiences of software practitioners on

the causes and impact of technical debt, such as Holvitie et al.’s work [36].

 23

Reviewing these studies gave us multiple perspectives to look into the technical debt

phenomenon. The findings of these studies offer insights with different levels of

depth into the causes of technical debt, which together depicts a typical way of

technical debt formation: it starts with time pressure, a common problem that most

software projects have to face. When the planned work can’t be completed by the

deadline, cutting corners becomes an easy choice for software managers to deal with

the problem. As a result, tasks with low priority are postponed and compromises are

made on those “uncritical” parts. While individually they may not be noticeable, these

compromises accumulate over time to finally have significant impact on the software

project such as paying high maintenance cost sometime in the future, as the technical

debt metaphor suggests.

Besides the causes, the impact of technical debt on software projects and businesses is

another essential part of the technical debt problem. Yli-Huumo et al. [25]

investigated the technical debt problem in their case study of two product lines in a

software company. Through interviews, they collected various instances in which

technical debt seriously impacted their projects. One of the instances is that they

decided to put patches on a calendar synchronization function to allow modification

of the functions depending on it, rather than refactor the function. It turned out that

this decision cost them hundreds of hours in fixing bugs after the first release of the

function.

The impact of technical debt was also reported by Lim et al. [16]. In their study they

interviewed software practitioners with various roles such as developer, designer or

 24

project manager about their experience on technical debt in the projects involving

them. According to the findings of the study, one impact of technical debt was the

unpredictability of the system, which made more difficult the estimation of the time

and effort required to make changes and eventually resulted in higher maintenance

cost.

To provide a concrete idea of the magnitude of technical debt in the real world, CAST

evaluated technical debt in hundreds of applications from their repository and

converted the debt to financial cost per lines of code [14]. Based on this report, there

are also discussions on what types of technical debt may trigger higher costs in what

part of a system [37].

2.1.3 Management Approaches

In order to manage technical debt, a way to quantify the concept is needed. One

approach is to monitor the changes in software productivity during the software

development process. In many cases, development organizations let their debt get out

of control and spend most of their future development effort paying crippling

“interest payments” in the form of harder-to-maintain and lower-quality software.

Since the interest payments hurt a team's productivity, the decrease in productivity

can reflect how much debt an organization has [38].

Since technical debt is closely tied to software quality, approaches to software quality

assessment can be used to evaluate technical debt. The SQALE Method is an

approach of this type [39]. The method is based on a software quality model called

SQALE (Software Quality Assessment based on Lifecycle Expectations), which is in

 25

turn based on the ISO 9126 standard. The model is organized as a three-level

hierarchy. The top level is composed of quality characteristics such as reliability and

maintainability. The second level contains sub-characteristics for each characteristic.

For example, the sub-characteristics for “changeability” are data related, architecture

related and logic related changeability. The third level is composed of requirements

that relate to the source code’s internal attributes, e.g. “the number of derived classes

is less than 40”. The third level requirements actually define the “right code” for the

quality target. Then non-compliance is the distance between the current state of the

code and the right code, which is measured by the analysis model using remediation

indices. A remediation index represents the remediation effort of correcting the non-

compliances against the model requirements. The total effort, calculated by

aggregating the indices to the top level, represents the amount of technical debt

currently in the system. The effectiveness of this approach depends on the accuracy of

the remediation indices, which may be derived from historical project information.

Another metric based on the same rationale was proposed by Smit et al. [40]. The

metric was named “convention adherence”, which measures the severity of a

violation of the predefined coding conventions. Convention adherence was

considered as an indicator of the technical debt accumulated in a system with the

assumption that less adherence requires more maintenance effort, but the relationship

between the two was not validated in their study.

Other metrics for software quality can also be used to measure technical debt. For

example, if the software is inflexible or overly complex, then future changes will be

 26

more expensive. From this point of view, coupling, cohesion, complexity, and depth

of decomposition are metrics that can be applied to the problem of characterizing

technical debt [41]. Ultimately a good design is judged by how well it deals with

changes [41], so time and effort required for changes (in particular the trend over

time) is also an indicator of technical debt.

Nugroho et al.’s work defines technical debt as the cost of repairing quality issues to

achieve an ideal quality level, and the interest on technical debt as the extra

maintenance cost spent for not achieving the ideal quality level [42]. The ideal quality

level in their approach is represented by a set of software metric values such as the

lines of code (LOC), McCabe’s cyclomatic complexity and fan-in/fan-out. These

metrics are mapped onto ratings–five level (star) ordinal scales–for properties at the

level of the entire software product, such as volume, duplication, and unit complexity.

Five stars represents the ideal quality. The mapping uses risk profiles to characterize

software systems with different quality levels. A risk profile is a partition of the size

of a system into four risk categories: low, moderate, high, and very high risk. For

example, a software system with at least 75% or more lines of code in low risk

category has 5-star quality level. From the historical project information the profile of

each quality level can be derived. Then Rework Fraction (RF) can be calculated to

create a RF table. A Rework Fraction is defined as the percentage of lines of code that

need to be changed to improve the quality of software to a higher level. With the RF

table, the change effort of improving the system from its current quality level to the

ideal quality level can be estimated, thus the technical debt currently in the system

can be easily estimated. Likewise, the interest can also be estimated. The advantages

 27

of this approach lie in the use of the objective quality measures and fewer inputs and

assumptions. However, it is not applicable to situations where the project lacks

historical information.

Technical debt can also be measured by characterizing the cost of paying the debt.

For example, after determining what types of work are owed the system (e.g.

architecture redesign, code refactoring, and documentation), the labor, time and

opportunity cost can be estimated for fixing the problems identified. This cost reflects

the amount of principal of technical debt currently in the system.

Besides the evaluation approaches, strategies for paying off technical debt have also

been discussed. One strategy is to determine the time point at which technical debt

has to be paid [43]. Figure 2 illustrates how good design could affect the cumulative

functionality of a software project. A good design does require upfront time and

effort, but it makes software flexible and easy to accommodate changes so that the

project can go faster for longer. Neglecting design could save short-term time, but the

consequence is the accumulated technical debt, which will slow down the

productivity later. Therefore, the two strategies, i.e., good design and no design, have

different trends in terms of time and cumulative functionality of the project. Since the

“no design” strategy can no longer prevail beyond the point at which the two lines

join, the point can be considered as the breakeven between principal and future

interest. In other words, this approach can be used to determine whether it is

worthwhile to incur debt, when it should be paid in order to minimize the total time or

maximize the overall productivity.

 28

Figure 2. Cumulative Functionality of the Two Design Strategies [43]

The above discussion only illustrates the rationale behind different design strategies.

By contrast, Ramasubbu and Kemerer performed a rigorous analysis on these

strategies [44]. In their study 69 customers of a commercial enterprise software

package were tracked regarding functionality growth of the software package over its

ten year lifecycle. The customers were categorized into three groups – early, base,

and late adopter of the software package, according to the pace at which they added

customized functionalities through source code modification. Early adopter refers to

the customers who tend to add business functionality at a faster pace than the vendor

firm could fulfill using its standard releases; base adopters just use what the vendor

has released without any modification; while late adopters tend to delay upgrading to

the latest release of the software or only uses a subset of the available functionalities.

In the language of technical debt, early adopter and late adopter correspond to higher-

debt scenario and lower-debt scenario respectively, shown as dash line in Figure 3.

The solid line in the figure represents the functionality accumulation of base adopters

 29

over time. The study hypothesized that the functionality accumulation of the software

adopted by the three types of adopters follow different pathways with different costs

and benefits over time due to the effect of technical debt. For example, early adopters

can add features to the software at higher speed and hence achieve higher customer

satisfaction than the base and late adopters, in the early stage of software lifecycle, by

sacrificing software quality, especially maintainability, but the speed is decreasing

over time as more and more effort has to be devoted to maintenance rather than

adding new features.

Figure 3. Cumulative Functionality in Two Scenarios [44]

Through statistical analysis, these hypotheses were tested and the model, i.e. the

patterns of software evolution in different debt scenarios, were validated. Based on

the results of the study, they proposed an approach to control software evolution and

maximize the benefit for software managers. The approach set 3 decision points for

each of the debt-carrying strategies, as show in Figure 4. At these decision points

software managers may make a decision on whether they keep the current trajectory

or change to another one. While the approach is theoretically promising, the problem

 30

it seeks to address is still on a high level and hence the approach mainly serves as a

guideline for software development management. Moreover, if the debt-carrying

strategy is changed in the process of the evolution, the trajectory would be much

more complicated than an “S” shape. In that case only timing the check points and

watching the changing signs may not lead to the optimal decision that maximizes the

overall benefit of the strategy.

Figure 4. Development Investment Decision Approach [44]

On a conceptual level, technical debt is studied as a whole, but in practice, technical

debt in a system is manifested as individual pieces, which we call technical debt

items. Considering technical debt in this way, managing technical debt comes down

to determining when and which debt item should be paid off. One strategy is to pay

the highest interest debt items first [27], however, the principal of the debt item

should also be considered as it is the current cost for paying it off.

 31

When numeric estimation for principal and interest is impossible or hard to achieve,

an alternative approach is to use ranking to prioritize the technical debt items. In

Zazworka et al’s work technical debt items (classes) can be identified using a set of

criteria composed of software metrics and thresholds [22]. The thresholds and metrics

used to evaluate these classes came from the definition of the code smell “god class”,

which refers to a class that implements too much responsibility on its own. For the

cost of paying off the debt, i.e. the principal, the classes are ranked in terms of their

distance to the thresholds with the assumption that a class that is close to the

thresholds will be easier to refactor than one that is multiple magnitudes outside. For

the interest on the debt, the classes are ranked according to defect and change

proneness. The priority of these classes for refactoring is finally determined by two

dimensions: cost and interest, as shown in Figure 5. One strategy for paying off the

debt associated with god classes is to choose classes starting with the upper left

corner of the chart, and then moving down and to the right. The classes in the upper

left corner (e.g. GodClass8 and GodClass7) are most likely to have a higher effect on

future maintenance (high interest), but are relatively cheap to pay off (low principal).

Fontana et al. conducted a similar study using code smell as a technical debt

indicator. The objective of this study is to advise on which type of code smell

indicates more serious problems than others and thus should be addressed with

priority [45]. In the study they first identified code smells from the subject software

applications. Then a set of complexity metrics are applied before and after the code

refactoring to evaluate the impact of code smells. The proposition was that if removal

of a type of code smells makes more improvement on the metrics than other types of

 32

code smells, refactoring the code infected by this type of code smells has more value

and should be given higher priority.

Figure 5. Cost/Benefit matrix for Nine God Classes [22]

The strategies and approaches mentioned above for technical debt decision making

are less formal, based on personal experiences from tackling similar problems in

related research areas, and they reflect early thoughts on the technical debt

management problem. By contrast, some other approaches for technical debt decision

making take a more formal approach. For example, Schmid proposed an approach to

formalize the technical debt concept and decision making [46]. In this approach,

technical debt is modeled using implementation cost, rework cost and future

evolution path. Thus technical debt decision making turns into an optimization

problem. Although this is theoretically promising, the approach is not practical for

real world application due to the hard requirements for finding an optimal solution,

even with relaxed assumptions. Therefore, Schmid proposed a simplified approach

that only considers evolution cost, refactoring cost and the probability that the

 33

predicted evolution path will be realized. In the sense of technical debt decision

making, this simplified approach is very similar to the principal-interest-probability

approach we use and hence supports its application in this study. Another example is

Nord et al.’s work in which technical debt for two distinct delivery strategies, i.e.

quick delivery vs. low rework cost, were evaluated using an architectural metric [47].

With a concrete software project, they demonstrated the importance of architectural

debt information in decision making related to product delivery.

Agile development appears to be more prone to technical debt accumulation

compared to traditional software development approaches, due to its delivery-oriented

focus. To take advantage of agility while still maintaining a stable infrastructure for

long term health, Bachmann et al. proposed a set of architectural tactics for system

decomposition, architecture development and staffing, and proposed a way to make

these tactics work together harmoniously [48]. Although the tactics do not explicitly

address the technical debt management issue, they offer another angle to view and

investigate the technical debt problem.

In this section we described some technical debt management approaches proposed

by other researchers in the field. Most of the approaches focused on a particular

aspect of the technical debt management problem such as the quality metrics for

evaluating technical debt. Some of them were actually basic ideas for reflection on

the problem, e.g. finding the breakeven point at which technical debt should be paid

off. But managing technical debt requires a holistic approach that can address the

main aspects of the problem – whether and how technical debt should be paid off.

 34

Even in the aspect they are targeted to, the approaches described above have limited

power to be applied in practice due to the stringent assumptions or application

conditions. For example, the SQALE method and Nugroho et al.’s approach heavily

rely on historical project information, which are often lacking or unavailable.

Therefore, the technical debt management approach we propose in Chapter 3

embraces all main components for technical debt management, including both

principal and interest. Moreover, the framework was designed to allow human

judgment in all stages to overcome the limitation of the approaches that rely on

historical project information. Moreover, none of these approaches in the literature

have been tried in practice, which leads to the objective of this research – developing

and empirically exploring a technical debt management approach in terms of its costs

and benefits.

In a recent case study, Martini et al. [49] explored technical debt management in a

real industrial environment by identifying causes of architecture debt, modeling debt

accumulation, and evaluating different refactoring strategies in terms of the frequency

of “crises” as defined by the authors. Thus, Martini et al.’s study comes closest to our

study. However, the study didn't focus on the economic aspect of technical debt

management. Therefore, the management strategies they discussed in the study do not

address such questions as when and what technical debt should be paid off, which our

studies were targeted to answer.

 35

2.2 Software Risk Management

As described in Chapter 1, managing technical debt is more complicated than

managing economic debt. One of the reasons is that technical debt involves

uncertainty. The uncertainty of technical debt warrants its proximity to the concept of

software risk. Therefore, managing technical debt could leverage the approaches to

software risk management. In this section we present what has been accomplished in

the research area of software risk management. In particular, we review the risk

management processes, approaches and techniques from which we draw inspirations

for this research.

2.2.1 Overview

Risk can be defined as the potential that undesirable events with negative

consequences will occur [50]. This definition indicates that risk has two basic

elements - the uncertainty with respect to the occurrence of the events and the loss if

the events occur. Risk management, as a multidisciplinary problem, has been

investigated in different areas. The goal of project risk management, in general, is to

reduce the threats to project success no matter what areas it is applied to. Given their

dynamic, abstract and complex nature, software projects face many challenges and

risks. Risk management for software projects involves identifying and addressing the

incidents that endanger a successful software operation or lead to implementation

difficulty, delay or rework [51].

Since the 1970’s, various techniques and approaches have been proposed to deal with

software risks [51-56]. Among them the most famous is Boehm’s approach [51],

 36

which established risk management as an important research field in software project

management and laid the foundation for most of the work in this field [57]. Another

line of research on software risk management was conducted by the Software

Engineering Institute (SEI) at Carnegie Mellon University. The outcome of this

research was a risk management framework called Continuous Risk Management

(CRM) Paradigm. SEI’s CRM was considered one of the most comprehensive

collections of practical techniques that can be used in various steps during risk

analysis [57]. Given the important role of the above two approaches in software risk

management, we present their details in Sections 2.2.2 and 2.2.3 respectively.

In addition to these risk management approaches specifically designed for software

risk, some software researchers have leveraged approaches from other fields. Costa et

al. proposed an approach to calculate the probability distribution of losses and

earnings that can be attained from a software project portfolio [58]. By mapping risk

concepts in software engineering to the financial domain, they applied credit risk

theory for loan operations to assess software risks. The theory was extensively used

by financial institutions but was never applied in the software engineering domain.

Similarly, Kumar proposed the use of concepts from the finance domain, such as

hedging, to study software risks and project decisions [59]. Their work provides a

new perspective to understand risks in the software engineering domain.

Managing risks in software projects is a process of identifying risk, assessing risk,

and taking steps to reduce risk to an acceptable level [60]. These basic steps for

managing software risks have been defined or described by different researchers in

 37

their work, especially in the comprehensive risk management approaches [51, 53-55].

Since technical debt is closely related to software risks, a process for managing risk is

key to developing a technical debt management process. A summary of the risk

management processes defined in different approaches will be presented in section

2.2.4, followed by a discussion of the applicability of the risk management process to

technical debt management.

Within the risk management paradigm, risk analysis is still the central problem and

major challenge due to the difficulty in quantifying and predicting software risks.

Therefore developing and improving risk analysis methods remains a hot topic in this

field. There is a large body of research on risk analysis methods and techniques,

including risk assessment frameworks, models, and techniques for estimating risk

impact and probability of occurrence, which we will elaborate in section 2.2.5.

Besides the risk management approaches and risk analysis techniques, there are

empirical studies in this field. Some studies attempted to evaluate risk management

approaches, while other studies focused on risk patterns in software projects and

relationships between risk control strategies and project success. Details of these will

be given in section 2.2.6.

2.2.2 Boehm’s Approach

Boehm’s risk management approach introduced measures for software risks and

consolidated risk techniques into a single framework. His approach consists of two

major steps – risk assessment and risk control. Risk assessment is divided into three

sub-steps: risk identification, risk analysis and risk prioritization. Risk control

 38

includes risk management planning, risk resolution and risk monitoring. Each of these

steps is supported by a set of techniques. For example, software risks can be

identified using a risk checklist. Figure 6 shows the structure of the approach.

Figure 2.3

Figure 6. Boehm’s Risk Management Approach [51]

2.2.3 SEI’s Approach

This line of research started with the development of a risk taxonomy [61]. In the

taxonomy there are three top categories - product engineering risk, development

environment and program constraints. The product engineering category covers risks

regarding software lifecycle phases such as requirements, design and testing. The

development environment category includes risks of processes such as the

development process and the management process. The program constraints category

 39

consists of risks on resources required for projects and interfaces between the system

and external entities such as customers. Along with the taxonomy is a questionnaire

containing 194 questions, which cover all the entries in the taxonomy, to facilitate

risk identification. SEI’s risk taxonomy is a landmark effort in classifying risks into

known groups or classes. This taxonomy has inspired many risk management

practices.

Based on the taxonomy, a risk evaluation method was developed and enhanced to

form a paradigm - Continuous Risk Management (CRM) [56, 62, 63]. CRM consists

of five continuous tasks to guide the risk management process:

 identify software risks using SEI’s risk taxonomy,

 analyze the risks to determine their probability of occurrence, impact on the

organization and the relationships between individual risk statements,

 plan risk mitigation for the identified risk areas,

 track individual risks, mitigation plans, and the risk process to determine the

effectiveness of mitigation actions and the risk process,

 control deviations from planned risk mitigation actions and make decisions,

e.g., close, re-plan, continue tracking.

 40

Figure 7. SEI Continuous Risk Management (CRM) Paradigm [63]

As shown in Figure 7, CRM emphasizes that effective risk management should be a

continuous process. Communication is represented as an encompassing activity to

stress that the flow of information throughout the project or organization is essential

to successful risk management [63].

2.2.4 Risk Management Process

Since risk is a general phenomenon in all segments of our society, there are risk

management processes in other domains. For example, in the ISO standard, the

process of risk management consists of establishing the context, identifying risk,

assessing risk, planning risk treatments, implementing and evaluating the plan [64].

The risk management process is also defined in the standards issued from institutes

such as U.S. Department of Defense (DoD) and NASA [65, 66]. Similar to these risk

managing processes outside the software domain, Boehm considers software risk

management as a process that involves two primary steps, each with three subsidiary

steps, as shown in Figure 6 [51]. SEI’s approach defines the risk management process

as a set of continuous tasks including identifying, analyzing, planning, tracking and

 41

controlling the risk, as shown in Figure 7 [63]. Although these risk management

processes pertain to different domains and their definitions are presented in different

ways, they are consistent with one another in terms of the basic components that the

process should possess. Here we synthesize the risk management approaches into the

following basic steps:

(1) Identify the risks regarding project, product and business,

(2) Analyze the risks identified in the first step to determine their priority by

evaluating their likelihood and consequences,

(3) Propose, plan and apply strategies to control the risks,

(4) Evaluate the effectiveness of the planned risk control strategies.

Managing risks follows an iterative process that continues throughout the project. On

the one hand, the identified risks need to be updated if they are already handled. On

the other hand, the risks have to be re-evaluated as more information regarding the

risks becomes available or the environment changes. In general, a risk management

plan is required to continuously monitor and track risks of the project.

Since technical debt can be considered as a particular type of risk in software

projects, we mean to follow the same process (identify, analyze, control and evaluate)

to manage technical debt. Furthermore, some approaches used for risk analysis,

especially those used for probability estimation and risk prioritization, are also

applicable to technical debt management.

However, technical debt management is not exactly the same as risk management.

For example, approaches for technical debt identification are essentially different

 42

from the approaches for software risk identification. Risk identification approaches

aim to identify potential problems related to the software project, product or business.

These approaches include intuitive methods such as brainstorming, and history-based

methods such as leveraging a risk taxonomy or list for risk identification [25, 26, 35,

40, 41]. By contrast, technical debt identification approaches deal with the problem of

what the technical debt items are and where they reside. Identifying technical debt

relies on assessment of software quality, which will be elaborated in section 2.3. The

risk analysis step is discussed in more detail in section 2.2.3.

After the risks are identified and analyzed, actions should be taken to put the risks

under control. Several risk control strategies, such as risk avoidance, risk

transference, risk acceptance and risk mitigation have been proposed [63, 65, 66].

While controlling risk is concerned with choosing and then applying the best

strategies for each of the identified risks, controlling technical debt generally involves

one particular risk control strategy – accepting the risk because the potential benefit

may outweigh the associated loss. More than a selected risk control strategy,

controlling technical debt is a matter of tracking it to determine when and if the

"acceptance" strategy is no longer cost effective, i.e. when the potential benefit no

longer outweighs the cost.

Since the main parallels and similarities between software risk and technical debt are

relevant in the second, or analysis, phase of the risk management process, we discuss

in more detail approaches and findings related to risk analysis in the following

 43

section. As argued above, existing approaches for identifying and controlling risks are

of limited applicability to technical debt.

2.2.5 Risk Analysis

Among the risks that software projects may encounter, some are severe but have little

chance to occur, while others may occur frequently with little impact. This raises the

question of which risk should be handled first. In addition, constraints of software

projects such as budget and schedule may not allow all risks to be handled and

controlled. Moreover, the cost of eliminating some risks may be higher than the loss

that the risks can incur. Therefore, the goal of risk analysis is to prioritize the risks so

that software managers know where their effort should focus.

Risk analysis starts with estimation of the potential loss of the risk and the likelihood

that the loss will occur, which are the primary elements of risk. Then, based on the

results of risk estimation, the risks are assessed through different approaches.

2.2.5.1 Risk Estimation

The simplest metric for evaluating the potential loss of risk, i.e., risk impact, is to use

an ordinal rating scale, which defines the impact as low, medium and high [62]. Then

the severity of risk impact can be assigned a numerical value in terms of the context

in which the risk is evaluated. For example, a risk with low impact in a project might

mean $1000 loss. However, evaluating the severity of the consequences is often quite

difficult for immaterial assets such as loss of image of a company.

 44

Another approach to severity estimation is to evaluate the recovery costs, e.g. time

and efforts, of the impact in case of occurrence. In the area of software engineering,

there are various models for software cost estimation, such as COCOMO [8] and

Function Point Analysis [9]. These models leverage historical data and current project

characteristics to achieve better estimation of effort for a project than pure human

judgments. Using risk recovery cost as an estimate of risk impact is applicable for

estimating technical debt in that the negative impact of technical debt is the extra

effort required in future maintenance if the debt is not paid at present.

Similar to estimation of the potential loss of risk, probability of occurrence can also

be roughly evaluated as high, medium and low [62]. The more accurate estimation

takes a numerical value from 0 to 1 or a range such as 10% - 15%. If the evaluation is

based on one’s experience, then it is considered a subjective measurement.

Historical data is the major source that can be used for more accurate and objective

estimation of the probability. Empirical analysis of historical data could discover the

probability distribution of risk factors, which contribute to the occurrence of risk.

Then risk models can be constructed. Inputs to the risk model usually contain

uncertain variables or random variables. For any given set of input values, the model

calculates outputs that are the impact of the risks - loss or benefit. Risk models can be

used in several ways, but one effective way is to explore the possible outcomes using

simulation. During simulation, inputs of the model are randomly generated from

probability distributions to simulate the process of sampling from an actual

population. The distribution chosen for the inputs should most closely match

 45

historical data or best represent current state of knowledge. Finally the outputs are

used to calculate the probability distribution of the risk impact.

Although historical data is helpful, it should be noted that determining the rate of

occurrence may be difficult because statistical information is not always available on

all kinds of past events. Moreover, statistical methods have a hard requirement for the

volume of the data. If an event has rarely happened in the past, statistical estimation is

not applicable. Therefore subjective estimation is still used in some cases.

There are a variety of techniques for subjective probability estimation. These

techniques fall into three categories in terms of how they address the bias that the

subjective measurement has. The first type of techniques estimates probability

directly by assigning a label (e.g. High, medium or low) or a value (e.g. 30%) to it

based on one’s experience. This type of technique allows more bias in the estimation

because the label can be interpreted subjectively and the value is artificial and does

not usually reflect the real range of probability for a given risk [67].

The second type of technique assesses risk probability by providing values against

which the probability of the risk occurrence can be compared [68]. In other words, it

asks whether the probability of the risk is more, less, or the same as a given value.

The aim of all these techniques is to adjust the comparator until the assessor cannot

distinguish between the risk probability and the given value. This value is then used

as the best estimate of the risk probability. Although they appear to be simple, the

comparative approaches face difficulties such as the problem with understanding the

 46

comparators. In addition, assessments using comparative techniques are subject to

perceptual bias and heuristics as with the first type of techniques [69].

The third type of technique is an indirect approach. It involves coming up with the

situations or scenarios that might occur for a given risk on a project. Each scenario is

characterized by the state of a set of attributes and has an associated probability that

the related risk will occur. Then the probability of the risk occurring can be inferred

by finding which scenario represents the current scenario in which the risk is being

analyzed [70]. For example, the technical risk of a software project may come from

the use of a new development tool. That is, the risk is that the new tool will have

problems and cause delays and higher costs on the project. The scenarios in which the

risk occurs are characterized by the availability of alternatives for the tool and the

quality of technical support provided by the vendor of the tool. Then one scenario is

that alternative tools are available and technical support of the tool is excellent. The

associated probability in this scenario can be estimated as “low” in terms of the state

of these attributes. While another scenario is that no alterative tool is available and

technical support is poor. The associated probability in this scenario is “high”,

comparing with the previous scenario. We can follow the same way to develop all the

possible scenarios and estimate the associated probability. Then estimating the

probability that the risk will occur equates to finding the matching scenario. Assume

that a new development tool is currently used in the project without alternatives, and

the vendor of this tool provided poor technical support for their customers in the past

year, then the technical risk of this project is considered as high. This approach has

 47

the benefit of being less subjective than other assessments because it is based on

known facts about the project rather than relying on subjective opinions.

2.2.5.2 Risk Assessment

The most straightforward risk assessment method is a risk analysis matrix, where

both the impact of risk and the probability of occurrence are measured using an

ordinal scale. The horizontal dimension of the matrix represents the probability of

occurrence and the vertical dimension represents the severity of the impact. Then

risks with catastrophic impact and high probability of occurrence are ranked high,

followed by risks with catastrophic impact and moderate probability or critical impact

with high probability, and so on, as shown in Figure 8 [62]. Once the risks are ranked,

the high risks will be considered first. The limited resources will be used to deal with

these high risks first, then medium risks and low risks. The advantage of this method

is that it does not require a high level of measurement scale on risk impact and

probability of occurrence, which is often the case during the initial stage of risk

analysis or when more accurate estimation is not available due to lack of historical

data.

Figure 8. Risk Analysis Matrix [62]

 48

Risk can also be prioritized in terms of risk exposure, a term used in Boehm’s risk

management approach [51]. Risk exposure is defined by the formula below:

Risk Exposure = Prob(UO) * Loss(UO)

Where Prob (UO) is the probability that an Unsatisfactory Outcome (UO) occurs and

Loss (UO) is the loss associated with the UO. The risk exposure, in terms of

probability theory and statistics, is the expected value of the risk. Expected value is a

well-established way of calculating uncertain events. The use of expected value in

risk prioritization takes into consideration both the loss and probability of occurrence.

Moreover, it can be used with different measurement units and scales, and the results

can be easily aggregated and disaggregated [71]. However, expected value does not

convey all the information in the primary two elements of risk, i.e., risk impact and

probability of occurrence. For example, risks with very high potential loss and low

probability of occurrence may be handled in a different way from those risks that

occur frequently with little loss though the risk exposures of the two kinds of risks are

equal. Therefore, this risk prioritization method should be combined with other

techniques to reduce the bias of expected value.

One application of the theory of expected value in decision science is the decision

tree. A decision tree uses a graph to model decision alternatives, states of nature,

probabilities attached to the states of nature, and conditional benefits or losses. Then

the expected loss/benefits for each decision alternative can be calculated. The goal of

decision tree analysis is to select the best course of action in situations when facing

uncertainty. Therefore it is often used for risk analysis.

 49

Figure 9 illustrates a decision tree for a product development decision. The leftmost

node (the root node) is a small square called a decision node. The branches emanating

to the right from a decision node represent the set of decision alternatives that are

available. One, and only one, of these alternatives can be selected. The small circles

in the tree are called chance nodes. The number shown in parentheses on each branch

of a chance node is the probability that the outcome shown on that branch will occur

at the chance node. The right end of each path through the tree is called an endpoint,

and each endpoint represents the final outcome of following a path from the root node

of the decision tree to that endpoint. The expected values of decision branches are

calculated from right to left. Decisions are made by selecting the branch that yields

maximum benefit or minimum loss.

Figure 9. A Decision Tree [72]

Decision trees can be used to represent problems involving sequences of decisions,

where decisions have to be made at different stages in the problem. However,

 50

decision tree analysis assumes that probabilities of conditions are independent. This

hinders application of decision tree analysis for complicated problems.

Another approach to risk prioritization is network analysis, which, in particular, refers

to Critical Path Method (CPM) [73]. CPM is a project modeling technique, which

uses a project network logic diagram to present all the activities required by the

project, the time or duration for completing the activities and the dependencies among

the activities. CPM analysis, as its name suggests, is to identify the critical path, a

sequence of project network activities that add up to the longest duration, thus

determining the overall project duration. Then the critical activities, which are those

along the critical path, can be identified. If CPM is applied to risk management, the

risks associated with the critical activities are considered having more impact on the

project and should be given higher priority and more attention.

Risk exposure analysis, decision tree, CPM and other quantitative approaches provide

more accurate and objective assessment of risk. However, the degree of accuracy and

objectivity that these risk analysis techniques can achieve depends on how the

primary elements of risk, i.e., potential loss and probability of occurrence, are

estimated. In addition, risks often involve some combination of political, social,

economic, environmental and technical factors, and therefore it is difficult to place a

number on the risks when the factors are coupled with the obscure nature of personal

perceptions [74]. The subjective risk assessment approaches have been proposed to

overcome the shortcomings of the quantitative risk analysis methods. This type of

approach uses human opinions and judgment to prioritize risks. For example, Delphi

 51

Method [75] is an iterative process for consensus-building among a panel of experts

who are anonymous one to another. Through several rounds of questionnaire and

revision, consensus or stable results regarding the judgment can be achieved. When

applying this method to risk analysis, the judgment they will make is the priority of

risks, that is, which risks are more critical than others. The rationale behind this

method is that group judgments can reduce the subjectivity introduced by human

judgment and thus are more valid than individual judgments.

Analytic Hierarchy Process (AHP) is another method that can be used for risk

prioritization. AHP, developed by Saaty in the 1970s, is a multiple criteria decision-

making methodology [76]. The process involves structuring the decision problem

with multiple choice criteria into a hierarchy, assessing the relative importance of

these criteria through pair-wise comparison, comparing alternatives for each criterion,

and determining an overall priority of the alternatives [76]. Based on mathematics

and psychology, AHP helps capture both subjective and objective evaluation

measures, providing a useful mechanism for checking the consistency of the

evaluation measures and alternatives suggested by the team and thus reducing bias in

decision making. Since software projects usually involve multiple stakeholders who

may assess the same risk from different perspectives, software risk analysis may have

to use multiple criteria. In such situations, AHP is a proper choice for risk

prioritization in that it converts individual preferences into ratio scale weights that can

be combined into a linear additive weight for each alternative. Thus the overall risk

priority can be easily synthesized from the alternatives. AHP is also suitable for the

situation that risk elements cannot be objectively measured, e.g., historical data are

 52

not available or the statistics are not applicable, and hence significant personal

judgment and subjective evaluation have to be used for risk prioritization.

2.2.6 Empirical Study and Evaluation

As the risk management approaches have been proposed and applied, researchers in

this area paid attention to the performance of the approaches and started evaluating

their effectiveness. Lyytinen et al. proposed a socio-technical model to synthesize a

set of risk factors and resolution [77]. Then they used the model to analyze four

classical risk management approaches. They concluded, through the study, that the

four approaches differ significantly in terms of managers’ role and possible actions.

The implication of their study is that different risk management approaches may vary

in emphases and applicability for addressing different risk management concerns.

Therefore, software managers should be aware of these differences so that the

appropriate approaches can be selected.

Addison and Vallabh conducted a study to examine whether software risks in

software practice can be effectively addressed by the risk control strategies proposed

in literature [78]. In the study they surveyed software project managers on the

effectiveness of risk control strategies based on their experience. Meanwhile they

compared the risk control strategies employed by experienced project managers with

those used by inexperienced project managers. The results of the study confirmed the

effectiveness of most risk control strategies proposed in literature. The study

revealed differences of software risks in terms of impact and frequencies of

occurrence, thus providing a guideline for software project managers.

 53

Based on Boehm’s approach [51], Heemstra and Kusters proposed a risk management

method [79]. The method uses the risk checklist and involves group decision making

and a risk advisor. The method was evaluated using five software projects. They

conducted cost-benefit analysis on the proposed method and the results demonstrated

the effectiveness of the method. The findings from this study also indicated the

usefulness of a short risk checklist, group decision making involving all stakeholders

of the project and a risk advisor, which are all emphases of this method.

Williams et al. evaluated SEI’s risk management approach based on their experience

with software-intensive United States Department of Defense (DoD) projects, which

followed the SEI’s continuous and time risk management [80]. In their work both the

effective and ineffective aspects of the approach were discussed with some concrete

examples from the projects. Although it was not a formal evaluation, the discussion

offered insight into the applicability and effectiveness of the SEI’s approach.

 Software projects usually face a variety of risks. These risks influence software

projects in different ways such as project schedule, software quality or the project

cost. They are also different in terms of magnitude of the negative impact and

probability of occurrence. One of the research topics in risk management revolves

around the following questions:

 What risks are more influential to project success relative to others?

 Are there patterns to the risks in software projects?

Motivation of this research topic came from the belief that software managers should

focus their effort on those risks that are critical to the projects. Some empirical studies

 54

have been done to address such questions. For example, Wallace et al. studied risk

factors in software projects with different levels of risk [81]. This study was based on

their previous work on risk classification [82]. The study focused on risk patterns in

software projects and the influence on project performance. In the study 507 software

managers were asked to rate each risk statement from six risk dimensions that

characterized their most recently completed project using a seven-point Likert scale.

The ratings of the statements were aggregated to form the measures of these risk

dimensions. Based on the aggregate measures, k-means cluster analysis was

performed to group the projects as high, medium and low risk projects. The study

revealed how different categories of risk contributed to the level of project risk, i.e.,

risk patterns. For example, one of the findings is that the requirements, planning and

control risk categories are closely associated with high risk projects. Han and Huang

conducted similar research to investigate the relationship between different categories

of risk [83]. The study adopted the DoD’s risk approach [40] to assess the risk

factors. Data were collected through a web-based survey of software project

managers, who were asked to rate the 27 software risks used in the DoD risk

assessment method [40] in their most recently completed software project. The results

showed that the requirement risk dimension is the primary area among the six risk

dimensions, which is consistent with Wallace et al.’s findings.

Since software projects usually have multiple stakeholders, there are multiple

dimensions and perspectives from which to view and define project success, such as

low cost or a high quality product. According to the definition, software risks are the

events that prevent the projects from achieving success. Therefore, the effectiveness

 55

of risk control strategies depends on how they can affect project success. To study the

relationship between risk control strategies and project success, Jiang and Klein

surveyed 196 software project managers to elicit the types of risks encountered, the

impact they have on different categories of project success, and the types of strategies

that are deployed to mitigate known risks [84]. In the study they identified the

patterns among the different categories of risks. Hypotheses on relationships between

risks, control strategies and project performance were framed and tested based on the

collected data. Results from the study indicate that the strategies involving behavioral

aspects tend to be more influential in risk reduction than are those aimed at technical

risks. Based on the findings they also gave suggestions for both practitioners and

researchers.

Another topic in the area of software risk management revolves around risk issues

and control strategies in a particular application domain. The goals of this research

center on characterizing risks in the domain. For example, Conrow and Shishido’s

work provides concrete examples of risk management approaches applied to DoD

projects and the effectiveness of the approaches [85]. Aubert et al. studied the

undesirable outcomes of IT outsourcing [86] by using transaction cost and agency

theory to analyze and assess the associated risk factors. By studying relationships

between the undesirable outcomes and the risk factors, they identified the most

influential risks in IT outsourcing. Similar studies were conducted to investigate risk

factors in ERP projects [87, 88]. Through survey or case study, these studies revealed

risk factors that are unique or critical to ERP projects, which deserve more attention

and effort from software managers in the application domain.

 56

2.2.7 Summary of Software Risk Management

Risk refers to the events that result in potential loss and have some probability of

occurring in the future. The potential loss and the probability of occurrence are the

primary elements of risk. A software project usually has many kinds of risks that

jeopardize the success of the project. To control these risks and help the project

achieve its goals, various risk management approaches have been proposed. These

approaches either provide a general risk management framework, such as Boehm’s

risk approach [51] and SEI’s risk management paradigm [63], or address a particular

risk management problem such as risk probability estimation. Managing software

risks follows the process of risk identification, risk analysis, risk control and risk

evaluation. The goal of risk analysis is to estimate the risk impact and probability of

occurrence and prioritize these risks base on the estimation. Risk impact can be

estimated based on human experience and opinion. It can also be measured by the

recovery cost. Therefore, approaches to software cost estimation can be used to

estimate risk impact. Similarly, the probability of occurrence can be subjectively

estimated. There are approaches to reduce the bias of subjective estimation. The use

of historical data could improve estimation accuracy. After the impact and probability

of occurrence are estimated, the risks can be assessed using quantitative risk analysis

approaches such as risk exposure analysis and network analysis, or judgment-based

approaches such as risk analysis matrix, DELPHI and AHP. These approaches vary

in terms of applicable situation and performance. There are empirical studies

regarding the effectiveness of risk management approaches, risk patterns in software

projects and relationships between software risk and project performance.

 57

This review is not comprehensive in that it does not cover all aspects of software risk

management. Instead, it focuses on the aspects that are relevant to technical debt

management. Since it possesses the primary attributes of a risk, i.e., potential loss and

probability of occurrence, technical debt is considered as a particular type of software

risk. Thus approaches to risk management can be adopted for technical debt

management.

Actually the technical debt management approach we propose in Section 3 was

inspired by software risk management. Managing technical debt using the proposed

approach follows the same process as software risk management – identifying,

measuring, controlling and evaluating technical debt. Considering the exploratory

nature of the studies we’ve performed, we adopted simple risk analysis approaches to

measure technical debt rather than apply sophisticated models during the initial stages

of this line of study. In addition, the technical debt management framework presented

in Section 3 is designed to be flexible and easy to incorporate results from ongoing

study. Therefore, these simple approaches can be tailored, enhanced or even replaced

with sophisticated approaches in the future when more details of technical debt

management are uncovered and understood.

The principal, interest probability and interest amount of technical debt in our

proposed approach are initially estimated as high, medium or low, as is often done in

risk estimation. The estimation is refined with the aid of historical data whenever

possible. We also use the risk analysis matrix for risk prioritization and risk exposure

analysis in controlling technical debt. As implied by risk management, technical debt

 58

should be continuously monitored to decide whether it is becoming more or less

probable and whether the potential effects of technical debt have changed.

2.3 Software Quality Assessment

The extensive use, and increasing scale and complexity of software have raised

concerns about software quality. It was reported that software organizations invest

around 80% of their development resources for issues related to their products’

quality [89]. Given the importance of software quality, quality assessment remains a

hot research topic in the field of software engineering.

The concept of software quality has been defined in different ways in literature, e.g.,

extending the quality concept of hardware to software, or considering the

characteristics unique to software [90-93]. Hereby software quality can be defined as

“user satisfaction”, “measurable properties of software” or “fitness for use” [93]. In

spite of differences in the definitions, software quality essentially means the degree to

which software conforms to specified requirements and the degree to which software

meets customer or user needs or expectations [94]. From the perspective of software

quality, incurring technical debt may lead to software artifacts that fail to meet certain

criteria. In this sense, quality assessment is the foundation for detecting technical

debt. Studying approaches to software quality assessment could contribute to

technical debt identification. Moreover, comparing the quality of immature software

artifacts with the quality standard is an important approach to evaluating technical

debt [42, 95].

 59

2.3.1 Overview

Software quality is a multi-faceted concept in that the requirements that software

should meet come from different groups of people, who have different views on

software quality. For example, software users may focus on reliability and usability

when they consider software quality, while developers may be more concerned about

maintainability. A variety of models and approaches have been proposed to assess

software quality. According to the goals they mean to achieve, these models are

categorized as quality control models and prediction models [92]. Quality control

models are used to check whether a software system meets predefined software

quality criteria, to track software quality changes or to evaluate effectiveness of

quality control and assurance activities. This type of model usually presents software

quality as a hierarchical structure of characteristics, each of which contributes to total

quality. The highest level of the characteristics is a set of attributes, such as

reliability, usability, maintainability and testability. These attributes can be further

decomposed into features or characteristics and sub-characteristics. Table 1 shows the

quality model defined by ISO [96]. Other similar models that have been widely used

are McCall’s quality model, Boehm’s quality model, and Dromey’s quality

model [97-99].

Software Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability

Accuracy

Interoperability

Security

Maturity

Fault-tolerance

Recoverability

Understandability

Learnability

Operability

Attractiveness

Time

Behavior

Resouce

Untilization

Stability

Analyzability

Changeability

Testability

Adaptability

Installability

Replaceability

Co-existence

Table 1. ISO 9126 Quality Characteristics

 60

A typical software quality assessment process starts with identifying a small set of

high level quality attributes, as defined in the ISO and IEEE quality standards [96,

100]. Then these attributes are further decomposed into more specific attributes at

lower levels. The next step is to assign weights to each attribute. Since these attributes

may conflict with each other, the weights assigned to them depend on the goals that

the quality assessment means to achieve [90]. Then the value of each attribute is

given a rating score. Finally the overall quality score is calculated by synthesizing the

rating score of each attribute and the weight of the attribute. The key step of the

process is to give each attribute a rating score, which is often performed by humans

and thus subjectivity is inevitable. In some cases a positive attribute to one evaluator

is negative to another. Therefore, software metrics have been proposed to address the

subjectivity introduced by human judgments. The software metrics assess software

quality attributes indirectly using software attributes that have objective

measurements.

 A quality model needs to be evaluated before being applied to quality assessment.

Software quality models can be empirically evaluated at two levels. The first level of

evaluation deals with validity of individual software attributes. The second level of

evaluation is to validate the overall performance of the software quality model [101].

This second level of evaluation often starts with gathering metric data by applying the

model to subject systems. Meanwhile the quality of the subject systems is evaluated

by experts. Comparing the model results with the experts’ opinion leads to the

conclusion on the effectiveness of the model.

 61

Another type of quality model focuses on software quality prediction, which uses

product or process-related metrics to predict the fault proneness of a software system.

Since identifying and fixing defects in later stages of software development or even

after delivery may lead to high cost [102], it is beneficial to predict which modules

are fault-prone in early stages of development so that limited resources can be

devoted to the most problematic areas. However, some quality attributes such as

reliability and maintainability are difficult to measure directly. Therefore one research

direction in this area is to study the relationship between software quality and other

measurable attributes such as software size and complexity. The goal of the research

is to find effective software quality predictors – the measurable software attributes

that are related to software quality. Various techniques have been used in software

quality models. For example, Koru and Liu constructed their defect-prediction model

using classification trees [103]. Ten- fold cross validation was employed to evaluate

the performance of the model. Nagappan et al. used multiple linear regression

analysis to model the relationship between software quality and selected software

metrics [104]. Historical data from the prior projects were used to build the

regression model for estimating the post-release field quality of the current project

under development. They concluded, through empirical evaluation of the model, that

the multiple regression approach is practical for measuring software post-release field

quality and the model is effective in detecting low quality programs. Since the

relationships between the measure of quality and measures of software attributes

(software metrics) are often complex and nonlinear, the accuracy of conventional

approaches is restricted. For this reason, neural network has also been adopted for

 62

modeling non-linear functional relationships, which are difficult to model with other

techniques. Khoshgoftaar introduced neural networks to model non-linear

relationships in this area [105]. Fourteen structured metrics were selected as the input

variables to the neural network and the total number of faults found in the programs

was the output variable. In the model these authors used principal components

analysis to eliminate the correlations among the product metrics and generate new

metrics that have better performance on quality prediction.

Although quality assessment models may differ in goals and involved techniques,

they are all based on objective measures of software artifacts. The transition from

qualitative quality assessment to quantitative assessment using metrics reflects the

expectation on measuring software quality more precisely. Therefore, software

metrics are central to quality assessment.

2.3.2 Quality Metrics

A software quality metric is a quantitative measurement of the degree to which

software possesses a given attribute that affects its quality [100]. Software quality

metrics were developed for either predicting software attributes, e.g., the number of

defects, or identifying the anomalous components whose characteristics fall out of

normal range [92]. Since the concept of software quality involves software product

and software process, quality metrics can be categorized as product metrics and

process metrics. Product metrics measure the attributes of software products, e.g.,

complexity of a software module, while the process metrics measure software process

performance or conformance. Within the product category, software quality metrics

 63

can be classified in terms of the software lifecycle stage in which the to-be-measured

software artifacts are created, e.g., metrics for requirement specification, design

model, source code, testing, etc. [91]. As described early in this chapter, technical

debt can also be classified in this way. Among the technical debt categories, defect

debt and testing debt are obvious and easy to detect. Documentation debt may not be

so obvious, but detection of documentation debt largely relies on manual inspection.

Design and code debt may also be identified by manual review and inspection, but it

is time-consuming and labor-intensive considering the large volume of involved

artifacts such as source code. Therefore, using software quality metrics provides a

cost-effective approach to technical debt identification in that it can be implemented

automatically. In this sense, quality metrics for design models and source code are

more important for technical debt management than the metrics in other categories.

Design model metrics and source code metrics differ in the phase of software

lifecycle when they are constructed. They are also applied to different software

artifacts. Design model metrics are used for design documentation such as a class

diagram, while source code metrics are applied to source code. There is overlap

between the two types of metrics in that some aspects of design quality can also be

derived and measured at the source code level. Moreover, quality assessment models

based on source code metrics have been shown to outperform design metric based

models [106].

2.3.2.1 Design and Code Metrics

The major problem of design debt is that it makes software less understandable, more

complex, and harder to modify. In other words, design debt compromises software

 64

maintainability. Therefore, metrics for evaluating software maintainability can be

useful for this kind of technical debt identification. According to Boehm’s quality

model, software maintainability consists of three characteristics – testability,

understandability and modifiability, which are further decomposed to sub-

characteristics such as structuredness, conciseness and augmentability. These

characteristics are closely tied to software complexity as it is intuitive that the more

complex the software, the more difficult it is to be comprehended, tested and

modified. A lot of complexity metrics have been proposed to measure software

maintainability.

Lines of code (LOC) is a metric used to measure software size. Because software

usually becomes more complex as its size increases, LOC is also an indicator of

software complexity. However, LOC has been criticized for, among other things,

being language-dependent and not considering program structure. McCabe proposed

a complexity metric based on graph theory to measure the number of linearly

independent paths in source code [107]. It was defined as:

M = E − N + 2P

where M is cyclomatic complexity (the cyclomatic number); E is the number of edges

of the graph; N is the number of nodes of the graph and P is the number of connected

components. M is computed using a control flow graph, which can be derived from

the software program. Cyclomatic complexity is believed to be an indicator of

understandability and testability of the software program.

 65

Besides the internal complexity of software modules, which can be measured by size

or cyclomatic complexity, the complexity of software is also affected by interactions

among different modules of the software program. This type of complexity is

measured by structure metrics [90]. Structure metrics are designed to measure the

complexity resulting from interactions among modules, the degree of modularization,

cohesion and coupling. Henry and Kafura proposed a complexity metric based on the

principle that good design should use limited fan-in and fan-out [108]. The metric is

defined as:

Cp=(fan-in * fan-out)2

where Cp is the structural complexity of a module; fan-in is the number of parent

modules of a module; fan-out is the number of child modules of a module. By

combining the metrics for module complexity and structural complexity, software

complexity can be measured on the system level. System complexity is one such

metric. It is defined as the sum of structural complexity and data complexity, which

measures how much information is being used in a method. [109].

The emergence of object oriented technology in the software industry has created new

challenges in measuring software quality in that traditional software metrics, which

focus on either data or function of software programs, are not sufficient for

characterizing, assessing, and predicting the quality of object oriented software

systems [110]. Therefore, metrics that reflect the specificities of the object oriented

paradigm have been defined and validated. Since object oriented technologies use a

different approach from the traditional functional decomposition and data flow

 66

development methods, the object oriented metrics must focus on combining function

and data as an integrated object rather than focusing on each one separately [111].

Object-oriented metrics are primarily applied to the concept of classes, cohesion and

inheritance. These metrics can also be used as predictors of fault-prone classes and

thus to determine whether they can be used as early quality indicators. Since object-

oriented techniques gained popularity in software development, many quality metrics

specific to object-oriented design and programming have been proposed. Here are

some of the widely used metrics defined in literature [112].

 Weighted Method Per Class (WMC): the count of the methods implemented

within a class or a sum of complexities of the methods (measured by

cyclomatic complexity). As WMC increases, the class will have more

potential impact on the child classes. Moreover, classes will become more

specific, thus limiting the degree of reuse. Therefore WMC is an indicator of

software maintainability and reusability.

 Lack of Cohesion of Methods (LCOM): the degree of similarity between

methods. The similarity of methods is defined as the number of methods that

access the same attribute(s). High cohesion indicates high class subdivision.

Lack of cohesion increases complexity, thereby increasing the likelihood of

errors in the development process. This metric evaluates efficiency and

reusability.

 Number of children (NOC): an indicator of the influence of a class on a

system. As the number of children increases, the likelihood of improper

abstraction of the parent becomes greater, but it also leads to greater

 67

reusability. Although inheritance can reduce the complexity by reducing the

number of operations and operators, it makes maintenance and design

difficult [111].

Since a single metric can only focus on one particular aspect of software quality,

these metrics each have their own advantages as well as shortcomings regarding

measurement. Thus, a combination of different metrics could give a more balanced

view of the overall quality of software. Of course, the conflicts among the metrics

must be addressed before combining them. Actually more sophisticated metrics have

been developed and used for software quality assessment or quality-related purposes,

e.g., code smell detection[113]. Code smells refer to the patterns in source code that

indicate poor programming practices or code decay. Therefore code smells are

promising as symptoms of technical debt, in particular design debt. Approaches to

code smell detection will be presented in section 2.3.3.

2.3.2.2 Metric Evaluation

To gain the insight required for understanding and evaluating software quality, a large

number of metrics have been developed. Many software quality attributes can be

measured by multiple different metrics. For example, the size of a software system

can be measured by Lines of Code or by Function Points – units of measure that

represent the functional size of a software application. This has created the need to

determine which set of metrics is most effective for measuring a particular attribute in

a particular context. Several studies have been conducted to correlate software

metrics with quality or validate the significance of the quality metrics proposed in the

literature.

 68

Weyuker evaluated software complexity metrics in her study [114]. Through this

study she proposed a set of abstract properties that a sound metric should satisfy. For

example, one property is that “a measure that rates all programs as equally complex is

not really a measure” [114]. These properties were presented as formulae and formed

an axiomatic model. Based on the analysis of four well-known complexity metrics,

she claimed that this model provides the foundation for comparing and evaluating

software complexity metrics in a formal way. Inspired by Weyuker’s approach, Tian

and Zelkowitz came up with another axiomatic model and proposed a complexity

metric selection technique [115]. The proposed model formulates the selection

problem as a constrained optimization problem. Thus the metrics can be evaluated by

determining the feasible region and then finding the optimal solution.

The metric evaluation approaches using axiomatic models fall into theoretical

validation category. By contrast, there is another category of evaluation approaches

that empirically validate if an internal metric is associated with an external attribute.

Only if the association with the external attribute is demonstrated should the metric

be used in models for measurement and prediction. Therefore some researchers are

concentrating on revealing or validating the relationship between internal metrics and

the corresponding external attributes that they intend to measure. Emam et al.

investigated the effect of class size on the validity of object-oriented metrics in their

study [116]. To demonstrate the confounding effect of class size, they examined the

association between object-oriented metrics and fault-proneness of the classes using

data with and without size control respectively. A regression model was built for

hypothesis testing. The analysis results supported their argument that class size is a

 69

strong confounder, hence it is necessary to re-examine the conclusions of previous

work made by other researchers. Koru and Tian’s study investigated the relationship

between structure metrics and the change-proneness of software modules [117]. They

used ranking and a tree-based clustering technique to identify the two types of

modules, high-change and low-change. Through statistical analyses they concluded

that high-change modules are different from those with highest measure values. Their

findings provide guidance for software practitioners to identify change-prone

modules, though some of them are contrary to common intuition. Basili et al.

conducted an empirical study to evaluate the effectiveness of a set of object-oriented

design metrics in prediction of fault-prone classes [110]. Their study demonstrated

that most of the metrics are effective predictors of fault-prone classes in early phases

of software development. The study also revealed that the object-oriented metrics

outperformed the traditional code metrics.

2.3.3 Program Analysis and Code Smells

Program analysis refers, in general, to any examination of source code that attempts

to find patterns or anomalies thought to reveal specific behaviors of the software.

Some types of program analysis focus on patterns that indicate poor programming

practices and bad design choices. Such patterns, termed “bad code smells” [118], are

believed to cause maintainability problems over time because they make the software

less understandable, more complex, and harder to modify. Code smells can be

categorized in terms of difficulty of detection.

 Primitive smells are violations of predefined rules and development practices

and can be directly detected based on the source code. An example of

 70

primitive smells are violations of coding rules that define how source code

should be structured on different levels or which control structures should be

used. A rule such as “one Java source file should not contain more than one

Java class” can be translated into a code smell by constructing a rule statement

out of its negative. Program analysis is able to detect these violations

effectively.

 Derived smells are higher level design violations such as high coupling

degree among modules. One approach to detecting this type of code smells is

a metric-based approach, which uses complex computations and extractions of

facts from source code. They can be computed based on Boolean expressions

that include code metrics and thresholds [113]. An example of a derived smell

is a class that implements too much responsibility, named a “God class”. The

following expression was proposed to evaluate if the “God class” smell is

present:

WMC>47 & ATFD > 5 & TCC < 0.33

where WMC is the weighted methods per class, ATFD is the number of

accesses to foreign class data, and TCC is tight class cohesion. Detecting this

type of code smell requires a rigorous definition of the used metrics (e.g. how

are methods weighted when computing WMC?) and a set of baselines to

define the included thresholds.

 Manually detected smells can only be discovered by a human inspector. A

typical example is the quality (not the amount) of documentation present; a

 71

computer can neither judge if the documentation is easy to understand nor if it

fits the actual implemented code statements.

Many bad smells, and the rules for automatically detecting them, are defined in the

literature [118]. Examples of well-known bad smells include duplicated code, long

methods, and inappropriate intimacy between classes. For many of these rules,

thresholds are required to distinguish a bad smell from normal source code (e.g. how

long does a method have to be before it smells bad?). With the rules and

corresponding thresholds, many code smells can be detected by automatic means, and

several smell detection tools exist [119].

2.4 Software Effort Estimation

Software cost is a critical factor in software project management in that many

activities, such as project planning, contract negotiation and software pricing, are

based on cost estimation. In technical debt management the decision of whether to

keep or pay off debt also depends on the present and future cost of the debt, which

can be measured by the effort required to pay off the debt. Therefore, cost estimation

is essential for managing technical debt. Reviewing the cost estimation approaches

could facilitate choosing methods for technical debt estimation that are appropriate

for a domain, and that can be applied usefully in a given context.

Since software development costs are primarily the cost of involved effort,

approaches to cost evaluation focus on effort estimation. Software development effort

is usually measured using person·day, person·month or person·year. Then the

development cost can be computed as the effort multiplied by labor cost per time unit.

 72

According to the availability of the required resources, the project duration and

schedule can also be estimated.

Research on software effort estimation started in the 1960’s. Since then various

models and techniques have been proposed. Effort estimation approaches can be

categorized as algorithmic methods, which use mathematical formulae to model

software cost, or non-algorithmic methods [120]. The category of non-algorithmic

methods includes analogy-based estimation methods and expert estimation methods.

2.4.1 Software Size Metrics

Most algorithmic methods use size as the primary input variable. Although there are

lots of factors affecting effort estimation, software size is considered the most

influential one. Here are some widely used metrics for sizing software.

Lines of Code (LOC) is not consistently defined. It may refer to the number of lines

in the text of the program’s executable source code (physical LOC), or the number of

executable statements (logical LOC)[121]. Different LOC measuring tools may use

different definitions of LOC. Although LOC is easy to obtain, it is only available after

the software construction phase in the software lifecycle. Therefore, LOC needs to be

estimated if it is required in an early stage of the software lifecycle. In addition, LOC

is language-dependent. That is, the same functionality implemented in different

programming languages has different LOCs.

 Code churn is a LOC-based metric. It refers to the number of lines added, modified

or deleted to software source code from one version to another [122]. It has been used

 73

in many studies [123-125] as a common surrogate measure of software maintenance

effort. There are also studies about the validity of this measure for software change

effort. To leverage the change information for software effort estimation, Graves and

Mockus developed a model with a set of factors including the size of a change [126].

Then they conducted regression analysis to validate the model using the change

history of a large software system in a period of 45 months from the configuration

management system. Based on the results of the study, they concluded that the size of

a change, which can be measured by code churn, is a critical contributor to change

effort. In Mockus and Votta’s study 170 maintenance tasks in a large software project

were investigated to identify reasons for software changes [127]. Through this study

they also found strong relationships between the size of a change and the time

required to carry it out. A recent study by Sjøberg et al. claimed an even stronger

correlation (Spearman's ρ = 0.59) between code churn and maintenance effort [128].

However, this strong correlation has not been supported by all studies. For example,

after analyzing 98 corrective maintenance tasks in a 40K LOC software application,

Emam found code churn is only moderately correlated with change effort [129]. He

further explained that the result is consistent with common sense as some difficult

changes, e.g., corrective change, could consume considerable amount of effort, but

result in very few changes in terms of LOC. Sjøberg et al. discussed the possible

reasons for these differences in their study [128]. One of the reasons they gave was

that different types of maintenance tasks, e.g. corrective vs. adaptive task, were used

in these studies, which may require different number of lines of change per unit of

effort. Based on the results of their study, they further argued that code churn is a

 74

reasonable surrogate for non-corrective maintenance effort when real effort data is

not available.

 Function points is a measurement of the number of functions that a software system

provides [130]. This metric is based on the functionality of the program and was

proposed by Albrecht [131]. The total number of function points in a program is

computed by measuring the following program features: external inputs and outputs,

external interfaces, and internal and external files used by the system. Each of the

features is given a weighting value that varies from 3 (for simple inputs) to 15 (for

complex internal files) in consideration of different complexity of the features. Then

the unadjusted function-point count (UFC) is computed as

UFC = ∑ (number of elements of given feature) × weight. (1)

This unadjusted function-point count is either directly used for cost estimation or is

further modified by additional factors affecting the overall complexity of the system.

The adjusted function-point count takes into account the degree of distributed

processing, the amount of reuse, the performance requirements, etc. The final

adjusted function-point count for the system is the product of the UFC and these

project complexity factors. Since function-point measurement is based on

requirement and design specifications, it is independent of implementation language

and can be obtained in early stages of the software lifecycle. However, the

complexity weighting is subjective because it depends on the estimator. In addition,

the measurement may be biased when the system is dominated by some features, e.g.,

a database system where input and output operations are dominant [132].

 75

Function points can also be used to estimate LOC. If historical data are available, the

average number of LOC per function point can be estimated. Then LOC is computed

as the average number of LOC per function point multiplied by the number of

function points.

Object points is a measurement based on the number and complexity of screens,

reports and components written in 3G languages [133]. Each of these objects is

counted and given a weight ranging from 1 (simple screen) to 10 (3GL component)

and the object point is the weighted sum of all these objects. Similar to function point

measurement, object points can be used in early phases of software lifecycle. In

addition, this measurement is easy to use as it is only concerned with the three types

of objects.

2.4.2 Effort Estimation Techniques

Algorithmic methods, as mentioned previously, use mathematical algorithms to

produce effort estimates. Putnam’s model [134] and COCOMO [8] are examples of

algorithmic methods. Non-algorithmic methods include analogy-based estimation

methods and expert estimation methods. As its name suggests, expert estimation

methods involve consulting one or more experts and the estimates are based on

experts’ opinion and experience. Delphi [75], Top-down, Bottom-up and Parkinson’s

law [135] belong to expert estimation. The algorithmic estimation and the two

categories of non-algorithmic estimation methods are presented and reviewed in the

following sub sections, along with introductions of some representative methods from

each category.

 76

2.4.2.1 Algorithmic Methods

Algorithmic methods use mathematical formulae to model software cost. In the

models the cost estimate is a function of a number of cost factors/drivers. A typical

algorithmic model can be expressed as:

Effort = a × Sizeb (2)

where a is a constant representing differences in local environments under which the

software is developed, Size refer to the code size of the software, b is the exponent of

software size, indicating the non-linear relationship between software size and the

effort. a and b are estimated based on analysis of historical data extracted from past

projects. Since algorithmic models provide a way to generate a scientifically based

estimate, they have attracted many researchers working in the area of software cost

estimation. A number of algorithmic methods have been proposed, e.g., Putnam’s

model [134], COCOMO [8] and Function Point Analysis [136].

Among the algorithmic methods, the most famous one is COCOMO, which was

developed by Barry Boehm and launched in 1981 [8]. It is often mentioned as

COCOMO 81 to differentiate from its follow-up, COCOMO II [137]. In the model

the code size is measured in thousand LOC (KLOC) and effort is measured in

person·months. COCOMO applies to three classes of software projects: simple and

well-understood projects, more complex projects and embedded projects. The model

consists of a hierarchy of three increasingly detailed and accurate forms.

Basic COCOMO models software development effort and cost as a function of

program size. a and b are assigned different values for different types of projects.

 77

Basic COCOMO is good for quick estimates of software costs, but its accuracy is

limited because it does not consider factors such as hardware constraints, personnel

quality and experience. Intermediate COCOMO computes software development

effort as a function of program size and a set of cost drivers that include subjective

assessments of product, hardware, personnel and project attributes. This extension

considers a set of four “cost drivers”, each with a number of subsidiary attributes.

Each attribute receives a rating on a six-point scale that ranges from “very low” to

“extra high”. An effort multiplier is then applied to the rating. The product of all

effort multipliers results in an effort adjustment factor (EAF). Thus the Intermediate

COCOMO formula is defined as

E = a (KLoC) b. EAF (3)

 The Detailed model incorporates all characteristics of the intermediate version, but

adds an assessment of each cost driver's impact in each phase of the software process.

Thus an estimate based on the detailed model is able to account for the influence of

individual project phases.

Compared with COCOMO 81, COCOMO II provides more support for modern

software development processes. In the new model the simple, complex and

embedded project classification has been replaced with Precedentedness,

Development Flexibility, Architecture or Risk Resolution, Team Cohesion and

Process Maturity, reflecting the consideration of more modern factors and allowing a

fine tuning to the exponent. COCOMO II employs the Application Composition,

Early Design, and Post-Architecture models in place of Basic, Intermediate and

 78

Detailed models, thus differentiating various stages in a project when each of the

models would be more appropriate.

Algorithmic methods use cost-estimating relationships to associate the system

characteristics with the estimates of effort and duration. The relationships are

represented as a and b, the coefficients in formula (3). The coefficients are computed

based on historical data using statistical analysis techniques. Regression analysis is

one such technique that has been widely used for constructing cost estimation models.

In spite of variations in regression analysis techniques, the basic idea behind them is

the same – finding the trend (relationship between independent variables and the

dependent variable) that best fits the historical data, which is measured by overall

deviation of estimated values of the dependent variables from the actual values. The

ordinary least squares regression analysis has assumptions such as uncorrelated

independent variables and a linear relationship, which restricts the use of this

technique. To address the limitations, advanced regression analysis methods have

been proposed. For example, the robust regression analysis uses only the data points

lying within two (or three) standard deviations of the mean response variable to

eliminate the impact of data outliers on the model [138]. Other techniques are also

applied in conjunction with regression analysis to better model software cost. For

example, a Bayesian approach was used to calibrate COMOMO II and an

improvement in performance has been demonstrated [138].

A lot of studies have been conducted to evaluate algorithmic cost estimation

models [130, 139-144]. Although findings from these studies are not completely

 79

consistent or comparable due to differences in development environments, sources of

historical data and subject systems, they all confirmed that algorithmic models require

calibration for a particular situation to improve the accuracy of estimation.

Calibration is the process of determining the deviation from a standard in order to

compute the correction factors. For cost estimation models, the standard is considered

historical actual costs. The result of calibration is the adjusted cost factors whose

values reflect local circumstances under which the cost is estimated.

One of the advantages of algorithmic models is that they are able to be calibrated.

Through calibration the model can reflect the specific situations where the model is

used. Thus it can yield more accurate and objective results. In addition, the use of

mathematical formulae in the models produces repeatable results, makes it easy to

modify input data, refine and customize formulae and hence facilitates sensitivity

analysis. However, the calibration is based on past project data. If the situations, e.g.,

the development process, change and differ from the situation under which it is

calibrated, the model will be subject to significant estimation error without

recalibration [8]. Another problem of algorithmic models is that software size, the

major input of the model, can only be roughly estimated with significant subjectivity

in the early stages of the software lifecycle. As a result, this leads to inaccurate cost

estimation. Also, the requirements for a minimum number of historical data points

needed for many statistical analyses increases the difficulty of applying algorithmic

models. This type of model cannot achieve its potential usefulness when the

organizations do not have enough data from past projects, or not all the attributes are

 80

properly measured, which is often the case. Furthermore, effort involved in model

calibration may hinder the application of algorithmic methods in practice.

2.4.2.2 Analogy-based Estimation

Analogy is a cognitive process and has been used as a problem-solving method for a

long time. The basic idea of this method is to use solutions to similar past problems

for solving new problems. When applied to software cost estimation, it refers to the

process of comparing the target project to previously completed similar projects with

known effort to derive the cost estimates. This approach was formalized as a cost

estimation methodology by Shepperd and Schofield [145]. They addressed the major

problems of the analogy-based method – how to characterize software projects and

how to measure similarity. In the proposed method, the selection of project

characteristic is based on expert opinion and data availability. The similarity between

projects is measured by Euclidean distance in n-dimensional space where each

dimension corresponds to a characteristic of the projects. Estimation by analogy starts

with characterizing the proposed project. Then the most similar completed projects in

terms of the selected characteristics are identified. Finally the cost of the proposed

project is derived from these projects whose cost information is stored in the

historical database.

 Compared with algorithmic estimation methods, analogy-based estimation is easier

to understand and implement. Another advantage is that analogy-based estimation is

based on data from actual projects, thus avoiding reliance on expert recall [146].

 81

Some evaluation studies have demonstrated that the performance of analogy-based

estimation is comparable or better than algorithmic methods [145, 147].

The major problem of this approach lies in measurement of similarity between the

source projects and the target project. It is not clear what attributes should be used to

characterize projects and how these attributes contribute to cost estimation. Therefore,

this method should be avoided if there are significant differences in important

characteristics between the source projects and the target project. Data availability

may also be a problem because few organizations have enough data on past projects

and it is rare that two or more software projects are very similar given that software

technologies and development environment are changing rapidly.

2.4.2.3 Expert Estimation

Expert estimation is another category of cost estimation approaches. This type of

approach uses experts’ experience to provide cost estimates. The experience includes

the knowledge of development efforts gained from the projects they have participated

in the past. Based on their experience experts can make an estimation of the cost of

the target project. Expert estimation approaches can be considered an educated guess

about the effort required to develop an entire project or a portion of it [146]. Since

expert estimation mainly relies on experts’ experience, the estimation results may be

subjective and have bias. To overcome this downside, experts usually give three

estimates – the lowest possible value, the mostly like value and the highest value of

the cost. The final cost estimate is the expected value computed based on these three

values [91]. This is computed as:

 82

S = (Sopt + 4Sm + Spess) / 6 (4)

where S is the estimated software size, Sopt is the optimistic estimate of size (the

lowest possible value), Sm is the most likely size and Spess is the pessimistic estimate

of size (the highest possible value). Beside the expected value approach, other

methods have been applied in expert estimation to reduce the subjectivity introduced

by human judgment and to increase the accuracy of estimation.

Wideband Delphi is a group consensus technique proposed by Boehm [8] based on

the Delphi method, which has been described in section 2.2.5.2 in the context of risk

analysis. The major steps of Wideband Delphi are the same as those of the standard

Delphi method. The difference between the two methods is that Wideband Delphi

introduces group discussion meetings in each round of the iteration. The experts can

exchange ideas directly with one another in the meeting. Moreover, the experts do not

need to give the rationale of their estimates. Therefore, Wideband Delphi facilitates

communications among the experts and reduces the time for convergence of different

estimates. It leverages the free discussion advantage of group meeting techniques,

while keeps the advantage of anonymous initial estimation of the standard Delphi

method [8].

Top-Down method starts estimation at the system level. A cost estimate of the overall

project is made firstly by considering the project characteristics such as development

process and functionality. Then the estimated cost is assigned to components and sub-

components according to the project and system structure. Since the cost estimation

starts from high level, this method takes into account some costs associated with the

 83

overall system rather than any individual element, e.g., system integration cost. This

is one advantage of the method. The main disadvantage of this method is that it may

overlook some components that significantly affect project effort and cost. As a

result, the overall cost may be underestimated. In addition, the estimate of overall

project cannot be justified because there are no details on how the estimation is made

[92]. The top-down method is suitable for cost estimation in the early stages of the

software lifecycle because it does not rely on the system hierarchy, which is not

available until the detailed design phase.

Bottom-up method takes the opposite direction in the course of cost estimation.

Therefore its advantages and disadvantages are complementary to the advantages and

disadvantages of the top-down method. The bottom-up method starts with estimating

cost for individual elements of the project. The estimates of the individual elements

are summed up to form the estimate of the overall project. To work at the component

level, the project needs to be decomposed hierarchically. Therefore the significant

cost drivers associated with particular elements could be identified and taken into

consideration when estimating the cost, but some costs at the system level may be

missed. Since system decomposition is a pre-condition, this method is difficult to

apply in the early stages of the software lifecycle.

 Besides the subjectivity and bias involved, expert estimation also has other

disadvantages. Compared with algorithmic methods, expert estimation cannot

produce repeatable results. Therefore, sensitivity analysis (where the reliance of the

estimate on small changes in the parameters) cannot be performed because

 84

differences in the outcome due to changes in the inputs cannot be separated from

differences due to variation among the experts. Such sensitivity analysis is often an

important step in effort estimation. In addition, the quality of estimates derived from

expert judgment is limited by the estimators’ experience and objectivity [8].

However, expert estimation has some advantages, which are exactly the weaknesses

of algorithmic methods. Expert estimation does not require historical data. It can

integrate exceptional cost factors into expert experience when making estimation.

Therefore, expert estimation is suitable for the situation where the proposed project

has unique characteristics, such as using new technology or a new development

process, and no cost data from past projects can be used for model calibration. It has

been demonstrated that formal models not calibrated to the local circumstance do not

perform well, while, on average, expert judgment is able to compete with algorithmic

models in terms of accuracy of cost estimation [11].

2.4.3 Summary of Cost Estimation

Cost estimation is an important part of software project management. A huge body of

research work has been done in development and validation of cost estimation

approaches with the goal to improve the accuracy of estimation. However, software

cost estimation is still an immature area in that some basic issues, which are

prerequisites for developing cost estimation methods, have not been addressed [148].

There is no single approach to software cost estimation that can fit all circumstances.

Each approach has advantages as well as shortcomings. The performance of a cost

estimation model depends on the context in which it is applied [149]. Therefore,

 85

selecting an appropriate cost estimation approach relies on the knowledge about the

“home ground” where the approaches perform best. If no single approach is

satisfactory, different approaches may be used together as a combination of

approaches could improve the accuracy of estimation [138]. When making the

decision, one should take into consideration other factors such as the usability of the

approach and the implementation costs.

In a general scenario of technical debt management, paying off debt involves

implementing a maintenance task. In this sense selecting an approach for technical

debt estimation is nothing more than choosing a cost estimation approach for software

maintenance projects. However, in our research, the best choice is the estimation

method currently used in the project even if it’s not the most accurate estimation

approach. The reason for the choice is that our study designs should avoid introducing

new factors that may have effects on the evaluation object, and changing the cost

estimation method during the study could have such effects.

2.5 Summary of Literature Review

Although the software maintenance problem described by the technical debt metaphor

has been present for a long time, formal research on technical debt started just a few

years ago. The raised attention of the research community to this topic came from

pervasive discussions on technical debt in the software industry. Early work in this

area focuses on establishing the foundation of technical debt research, including

formalization of the definition, classification, analysis of the causes and effects. The

discussions provide multiple perspectives from which researchers can understand the

 86

essence of the technical debt problem and are helpful in framing our research

questions. The foundational research work on technical debt inspired us in study

design and preparation. Therefore, in this chapter we first presented the discussions

on technical debt from the software community, which was followed by a review of

the foundational research on technical debt. Then we reviewed the literature from

three related research areas – software risk management, software quality assessment

and software effort estimation. With the goal of finding usable research results for

technical debt management, the review of literature in each area starts with analysis

of the relationship between technical debt and the area. Technical debt is treated as a

particular software risk due to its negative impact on software projects and the

uncertainty involved. Technical debt can be identified through software quality

assessment because technical debt refers to the software artifacts with immature

quality. Quantification of technical debt relies on software cost estimation approaches

because risk can be measured by its recovery cost. Based on analysis of the

relationships, the relevant concepts, processes and approaches can be identified from

these research areas. Review of these processes and approaches focuses on their

applicability to technical debt management. In addition, findings from empirical

evaluation are also presented to highlight the effectiveness of the approaches and the

conditions they should satisfy. The outcome of the literature review includes

processes and approaches that can be adopted for technical debt management. These

include the risk management process and risk exposure analysis, cost estimation

methods that can be used for technical debt estimation under different circumstances,

and the concepts that inspire new ideas on technical debt management such as code

 87

smells. In general, research in the three areas provides the foundation and a

comprehensive toolkit for investigation of the technical debt problem.

 88

Chapter 3: Research Overview

The use of the technical debt metaphor provides an intuitive way to describe the

tradeoff associated with delaying software development and maintenance tasks. It has

helped software practitioners discuss and understand the problem. Models and

approaches have also been developed in recent years to facilitate its management.

However, most of the approaches focus on identification of technical debt. Few

models or approaches directly address the core problem of technical debt

management, that is, how technical debt information can be used to facilitate software

decision making. Moreover, fewer of them were empirically evaluated. Therefore, the

effectiveness of these approaches, or even the effectiveness of the idea about

managing technical debt in an explicit manner, haven’t been validated. The goal of

this research is to reveal, based on a series of studies on technical debt in real

software maintenance projects, the cost and benefit characteristics of explicit

technical debt management, refine the management approach we proposed and

empirically validate the effectiveness of the approach. The studies were carried out to

answer the following research questions.

RQ1: What factors contributed to the costs and benefits of measuring and

monitoring technical debt?

RQ2: In what ways does technical debt information contribute to decision

making?

In this chapter we first introduce the proposed approach, a technical debt management

framework, in section 3.1. An overview of this framework, including the main

 89

components, the implementation process and the characteristics, is described at the

beginning of this section. Following the overview are the approaches to identifying,

measuring and monitoring technical debt and how they can be used in the proposed

framework, which are presented in three subsections of section 3.1. Then two

scenarios are given to illustrate the use of this framework in decision making,

followed by a summary of the framework at the end of section 3.1. The proposed

approach presented in section 3.1 serves as an initial framework with which to start

investigating the technical debt management problem in the context of the studies.

The research design for uncovering the cost and benefit characteristics of explicit

technical debt management is presented in the next section, i.e. section 3.2. This

section begins with an explanation of our research design choices and the subject

projects. Then two study designs, the retrospective study and the case study, are

described in section 3.2.1 and section 3.2.2 respectively. Detailed procedures and the

data required by the studies are elaborated in the sub-sections of section 3.2.1 and

section 3.2.2. Then this chapter ends with a brief revisit of the proposed management

approach and the research design.

3.1 The Proposed Technical Debt Management Approach

The purpose of the proposed approach is to provide an initial technical debt

management framework that can be used as a measurement instrument for our

studies, as well as be expanded and tailored according to the ongoing results of the

studies described in the next section of this chapter. This framework is designed to be

flexible and to incorporate human judgment at all stages. In this way, it can easily be

modified to incorporate results, understanding, new models, and emerging theories.

 90

The proposed approach to technical debt management centers on a “technical debt

list.” The list contains technical debt “items”, each of which represents a task that was

left undone, but that runs a risk of causing future problems if not completed. Since

incurring technical debt is often used as a strategy by project managers [16], a

technical debt item can also refer to technical debt candidates, i.e. tasks that the

project manager thinks can be deferred. Examples of technical debt items include

modules that need refactoring, testing that needs to be done, inspections/reviews that

need to be done, documentation (including comments) that needs to be written,

architectural compliance issues and known defects that need to be fixed, etc. Each

item includes a description of what part of the system the debt item is related to and

why that task needs to be done, and estimates of the principal and the interest. As

with financial debt, the principal refers to the cost to eliminate the debt (the effort

required to complete the task for a technical debt candidate). The interest is composed

of two parts. The “interest probability” is the probability that the debt, if incurred and

not repaid, will make other work more expensive over a given period of time or a

release. The “interest amount” is an estimate of the amount of extra work that will be

needed at some point in the future if this debt item is incurred and not repaid. For

example, the interest probability for a testing debt item is the probability that latent

defects exist in the system that would have been detected if the testing activity had

been completed. The interest amount would be the extra work required to deal with

those defects later in the system’s lifetime, as compared to what it would have cost if

they had been found during testing.

 91

ID 37

Date 3/31/2008 (Release 3.2)

Responsible Joe Developer

Type Design

Location Method m in Module X

Description In the last release, method m was added quickly and is thread-
unsafe.

Estimated principal Medium (medium level of effort to modify m)

Estimated interest amount
High (if we wait to modify m, there might be more dependent
modules that need to be modified and thus require more extra
effort)

Estimated interest probability Low (not likely to be adding simultaneous calls to m)

Table 2. Technical Debt Item

Table 2 shows an example of a technical debt item. This debt item has a unique

identifier 37, was incurred in Release 3.2 and is owned by developer Joe. Due to a

rushed modification in the last release, Method m in Module X is currently thread-

unsafe, which means that simultaneous calls to this method have unpredictable

consequences and may result in system failure. Therefore this situation is identified as

design debt and calls for refactoring of Method m. It is possible that new modules

depending on m will be added to the system at some point in the future. If refactoring

m is postponed, more dependent modules may need to be modified, thus requiring

more work than would be required to refactor method m now. The extra effort

required to modify those modules is the interest on this debt item. The principal,

interest amount and interest probability were estimated as medium, high and low

respectively. This can be translated as meaning that refactoring m requires a

“medium” amount of effort, the extra effort required to adapt future m-dependent

modules if refactoring m happens later is estimated to be “high”, but the probability

that we will be forced to refactor m (e.g. when simultaneous calls to m become

possible in the design of the system) is “low”. Although this is a very coarse-grained

 92

estimation, it is sufficient in the initial stages for tracking technical debt items and

making preliminary decisions.

The process of managing technical debt using this approach starts with detecting the

technical debt items, including the tasks that are left undone as well as the tasks that

may be deferred, i.e. technical debt candidates, to construct the technical debt list.

The next step is to measure the debt items on the list by estimating the principal,

interest amount and interest probability as low, medium or high. Then the debt items

are monitored and decisions can be made on when and what debt items should be

paid or deferred. The technical debt list must be reviewed and updated after each

release, when items should be added, removed, or their values should be re-estimated

as the circumstances change. That is, technical debt should be continuously

monitored. For example, for a technical debt item carried over from last release cycle,

its principal should be re-estimated if part of the work to pay off this debt item has

already been planned in the current release. The following subsections will describe

how to identify, measure and monitor (including in decision making and release

planning) technical debt.

3.1.1 Identifying Technical Debt

The first step of technical debt management is identifying technical debt. There are

different types of technical debt [26]. They can be identified by different methods.

Program analysis, which has been discussed in Section 2.3.3 is one approach to detect

design debt. With program analysis, the source code of the subject software is

statically analyzed to find code smells – patterns that indicate poor programming

 93

practices or violations of the system architecture. Various techniques have been

developed for different code smells, such as the primitive smells and derived smells,

but some code smells have to be manually detected, as described in Section 2.3.3.

Besides static analysis, dependency analysis techniques, such as the design structure

matrix method, have been used to detect architecture violations [150]. Design debt

can also be identified by inspecting code compliance to standards. Testing debt can be

identified by comparing the test plan to test results. The tests planned but not run are

testing debt items. Testing debt can also be identified by finding deficiencies in the

test plan or test suite, e.g. low code coverage. Defect debt can be identified by

comparing test results to change reports, or examining the bug repository for open

bug reports. The defects that are found but not fixed are defect debt items. By

comparing change reports to documentation version histories, documentation debt can

be identified. If code changes are made without accompanying changes to

documentation, the corresponding documentation that is not updated is

documentation debt. These types of debt can be identified from different sources,

such as the code repository and defect database, where software artifacts or project

information are stored. Developers themselves can also add technical debt items

based on their own understanding of the current state of the system. Besides the

existing debt, the technical debt candidates should also be put on the list. Technical

debt candidates are those tasks that are being considered for deferral. After

identifying a technical debt item, the fields on the technical debt list such as date,

responsible person, type, location and description can be filled out. The rest of the

 94

information, i.e. principal and interest estimates, will be obtained through measuring

technical debt, as described below.

3.1.2 Measuring Technical Debt

Different types of technical debt may require different forms of measures. For

example, the number of known but not fixed defects is a measure of defect debt. The

difference between expected code coverage of the test suites and their actual coverage

can be used to measure testing debt. Since the ultimate goal of managing technical

debt is to facilitate decision making, it is necessary that all types of technical debt

have comparable measurement so that they can be easily monetized and are

comparable to one another. Inspired by the technical debt metaphor, the proposed

approach uses principal, interest amount and interest probability to measure all types

of technical debt. To measure technical debt, each of these elements must be

measured respectively. Hereafter these terms are used to refer to the metrics used to

evaluate the technical debt. Initially, when a technical debt item is created, all three

metrics (principal, interest probability, and interest amount) are assigned values of

high, medium, or low. These coarse-grained estimates are sufficient for tracking the

technical debt items and making preliminary decisions. More detailed estimates are

not made until later, when finer-grained planning is needed and when more

information is available upon which to base the estimates.

When more precise estimates are needed, estimation procedures are followed for each

metric, based on the type of technical debt item. The details of these estimation

procedures depend in part on the form and granularity of the historical data available,

 95

but general estimation procedures are similar and have been defined for each type of

technical debt item and each technical debt metric.

To estimate principal, i.e. the amount of effort required to complete a technical debt

item task, historical effort data is used to achieve a more accurate estimation beyond

the initial high/medium/low assessment. For example, if a debt item is a module that

needs to be refactored, the average historical cost of modification of the module can

be used as an estimate of the principal of the debt item, i.e., its future modification

cost. If an organization has very rich, detailed data on many projects, the estimation

would be more accurate and reliable, but even if the historical data is limited, a rough

estimate can still be derived that is helpful in the technical debt decision-making

process.

Interest probability addresses questions such as how likely it is that a defect will

occur in the untested part, or that code containing a known error will be exercised, or

that poorly documented code will have to be modified, etc. Interest probability is also

estimated using historical usage, change, and defect data. For example, the

probability that a particular module, which has not been tested sufficiently, contains

latent defects can be estimated based on the past defect profile of that module. Since

the probability varies with different time frames, a time element must be attached to

the probability. For example, a module may have a 60% probability of being changed

over the next year, but a much lower probability of being changed in the next month.

Thus, estimation of principal and interest probability is fairly straightforward.

However, estimation of interest amount is more complicated. Interest amount refers

 96

to the amount of extra work that will be incurred as a result of not completing a

technical debt item task, assuming that the item has an effect on future work. This

quantity may be very hard to estimate with any certainty but, again, historical data

can give sufficient insight for planning purposes. An example will help to illustrate

the approach to estimating interest amount.

Suppose there is a technical debt item on the list that refers to a module, X, that needs

refactoring. The interest amount in this case would quantify how much extra the next

modification to X will cost if is not refactored first. Suppose also that analysis of

historical data shows that the average cost of the last N modifications to X is the

quantity C. We can assume that the extra effort to modify X (i.e. the interest amount)

is proportional to C. The coefficient of C will be a weighting factor, W, based on the

initial rough estimate (in terms of high, medium, or low) of the interest amount. For

example, suppose a value of 0.1 is assigned to W if the initial interest amount

estimate is “low”. This would imply that the “penalty” for not refactoring X before

modifying it is about 10%. If the initial estimate is “medium,” 0.5 could be the

weighting factor, which would imply a 50% penalty. The more refined estimate for

interest amount, then, would be

 Interest Amount = W*C (1)

This formula implies that, if the unrefactored module X does in fact have an effect on

future work, the magnitude of that effect will be a percentage of the average cost of

modifying X, where the percentage depends on how severe the penalty is thought to

 97

be. The severity of the penalty is captured by W, based on the initial coarse-grained

estimate.

3.1.3 Decision Making

The goal of identifying and measuring technical debt is to facilitate decision making.

There are two scenarios in which a technical debt list can be used to help

management decide on various courses of action. The first is part of release planning,

where a decision must be made as to whether, how many, and which technical debt

items should be paid or incurred during the upcoming release. The second is ongoing

monitoring of technical debt over time, independent of the release cycle. These two

scenarios are described below.

Scenario 1 process:

Suppose significant work is planned for component X in the next release. Should

some debt be paid down on component X at the same time? If so, how much and

which items should be paid?

Assumptions: There is an up-to-date technical debt list that is sortable by component

and has high, medium, and low values for principal and interest estimates for each

item.

The release planning process is illustrated in Figure 10.

 98

Figure 10. Release Planning Process

In step (1), a subset of the technical debt list is extracted, focusing on items associated

with component X, as they are the most likely to have immediate impact and may be

easier to pay off while doing other work. Because the cost and impact of these items

might be different than originally thought (due to the fact that component X is

planned to be modified anyway in this release), in step (2) we re-evaluate the original

high/medium/low estimates for these items. For instance, some items may have a

greatly reduced principal if they overlap with the planned work on component X in

the release.

In step (3), we further restrict the subset of technical debt items we’re considering by

choosing high-impact items and doing numeric estimates only for those items. In this

way, we reserve the time-consuming and difficult task of effort estimation for only

those items most likely to be chosen for payoff in this release.

(5) Add up principal for all remaining technical debt items related to component X

(4) Compare cost (principal) with benefit (interest probability * interest amount) and ignore
any item for which the benefit does not outweigh the cost.

(3) Estimate numerically principal for all items with high interest probability and high interest
amount.

(2) Re-evaluate high/medium/low estimates for these items based on current context

(1) Select all technical debt items associated with component X

 99

Step (4) operates on this reduced subset, and compares the cost and benefit for each

item in that subset. The cost of choosing this item to be paid off is equal to the

principal, i.e. the amount of effort required to eliminate this debt item. The benefit of

paying off this item is the future extra work that would be avoided by eliminating the

debt now. This is represented by the expected interest on this item, calculated as the

product of interest amount and interest probability. The result of step (4) is an even

more reduced subset of items that not only are related to work currently planned for

the upcoming release, but that also are likely to have high impact if not repaid, and

for which the benefits of debt payment outweigh the costs.

Finally, in step (5) we add up the estimated principal for the subset of items left after

Step 4. This gives us a reasonable estimate of the cost of paying off the technical debt

items that should be highest priority for paying off in this release. At this point, as

part of the release planning process, we need to decide if this cost can be reasonably

absorbed into the next release. If not, then we can use information about the interest

(i.e. impact) related with these items to determine if the technical debt items should

be prioritized over other tasks in the release (e.g. fixing bugs or new enhancements),

and to justify the cost to management. In some cases, we might find that the cost of

paying off the technical debt items can reasonably fit into the release schedule, and in

fact there is room for further debt repayment. In this case, we repeat steps 3-5 with

items with high interest probability and medium interest amount, and vice versa, then

with medium for probability and interest, etc., until no more debt repayment can be

absorbed by the release.

 100

Scenario 2 process:

Is technical debt increasing or decreasing for a system or for a component? Is there

enough debt to justify devoting resources (perhaps an entire release cycle) to paying it

down?

Approach: Plot various aggregated measures over time and look at the shape of the

curve to observe the trends. The aggregated measures include:

(1) total number of technical debt items,

(2) total number of high-principal items,

(3) total number of high-interest (probability and amount) items,

(4) weighted total principal, which is calculated by summing up over the entire

list (set 3 points for high, 2 for medium, 1 for low) and

(5) weighted total interest (add points for probability and amount).

3.1.4 Summary of Proposed Approach

The approach we propose for managing technical debt in a software project is based

on the technical debt list, which contains the technical debt items that currently exist

or may be incurred in the target software system. Figure 11 illustrates the major

elements and steps of this approach. Using this approach, technical debt items are

firstly identified from a variety of sources using various techniques. Some of these

sources and techniques have been mentioned in section 3.1.2, while others will be

outlined in more detail in section 3.2. Then the technical debt list can be constructed.

The next step is to estimate the principal and interest of these technical debt items.

Initial estimation uses an ordinal scale, i.e. high, medium and low. These initial

 101

estimates are subjective and imprecise, but are sufficient to start with. More precise

estimation can be achieved using historical effort and change information. Once

information required by the technical debt list is complete, the technical debt items on

the list can be monitored to facilitate decision making, that is, prioritizing the

technical debt items according to their principal and interest and determining when

and what technical debt items should be paid off.

Figure 11. An Initial Technical Debt Management Framework

This approach to technical debt management relies heavily on the analysis of existing

data from prior software development and maintenance efforts. The reliability and

usefulness of the decision-making support that this approach provides increase with

the quantity and quality of the data available. However, any amount of data will

provide more support than is currently available. Thus, the approach is useful even

with limited amounts of data. Expert opinion, or a combination of opinion and limited

data, can be substituted for any of the inputs to the approach that call for historical

data.

Technical
Debt List

Technical Debt
Identification

Technical Debt
Estimation

Decision
Making

 102

As mentioned at the beginning of section 3.1, this approach provides a general

technical debt management framework. We started with this framework in the

research described in the next section, with the expectation that it would be enhanced

and refined by the research results from the ongoing studies. The results of the studies

and the refinements to the proposed approach are described in chapters 4-7.

3.2 Research Design

The proposed technical debt management approach prescribes a general framework

for technical debt management. Based on this framework, we conducted empirical

studies of ongoing software maintenance projects to uncover the cost and benefit

characteristics of explicit technical debt management. In particular, the studies were

designed to address the following research questions:

RQ1: what factors contribute to the costs and benefits of measuring and

monitoring technical debt?

RQ2: In what ways does technical debt information contribute to decision

making?

The normal way of evaluating a new technique (i.e. RQ1) is to apply the technique,

measure its cost, then observe and measure the benefit of the outcome. Comparing the

cost and the benefit leads to a conclusion on the effectiveness of the technique.

However, in this case, the horizon for seeing the tangible benefits from technical debt

management is so far in the future that this traditional approach is not feasible within

the constraints of a dissertation. Therefore our approach separates the investigations

of costs and benefits of the approach into different sets of studies. We explore the

 103

benefits retrospectively by applying the technical debt management approach

(through simulation) to past releases of several ongoing software projects. One

advantage of this retrospective approach is that it does not rely on the actual project

release cycle. Separately, we also explore the initial costs of this approach in case

studies that follow software maintenance projects through several release cycles in

real time.

Although our original research design involved a single comprehensive retrospective

study, followed by a single case study with the same software project, this became

infeasible due to the realities of empirical research with industry, including lack of

data availability, cancelation of projects, and the narrow focus of some development

projects. Therefore, rather than carrying out a comprehensive study in a single

software project, we implemented studies in several projects and organizations, each

of which focuses on part of the technical debt problem. The research design ensures

that the retrospective part and the case study part can be run independently. The

research goals are achieved by combining the results from all of these studies.

3.2.1 The Retrospective Studies

In this section, we first describe in the abstract the overall approach that we followed

for the retrospective studies we conducted. Then, in subsections 3.2.1.3 and 3.2.1.4,

we describe the subject studies used in the two retrospective studies.

As reiterated at the beginning of section 3.2, this research investigates the cost and

benefit characteristics of implicit technical debt management. The objective of the

retrospective study is to address the benefit side of the technical debt management

 104

problem. The retrospective studies are based on in-depth analyses of historical effort,

defect, testing, and change data over multiple recent releases. The data are used to

retrospectively construct a technical debt list describing some of the debt existing in

the system over a given period of time, and to simulate decisions about release

planning as they would have been made if the technical debt list had been used.

Meanwhile, data regarding how decisions on incurring technical debt were actually

made and the factors considered when the decisions were made were also collected in

the course of the studies. This type of data are used to address the second research

question (RQ2). It also helps explain the reasons behind the costs and benefits

revealed.

3.2.1.1 Procedure

The retrospective studies, in general, were implemented with the following steps.

(1) Select a starting time point for the study, e.g., the beginning of the second

release.

(2) Review the defect, test, change and project planning data, run source code

analysis tools, review the source code, and/or query developers to identify

technical debt items that were present at the starting time, and choose a set of

items to focus the study on.

(3) Use the identified technical debt items to construct a technical debt list.

(4) Simulate the decisions on release planning using the proposed technical debt

management approach.

 105

(5) Compare the simulated decisions with the actual decisions to determine the

principal that would have been paid back and the interest that would have

been avoided, if any, if the decisions had been made based on a technical debt

list.

To make the study design more concrete and clearer, an example of design debt is

used here to illustrate the simulation of decision making. Suppose System W has had

three releases R1, R2, and R3. Figure 12 is a timeline showing the time points at

which the events (including releases) happened. For example, the figure shows that

the first release was completed at R1.

Figure 12. Timeline of System W’s Events on Technical Debt Item A

Assume we have data about all the change requests in R2 and R3. First, we create a

technical debt list corresponding to the time period after R1 is completed and before

R2 is planned, beginning at the time where the vertical arrow in Figure 12 points to.

Suppose two technical debt items associated with module X were identified in W. In

the last release, Method m was added quickly and is thread-unsafe, which means it

will cause a problem if m gets called simultaneously by two or more other modules.

We identify this as a design debt item and name it item A. Meanwhile, we found that

documentation of X has not been updated. This item is documentation debt and was

named item B.

R1 R2 R3

Change Request: add
module Y that calls m

Change Request: add module Z that also
calls m simultaneously with Module Y

Decision: Refactor m now?

 106

Assume there is a cost model for estimating modification effort and there are data

about the usage and change history of System W for estimating the probability that a

certain type of changes would happen in the future. The four decision alternatives for

planning R2 are paying off neither A nor B, paying off A only, paying off B only, or

paying off both A and B.

At the time R2 was being planned, there was a change request to be included in R2

that adds a Module Y to System W that calls and depends on Method m. The decision

we are simulating is whether or not to refactor Method m in R2 before adding Module

Y. Since it is thread-unsafe, we know that Method m will have to be refactored if and

when another module is developed that needs to call m simultaneously with Module

Y. If Method m is not refactored before adding Module Y, Module Y will need to be

modified when Method m is refactored. Therefore the effort needed to modify

Module Y would, in that case, be the extra cost of deferring the refactoring of Method

m. In other words, the cost of modifying Module Y is the interest amount of technical

debt item A. Whether the interest is realized depends on the probability that any new

module calling Method m is added to System W in the future. Therefore, the interest

probability of A can be estimated by evaluating how likely a new module calling

Method m is added to the system. Assume we have estimated, using the cost model,

that the cost for modifying Module Y is 20 person-days1 and the cost for refactoring

Method m is 30. Also assume we’ve estimated, using the historical data, that it is 50%

1 There are other units such as person-months, or US dollars, that can be used. The unit selected for
software development effort should be consistent with that used in historical data to ease comparison.
Person-day will be used as the unit throughout the example. To be concise, it is omitted hereafter.

 107

certain that another module calling Method m will be requested in the next release.

Then technical debt item A is measured as follows:

Principal = 30, Interest Amount = 20, Interest Probability = 50%.

Using the proposed approach, we can also estimate the cost and benefit of paying off

A in the current release (R2) as follows:

Cost = Principal of A = 30,

Benefit = Interest Amount * Interest Probability = 20 * 50% = 10.

Since the benefit of paying off A in the current release does not outweigh its cost, we

decide to defer refactoring Method m. This is the simulated decision.

Then we move to the planning of the next release (R3). At that time a new change

request, to be implemented in R3, added another new module (Z) that calls Method m

simultaneously with module Y, as shown in Figure 12. Therefore the total cost

associated with the simulated decision includes the principal of technical debt item A

(the cost of refactoring, which was finally completed in R3), plus the full interest

amount of technical debt item A (the cost of changing module Y in R3 so that it is

compatible with the changes to method m), i.e. 20 + 30 = 50. This figure for cost will

be used in comparing the simulated decision with the actual decision.

Following the same way, we can estimate technical debt item B, simulate the decision

on whether to pay it off in the current release and calculate the associated total cost.

Table 3 shows the simulated decision on A and B and the corresponding total cost.

The last row, for technical debt item B, shows that the cost of paying off B in R2 is

45, while the benefit of doing so is 50, so the simulated decision (i.e. the decision that

 108

would have been made if the technical debt list had been used) is to pay off item B.

Also, the cost of paying it off (45) and deferring it (100) are also shown.

Technical Debt Item Simulated Cost/Benefit

and the Decision

Total Cost Incurred

in R2 & R3

A 30/10 => defer
Pay Off 30

Defer 50

B 45/50 => pay off
Pay Off 45

Defer 100

Table 3. Cost and Benefit of the Simulated Decisions

Based on the total cost of decisions on A and B, the cost of each decision alternative

is calculated, as shown in Table 4. The difference in total cost between the simulated

decision (95) and the decision actually made (130) shows that a benefit of 35 person-

hours would have been gained from using a technical debt list and our proposed

approach to manage technical debt. Further, comparing the optimal decision (the

decision that would have been made with 100% foresight) with that picked by the

proposed technical debt management approach (i.e. the simulated decision) shows

that another 20 hours could have been saved by choosing the optimal scenario. This

sheds light on the effectiveness of the proposed technical debt management approach,

thus contributing to refining the approach. In our retrospective studies, this analysis

was repeated with data from multiple releases and for multiple technical debt items.

Decision Alternative Total Cost Incurred in R2 & R3

Pay off none 150

Pay off A (Actual Decision) 130

Pay off B (Simulated Decision) 95

Pay off A & B (Optimal Decision) 75

Table 4. Total Cost of the Decision Alternatives

During the decision simulation, i.e. the retrospective analysis, as the quantity of

technical debt items increases, the number of possible combinations of decision

 109

alternatives becomes huge and easy to reach an unmanageable level. In that case, the

approach presented in Section 3.1 could be used to limit the set of technical debt

items to be considered. Other optimization approaches, such as linear programming

(assuming independence between technical debt items), could also be used to choose

the technical debt items.

3.2.1.2 Data Collection

Given the fact that technical debt has different forms, such as testing debt and defect

debt, several different types of data were required for these studies. For example, to

estimate the interest probability of testing debt (i.e., the probability that defects

remain in the product that would have been removed if the testing activities had been

carried out fully), historical data regarding fault detection ability of the test cases/test

suites and defect density of modules was needed. Estimation of the interest

probability associated with defect debt requires historical data about the number of

known defects that are reported by customers after release. The cost of fixing a defect

pre-release versus post-release is required to estimate the interest amount of defect

debt. Documentation debt, which indicates that the documentation is incomplete or

not updated when the corresponding modules are modified, may have a negative

effect on the subsequent maintenance, such as increased time for fixing the problem

and increased likelihood of making mistakes. In addition, updating documentation

itself will take longer if the modification was made long before. Therefore, estimating

documentation debt requires historical data regarding the time and effort for updating

documentation.

 110

These data are largely from six categories – change data, effort data, defect data, test

data, size data and decision data. Ideally a comprehensive retrospective study should

be carried out with all these types of data being available because it warrants a

thorough investigation on the nature of the technical debt problem from multiple

perspectives. However, it is often the case in reality that some categories of the data

are missing or unavailable. Therefore, not all these types of data presented here are

required to carry out a technical debt study, but data availability limits the scope of

the study. This occurred in our retrospective studies as well. Not all data was

available in each of the studies, so the scope was limited, but complementary between

studies.

 Change data refer to information about changes to requirements, design,

source code, test cases/reports/plans and documentation during the software

lifecycle, including the proposed changes that were not implemented.

 Effort data refer to information about the effort invested in development and

maintenance activities, preferably broken down by time period, system

module, and change request.

 Quality data refers to information about the quality of the system such as

defects.

 Test data refers to plans and reports describing testing that was applied to the

system at different points in time.

 Size data refers to the size of the system for each release, in terms of LOC,

classes, files, methods, etc., as well as other basic static metric data.

 111

 Decision data refer to the information about how the decisions were made on

whether to incur or pay off technical debt (even if it wasn’t referred to as

“technical debt” at the time).

Another type of information that is helpful has to do with business strategies. This

information describes the possible benefit of delivering various software features to

market at a particular time point. Ideally, the information would be in the form of a

detailed business case (i.e. cost/benefit analysis) for each feature implemented or

considered. Table 5 describes data required by the retrospective studies by categories.

Category Description

Change Data Change description: what were the changes?

Type of change: why the changes were made, e.g., bug fix, refactoring, or new

requirement from customers?

Involved artifacts: the artifacts (requirement specification, design documents,

etc.) that are involved in this change

Time

Originating Release: the release in which the change was proposed.

Planned Release: the release for which the change was planned.

Actual Release: the release(s) in which the change was actually

implemented.

Owner: who was in charge of making the changes?

Defect ID: Associated defect ID (if the type of change is bug fix)

Effort Data Budget: estimated cost to implement new functionality or change requests

 Budget by software development phase

 Budget by release

Budget by system module

Budget by change request

Budget by test suite/ case: estimated cost of creating and running a

test suite/case

Actual Cost

Actual cost by software development phase

Actual cost by release

Actual cost by system module

Actual cost by change request

Actual cost by test suite/ case: actual cost of creating and running a

test suite/case

Release Dates

Planned start date of each release

Planned end date of each release

 112

Actual start date of each release

Actual end date of each release

Quality Data Defect ID: Used to associate the defect with the corresponding change request

for fixing it

Type of Defect: the category that a defect belongs to in terms of the causes of

the defect, e.g., Logic defect, computation defect, data

handling defect.

Defect detected phase: when was a defect detected, e.g., in inspection, unit

test, or system test?

Defect detected/fixed release: Related release in which the defects were

detected and fixed.

Severity of defect

Test Data Test suite/case name

Applied modules: the modules that the test suite/case was exercised on

Planned code coverage (or other criteria indicating the fault detection

ability of the test suite/case)

Actual code coverage

Test phase: the phase in which this test suite/case belongs to, e.g., unit test,

integration test and system test.

Time

Planned Release: the release for which the test suite/case would be executed

Actual Release: the release in which the test suite/case was actually executed

Test result: Pass/fail

Size Data System size by module, function point, LOC or other size metrics

The size of each module in terms of LOC or other size metrics

Other metric data used for detecting code smells (E.g., WMC refers to

weighted method count, which measures the size of a class).

Decision Data Contributing Factors: what information was taken into consideration when

making the decision?

Lessons learned: reflection on the problems/loss caused by the wrong

decisions.

Table 5. Data Descriptions

Except the last category, the data described above was used for the simulation of

decision making. Most of the data were derived from software artifacts, project

documentation or the output of source code analysis tools. Decision data were

collected through interviews with the project personnel or group discussions if they

were not directly available from the project planning documentation. We collected

data about unexpected debt repayment, crises caused by unpaid debt and decisions

 113

that had been made based upon an implicit understanding of technical debt. Project

personnel were also involved to help interpret the data and add historical context.

They tried using the technical debt list and gave feedback for tailoring the proposed

approach.

Simulation of the decision making in each study yielded a set of technical debt items,

their characteristics and the associated costs and benefits. From the results we have

started to build a technical debt theory using these quantitative data and the

qualitative decision data gathered from project personnel. The qualitative data help

construct the context where the decisions were made so that the factors contributing

to costs and benefits of technical debt can be identified, while the quantitative data

are used to determine the degrees to which different factors affect the costs and

benefits of technical debt. The qualitative data can also explain why the decisions are

affected by the factors and how the factors are related with one another. The resulting

theory constitutes a detailed descriptive account of the costs and benefits related to

technical debt management.

3.2.1.3 The SMB Study

The project we selected for the first retrospective study was a software application

from a multi-national company that provides mobile communication products and

solutions. The application consists of the development and evolution of a software

application for mobile platforms, used as a client solution for Microsoft Exchange

Server. The system had over 5 years of evolution and involved 20 software engineers.

In this study only one technical debt item was identified and tracked, but it was a big

 114

technical debt item and had serious impact on the project. The debt item was to delay

upgrading the communication protocol used to connect the application to MS

Exchange Server. The object of this study consists of a sequence of decisions. In this

study we started the decision simulation at the point of time when the project needed

to decide the first time whether or not to delay the upgrading. The decision simulation

ended with the debt being paid off using our proposed approach. The data we

collected in this study include the changes in the project, the size of the application,

the decisions made during the selected period of time and the effort of changing the

communication protocol. In addition, effort required for paying off the debt at

different decision points were also estimated by the project personnel. Since only one

technical debt item was tracked in this study, the prioritization mechanism in our

proposed technical approach was not used. This study focused on the impact of

technical debt on the project and the benefit that could be gained through explicit

technical debt management.

3.2.1.4 The Hadoop Study

Compared to the SMB project used in the first retrospective study, the subject project

of this study has a completely different profile. The project, named Hadoop, was from

the open-source software community. This choice was made partially due to the lack

of available projects from our industrial partners, but we also expect that more

diversified subjects of study may provide us with new perspectives on the technical

debt problem and improve the generalizability of the conclusions drawn from the

studies for this dissertation research. Hadoop is a software library for the distributed

processing of large data sets across clusters of computers using single programming

 115

models. It’s based on Hadoop Distributed File system (HDFS) to provide high

throughput data access service. It uses a framework, Hadoop YARN, for job

scheduling and cluster resource management, and MapReduce, a YARN-based

system, for parallel processing of large data sets. Hadoop also includes “COMMON”,

a utility set to support other Hadoop modules for file system access. As mentioned at

the beginning of this chapter, we selected this project because our study used the

analysis of Hadoop performed in the previous study as a starting point to select the

technical debt instances for our decision simulation. Four classes were finally selected

for the decision simulation. The previous case study analyzed the Java core packages

of the system (java/org.apache.hadoop) from release 0.2.0 to release 0.14.0 (13

releases in total). There were 126 Java classes with 10.5K NCSS (non- commented

source statements) in the release 0.2.0 of the system. It had 373 Java classes with 37K

NCSS by release 0.14.0. The decision simulation began from the first release used for

this study, or the release in which the classes, i.e., the containers of the selected

technical debt instances, were created, and ended in the last release used for this study

unless the class has a shorter life. Due to the limited data availability, code churn was

used as the proxy of change effort. Finally the simulated decisions were compared

with their actual counterparts to derive the possible benefits that might have been

gained from explicit technical debt management. The source code of the selected

classes were also analyzed to explain the reason behind the changes and the decisions

on technical debt repayment. This study focused on characterizing the benefits of

explicit technical debt management in the context of a software project with a lot of

 116

minor technical debt issues rather than a big technical debt monolith, such as the one

used in the SMB study.

3.2.2 The Case Studies

While the retrospective studies have provided evidence of a benefit from applying the

technical debt management approach, they did not shed any light on the costs of the

approach. This insight comes from the case studies, which focus on the future

releases of the selected projects. In this section, we first describe in the abstract the

overall approach that we followed for the case studies we conducted. Then, in

subsections 3.2.2.3 and 3.2.2.4, we describe the particulars of each case study as it

was implemented

3.2.2.1 Procedure

Before implementation of the technical debt management approach in the project, we

collected baseline data, in terms of effort, cost, and productivity of the project, to be

used for comparison. We also implemented a simple tool to aid in managing the list

and to collect data on its use. The list was kept under version control, along with other

project documents. The process of implementation was closely monitored, including

all issues raised and their resolutions.

The case studies were conducted with the following steps.

(1) Train the project personnel on how to manage technical debt using the

proposed approach and how to document and report information required by

this study.

 117

(2) In the first release cycle, during which the projects were tracking technical

debt for the first time, detailed qualitative and quantitative data was collected

concerning the amount of time project personnel spent using the technical

debt list, the kinds of problems and questions that came up, and the usefulness

of the approach from the point of view of the project personnel.

(3) After the first release, interviews were conducted with the project, aimed at

characterizing in more detail the amount of work required to carry out the

approach, the confidence that personnel have in the eventual benefits, and any

benefits already observed.

(4) Data were then collected over at least two successive releases. The data

include documentation of decisions made concerning technical debt, the costs

of using the technical debt list, its contribution to decision-making, and the

rate at which technical debt items are added and removed from the list.

3.2.2.2 Data Collection

Data required for the case study include those types of data described for the

retrospective study, as shown in Table 5, but they were collected during the

implementation of the new releases. The baseline data about the cost, effort and

productivity of the project were collected in the first place, before the proposed

approach was applied. Baseline data were collected through project documentation

review and interview with project personnel. Beside those data, the case study

requires the data about the cost of using the proposed technical debt management

approach, which is the core category of the data. This includes costs of meetings,

effort spent managing the technical debt list, and time spent gathering data to feed

 118

into technical debt management. The results from these case studies were compared

with the benefit data collected in the retrospective studies to characterize the net

benefit of the technical debt management approach.

3.2.2.3 The Tranship Case Study

The Tranship project was a software application from a Brazilian software company

that provides enterprise-level software development, consulting and training services.

The project consists of the development and maintenance of a water vessel

management application. It included 25K non-commented lines of code in 245 classes

(of which 80 were domain classes). The application was written in Java and based on

the MVC framework. The application included administration, resource allocation,

ship management, and billing and operation modules, which were mapped to 95 use

cases. The average development effort was 37 person-hours per use case. The project

was developed with the following infrastructure: Eclipse IDE, Subversion (for code

version control), and Trac (a bug and workflow tracking system). The project began

in late 2011. There were 1 project manager, 1 technical leader and 7 developers

working on the project. The project followed a Scrum-like development process.

Each sprint lasted about one week. The case study began with baseline data

collection in March 2012. By the middle of November 2012 the project team finished

tracking technical debt items for this study. The case study ended in the middle of

December, 2012 with the follow-up interview being completed. After the first release

during which the technical debt was being tracked for the first time, the research team

communicated with the project team to address questions and get feedback in both

directions. This step continued until all the questions were addressed and the project

 119

team was clear and comfortable with the proposed approach. In this study we

collected baseline data of the project, costs of using the technical debt management

approach, changes in the technical debt list, decisions on when and what technical

debt items should be paid off, benefits of using the technical debt management

approach, and problems and suggestions for the proposed technical debt management

approach. These data were collected from either the project documentation or the

project personnel.

3.2.2.4 The EducationHub Study

Compared to the project used in the first case study, the subject project of this study

has larger size and longer development cycle. The purpose of this software

application was to provide an education platform for teachers and students in a school

to share information. The platform integrates with other applications such as Moodle,

EverNote and Dropbox. It provides call list, note list, messaging service, file sharing

and access to libraries. Originally the project planned to carry out 17 sprints. When

we started collecting data, the project consisted of 45 user stories with 18 features,

implemented in 178,195 LOC (Lines of Code), but it grew over time. The entire

application was written in Java.

The subject project was developed by a company (Developer) that developed

software systems for a multinational organization of the mobile communication

market (Client). Developer and Client were located in different places in the same

country and most interactions between the business team on the Client side and the

development team occurred over distance, using conferencing tools. At the time of

 120

our study, the Developer had approximately 70 employees, with 60 working on

software development. The organization of the software teams was flexible to fulfill

the demands of the Client and several projects were conducted simultaneously. Two

senior (over 15 years of experience) project managers supervised each project. The

team developing the subject project was managed by the most senior project manager,

who had over 20 years of experience in managing software projects in industry.

Interaction with the Client team was conducted by the project manager and project

leader, who addressed issues related to feature and release planning, together with the

client. The project followed a Scrum-like development process with each sprint

lasting for one month. The technical debt items tracked in this study were identified

by different methods, e.g. source code analysis, survey of the developers, etc. Due to

a variety of factors, the technical debt management approach we proposed was

loosely followed, which created threats to the validity of the study, but also provided

us with the opportunity to investigate other aspects of the technical debt management

problem, in particular, the obstacles of applying technical debt management in

practice and the reasons behind it. Therefore, the focus of this study has slightly

changed to the actual technical debt management process followed and the costs

incurred by all activities related to technical debt management. We believe revealing

the causes of the process deviation would contribute to the improvement of technical

debt management approaches and thus eventually benefits software projects for better

decision making.

 121

3.3 Summary

This research aims at revealing the cost and benefit characteristics of explicitly

measuring and monitoring technical debt, and how technical debt information

contributes to decision making. Based on the findings of this research, the

effectiveness of explicit technical debt management could be evaluated and the

management approach we proposed could be refined and improved to facilitate

software maintenance decision making.

Chapter 3 is composed of two main parts – the proposed technical debt management

approach and the research design for uncovering the cost and benefit characteristics

of explicit technical debt management using the approach. The proposed approach

serves as a starting point and framework within which to conduct the research and

refine the approach. The approach includes methods for identifying, measuring and

monitoring technical debt, a process for managing technical debt and two concrete

scenarios in which technical debt information can be applied to decision making in

software maintenance.

Using the proposed technical debt management approach, we investigated software

maintenance projects to gain insights into the cost and benefit characteristics of

explicit technical debt management. Meanwhile the proposed approach was also

evaluated in the process. First, two retrospective studies were conducted to determine

the benefits of explicitly managing technical debt using the proposed approach. The

studies were based on analysis of effort, change and decision data over several recent

releases of a project. Second, understanding of the costs of tracking technical debt

 122

came from two case studies in which the proposed technical debt management

approach was applied on ongoing releases of the project.

The cases used in these studies vary widely in terms of project size and age, type of

technical debt and development cycle. The strategy for selecting these cases meets the

“maximum variation” criterion defined for case study research [151]. It increases the

generalization power of the findings from these studies. In addition, investigating

diversified cases, which may be different in project cost pattern, management style

and development environment, yields more insights into the nature of technical debt

and thus deepens our understanding on the essence of the technical debt management

problem.

The findings from the case studies and the retrospective studies, together, are used to

evaluate the cost effectiveness of explicit technical debt management, as well as

refinements to the proposed approach for managing technical debt.

 123

Chapter 4: The SMB Study

As mentioned in the first chapter, the objective of this research is to characterize the

costs and benefits of explicit technical debt management and how the technical debt

information contributes to decision making. In this study we explored the effect of

technical debt by using historical data to track a single delayed maintenance task in a

real software project throughout its lifecycle and simulating how explicit technical

debt management might have benefited the project. This study was a retrospective

study, aimed to characterize the benefits of explicit technical debt management.

Results and findings of this study have been published at a conference on software

engineering [152].

4.1 Overall Approach

The research questions of this study are: (1) what is the impact of technical debt on a

software project? (2) whether and how much benefit can be gained through explicit

technical debt management? As a retrospective type of study, this study requires a

software project that has contained technical debt and has had release cycles in the

past. The technical debt in the project should be identifiable as individual instances

and they are measureable, that is, the principal and interest of the technical debt

instances in the subject project can be estimated. The development cost or effort

information of the project, especially of the modules containing technical debt were

documented or can be assessed with reasonable accuracy. Moreover, it should be

available that the decision information regarding the evolution of the technical debt

instance, such as when and why a technical debt instance was incurred, decided to

 124

carry over or paid off. All of the information together constructs an environment

required to run the decision simulation – the core approach of the study design. The

subject project was provided by our industry collaborator based on the case selection

requirements (e.g. a software project with past releases and containing technical debt

instances who’s value are measurable, availability of the decision information

regarding the evolution of the technical debt, etc.) we made for them. This study

began with identifying a particular maintenance task that was delayed (i.e. a technical

debt item), and then an investigation on the reasons that the task was delayed and the

context surrounding the decisions made, both to delay it and later to complete it. We

also estimate the effort that would have been needed to fulfill the task when it first

arose, the effort required to complete the task when it was actually completed, and the

impact of the delay on other tasks that were made more difficult, or that had to be re-

done, because of the delay. Then we simulated the decision making using the

proposed technical debt management approach described in Chapter 3. In other

words, we re-created the decision to delay (or not) the maintenance task using the

proposed technical debt management approach, to see if a different decision would

have been made. Finally we compare the impact of the actual decision with the

hypothesized impact of the simulated decision to determine the benefits that could

have been gained from explicit technical debt measurement and management.

4.2 The Subject Project and Technical Debt Item

The selected project was the Samsung Mobile Business (SMB) application, which

consists of the development and evolution of a software application for mobile

 125

platforms, used as a client solution for Microsoft Exchange Server, as described in

Section 3.2.1.3.

The technical debt item studied is related to a sequence of decisions about the

communication protocol used to connect the application to MS Exchange Server.

Figure 13 shows this decision evolution. The application implementation began in

August 2006 and the communication protocol used was WebDAV with support for

MS Exchange 2003. Two months later, a member of the development team, an expert

in MS Exchange, warned about the upcoming launch of MS Exchange 2007, and that

WebDAV would not support it. Shortly after, in November 2006, a decision had to be

made between keeping WebDAV and re-implementing the communication layer

using ActiveSync, a technology that would support MS Exchange 2007. Given the

time-to-market constraints, the decision (D1) was to keep WebDAV for the following

reasons: the application was already developed for WebDAV, the 2007 version had

not yet been released, and MS Exchange 2003 was active on the market, creating a

real potential for the immediate use of SMB supporting that version.

Figure 13. Timeline of the SMB Evolution

 126

A month after this decision and after application performance analysis, it was decided

to couple the communication and persistence layers of the system’s architecture (D2)

to improve system performance. At the time of this decision it was known that: (1)

the probability of the release of MS Exchange 2007 was high, (2) the protocol used

(WebDAV) did not support this new version, (3) coupling the architecture layers

would increase performance, and (4) coupling these two architectural layers would

imply greater rework to change the communication protocol in the future. It was

decided that the performance considerations were most pressing at the moment, and

hence the decision was made to couple the communication and persistence layers of

the architecture without upgrading to the ActiveSync communication protocol.

Seven months later, in July 2007, the product was deployed to the first customer (R1).

During the second half of 2007, the SMB customers started to migrate their email

servers to MS Exchange 2007, breaking compatibility with the implemented version

of the SMB communication protocol. In November 2007, it was decided to change

the communication protocol to replace WebDAV (D3). At that time, upgrading the

communication protocol to ActiveSync required changes not only in the

communication layer, but also in the persistence layer due to the coupling of the two

layers previously discussed. The changes in the persistence layers could have been

avoided if the upgrading of the communication protocol had taken place before

merging of the two layers. We use Cost X to denote the total effort of upgrading to

ActiveSync, as shown in Figure 13. The upgrading work was completed by May,

2008. Seven months later (Dec of 2008) a new maintenance release with full support

of MS Exchange 2007 was delivered to the customers.

 127

It is our contention that if decision D1 had been to change the communication

protocol, the cost of supporting MS Exchange would have been smaller even in the

context of the decision D2 to couple the two layers of the architecture to achieve

better performance. The results we present below support this supposition. A core

part of our technical debt definition (section 1.1) is that technical debt has a short-

term benefit and a long-term cost. In this case, the short-term benefit is that

maintaining the old communication protocol can get the product to market quickly,

while the long-term cost is that it will take more effort to upgrade the communication

protocol in the future. Therefore, we consider that delaying upgrading the WebDAV

protocol is technical debt. According to the definition presented at the beginning of

Section 3.1, delaying upgrading the communication protocol constitutes a technical

debt item, which we denote as T1. Our analysis below simulates what might have

happened in this project if the technical debt had been managed explicitly.

4.3 Measurement

We use principal, interest amount and interest probability to measure the technical

debt item. The impact is measured by the effort saved (at the points where the debt is

not paid off) or required to complete the task (at the point where it is paid off) against

the loss caused by technical debt. In this study the principal of T1 (denoted as P

thereafter) is the effort to switch to ActiveSync at the time of D1. Since the actual

decision was NOT to switch to ActiveSync, the effort to switch at the time of D1 has

to be estimated using the project’s typical effort estimation approach – expert

estimation – and the information that was available at the time of D1.

 128

The interest amount of T1 (denoted as IA hereafter) is the impact that T1 has on the

future maintenance of SMB, that is, the extra effort required to switch to ActiveSync

because that task was delayed (to after D2). The actual interest amount (IAD3) is

estimated using the following equation:

IAD3 = X – P (1),

where X is the total actual effort of upgrading to ActiveSync at the time of D3 (Cost

X in Figure 13) and P is the effort that would have been required to change to

ActiveSync at the time of D1, which is the principal of T1, as defined above.

In addition, to simulate the decision making, the interest amount also needs to be

estimated at D1 and D2. The interest amount at D1 (IAD1) represents the extra work

required in the future due to the decision of keeping the WebDAV communication

protocol rather than upgrading to ActiveSync. For example, the source code

implementing the communication functionality in conformance to the WebDAV

protocol would have to be rewritten if the communication protocol is changed to

ActiveSync. Therefore, the effort to rewrite the source code in the example is part of

the extra work, which will be required when the communication protocol is upgraded,

because of the decision at D1 to carry T1. Interest estimation should be based only on

the information available and the future situation of the project that the decision

maker can foresee, at the point of time where the decision is made (simulated). For

example, estimating IAD1 should take into consideration the rework cost of changing

the communication layer for ActiveSync, the new communication protocol, but not

the effort in modifying the persistence layer to conform to ActiveSync because at the

time of D1, it remained unlikely for the project team that the two layers would be

 129

merged. By contrast, by the time of D2, it had been determined to couple the two

layers to address the performance issue. Therefore, estimating interest amount at D2

(IAD2) should consider the rework effort on the modules affected by the decision to

couple the communication and persistence layers, which then later had to be changed

again to implement the new communication protocol.

Similar to interest amount estimation, the interest probability of T1 (IP) needs to be

estimated at D1 (IPD1) and re-estimated at D2 (IPD2) because the probability may vary

in different time frames and the simulation depends on using the information

available at each simulated point of time. In this case the interest probability is

affected by the probability that coupling the communication layers and persistence

layers is required (PC) and the probability that SMB needs to switch to ActiveSync

(PM). Since PM and PC are independent of each other,

IP = PC × PM (2).

4.4 Data Collection

In this study we collected data regarding the changes in SMB and the decisions made

during the selected period of time. These change data and decision data were mainly

collected with the help from one of our company contacts. The collection process of

these data began with sending our data requirements to the company contact. Then

the contact communicated with us if she had any questions about our requirements.

Once the contact was clear about the data requirements, she communicated with the

project personnel to gather the data, in the form of formal project documentation, or

transcripts of informal interviews with the project personnel. Because the contact was

 130

very familiar with the project, she could easily find the right people who could supply

the needed data. Thus it saved us a great amount of time and effort in collecting these

data. In this process she also served as a translator between us and the project team as

our communication with the contact was all in English while the communication

between the contact and project team was in Portuguese. The data collected by this

means were also translated into English by the contact. Then the contact sent the data

to us for review. When we had questions about the data, we communicated with the

company contact and she followed up with the project team with our questions. This

process ended when all the data requirements were satisfied. These change and

decision data explain what happened to the project, why and how it happened, as

described in Section 4.2.

We also collected effort data on the release in which the communication protocol was

changed to ActiveSync (cost X). The effort data were collected from the project

chronograms of the related release cycle. Table 6 shows the break-down of cost X,

from which IAD3 is derived using formula (1). In this study the effort is measured in

staff-hours.

Task Effort (staff-hour)

Persistence 514

Analysis 292

Rewriting 172

Improvements 238

Stabilization 50

Communication 922

Rewriting 922

TOTAL (Cost X) 1436

Table 6. Effort to Change to ActiveSync (cost X) at D3

 131

In addition, values for P, IAD1, IAD2, IPD1 and IPD2 were estimated by the project

personnel based on impact analysis of the potential changes that could have been

foreseen. Table 7 shows the break-down of the estimation for the principal (P).

Table 8 shows the estimates of the interest amount at D1 and D2, and the estimates of

PC and PM, which are used to calculate IPD1 and IPD2 according to formula (2). For

example, at the time of D1, the project personnel would have expected 465 more

staff-hours of effort to be expended to upgrade the communication protocol to

ActiveSync in the future, assuming the decision at D1 was to maintain WebDAV, in

comparison with upgrading to ActiveSync at present. In other words, IAD1 is equal to

465 staff-hours. Meanwhile, they also would have expected, based on the information

available at D1, that the probability of coupling the persistence and communication

layers, i.e. PC, was very low (estimated as 20%) and the probability of the need to

upgrade to ActiveSync, i.e. PM, was medium-high (estimated as 70%). According to

formula (2), IAD1, the probability of spending 465 more staff-hours to upgrade to

ActiveSync, is equal to 14%, the product of PC and PM at D1.

Task Effort (staff-hour)

Folder Synchronization 80

Message Synchronization 149

Attachment Download 159

Download Body 119

TOTAL 507

Table 7. Effort Estimate to Change to ActiveSync at D1 (P)

 132

Estimates
Point of Time

D1 D2

IA (staff-hour) 465 836

PC 20% 100%

PM 70% 70%

Table 8. Interest Amount and Change Probability Estimates

4.5 Data Analysis

With the data collected from the project documentation and personnel, we constructed

a technical debt list (defined in our proposed technical debt management approach, in

Section 3.1), which contains the item T1. From the time of D1 we started to track T1

retrospectively by estimating P, IAD1 and IPD1. Then we simulated the decision about

incurring T1 through cost-benefit analysis. That is, we simulated how the decision

would have been made, at times D1, D2, and D3, if the project personnel had been

using the proposed technical debt management approach described in Chapter 3. In

Figure 14 there are three columns, each of which contains the actual decision, the

estimated principal, interest amount and interest probability, the cost and benefit

associated with the decision, and the simulated decision, at each decision point. The

three columns are shown along a time line to illustrate the process of decision

simulation. The benefit of incurring T1 at D1 is the principal of T1, i.e. P (507), while

the cost is the interest of T1, which is the product of the interest amount and interest

probability, IAD1 (465) and IPD1 (14%). Since the benefit of incurring T1 outweighed

the cost, the simulated decision would have been to keep WebDAV at D1, same as

the actual decision.

 133

At D2, a decision was made by the project team to couple the communication layer

and persistence layer, while still keeping T1 (i.e. not switching to the ActiveSync

protocol). Here we re-estimated the interest amount and interest probability as the

situation, including the information availability, had changed since D1. Following the

same procedure, we simulated the decision at D2. Since the cost of keeping T1

outweighed the benefit, the simulated decision would have been to pay off T1 at D2.

However, the actual decision was to not pay off T1 at time D2. Thus, we went to time

D3 and used the actual total cost X to determine the impact that the actual decision

not to pay off T1 had on the project, which is IAD3. The difference between the net

cost of the simulated decision (P - 0) and the actual decision (X) is the benefit that

could have been gained through the explicit technical debt management, which is

equal to IAD3 (=929) according to equation (1).

Figure 14. Decision Simulation Process

4.6 Results

The above analysis makes it clear that delaying the upgrade of the communication

protocol had significant impact on the cost of the project. By tracking this technical

debt item, we can see that it was incurred for the sake of time constraints in the

Incurred

 D1 Timeline

 P: 507
 IA: 465
 IP: 14%

 Cost: 65
 Benefit: 507

Cost/Benefit

Simulated
Decision

Incur

Deferred

 D2

 P: 507
 IA: 836
 IP: 70%

 Cost: 585
 Benefit: 507

Pay off

Paid

 D3

 P: 507
 IA: 929

 Cost: 929
 Benefit: 507

N/A

Actual
Decision

Estimates

 134

situation that future demand of the support for MS Exchange 2007 and changes

imposed on the system were not clear. This is a typical scenario in which technical

debt is incurred. Figure 15 shows the cost and benefit associated with this technical

debt item at different decision points.

Figure 15. Cost/benefit of T1 at Decision Points

At D1 the interest amount and interest probability were estimated low based on the

information available at that time, which translates to low cost of incurring T1 (65) in

the language of cost/benefit analysis. Thus it was not a bad decision to keep

WebDAV, the old communication protocol, to save time for the project. However,

the situation was changing quickly and the project faced a change soon due to the

application’s unsatisfactory performance. Meanwhile the release of MS Exchange

2007 indicated that changing to a compatible communication protocol would be

demanded soon. At that time (D2) both the potential penalty of keeping WebDAV

and the probability that the penalty would be incurred were high, which were

reflected in the high value of the interest amount and interest probability. The

foreseen cost to keep T1 (585) already exceeded the benefit (507), that is, the

507 507 507

65

585

929

0

200

400

600

800

1000

D1 D2 D3

S
ta

ff
-h

o
u

r

Decision Point

Beneift

Cost

 135

situation didn’t allow the old communication protocol to be used any longer.

Unfortunately the decision was to couple the communication layer and the persistence

layer without changing the communication protocol. When it finally became required

that Exchange 2007 be supported, high rework cost was inevitable. The net cost of

carrying the technical debt (929) was almost two times the net cost of switching to the

new communication protocol before merging the two layers (507). By contrast, if the

decision had been made in the same way as the simulated decision, the extra cost

would have been avoided.

4.7 Conclusion

This is a case of a type of technical debt that often occurs in practice turning into a

big problem for the project. It almost tripled the cost of upgrading to ActiveSync,

which was ironically the cost that the technical debt was incurred to save (or at least

delay). By tracking the technical debt and measuring the impact, this study provides

evidence of the effect of technical debt on software projects and concrete numbers

about how serious the problem is, at least in this typical case. Furthermore, the study

demonstrates how a decision made without careful analysis could aggravate the

negative effect of technical debt, while attention and explicit management of

technical debt could make a difference. Therefore we can argue that the project could

have gained significant benefit (in the form of cost saving) if a detailed cost-benefit

analysis, as we did in this study, had been presented to the software manager before

they made their decisions.

 136

In the studied case, delaying the communication protocol change allowed the

application to be released on time. Thus the real benefit of incurring the technical

debt lies in the value of time to market, which was not considered in our approach.

Instead, the principal of the technical debt was used as a proxy of the benefit, which

may affect the decisions made in the course. However, this doesn’t negate the value

of explicit technical debt management. The real benefit of incurring technical debt,

i.e. the value of earlier time to market, can be derived through a business case

analysis. It’s in such occasions that people from the business sector and the technical

sector should work together to determine a reasonable schedule for the project, where

technical debt is used as an effective device to facilitate communication between the

two groups of people and analysis of the cost and benefit of different marketing

strategies. Regardless of their decisions, managing technical debt in an explicit

manner such as the cost-benefit analysis approach we proposed, can help software

managers make informed decisions, thus avoiding surprise in the later stages of the

software project and regrets that can only be seen in hindsight.

 137

Chapter 5: The Hadoop Study

As mentioned in Chapter 3, the goals of this dissertation research are to identify the

characteristics of the costs and benefits of incurring technical debt, the costs and

benefits of explicit technical debt management and how technical debt information

contributes to decision making. To achieve these goals, we have designed two types

of studies, each of which focuses on one side, i.e. benefit or cost, of technical debt

management. In the retrospective studies, the potential benefits of explicit technical

debt management were uncovered and measured by comparing the actual decisions

with the simulated ones in the course of release planning. The Hadoop study,

described in this chapter, is one of the retrospective studies we carried out. Rather

than using a software project provided by our industrial collaborators, we chose a

project from the open-source software community. Our decision was partially due to

the lack of available projects from our industrial partners, but we also expect that

more diversified subjects of study can give us new perspectives on the technical debt

problem and improve the generalizability of the overall work. In this study we

examined whether the presence of technical debt is associated with future

maintenance cost and whether the potential saving of those costs by paying down

technical debt at various points of time as suggested by our approach can justify the

costs of the explicit technical debt management strategy.

This study used the analysis results from Zazworka et al.’s work regarding the

commonalities and differences among four technical debt identification approaches

and their relationship to indicators of technical debt interest [153]. In their study, four

 138

technical debt identification approaches were applied to multiple versions of Hadoop,

an open-source software project, to detect different types of technical debt indicators

such as modularity violations, grime and code smells. Meanwhile the interest

indicators, including change proneness and defect proneness, were calculated based

on the information extracted from the source code and bug repository. Then the

relationship between the technical debt indicators and the interest indicators were

quantified to reveal whether different technical debt indicators point to different

maintenance problems (represented by the interest indicators) and thus lead to the

answer of whether these approaches have overlap in terms of technical debt

identification. According to the results of their study, modularity violation and

dispersed coupling are the top two technical debt indicators that show a significant

positive relation with change proneness. For example, a class with modularity

violation has higher change probability than a class without the violation. Since

change proneness may indicate maintenance problems such as high change effort,

classes with technical debt indicators may be more likely to be considered as

candidates for refactoring. These previous findings helped us identify classes from

Hadoop whose change proneness appeared to be affected by the technical debt in

them. Then we used these classes to simulate the decision of whether and when to

refactor the classes to reveal what difference could have been made if our technical

debt management approach had been applied.

5.1 Process

This study began with identifying classes whose change proneness fluctuated with

some technical debt indicator, which likely is evidence that the indicator points to real

 139

technical debt in those classes. After the classes were identified, we quantified the

technical debt in them, that is, we estimated principal, interest amount and interest

probability for the technical debt in each version of the classes. Then we simulated

the decisions by applying our technical debt management approach to the past

versions of these classes, to determine when the technical debt would have been paid

off. We also determined when the technical debt was actually paid off (intentionally

or not) by observing the point at which the technical debt indicator was no longer

present in the class. Finally we compared the simulated decisions with the actual ones

to evaluate the effectiveness of our approach in terms of the effort that could have

been saved.

5.2 The Subject Project and Classes

The selected project was Apache Hadoop (http://hadoop.apache.org), as described in

Section 3.2.1.4. In this study we used the results yielded by Zazworka et al. [153] as a

starting point. In particular, the change likelihood of the classes and the number of

technical debt instances in them from Zazworka et al.’s study were used. The change

likelihood of a class with a particular version was defined as the number of repository

changes affecting the class in the version divided by the total number of changes in

the repository included in that version.

The criteria we used to identify the classes for decision simulation are as follows.

Since we wanted to simulate the effect of the technical debt management approach on

classes with technical debt, we chose classes that contained potential technical debt

(as evidenced by some indicator) in at least one version of its lifetime (criterion #1).

 140

In order to compare simulated decisions with actual ones, at least one decision to pay

off (or pay down) technical debt had to be made in the life time of the selected

classes. Thus, we searched for decreases in the number of suspected technical debt

instances as evidence that such a decision (explicit or implicit) was made. In other

words, the number of technical debt instances in the class must have at some point

decreased, which indicates refactoring was carried out (intentionally or not) (criterion

#2). In this study we used change likelihood as the indicator of maintainability and of

technical debt interest, and we used the number of dispersed coupling code smells as

the indicator of technical debt. To narrow down the area that is more likely to have

technical debt, the change likelihood of the class over time should observe a similar

trend to the number of code smells in the class (criterion #3). Again, such a trend

could indicate the effect of technical debt.

According to the results from Zazworka et al.’s study, modularity violation has the

highest association with change proneness [153]. Therefore we first tried to identify

classes using modularity violation as the type of technical debt indicator. However,

no class in the project satisfied the above criteria. Then we chose the code smell

“dispersed coupling”, referring to the issue of one method calling too many methods

from other classes, as the type of technical debt indicator because this had the second

strongest association with change proneness in Zazworka et al. [153]. Based on

dispersed coupling, we identified 4 classes from the project satisfying our criteria, as

shown in Figure 16. By looking into the source code of these classes, we confirmed

these classes did have the coupling problem, which led to higher maintenance cost

than the versions not having the problem, as their change proneness indicated. A core

 141

part of our technical debt definition (section 1.1) is that technical debt has a short-

term benefit and a long-term cost. In this case, the short-term benefit is that leaving

the coupling problem in the class can save the refactoring effort, while the long-term

cost is that maintenance effort for the class will stay on a higher level until the

problem is addressed. Therefore, carrying the coupling problem, or delaying

refactoring the class to address the coupling problem is technical debt. In other words,

technical debt was incurred in the evolution of the classes, as the code smell they

contained indicated.

Figure 16. Change Likelihood and No of Potential Technical Debt Instances of the Subject Classes

 142

5.3 Measurement

Informed by the “debt” metaphor, we estimate principal, interest amount and interest

probability to characterize the technical debt items in the selected classes. In a

scenario in which a decision is being made about whether or not to pay off a technical

debt item, the principal is the cost of paying off that item, while the expected interest

that would be avoided by paying it off is the benefit. The effectiveness of our

approach is measured by the effort that would have been saved if the technical debt

management approach had been used to make this decision, as calculated by our

simulation approach.

Due to the limited availability of data, especially effort data, proxies had to be used in

this study with the following assumptions:

(1) The effort estimation approach used by the subject project, which they would

have used as part of technical debt management, is effective and thus yields

accurate results. This assumption may be less valid for new software

development organizations, but we consider it achievable for mature software

maintenance projects, which our approach is mainly targeted to. This

assumption simplifies technical debt principal estimation in the decision

simulation for this study by allowing us to use the actual refactoring effort as

the estimate.

(2) The code churn, which is the sum of the lines of code that are added, deleted

or modified, is positively related to change effort. The relationship between

change effort and code churn has been studied by many researchers. We found

supporting evidence for this relationship, as well as negative cases in the

 143

literature [127-129], which were discussed in Section 2.4.1. However, given

the limitation of the information availability in the subject project, this was the

best way for us to estimate the change effort. With this assumption, we can

use code churn as a proxy for change effort.

Figure 17. Code Churn History and Refactoring Decision

To help explain the measures defined below, we drew an illustration

diagram (Figure 17). Figure 17 shows an idealized case of how technical debt affects

maintenance effort. In Figure 17 the class shown carried technical debt beginning

from the first version, resulting in higher code churn. The debt was paid off in

version 5, requiring extra effort for refactoring. While we don’t know anything about

how the decision (if any) was actually made to pay off the debt in version 5, we know

what the outcome was (it was decided to pay off the debt). Also, we can simulate

what decision would have been made using our proposed technical debt management

approach.

 1 2 3 4 5 6 7 8 9 10 Version

With Technical Debt

Without Technical Debt

∆(w)

∆(w/o)

Principal

Interest

Code Churn

TS TA

∆(Refactoring Effort)

 144

Our approach requires estimates for principal and interest at the point in time at which

the decision is being made (in this case, during planning for version 5). Those

estimates must be made, to the extent possible, as they would have been made at the

decision time. With Assumption (1), we can assume that whatever estimates that

would have been made at that time would have been very accurate, which allows us

to use actual values for effort (i.e. churn, by way of Assumption 2) in place of the

estimates that would have been made.

The principal of technical debt (P) can be thought of as equal to the effort to refactor

the module in the same version where the technical debt was incurred (and hence

before any interest has been incurred). This means that P is not equal to all the effort

expended in version 5 in Figure 17, but only that part beyond what would have been

expended in a typical maintenance cycle, including interest from the existing

technical debt. Thus, we calculate the principal, P, using the following equation:

P = Max(∆(Refactoring) - ∆(w) , 0) (1),

where ∆(Refactoring) is the total code churn in the version where the refactoring

takes place, i.e. when the technical debt is paid off (version 5 in Figure 17).

∆(Refactoring) reflects the total effort spent in this version, which includes the effort

to pay off the debt and the routine maintenance effort in a version when the technical

debt was present. Note that the routine maintenance effort here includes the interest

incurred by the technical debt because the technical debt was present in the version.

∆(w) is the average code churn of the class over the versions leading up to the

refactoring version, and thus reflects the routine maintenance effort in the versions

 145

where the technical debt was present. Therefore the principal of technical debt is the

difference between ∆(Refactoring) and ∆(w), as shown in Figure 17. In case

∆(Refactoring) is smaller than ∆(w), we consider refactoring is almost effortless and

thus can be ignored. To handle such a case, we prevent the calculation of P to drop

below 0 in equation (1). The interest amount (IA) is estimated using the following

equation:

IA = ∆(w) - ∆(w/o) (2),

where ∆(w/o) is the average code churn of the class after version 5 and reflects the

routine maintenance effort in the versions where there was no technical debt.

Therefore the difference between ∆(w) and ∆(w/o) reflects the cost of carrying

technical debt, that is, the interest of technical debt, in each version. The interest

probability (IP) is estimated using the following equation:

IP = CL(w) * N (3),

where CL(w) is the average change likelihood of the class in the versions where the

technical debt was present. Since the cost of carrying technical debt is incurred when

a change is applied, how likely the cost is incurred is determined by how likely a

change is required. Therefore, we used the change likelihood of a class as the estimate

of interest probability. Because the probability varies with different time frames, a

time element has been attached. In equation (3) N is the number of release cycles for

which the probability is estimated.

As elaborated in Chapter 3, the principal of the debt, P, is the cost to pay off the debt,

while the expected value of the interest, IA * IP, represents the benefit, or the cost

 146

that can be saved from not carrying the debt. To simulate the decision on whether or

not to pay off the technical debt, for each version, the cost and the benefit are

compared. If the cost outweighs the benefit, the debt will be carried over, otherwise

the class is refactored and the debt is paid off.

After the decision simulation, we compare the actual decisions with the simulated

ones to examine whether and how much benefit, i.e. saved effort, could have been

gained from explicit technical debt management. In cases where the actual decision

differed with the simulated decision, we performed the simulation again for each

version in our data set, in order to determine which version would be the earliest

version in which the simulated decision would indicate paying off the debt. This

version we denoted TS, and the version in which the debt was actually paid off we

denoted TA. This allowed us, then, to calculate the cost savings that would have

occurred if the debt had been paid off at TS rather than TA. With Assumption (1), this

saved effort (E) is estimated using the following equation:

	 	 			 	 		 	 	 	0																																											 	 (4),

In the first clause, where “TS >TA”, the simulated decision suggests paying off the

technical debt later than was actually decided. When “TS > TA”, the technical debt

would have been carried longer if the simulated decision had been followed. In this

case more interest has to be paid, but the effort to pay off the debt, i.e. the principal,

can be saved. The difference between TS and TA represents the number of versions

between TS and TA, as shown in Figure 17. Because IA represents the interest

 147

amount incurred in one version, the product of IA and (TS - TA) is the total amount

of additional interest that would have been incurred if the simulated decision had

been followed. By contrast, “TS < TA” means the simulated decision suggests

paying off the technical debt earlier than the actual decision did, as was the case in

the example in Figure 17. Because the interest incurred in one version with technical

debt is almost as high as the principal, the simulated decision suggests paying off the

debt in the first version. In this case, when TS < TA, the interest would be saved at

the cost of paying off the principal. In both cases in equation (4), the difference

between the principal and the interest that was paid or saved is the effort that could

have been saved if the simulated decision had been made. When the simulated

decision is same as the actual decision, i.e. TS = TA, no extra effort is saved, as

shown by in the third clause of equation (4).

5.4 Data Collection

In addition to the data obtained from Zazworka et al.’s study [153], we collected size

information, i.e. Lines of Code (LOC) and code churn for the selected classes in each

version. We also reviewed the source code of the selected classes. The code churn

information was used to estimate the change effort for decision simulation. Review of

the source code helped us understand the causes of the changes and thus facilitated

explaining the findings from this study.

5.5 Data Analysis

After the data collection, we calculated principal, interest amount and interest

probability for the selected classes in each version. The first version of the classes

 148

was excluded from this analysis to avoid skewing the results with the initial overhead

for creating a new class. Then we simulated the decision of whether and when to pay

off the technical debt using the proposed technical debt management approach. We

considered different time frames (1-3 release cycles) for interest probability

estimation and carried out decision simulation accordingly, as shown in Tables 9-12.

 A B C D E F G H I J K L M N

0 Version 0.2.0 0.3.0 0.4.0 0.5.0 0.6.0 0.7.0 0.8.0 0.9.1 0.10.0 0.11.0 0.12.0 0.13.0 0.14.0

2 No of technical debt items 1 1 1 1 1 1 0 0 0 0 0 0 0

3 Change Likelihood 4.05 6.67 2.27 1.59 2.33 0.00 4.08 0.00 0.95 0.00 0.00 0.28 0.46

4 LOC 449 449 458 459 460 460 71 71 69 69 69 69 69

5 Code Churn 16 6 30 3 2 0 538 0 6 0 0 3 1

6 Principal (P) 529 529 529 529 529 529 529 529 529 529 529 529 529

7 Interest Amount (IA) 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83

8 Interest Probability (1 release) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

9 Interest Probability (2 releases) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

10 Interest Probability (3 releases) 8.99 8.99 8.99 8.99 8.99 8.99 8.99 8.99 8.99 8.99 8.99 8.99 8.99

11 Actual Decision ✓

12 Simulated Decision (1 release) X X X X X X X X X X X X X

13 Simulated Decision (2 releases) X X X X X X X X X X X X X

14 Simulated Decision (3 releases) X X X X X X X X X X X X X

15 Effort Saved (E) 474

Table 9. Class dfs.DFSck for Decision Simulation

The first class, dfs.DFSck, carried technical debt from the Version 0.2.0 through

Version 0.7.0 (see row 2 in Table 9). The actual refactoring took place in version

0.8.0, where the code churn had a significant increase compared to the previous

versions. The refactoring effort (∆(Refactoring)) was 538 (LOC), as shown in cell 5H

of Table 9. ∆(w) is calculated as the average value of the code churn (row 5) in

versions where the technical debt was present (columns B through G), 9.5 (LOC).

Likewise, ∆(w/o) is calculated using the average values of the code churn after the

technical debt was removed, i.e. columns I through N, 1.7 (LOC). Then the principal

(P=529) and interest amount (IA=7.83) are calculated using formulas (1) and (2) in

Section 5.3, as shown in Row 6 and Row 7 in Table 9. The interest probability (IP)

with different time frames is calculated using formula (3) in Section 5.3, as shown

 149

from Row 8 to Row 10 of Table 9. Then the decision was simulated for each version

by comparing P with IA*IP. If P is less than the product of IA and IP, the class should

be refactored in this version, otherwise, the technical debt is carried through this

version, as shown from Row 12 to Row 14 of Table 9. For this class, the simulated

decision suggests it would be more cost-efficient to carry the technical debt, i.e. not

refactor it ever. This is clearly because the principal of the technical debt (i.e. the cost

of refactoring) is too high to justify in comparison with the interest avoided, even

considering the interest over several versions. As shown in Table 9, there have been 7

new versions since the technical debt was actually paid off. Thus the saved effort, as

calculated using formula (4) in Section 5.3, is 474, as shown in cell 15B of Table 9.

In this case, effort equal to changing 474 lines of code would have been saved if the

simulated decision had been followed. This holds for decisions with consideration of

different time frames. As shown from row 8 to row 10 of Table 9, it is more likely

that the interest will be incurred within a longer time frame, but the benefit of paying

off the debt, i.e. IA * IP, is still much less than the cost, i.e. the principal, for the

longest period of time (3 versions). Therefore, the decision on whether and when to

pay off the debt remains same for different time frames within which the interest

probability is estimated.

By looking into the source code of this class, we found that a big chunk was deleted

and several methods were modified in version 0.8.0. As mentioned in Section 5.2,

dispersed coupling indicates that a method calls many methods from too many other

classes. The modification in version 0.8.0 reduced the calls to methods from other

classes. Thus the dispersed coupling issue was gone after the refactoring in version

 150

0.8.0. There were comments in the source code of this class that shed light on the

reasons behind the refactoring in version 0.8.0. A large method in this class had

actually been copied from another class originally. Because the developers considered

duplication to be bad programming practice and a threat to long term maintainability,

they decided to refactor the class. The comments indicate that dispersed coupling was

actually an issue in the method in the original class from which it was copied, and

then this problem was introduced to this class through duplication. Therefore, the

main reason for the refactoring was to address the duplication issue, not dispersed

coupling. Regardless of the reasons for the refactoring, this class is a case in which

the developer was aware of the technical debt in the class and took actions to address

the problem. However, due to the lack of technical debt measurement and cost-benefit

analysis, the refactoring didn’t take place at the optimal point of time.

 A B C D E F G H I J K L M N

1 Version 0.2.0 0.3.0 0.4.0 0.5.0 0.6.0 0.7.0 0.8.0 0.9.1 0.10.0 0.11.0 0.12.0 0.13.0 0.14.0

2 No of technical debt items 1 0 0 0 0 0 0 0 0 0 0 0 0

3 Change Likelihood 13.33 6.25 9.09 1.82 2.35 4.26 5.66 3.33 3.39 10.77 7.58 5.86 6.90

4 LOC 736 766 798 800 800 902 904 914 918 961 972 1007 1219

5 Code Churn 256 64 67 4 3 157 13 16 21 113 71 1269 710

6 Principal (P) 0 0 0 0 0 0 0 0 0 0 0 0 0

7 Interest Amount (IA) 152 152 152 152 152 152 152 152 152 152 152 152 152

8 Interest Probability (1 release) 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33

9 Interest Probability (2 releases) 26.67 26.67 26.67 26.67 26.67 26.67 26.67 26.67 26.67 26.67 26.67 26.67 26.67

10 Interest Probability (3 releases) 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

11 Actual Decision ✓

12 Simulated Decision (1 release) ✓

13 Simulated Decision (2 releases) ✓

14 Simulated Decision (3 releases) ✓

15 Effort Saved (E) 0

Table 10. Class dfs.DFSClient for Decision Simulation

The second class, dfs.DFSClient, had a quite different situation. The refactoring,

which took place in version 0.3.0, barely required any effort, while carrying the

technical debt incurred relatively high interest, as shown in row 6 and row 7 of

Table 10. According to the simulated decision, this class should have been refactored

 151

immediately to get rid of the technical debt. Fortunately it was actually refactored in

the same version as the simulated decision suggests. Therefore no additional costs

(i.e. interest) were incurred. The change included adding to this class two methods

that it previously had to call from other classes. The addition of the two methods in

this class reduced calls to other classes and thus addressed the coupling problem in

this class. It is unclear, based on the available information, whether there were other

reasons to refactor this class at that particular point of time. However, it was a right

decision as confirmed by the simulation.

 A B C D E F G H I J K L M N

1 Version 0.2.0 0.3.0 0.4.0 0.5.0 0.6.0 0.7.0 0.8.0 0.9.1 0.10.0 0.11.0 0.12.0 0.13.0 0.14.0

2 No of technical debt items 0 0 0 0 1 1 1 1 1 1 1 0 0

3 Change Likelihood 0.70 0.00 0.00 0.00 1.33 0.00 1.19 0.00 0.89 1.22 0.00 0.71 0.00

4 LOC 54 54 54 54 111 111 111 111 122 35 35 18 18

5 Code Churn 1 0 0 0 117 0 7 0 17 113 0 26 0

6 Principal (P) 0 0 0 0 0 0 0 0 0 0 0 0 0

7 Interest Amount (IA) 36.09 36.09 36.09 36.09 36.09 36.09 36.09 36.09

8 Interest Probability (1 release) 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66

9 Interest Probability (2 releases) 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32

10 Interest Probability (3 releases) 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99

11 Actual Decision ✓

12 Simulated Decision (1 release) ✓

13 Simulated Decision (2 releases) ✓

14 Simulated Decision (3 releases) ✓

15 Effort Saved (E) 180

Table 11. Class mapred.TextInputFormat for Decision Simulation

The third class (mapred.TextInputFormat) in Table 11 had a similar situation as

dfs.DFSClient, described in Table 10, with respect to the relationship between its

principal and interest. The technical debt in this third class could be almost

effortlessly paid off, but it had a significant impact on the change likelihood/effort of

the class when it remained, as shown in row 6 and row 7 of Table 11. By looking into

the source code, we found out that in version 0.6.0, the class was modified to import a

new package and add several methods to call the methods in the new package. The

modification increased the coupling level between this class and the classes in the

 152

newly imported package and resulted in the coupling issue in this class. In version

0.12.0, the class inherited a new base class, which helped reduce the burden of

implementing functions in this class. As a result, the class no longer had the coupling

issue beginning with version 0.13.0. It’s unknown whether the modification was

actually refactoring practice, but it indeed paid off the technical debt in this class. As

with the second class, the simulated decision suggests paying off the technical debt

immediately, as shown in the cells G12 to G14 in Table 11, but actual refactoring

happened after 6 release cycles, which incurred extra interest equal to the effort of

modifying 180 lines of code, as shown in the cell B15 of Table 11.

 A B C D E F G H I J K L M N

1 Version 0.2.0 0.3.0 0.4.0 0.5.0 0.6.0 0.7.0 0.8.0 0.9.1 0.10.0 0.11.0 0.12.0 0.13.0 0.14.0

2 No of technical debt items 1 1 1 0 0 0

3 Change Likelihood 8.33 5.45 4.21 1.14 0 0

4 LOC 333 342 344 245 245 245

5 Code Churn 466 14 10 167 0 0

6 Principal (P) 155 155 155 155 155

7 Interest Amount (IA) 12.00 12.00 12.00 12.00 12.00

8 Interest Probability (1 release) 4.83 4.83 4.83 0 0

9 Interest Probability (2 releases) 9.67 9.67 4.83 0 0

10 Interest Probability (3 releases) 14.50 9.67 4.83 0 0

11 Actual Decision ✓

12 Simulated Decision (1 release) X X X X X

13 Simulated Decision (2 releases) X X X X X

14 Simulated Decision (3 releases) X X X X X

15 Effort Saved (E) 131

Table 12. Class mapred.PhasedFileSystem for Decision Simulation

The fourth class, mapred.PhasedFileSystem was created in version 0.9.1 with many

calls to the methods of the file stream classes that are located in two other packages.

Because of these calls, the class had the dispersed coupling issue. The refactoring of

this class took place in version 0.12.0, where the code churn surged to 167 lines of

code, indicating high principal of this technical debt, as shown in cell 5L of Table 12.

The two file steam classes called by this class were replaced by one single class and

thus reduced the coupling of this class with other classes. After the refactoring, the

 153

code churn went down to 0 in version 0.13.0 and 0.14.0, as shown in cells 5M and 5N

of Table 12. In terms of change proneness, the refactoring was effective. However,

the refactoring cost was too high to justify this technical debt repayment decision.

The simulated decision, by contrast, suggests carrying this technical debt all the way

through. Although more interest would have to be paid for the simulated decision, it

is still more cost-effective than the actual decision. A total of the effort equal to

changing 131 lines of code would have been saved if the simulated decision had been

followed, as shown in cell 15B of Table 12.

5.6 Discussion

 In this study we tracked four technical debt instances located in four classes of the

subject project. As mentioned at the beginning of this chapter, the main goal of this

study is to uncover the potential benefits gained from explicit technical debt

management. We achieved this goal by simulating the decisions on when to pay off

technical debt for the past versions of a class and then comparing them with the actual

decisions. Therefore, the candidate classes must have at some point contained

technical debt and at least one decision on paying off the technical debt had to have

been made in the lifetime of the classes.

The study began with identifying candidate classes that can be used for decision

simulation. Using the analysis from Zazworka et al. [153] as a starting point, we

searched for classes that exhibited technical debt at some point (as indicated by the

presence of the dispersed coupling code smell) and that eliminated the technical debt

 154

at some point (as indicated by the absence of the dispersed coupling code smell).

Finally we chose four classes for the decision simulation.

The results of the data analysis, i.e. decision simulation, show that our proposed debt

management approach suggests different technical debt repayment strategies in most

cases (3 of the 4 classes) compared to the actual decisions. Where the simulated

decisions differed from the actual ones, significant effort could have been saved if the

simulated decisions had been followed. For example, a total of the effort equal to 474

lines of code could have been saved for the first class if it had not been refactored.

Similarly, the third and fourth classes could have also saved effort comparable to the

effort of constructing the classes, i.e. the size of the classes. Among these classes,

only one actually implemented the same technical debt repayment strategy as the

simulated decision suggests. Thus, most of the refactoring didn’t take place at the

optimal point of time from the perspective of cost saving. The differences between

the simulated decisions and the actual decisions indicate that technical debt

information was not fully taken advantage of to reduce overall project cost.

For classes 2 and 3 (see Tables 10 and 11), the simulated decisions are to pay off the

debt in the same version in which it was incurred. Class 2 was indeed refactored

immediately after the technical debt was incurred. This raises the question: why was

it incurred in the first place? As mentioned in Chapter 2, there are various causes for

technical debt. For example, the project may lack the development resource at the

particular point of time, or an inexperienced developer may create some low quality

work. We might not be able to conclude how the technical debt in these two classes

 155

was incurred, based on the results of this study, but it is clear that, in the case of class

2, incurring the debt was not based on an informed decision, given that it was paid off

almost immediately. In these cases the debt itself could have been avoided if a careful

cost-benefit analysis had been performed, as our technical debt management approach

proposes, at the point of deciding whether or not to incur the debt.

For classes 1 and 4, the analysis results show that the technical debt should have been

carried throughout the period analyzed rather than being paid off because the benefit,

i.e. interest that was saved, was much lower than the cost of refactoring the classes.

The simulated decision seems to contradict the common sense of technical debt

management and problem solving as “refactoring a module early to avoid debt

accumulation” and “fixing a problem before it gets big” are generally considered

good practice in software development. But we would argue that technical debt

management should go beyond the heuristic rules that common sense suggests

because different technical debt instances may have quite different situations. The

idea of explicit technical debt management is not to develop general strategies that

treat technical debt as a whole, but to propose managing technical debt in a scientific

manner. Decisions on technical debt management should be based on analysis and

measurement, as our proposed technical debt management approach suggests.

Through this study, we have observed that explicit technical debt management could

bring significant benefit, in the form of cost saving, to the project in comparison with

the implicit technical debt management practiced by the project team, if at all.

 156

At the same time, we also realize there are validity threats to this study. The main

threat to the internal and construct validity of this study lies in the measurement

aspect because of the assumptions we made. Due to the limited data availability, we

used the actual refactoring effort as the estimate of the technical debt principal for

decision simulation with the assumption that the estimation approach used by the

project (and which would have been used in the cost-benefit analysis if technical debt

had been managed explicitly) was mature enough to yield accurate results. If this

assumption doesn’t hold, then the decisions made may not be optimal, and the

benefits we observed in this study would be higher than what the project could

actually gain from explicit technical debt management. For the same reason, we had

to use code churn as the proxy of change effort with the assumption that the lines of

code that are changed reflect the effort to change them. Besides the risk of overstating

the benefits of technical debt management, this assumption risks measurement error

of the technical debt and hence the benefit from explicit technical debt management.

To evaluate the potential measurement error, we studied the evolution history of the

four classes, i.e. the changes to the source code in the involved versions. This helped

us understand what the changes were and hence helped us determine if the code churn

in these classes reflected the effort to make the changes. We were able to determine,

subjectively, based on the author’s programming experience, that code churn is

largely proportional to change effort for these classes. Therefore, we do not believe

that using code churn as the proxy for change effort for this study introduces large

measurement errors.

 157

Besides the above assumptions, we also simplified the estimation process of technical

debt in the decision simulation. Instead of estimating the principal and interest

amount of technical debt in each version, we used average code churn over the related

versions, as prescribed by formulas (1) and (2) in Section 5.3. Thus the estimated

principal and interest amount of the technical debt in each class remains constant over

the versions involved in the decision simulation. This simplification resulted in

extreme cases – the technical debt in a class should be either paid off in the same

version where it was incurred, or carried indefinitely. In reality, it is likely that some

cases fall in between the two ends because estimates of principal and interest need to

be adjusted to reflect changes in the situation over time, and to be refined as more

information becomes available. For example, we may decide not to refactor a class

with technical debt right away due to the high principal and low interest of the debt,

but several versions later the cost of carrying this technical debt, i.e. the interest,

might significantly increase because of a change in another class that it is coupled

with. In this situation it is no longer economical to keep the technical debt in the

class. Therefore, the decision should change from carrying debt to paying it off. This

example shows there may be cases in which the time span between the two points of

paying off technical debt for the simulated decision and the actual decision, i.e. the

distance between TA and TS, is shorter than those in the selected classes for this

study. According to formula (4), a smaller difference between TA and TS leads to

less saved effort, which means the actual benefit from explicit technical debt

management may not be as high as the result from the decision simulation in this

study.

 158

Another threat to the internal validity of this study comes from selection of the

subject classes. In this study the technical debt instances in the selected 4 classes are

independent of each other, which allowed the decision simulation approach to be

applied to the classes individually. Given the small number of selected classes, the

technical debt instances in them may not be representative and the relationship

between technical debt instances in the project could be much more complicated. In

such situations the optimal decisions on technical debt repayment may be different

from the simulated decisions in this study and hence the effort that can be saved by

explicit technical debt management could be different as well.

In spite of the limitations, this study still sheds light on the effect of explicit technical

debt management on software projects. The compromise we took on measurement

and simplification of the management approach would only impact the magnitude of

the results from this study, but not change the way in which explicit technical debt

management affects software projects, i.e. using technical debt information to help

software managers make better decisions. In the worst case, no extra benefit comes

from explicit technical debt management when the decisions made on all technical

debt items in a software project by the explicit technical debt management approach

are the same as those decisions made through implicit technical debt management,

which is highly unlikely, as demonstrated by the cases in this study.

 159

Chapter 6: The Tranship Study

This research aims at technical debt theory construction through the study of how

technical debt can be measured and monitored. The emerging theory addresses the

cost and benefit characteristics of explicitly managing technical debt in comparison

with implicit management. To investigate these cost-benefit characteristics, we

designed two types of studies – retrospective study and case study, as elaborated in

Chapter 3. The study described in this chapter falls into the second type, that is, we

use the selected software project to investigate the costs of explicit technical debt

management. In this study we explored the costs of using our proposed approach by

tracking the technical debt management activities in an on-going software project.

The research questions for this study are:

(1) What are the costs of managing technical debt using the proposed approach?

(2) How does technical debt information contribute to decision making?

This study has been published as a peer-reviewed article in an academic

journal [154].

6.1 Subject Project

The subject project was a software application for water vessel management from a

Brazilian software company that provides enterprise-level software development,

consulting and training services, as described in Section 3.2.2.3.

The project began in late 2011. The first release of the application was approved by

the customer in May 2012. Since then, a new customer release was delivered every

sprint. The case study began with baseline data collection in March 2012. Afterwards,

 160

the project started managing technical debt explicitly using our proposed approach.

We observed and collected data on the technical debt management process until the

middle of November 2012. The case study ended in the middle of December, 2012

with the follow-up interview being completed.

6.2 Study Process

Due to the distance and language, we did not have direct contact with the subject

project. Therefore, this study involved a company contact, who was also part of the

research team and was in charge of translation, data collection (e.g., interviewing the

project personnel), and communication between the project team and the research

team. All communication with the project team was in Portuguese, while the research

team communicated in English.

We followed the general process described in Section 3.2.2.1 to carry out this study,

but we present here the steps with more details and particulars to this study.

(0) Preparation: the company contact collected baseline data in terms of effort,

cost and productivity of the project. We designed a simple spreadsheet to aid

in managing the technical debt list and to collect data on its use. The list was

kept under version control, along with other project documents.

(1) The company contact trained the project team on how to manage technical

debt using the proposed approach and how to document and report

information required by this study. Training materials were prepared by the

research team in English and translated to Portuguese by the company

contact.

 161

(2) The project team identified technical debt items in their system to prepare

the initial technical debt list. In the first release cycle, during which the

project was tracking technical debt for the first time, the team members

provided data to the research team regarding the amount of time they spent

using the technical debt list and the problems and questions that came up.

(3) After the first release, the research team reviewed the technical debt list, the

changes made by the project team and other data collected in the first release

cycle. Then the research team asked questions about the project team’s

experience, the data they provided, and the process they followed. This

began a back-and-forth discussion, which continued until all the questions

were addressed, the research team was satisfied with the types of data

provided by the project team, and the project team was clear and

comfortable with the proposed approach.

(4) The project team continued tracking the technical debt items in the

successive three sprints using the approach. In the process, they

documented the decisions made concerning technical debt, the principal and

interest paid and/or avoided, and the costs (i.e. effort) of using the technical

debt list. In the end of this study, the company contact interviewed the

project leader, who was in charge of release planning, about his decision

making process and the effect of the approach on the project.

6.3 Data Collection

In step 1 of the case study process, we needed to collect baseline data about the effort,

cost, and productivity of the project, which was to be used later for comparison. The

 162

baseline data we collected is summarized in Table 13. It gives an overall picture of

the size and current productivity of the project. This data was gained via interview

with the project leader (conducted by the company contact).

No. of Software Modules 8

No. of Use Cases 95

Hours/Month 120

Average Person-hours/Use Case 37

Average Person-hours/sprint planning 5

Table 13. Baseline Size and Productivity of the Project

At the same time, the project team created the initial technical debt list. This activity

began with a training on the concept of technical debt. This training was performed in

Portuguese by the company contact and took about 30-40 minutes. After that, the

team members had a chance to ask questions. The definition of technical debt

presented to the team was: incomplete, immature, or inadequate artifact in the

software development lifecycle which in turn adds more constraints on future

maintenance tasks and makes modification more difficult, costly and

unpredictable [17]. Please note that the definition of technical debt for the project

team took a different perspective from the one we use, which was presented in

Section 1.1 where we discuss the technical debt concept, but they are not inconsistent.

In Section 1.1 we define technical debt in terms of the behavior associated with it (i.e.

short-term benefit and long-term cost) because this perspective facilitates managing

technical debt, which is the target of this dissertation research. But in the training of

the project team, we used another technical debt definition, which focuses on its

appearance, as this perspective is relevant when identifying technical debt, which was

 163

the first step in using technical debt information for release planning in their project.

For example, one technical debt item in the project was that the class FaturaControlle

includes some hard-coding on the service type, which should be retrieved from a

database. If this technical debt item is described in terms of behavior, it is that hard

coding on the service type in this class reduces the effort to construct this class, but it

will cause data inconsistency issue in case the service type is updated in the database.

A core part of the technical debt definition (section 1.1) is that technical debt has a

short-term benefit and a long-term cost. In this case, the short-term benefit is the

reduced effort to construct this class, while the long term cost is the potential data

inconsistency problem that needs extra effort to fix. Therefore, delaying refactoring

this class to remove the hard-coding is technical debt. As mentioned in Chapter 2,

there are multiple dimensions to categorize technical debt and several classifications

have been proposed. Among these classifications, the one Rothman proposed [26]

makes it clear that technical debt has different sources and forms, and hence may

need different measures for identification, and approaches for management, which is

the center of this dissertation research. In addition, categorizing technical debt by

development phase is natural to software developers. It would be easier for them to

understand the technical debt concept and thus fulfill their tasks for this study more

effectively. Therefore, we decided to use Rothman’s classification as part of our

technical debt training for the project team. Specifically, we explicitly defined the

following types of technical debt:

 164

� Design debt: any kind of anomaly or imperfection that can be identified by

examining source code and/or related documentation, that leads to decreased

maintainability if not remedied;

� Testing debt: tests that were planned but not executed;

� Documentation debt: documentation that is not kept up-to-date;

� Defect debt: known defects that are not yet fixed.

Finally, the development team was also trained on how to report technical debt items

using the technical debt list. After that, the development team started to identify

technical debt items. Basically, for this task, each member of the team reported

technical debt items based on their role and activities on the project. Some of the

developers looked manually for technical debt items in the parts of the source code

with which they were working and familiar, others just recalled instances of

incomplete, immature, or inadequate project artifacts that they had encountered.

Some of the testers examined test reports or requirements specifications to identify

debt items. No analysis tools were used. For each reported item, the team member

assigned its type (design, testing, documentation, or defect).

The team members were also asked to estimate rough values of principal, interest

amount, and interest probability. To estimate these values, the development team was

instructed during the training to use their own experience and expertise to make their

best guess, and to use high, medium, and low for the initial estimates. After that, they

were instructed to refine those values numerically, based on their own experience,

during sprint planning. Thus, initially, all technical debt items had high, medium, and

low estimates for principal and interest. Later, the team analyzed each technical debt

 165

item considered during sprint planning and estimated numerically these values.

Information about each technical debt item was collected into a single

spreadsheet (example shown in Figure 18).

Given the objective of this study, the cost of using the proposed technical debt

management approach is the core category of data. The cost data includes costs of

meetings, effort spent managing the technical debt list, and time spent gathering data

to feed into technical debt management. These data were collected directly by the

project leader during sprint planning over each of the 4 sprints included in the case

study. For example, for each relevant meeting, the project leader recorded the number

of people present and the length of the meeting, thus yielding the overall cost of the

meeting. During the sprint planning meeting, the project leader asked team members

to report time spent gathering data relevant to technical debt management. The

project leader also recorded his own time spent managing the technical debt list and

in other technical debt related activities.

Data was also collected concerning the changes made to the technical debt list,

including when a technical debt item was paid off or incurred, the updated estimates

of the principal and interest, and the actual effort of paying off an item. Collecting

this change data allowed us to monitor the implementation of the technical debt

management approach. The change data was recorded in the same spreadsheet as the

technical debt list, which was kept under version control.

Another type of data that was collected was about the technical debt decisions made

in the process. We were interested in the decision making process, and the ways in

 166

which it was influenced by technical debt information. Although this study focuses on

the cost side of technical debt management, we also expected that information about

decisions might reveal some of the short-term benefits that could be observed from

using the approach, as well as problems and suggestions regarding the usefulness of

the approach. The decisions themselves were recorded as changes to the technical

debt list, and more in-depth information on decisions was collected through the final

interview with the project leader.

Figure 18. Data Collection Spreadsheet

In short, we collected 6 categories of data: (1) baseline data of the project, (2) costs of

using the technical debt management approach, (3) changes in the technical debt list

(4) decisions on when and what technical debt items should be paid off, (5) benefits

 167

of using the technical debt management approach, and (6) problems and suggestions

for the proposed technical debt management approach.

Data (1) were collected as described above. Data (2) – (4) were collected from the

project team when they implemented the approach. These data were collected using

the simple spreadsheet (shown in Figure 18) we designed in step 2 of the case study

process (Section 6.2). Data (4) - (6) were collected through the final interview, after

the project team finished tracking the technical debt items.

The spreadsheet we used for data collection had two parts, one for the technical debt

list and one for the effort data. The technical debt list had columns for technical debt

attributes and rows for technical debt instances, as shown in Figure 18. The table for

recording technical debt management activities and effort was very simple to allow

the project leader to define the activities and categories of effort. For example, the

first entry in the table shown in Figure 18 represents the project leader and two

developers spending 40 minutes (so 120 person-minutes in total) in evaluating the

principal and interest of the technical debt items in the list. The initial form of the

spreadsheet was designed by the research team. When it was sent to the development

team, they revised it according to the information availability and used it to log the

data they collected. The spreadsheet was updated and version controlled to reflect

changes in the technical debt items and effort spent in technical debt management at

the beginning of each sprint.

The set of questions used to interview the project leader at the end of the case study

consisted of four sections – the profile of the interviewee, the original management

 168

practices, the experience of using the proposed technical debt management approach

and technical debt measurement. The questions in the first section elicited the project

leader’s experience level in software development and role in the subject project. We

used the questions in the second section to check if the participant had knowledge or

past experience on managing technical debt, which would help us determine the

effectiveness of the proposed approach. The third section was the main section of the

interview. In this section we asked the project leader to elaborate on how he

performed technical debt management, the factors he considered when he planned a

sprint, how the technical debt information was used in the sprint planning, the impact

of the proposed approach on the project, and the problems and the benefits he

observed. The questions in the last section were to elicit how effective the current

cost measures of managing technical debt are.

The questionnaire was developed by the research team in English. Then the company

contact translated it to Portuguese and conducted the interview. After the interview,

the company contact translated the results into English for analysis by the research

team.

6.4 Data Analysis

The cost data gathered from the sprint planning meetings was compared with the

project’s baseline to determine the effect of the proposed technical debt management

approach on the project. Besides the cost data, we collected a significant amount of

qualitative data through the interview and the technical debt list. These qualitative

data were coded according to a coding scheme developed based on the research

 169

questions. The coding was performed using a text editor, by highlighting chunks of

text and annotating those chunks with the name of the associated code. The main

codes of the scheme are shown in Table 14. With these codes, the data were grouped

to form the chain of evidence to explain the changes that explicit technical

management brought to the project and to reveal the rationale behind the decisions

made in the sprint planning. It also helped us understand the benefits and problems of

the proposed approach.

Main Code Definition

Cost Information regarding the cost incurred by technical debt management activities

Benefit
Information regarding the benefit related to the application of the technical debt
approach

Decision
Decisions in the course of the study regarding sprint planning and technical debt
repayment

Approach Application process and user feedback of the technical debt approach

Measure Information regarding technical debt evaluation method and activities

Table 14. Main Codes of the Coding Scheme

6.5 Results and Findings

The case study began in March 2012. First the project baseline was collected and the

initial technical debt list was created. By the end of September 2012, the project team

finished documenting the initial 31 technical debt items. Among these items design

debt accounted for the majority, but there were also other types of technical debt. We

can see from Table 15 that a new type of debt (different from those in the initial list of

types from the literature) was suggested and reported by the development team:

process debt. The team members described process debt as variations in how some

activities were performed because the process, as originally designed, was no longer

appropriate for the project. Thus process debt consists of changes that the team has

 170

made to the defined process, in an ad hoc manner, to deal with the fact that the

process was not updated to reflect the needs of the current project.

The initial rough estimates for principal and interest ranged from low to high. Later

numeric estimates for principal of these items ranged from 4 to 40 person-hours,

while the estimated interest amount ranged from 0 to 20 person-hours. The interest

probability also varied greatly (0%-100%).

Type Design Defect Documentation Testing Process Total

No. of items 18 7 4 1 1 31

Table 15. Technical Debt Items by Type

The project team started tracking technical debt from the beginning of October 2012.

Since some of the originally identified technical debt items had already been paid off

at that time, the initial technical debt list consisted of 22 items. Then the research

team interacted with the project team to review the collected data and the process they

followed to manage the technical debt during the first sprint. After that, these

technical debt items were tracked over the subsequent 3 sprints with their principal

and interest being re-estimated as the situation of the project changed. Meanwhile the

project leader kept the technical debt list updated as the existing items were paid off

and new items were identified. Table 16 shows the changes in the technical debt list

over the four sprints. While it can be seen from Table 16 that the number of technical

debt items decreased from 22 to 15 (i.e. by 32%), we cannot say that the amount of

technical debt was reduced by 32%, or that any reduction was due to explicitly

managing technical debt. Capturing all the technical debt in the project was not a goal

 171

of this study, nor was reducing technical debt, thus we cannot draw any conclusions

from the decrease in the number of debt items being tracked.

Items Sprint I Sprint II Sprint III Sprint IV

Total (before the sprint started) 22 20 15 15

New 0 0 0 1

Paid-off 2 5 0 1

Deferred to the next sprint 20 15 15 15

Table 16. Changes in the Technical Debt List over the Sprints

6.5.1 Costs of Technical Debt Management

In the four sprints where the proposed technical debt management approach was

applied, the project leader documented and reported all the work related to technical

debt management, including the responsible person and the time spent on it.

According to these reports, the costs of managing technical debt came from several

different activities, including identification of technical debt items, analysis and

evaluation, communication and documentation. The project leader identified these

activities in vivo, i.e. they were not predefined as categories of effort. Among these

activities, identification (which in this case only happened once, in the fourth sprint)

refers to developers finding low-quality software artifacts deemed to be technical debt

instances from the modules they were in charge of. This was not done during the

sprint planning meeting, but ahead of time in a fairly ad hoc way. Analysis and

evaluation refers to understanding the technical debt items, estimating their principal

and interest, creating a traceability matrix and mapping them to project artifacts.

Communication refers to meetings of the project leader with the developers to gather

 172

information for technical debt management. Documentation refers to updating the

technical debt list according to the analysis and evaluation results, documenting the

decisions related to the technical debt items and the implementation results, including

the date and the actual effort of paying them off. Table 17 shows the cost of each

activity in the sprints.

Items Sprint I Sprint II Sprint III Sprint IV

Identification 0 0 0 0.5

Analysis and evaluation 2.8 0.3 0.4 0.3

Communication 0.2 0 0 0

Documentation 0.7 0 0.1 0

Total 3.7 0.3 0.5 0.8

Table 17. Costs (in person-hours) of Technical Debt Management Activities over the Sprints

From Table 17 we can observe that the major cost came from analysis and evaluation

work. This was confirmed, through the final interview with the project leader, that

analyzing and evaluating technical debt items was the most time-consuming work.

Technical debt Identification seems to be high-cost work as well according to the

figures for Sprint IV, but this is not conclusive because only one technical debt item

was identified in this sprint. In the second and third sprints, the project leader focused

on the items already on the technical debt list and didn’t identify new technical debt

items. Hence there was no identification effort in those two sprints, but there was in

Sprint IV. The initial technical debt items for this case study were identified in the

preparation phase, which also involved training/learning of the proposed approach.

Since it would have been difficult to capture the effort involved in preparing the

initial debt list, and because such effort is not particularly relevant to technical debt

 173

management in general, we excluded the identification effort from the first sprint. The

time required for identification likely varies widely depending on how the debt is

identified, e.g. as part of a code review vs. using a static analysis tool. In the case

study, technical debt items were identified ad hoc, by suggestion of developers, not

through the use of any tools or formal processes. One could speculate that technical

debt identification might take less time when using code analysis tools or as part of an

existing process like a code review.

The cost numbers in Table 17 also indicate the proposed approach has a significant

initial overhead. When the technical debt list was used for the first time, the project

team had to go over each item to understand it and re-estimate its value. But in the

subsequent sprints they only needed to examine those items that had changed.

Therefore, there was a significant drop in the cost from the first sprint to the

subsequent ones. But even in the first sprint, the cost of managing technical debt was

only about 10% of the cost to implement an average use case.

According to the baseline data, it took 5 person-hours on average for the project

leader to plan a sprint before the case study, i.e. before starting to manage technical

debt explicitly. To determine how much effort was added to the sprint planning

activity by explicit technical debt management, we look to Table 17 to calculate the

average effort in managing technical debt per sprint – 1.325 person-hours. Since most

of this effort was expended while planning each sprint, we can conclude that, after

applying the technical debt management approach, the average effort devoted to the

planning phase of a sprint increased to 6.325 person-hours, or a 26% increase.

 174

Although a 26% increase seems to be significant, 1.3 person-hours is a small number

compared to the cost of implementing a use case, which is 37 person-hours on

average. Moreover, this increase was largely due to the aforementioned “initial

overhead”. The first release cycle had a 70% increase in sprint planning effort (3.7

hours) due to technical debt management, but then the extra cost went down to just

over half a person-hour per sprint, or about a 10% overhead.

6.5.2 Planning Process and Decision Factors

As mentioned in Section 6.3, we collected decision data from the technical debt list as

well as the interview. By analyzing these decision data, we have obtained a clear

picture of how a new sprint is planned and what factors could affect the decisions

about technical debt. When the project leader plans a new sprint, he first “takes into

consideration the current delivery (a set of use cases to be deployed to the customer)”.

Besides the delivery, “there are also improvement points requested by the customer”.

“With this in mind”, the project leader will then check other factors such as the

technical debt currently in the project. In other words, the project leader always gives

the highest priority to the features and enhancements agreed to by the customer. The

project leader’s top concern is on-time delivery. If the project leader cannot make the

delivery on time, he “runs the risk of losing the customer”. In this situation he would

delay some work to save time even if he has to pay high interest later because “paying

high interest is still better than losing the customer”. This rationale accounts for the

major cause of technical debt incurrence in the project where most technical debt

items were given an explanation similar to “this should be done, but we do not have

 175

time in this sprint”. Therefore, “time and resource availability are crucial in deciding

whether to delay or pay off the debt.”

If the schedule and resources allow, the project leader will “check the value of the

debt items, i.e. the principal and interest.” The items with high interest amount and

high interest probability will be more likely to be chosen to be paid off. But the final

decision is also based on a “look for the tasks in the backlog.” The project leader

considers “a good opportunity to pay off a debt item if it is related to some backlog

item or currently being maintained by a developer” because they can hit two birds

with one stone. He also gave an example in which he decided to pay off a debt item

associated with the function of generating financial reports, which was being

developed at that time. This strategy is consistent with the proposed technical debt

management approach in that these items have reduced principal. Besides these

factors, the project leader also considered the impact of debt on other features of the

system. The debt items that may affect more features will be given higher priority to

be paid off.

In short, our results show that the actual process of deciding whether or not to pay off

technical debt was affected by many factors. Among these factors, customer

expectations have the top priority, followed by availability of the development

resource, the interest of the technical debt items, the current status of the debt-

infected modules and the impact of the debt on other features.

This is the first time we observed a real software project attempt to explicitly manage

technical debt. While we provided a process for technical debt management to the

 176

project team, we expected that the team would have to modify it, or use it in a slightly

different way than we intended, in order to serve their needs. This turned out to be

true. In the proposed approach, we assumed that all the factors that may affect the

decision on paying off or deferring technical debt could be reflected in the values

associated with technical debt, i.e., principal and interest. For example, if a technical

debt item needs to be paid off immediately due to its criticality, the interest estimate

of this debt item should be increased because if it is not paid, it will cause serious

problems, and thus higher cost in future. So in our proposed approach, our intent was

that the priority of each debt item could be determined using only its principal and

interest. By contrast, the actual decision making process, as observed in the case

study, worked differently. The values of principal and interest were first estimated

without considering other factors such as team availability and module criticality. In

other words, principal and interest estimation was simple and rough, and was strictly

focused on effort. During decision making, then, these estimates of principal and

interest were combined with other factors to determine the final priority of a debt

item. This meant that, sometimes, a debt item that should have had high priority

because of its principal and interest estimates was deferred for reasons that could

have, but were not incorporated into the principal and interest estimates, e.g. resource

availability. Thus, although we had designed our proposed approach so that all factors

could be incorporated into the notions of principal and interest, and so principal and

interest could then be used as the sole criteria in decision making, the development

team found it preferable to simplify the estimation of principal and interest

 177

(concentrating strictly on effort), but to be more holistic in actual decision making, by

taking other factors into consideration at that time.

In summary, sprint planning could be affected by many factors, and not all these

factors are easily incorporated into the notions of principal and interest. Effort (either

expended or saved) is generally not the most important factor. The actual process,

when technical debt management is incorporated, may deviate from the one we

prescribed. In spite of these differences from our proposed technical debt

management approach, the approach actually used in the case study is still an

example of explicit technical debt management, and thus our goal of observing this

process in an actual project was achieved. The ways in which the team tailored the

process provides important insight into how technical debt management should be

integrated into a real software development process. In addition, the process

differences provided us with the opportunity to consider more factors and improve

our approach, which is one of the objectives of our larger research agenda. Eventually

we expect to provide a way for managers to prioritize technical debt items along with

enhancements and bug fixes.

6.5.3 Benefits and Impact

Although this study focuses on the costs of explicit technical debt management, it was

natural that the benefits observed in this study, especially from the interview, were

also collected with the cost information as they are two sides of the same issue –

technical debt management.

 178

During the entire time period of the case study, there were no big changes in the

development process, the staff and the project management, except the application of

the technical debt management approach. Moreover, the project leader confirmed

that he didn’t have any experience in technical debt management before applying our

approach. Therefore we are confident that the impact and benefits observed can be

mainly attributed to the application of the approach.

An important benefit of the technical debt management approach is the increased

awareness of the problems that may be overlooked otherwise. When we asked the

project leader about his general impression of the technical debt management

approach, he stressed that it was the technical debt list that helped him realize “many

things were being overlooked in the project.” He also admitted that in the technical

debt list “there were so many points that had not been identified early in the project

and could have been better handled earlier.” When we asked the project leader if any

of the decisions he made would have been different without using the approach, he

gave a positive answer and further explained that he “would be restricted to the

problems reported by the customer without the [technical debt management] approach

and would not consider code fragments that should be improved, which can often be

treated together with bug fixes identified by the user”. Thus the problems could have

been addressed earlier to avoid serious impact. This statement is consistent with the

finding from the SMB study (elaborated in Chapter 4) in which the subject project

suffered from high change cost because their decisions in the early stage didn’t

consider the impact of the technical debt in their project. Moreover, the estimates of

the principal and interest “make it easy to understand the gravity of the problem, thus

 179

allowing a quick decision” because he had to know “how much effort a debt would

cost before allocating developers to pay it off”. When we asked the project leader

whether the integration of the approach impacted on his sprint planning, he responded

that “just the fact of thinking about using it already impacted my activities because I

started, in my decisions, to consider the impacts of not paying off a debt in a sprint.”

6.6 Discussion

This study focused on the cost side of technical debt management. The objective was

to uncover the costs that could be incurred by the proposed technical debt

management approach. To achieve this objective, we selected a live software project

and applied the technical debt management approach to it. In the course of using the

approach during sprint planning, technical debt items were identified, the effort spent

in managing technical debt was logged, and the decisions were also documented. By

tracking technical debt in the subject project, we have identified a set of technical

debt management activities and measured their costs. From the cost information we

have gained insight into the feasibility of the technical debt management approach. In

addition, this study also helped us understand how technical debt information

contributes to decision making in release planning. Along with the benefits exhibited

by applying the approach, we have been able to characterize both costs

(quantitatively) and benefits (qualitatively) in a way that can help future projects and

organizations decide if managing technical debt is feasible for them. Meanwhile, we

also noticed some limitations of this study and hence will address them in our future

work.

 180

6.6.1 Costs and Benefits of Explicit Technical Debt Management

According to the findings of this study, technical debt management could incur

different types of costs. Among these costs, analysis and evaluation took the top

position, accounting for the majority of the total management cost. Analysis and

evaluation was closely tied to the difficulties of quantifying and estimating the

technical debt parameters, principal and interest. Thus, future advances in technical

debt measurement [155] are likely to have an impact on the overall cost of technical

debt management. Identification of new technical debt items also incurred high cost,

and many current research efforts are aimed in this area [23, 119, 156].

In the subject project the technical debt items were identified manually, a time-

consuming task performed by the developers who had to look into the code, compare

it with the criteria, and recall what they have done in the past. This situation would be

similar in projects even with different characteristics unless an effective technical

debt identification approach is applied.

Likewise, evaluation of technical debt was largely based on the developers’

experience. A great amount of effort is required to reach a certain level of estimation

accuracy even for experienced developers, who have to take into consideration many

factors such as the impact from other changes, the future change of the debt-infected

software artifacts and the change likelihood. When the developer lacks experience,

the evaluation will be subject to large estimation errors. This remains true for any

software project, so this area requires a breakthrough in research results.

 181

Our results show that the overall cost of technical debt management is small

compared to the release planning cost. However, we believe it is still worthwhile to

improve the performance of technical debt identification and measurement because

all types of management costs are overhead expenses, with an only indirect effect on

the value of the software being developed. Thus advances in these areas will benefit

overall efficiency for all software projects, not just those that have more significant

technical debt management overhead.

We didn’t observe any unusual characteristics that distinguish our study setting as

highly unusual, other than the basic project characteristics that we have reported, nor

in the conduct of the project during the case study. Thus we can, to some extent, be

assured of the generalizability of our results to similar contexts.

The change in the total cost over sprints shows there was a significant initial overhead

for technical debt management, with a much reduced cost over subsequent sprints.

Because of the initial overhead, technical debt management effort in the first sprint

reached 3.7 person-hours, a 70% increase in sprint planning effort, after incorporating

technical debt management. In the subsequent sprints, the average increase dropped

to 10%, which has a very minor impact on the project in terms of management cost.

Even in the first sprint, the cost of managing technical debt was only about 10% of

the cost to implement an average use case. Therefore, the amount of extra project cost

added by adopting technical debt management could be considered reasonable.

Release planning in practice often follows a prescribed process with factors and

criteria. When technical debt management was incorporated into the process, it

 182

became a decision factor and thus affected the process and the final decision. Through

this study we identified a set of decision factors and revealed their relations. For

example, customer requests and availability of development resources are given

higher priority than the amount of principal or interest associated with a technical

debt item. Other factors include the current status of the debt-infected modules and

the impact of the debt on other features. These factors and priorities helped us

understand how technical debt management works in release planning and where the

possible benefits of technical debt management may come from.

Although this study centers on investigating the costs of managing technical debt, we

also gained insights into the benefits of explicit technical debt management. The main

benefit of technical debt management is the increased awareness of the problems that

are as important as those raised by the customer, but may be overlooked otherwise.

Thus these problems could be identified and handled earlier to avoid turning into

bigger problems in the future. The technical debt list also facilitates comparing

different technical debt items, thus decision making. Because of these benefits, the

project leader in our subject project decided to continue to explicitly manage

technical debt, even after the case study concluded. These benefit insights gained

from this study were combined with results and findings from other studies in this

research to address the questions for this dissertation research (elaborated in

Chapter 8).

 183

6.6.2 Limitations and Validity Threats

The main limitation of this study is actually the limitation of any case study. The

generalization power or external validity [157], of the study is restricted by the case

we selected. In this study we selected a relatively small and young software project,

which may have a different cost pattern and management style than bigger mature

projects. For example, the proportion of the communication cost in a big project is

usually higher than a small project. Having more people involved in meetings in

which technical debt is being discussed would make those discussions more

expensive. Managing the technical debt list might also involve more people, and thus

be more expensive. On the other hand, a more mature organization might very well

have more mature cost estimation procedures, which would make technical debt

management more effective. In other words, the findings from this study reflect

experience in just one particular case and hence may not apply to other contexts (e.g.

larger more mature projects), but the general lessons learned should be instructive to

those applying and studying this approach in any situation.

As mentioned in Section 6.1, the study was carried out on the project site, which is

located outside of U.S., where the principal researchers were located. The physical

distance and language barrier prevented the principal researcher from having direct

contact with the project team. All qualitative data had to come through and be

translated by our company contact. Therefore, there might be some subtle points that

were lost in translation. This is a threat to internal validity [157], as it affects our

ability to accurately explain the phenomena that we observed. The language barrier is

also a minor threat to construct validity, in that we cannot be sure that the study

 184

participants completely understood technical debt and our proposed management

process in the way that we intended.

Another threat to internal validity (i.e. the extent to which we can claim to be

accurately characterizing the effects of technical debt management) comes from the

inaccuracy of technical debt estimation. Since the value of a technical debt item (i.e.

its principal and interest) determines its payoff priority, inaccurate estimation may

lead to a wrong decision. In this study there were technical debt items whose

estimated values deviated far from their actual values. In particular, in two cases, the

estimated principal was more than three times the actual effort expended when the

technical debt item was actually paid off. The members of the development team

attributed these deviations to a lack of experience with effort estimation. The

decisions related to these items would also have been different if the estimated values

had been closer to their actual values. Although this difference didn’t affect

addressing the research questions, more benefits might have been observed if they

had used a more effective effort estimation approach.

To overcome the major limitation of this study, the subject project we selected for

another case study (elaborated in Chapter 7) is bigger and more mature. It has a very

different profile in terms of project cost, development cycle, etc. Combining the

results from the two case studies not only yielded valuable findings from which more

solid conclusions can be drawn, but also helped us gain insights into obstacles to the

application of technical debt management in practice, which is presented in Chapter 7

and discussed in Chapter 8.

 185

Chapter 7: The EducationHub Study

The study presented in this chapter is the second case study focusing on the cost side

of technical debt management. In particular, this study was originally designed to

address the following research questions:

(1) What are the costs of explicitly managing technical debt using the proposed

approach?

(2) How does technical debt information contribute to decision-making?

In this study, we applied our proposed technical debt management approach to an

ongoing software project, then collected and analyzed data about various costs

incurred in the course of technical debt management. Other information such as the

technical debt items identified from the project and the decisions on carrying or

paying off the technical debt, were also collected to help provide context.

As the study proceeded, especially in the data collection phase, we found that the

project team we were studying encountered obstacles to applying the proposed

approach to their project and the actual process deviated from what our approach

prescribed. This was not surprising, as the proposed approach was designed to be

simple and basic, allowing for future refinement as it was evaluated in practice.

However, to some extent, this hindered us from fully addressing the original research

questions above, especially the role of technical debt management in decision making

(RQ2). We were still able to collect and analyze some data addressing costs, and we

interpret our results along with results from the Tranship study (presented in

Chapter 6). Therefore, we decided in the end to keep the first research question, but

 186

drop the second one regarding how technical debt information contributes to

decision-making (the numbering of the research questions hereafter is consistent with

this decision). On the other hand, the process deviation we observed also raised new

and interesting questions on managing technical debt. We believe that revealing the

causes behind the obstacles to applying explicit technical debt management in a

software project could smooth technology transfer from academic research to

industrial practice and thus improve adoption of technical debt management in

industry. Moreover, the exploratory nature of this study design allowed us to direct

the study to new targets. Therefore, we added the following research questions to the

study:

(2) What are the obstacles to explicit technical debt management?

(3) What contributes to the deviation of the proposed technical debt management

process?

The opportunity to address these two questions allowed us to expand our findings to

further facilitate future efforts at explicit technical debt management. This study has

been published as a peer-reviewed article in an academic journal [158].

7.1 Subject Project

The subject project was selected by convenience by our industry collaborator in

Brazil. It was a software application for supporting teachers and students, running on

tablet computers on the Android operating system, as described in Section 3.2.2.4.

At the beginning of the study, the development team consisted of 1 project manager,

1 project leader and 7 developers. This remained fairly constant, although the person

 187

occupying the role of project leader changed once, and some developers came and

went from one sprint to the next. The timeline of important project and case study

dates is shown in Figure 19. The project began on Dec 20, 2011. The case study

began in the middle of February, 2012, with collection of basic project information.

Afterwards, the project team started to identify technical debt items. For various

reasons, the technical debt identification phase lasted until the middle of November

2012. The project team started tracking technical debt on March 20, 2013. We

observed and collected data on the technical debt management process until the end

of June, 2013. The case study ended in September, 2013 with a follow-up interview.

Figure 19. Important Project and Case Study Dates

7.2 Study Process

From the beginning of the study until the end of technical debt identification, the

research team, which included the faculty advisor, the student investigator and a third

researcher, directly communicated with the Developer contact via email and

teleconference (three persons were involved due to project personnel changes). When

 188

the project team started tracking technical debt for release planning, the faculty

advisor from the research team was working on-site with the project team. So she was

in charge of observing and supervising the project team in performing technical debt

management. Then the student investigator conducted a follow-up interview with the

project leader at the end of the study. The third researcher was in charge of

facilitating participation of the subject project in the study, helped with

communication, and overall supervision of the study. The project personnel were all

native Portuguese speakers, with varying levels of English proficiency. All

communication between the student investigator and the company contact was in

English. The majority of the communication between the faculty advisor and the

project team was also in English, with some Portuguese as necessary. The third

researcher communicated with the project team primarily in Portuguese. All

communication within the research team was in English.

We followed the general process described in Section 3.2.2.1 to carry out this study,

but we present here the steps with more details and particulars to this study.

(0) Preparation: the company contact collected basic project information such as

project description, requirements and project schedule. We designed a simple

spreadsheet as the technical debt list to ease management of technical debt

items and to collect data on its use. The list was kept under version control,

along with other project documents.

(1) The project team were trained on how to manage technical debt using the

proposed approach and how to document and report information required by

this study. Training materials were prepared by the two researchers in

 189

English, and then was translated to Portuguese and presented by the

Developer contact.

(2) The project team identified technical debt items in the subject system to

prepare the initial technical debt list. This effort involved surveys of the

development team, application of some source code analysis tools, and

examination of the existing project backlog.

(3) In the 13th release cycle, during which the project was tracking technical

debt for the first time, the research member working on-site attended the

sprint planning meeting, observed and took notes on the time spent by the

project team on managing technical debt, the project members involved, and

the decisions they made in the course of analyzing technical debt. After the

meeting, the project team sent an updated technical debt list to the

researchers.

(4) After each of the planning meetings for sprints 14 and 15, we followed up

with the project leader and other team members to collect data on the

meeting content related to technical debt management.

a) We asked for information on the process followed during the planning

meeting, as it deviated from the proposed technical debt management

process.

b) We elicited the reasons for the deviation.

c) We interviewed the project leader after the completion of the 15th

sprint, which was not only the last sprint for our study, but also the last

one of the project (the project was cancelled soon after).

 190

7.3 Data Collection

The first type of data we collected was project documentation, which included a

general project description, project requirements and high-level design, and project

schedule. This type of data was collected at the beginning of the study.

The second type of data was regarding the existing technical debt instances in the

subject project. It was collected in the form of a technical debt list, as shown in

Figure 20. The technical debt list contained the description, responsible persons,

location, principal, interest amount, and interest probability. The items were grouped

by their current status (all the items that appear in Figure 20 are “currently active”

items). Most of the technical debt items identified from the project are design debt,

which is defined as the effect of shortcutting programming practices that result in low

quality, especially low maintainability, source code. A core part of our technical debt

definition (section 1.1) is that technical debt has a short-term benefit and a long-term

cost. For design debt, the short-term benefit is reduced programming effort resulted

from shortcutting practices, while the long term cost is the potential increase of the

maintenance effort due to the low quality source code. For example, one of the

technical debt items was that there were multiple independent classes in the project

with very similar functionality. They should have been designed to be extended from

a generic parent class. Although having all the similar independent classes might have

saved time in the design phase (short term benefit), maintaining multiple independent

classes with similar behavior requires more effort than using a class hierarchy in the

maintenance phase (long term cost) when the functionality needs to be changed. Over

the course of this study, we collected 6 versions of the technical debt list.

 191

Figure 20. Technical Debt List Extract

Field notes are the largest category of data we collected. They contain the project

team’s activities regarding technical debt management, e.g. estimating principal and

interest, time spent on these activities, decisions made on the technical debt items and

other situations related to the study such as project members’ opinions, obstacles they

encountered and deviations we observed.

Interviews were another type of data we collected. We conducted two interviews. The

first one was conducted by one research member, who once worked on-site, in the

middle of the study with the project leader. This interview was semi-structured and

followed an interview guide that included questions about the details of the previous

sprint planning meeting, activities related to technical debt management outside the

sprint planning meeting, and in general how technical debt management was going.

This interview was brief (about 20 minutes) and was not recorded, but was

immediately transcribed into English by the research member. Afterwards we

expanded the interview guide with follow-up questions and sent it to the project

leader via email (this version is in Appendix A), and the project leader responded via

email. The focus of that interview was how the decisions on paying off technical debt

 192

were made (given that the proposed technical debt management process was not yet

followed). The second interview was conducted with the same person, i.e. the project

leader, at the end of the study (it is in the Appendix B). All of the questions and the

response are in English. The questions were sent out and answered via email. It

covered the interviewee’s profile, the project’s original technical debt management

practices, obstacles of incorporating the proposed technical debt management

approach and his opinion on the usefulness of the approach. The main goal of this

interview was to identify obstacles and find out how to improve the adoption of

technical debt management.

7.4 Data Analysis

Since most of the data we collected are qualitative in nature, e.g. open-ended

questions, correspondence and field notes, coding was the primary approach for data

analysis. The initial codes and categories were pre-formed based on the research

questions. There are four main categories: cost, benefit, obstacle and process

deviation, as shown in Table 18. Cost refers to the costs incurred in the project that

can be attributed to explicit technical debt management (Research Question 1).

Benefit refers to benefits gained from explicit technical debt management, including

the benefits observed in the project and the benefits perceived by the project team.

Benefits of technical debt management were not a focus of this study or its research

questions, but they are relevant data of this dissertation research. Therefore, the

benefits were collected and so were coded. In this study we observed that the project

team encountered obstacles to using the proposed technical debt management

approach. Therefore, one of the main codes is obstacle, which captures the factors

 193

that prevent the project from using explicit technical debt management (Research

Question 2). Another code is process deviation, which refers to the differences

between the proposed technical debt management approach and the actual technical

debt management practice carried out by the project team (Research Question 3).

Process deviations included deviations from the way we expected technical debt

information to be used in decision making.

The data were then open coded using the categories defined in Table 18. In this step

we identified and added new subcategories and codes from the data in vivo. For

example, “initial overhead” was mentioned specifically by different subjects. So we

used two specific codes, initial overhead and other costs, to code the cost category.

Likewise, we created specific codes under the category “process deviation” to reflect

what part of the process deviated, as we found specific references to these parts of the

process in the data (“task prioritization” was primarily concerned with technical debt

decision making). The data about obstacles was primarily concerned with three

aspects – difficulty in technical debt identification, time pressure and process

integration – and so these became the codes in this category. Since data about the

benefits of applying the technical debt management approach were collected not only

from observation of the implementation of the approach, but also from interviews

with the project members, we found it useful to differentiate between observed

benefit and perceived usefulness. The complete coding scheme is presented in

Table 18.

 194

Category Code

Cost
Initial Overhead

Other Costs

Benefit
Observed Benefit

Perceived Usefulness

Obstacle

Difficulty in Technical Debt Identification

Time Pressure

Process Integration

Process Deviation
Technical Debt Estimation

Task Prioritization

Table 18. Coding Scheme

The next step of the coding, axial coding, was to re-assemble these codes and

categories and identify the relationships between them. Figure 21 represents the

results from axial coding. By analyzing the data, we found out there are different

types of obstacles to explicit technical debt management, one of which is cost-related.

The perceived usefulness (or lack thereof) of explicit technical debt management also

hinders the application of the technical debt management approach. These obstacles

eventually caused the process deviation. The detailed results are presented in the next

section.

Contributing to

Composed of

Initial Overhead

Cost

Other Costs

Process Deviation

Benefit

Perceived Usefulness

Obstacle

Difficulty in Technical Debt
Identification

Time Pressure

Process Integration

Observed Benefit

Technical Debt
Estimation

Task Prioritization

 195

Figure 21. Axial Coding

7.5 Results and Findings

Through data analysis, we identified three major themes regarding technical debt

management – costs of technical debt management, obstacles to applying explicit

technical debt management to the project, and deviation of the actual technical debt

management process from the proposed one. These three themes easily map to

Research Questions 1, 2, and 3, respectively, and are discussed from that perspective

in section 7.6. By digging into the details of the data, we found various aspects within

each theme. The axial coding of the data further revealed the relationships between

the themes and the aspects, as shown in Figure 21. The themes, aspects and

relationships together helped us understand the rationales behind the technical debt

management practice and hence address the research questions of this study.

7.5.1 Costs of Managing Technical Debt

There are different costs tied to technical debt management. We identified these cost

categories mainly through observation of how the project team dealt with the

technical debt in the subject project. In particular, the field notes taken around the

first sprint planning meeting record how many persons spent how much time in

discussing technical debt related issues, estimating the values of technical debt items

and updating the technical debt list before, during and after the meeting. The field

notes taken around the subsequent sprint planning meetings also contain cost

information, but it was not as detailed and exhaustive as the first one. In addition, the

project leader, through an interview, provided some cost information such as the

participants and the time they spent on technical debt management. Time and effort

 196

associated with the initial phase of technical debt identification, described below, was

communicated to the research team via email from our Developer organization

contact.

Technical debt management started with identification of the technical debt instances

and initial construction of the technical debt list. Technical debt identification began

in the middle of March, 2012 and continued, on and off, until November 2012 (see

Figure 19). This included periods in which the project was without a permanent

project lead, or was suspended for business reasons, or the personnel were reassigned

to other projects temporarily, and thus they did not engage in technical debt

identification. Technical debt identification actually took about 3 months of activity,

but was spread over an 8-month period. Project members reported technical debt

items in an ad hoc manner at first, but were aided by several other techniques. We

analyzed the bug repository and change log of the project to help narrow down the

areas of the source code where it was more likely to have technical debt than other

areas. We also conducted a survey among the project members to elicit technical debt

information from their past experience in a more systematic way.

In terms of time span and involved effort, technical debt identification was the

most costly step in the technical debt management process. One reason is that the

concept of technical debt involved a learning curve for the project team. The learning

curve was evident when the first set of technical debt items were identified and

reported to the research team, in April 2012. For example, one technical debt item

they identified was regarding the lack of a feature. This was actually a missing

 197

requirement, not technical debt. Another example is that they reported a defect as a

technical debt item. Based on our definition of technical debt as the effect of

immature artifacts, delaying defect fixing could have effects on other development

and maintenance activities, and these effects could be considered technical debt, but a

defect in and of itself is not technical debt. From these and other technical debt items

in the initial technical debt list, it appeared that the developers had difficulty in

associating the abstract concept of technical debt to concrete forms of technical debt

in reality. It took more than three months for the project team to finish identifying all

technical debt items in the project. This learning curve was confirmed by the project

leader in the interview we conducted with him. When we asked him about the

obstacles to technical debt management in their project, he thought that “it was not

always very clear what was a technical debt item and what was not. What I saw as a

technical debt item, sometimes the team thought it was not, and vice versa. Also

sometimes I had seen a technical debt as having been paid, but they thought it was

not.” Resolving these different interpretations, both within the project team as well as

with the research team, took considerable time.

Besides the learning curve, another reason is that identifying technical debt is still

difficult. Although various technical debt identification approaches have been

proposed or implemented for software development practitioners, most of the

approaches still need to be adapted to be effective for a project in a particular domain

[159]. During technical debt identification, our research team took various actions,

such as analyzing change logs of the project and running a survey, to help the project

team identify technical debt, but it still took more than three months for them to finish

 198

this step. When we asked the project leader what the most difficult/time-consuming

part of the technical debt management approach was, he gave a very clear answer –

identifying and recording technical debt. Because technical debt identification is the

first step of technical debt management, from the cost perspective we consider this

difficult and time-consuming step a big initial overhead for technical debt

management.

Once the technical debt items were identified, the project team constructed a technical

debt list with information such as description, identification date, principal and

interest. Then the project team used the technical debt list for sprint planning. The

costs incurred in this process can be categorized into “updating technical debt list”,

“sprint planning” and “communication”. “Updating technical debt list” represents the

time spent in understanding technical debt items in the list and determining their

current status. In Sprint 13, this occurred during the sprint planning meeting, but in

other sprints it occurred outside of the sprint planning meeting. “Sprint planning”

represents time during sprint planning meetings spent on using the technical debt list

to plan a sprint, primarily deciding what to include in the next sprint.

“Communication” captures other time, outside the sprint planning meeting, for

discussing strategies to manage technical debt among the project team members.

As shown in Table 19, updating the technical debt list in Sprint 13 took much more

time and involved many more people (highlighted with red color) than in the other

two sprints. This was mainly because the technical debt list was used for the first time

 199

and the project team had to go over the entire list more than once to determine the

status of each technical debt item.

There were three sprint planning meetings that we tracked for this study. They

included all project team members and ranged from 90 to 375 minutes, but the

technical debt information was barely used for sprint planning (3% or less of the total

meeting time). This was where the major process deviation occurred, which we will

discuss in more detail in the next section. Communication among project members

regarding technical debt management happened occasionally outside the sprint

planning meeting and involved 2-3 persons. Among these types of costs, updating

the technical debt list for the first time accounted for the majority of the

technical debt management cost. It could be viewed as part of the initial overhead

we mentioned earlier. The other types of costs were relatively small and hence

didn’t have significant impact on the project, in comparison with the initial

overhead. Therefore the initial overhead was the main cost category of technical debt

management.

 Sprint 13 Sprint 14 Sprint 15

O/M I/M {11, 130}1 O/M I/M {8, 375} O/M I/M {N/A, 90}

Updating

Technical Debt List
{1, 30} 35 minutes {2, 10} 0 minutes {0, 0} 17 minutes

Sprint Planning

(percentage) 2
{2, 5}

2 minutes
(2%)

{2, 5}
0 minutes

(0%)
{0, 0}

3 minutes
(3%)

Communication {2, 15} {3, 10} {2, 10}

O/M: outside of meeting; I/M: during meeting

Table 19. Costs of Technical Debt Management

1 The pair in the braces represents the number of involved persons and the minutes of time spent
accordingly.
2 The percentage of sprint planning time that was spent in managing technical debt.

 200

7.5.2 Process Deviation

The original goal of this study was to explore the costs of explicit technical debt

management. Therefore, the study design required that the project team apply the

proposed technical debt management approach to the subject project, allowing us to

track related costs and activities. However, the project team didn’t strictly follow the

proposed technical debt management approach, which gave us the opportunity to

observe deviations as the project proceeded.

According to the proposed approach, the principal and interest of the items on the

technical debt list should be estimated and the prioritization decision, i.e. which items

have higher priority than others for repayment, should be based on cost/benefit

analysis of these items. The project team, by contrast, didn’t always do estimation and

when they did, the estimates were not used for their decisions. For example, when the

first sprint planning meeting was held the principal and interest of the items on the

technical debt list hadn’t been estimated. They didn’t do any estimation in the

meeting, but a decision was made not to pay any technical debt items in next sprint.

This may be because many of the technical debt items had already been paid off

before the first sprint (during the project suspension), but time constraint could be

another reason because they had a long list of features that needed to be implemented

in the next sprint. A follow-up interview after the meeting confirmed this. The

decision to not pay off any technical debt items in this sprint was actually made

before the sprint planning meeting for the same reason. The project team didn’t even

have enough time to fulfill the requirements. Therefore, they would not pay off any

technical debt items in this sprint unless it overlapped with the requirements.

 201

Instead of estimating and using principal and interest in decisions about paying off

technical debt, other criteria were used to drive these decisions. For example, after the

second sprint planning meeting, a senior developer and the project leader discussed

implementing more test automation in the next sprint, which was already on the

technical debt list. They also considered restructuring the system architecture. So they

updated the technical debt item about test automation and added restructuring the

architecture as a new item to technical debt list with coarse estimates of its principal

and interest. Then they negotiated with the Client to include test automation in the

next sprint. For test automation, they did not do numeric estimation for the principal

and interest as our approach requires. A follow-up interview with the team leader

afterwards revealed that the decision to implement more automated tests had to do

with the difficulty (the “pain”) of testing, but had more to do with improving the

quality of testing. In other words, at least in this case, the priority of a technical debt

item has more to do with quality than cost. While test efficiency might have been

fairly straightforward to represent as a type of “interest”, the team found it hard to do

this with test quality. Thus, our approach of using principal and interest fell by the

wayside in making this decision. Similarly, there was no discussion of principal or

interest on any technical debt item during the third sprint planning meeting. The team

leader reviewed the entire technical debt list, added some new items, and made some

decisions about paying off items in the meeting, but he didn’t follow our approach to

prioritize the items and make decisions accordingly. The decision to pay off one item,

which was proposed by a developer, was made based on the availability of the

development resource, not economic concerns.

 202

In summary, the proposed technical debt management process was not strictly

followed by the project team, which was not completely unexpected. The deviation

was primarily in the form of the use of criteria other than a quantitative cost-benefit

analysis involving principal and interest. Rather than estimating principal and interest

on individual technical debt items, and then using those estimates to do a cost-benefit

analysis for each one, the team chose technical debt items based on such criteria as

current pain points in the project and availability of specific resources. In other

words, information about existing technical debt (location, principal, interest, etc.)

was barely used for decision making in release planning.

It was mentioned several times and on different occasions that the compromises the

team took in sprint planning, including their approach to technical debt management,

was a result of lacking time. To confirm this point as well as identify other causes of

process deviation, we looked into the obstacles that the project team had in managing

technical debt, which are presented in the next subsection.

7.5.3 Obstacles

In this study the project team encountered several obstacles to managing technical

debt using the proposed approach. As we saw in Section 7.5.1, the difficulty of

technical debt identification was the first major obstacle for the project team. The

project leader confirmed this in an interview, explaining that technical debt still

seemed to be an abstract concept although he thought the training was sufficient. He

suggested that “Maybe there should be harder rules for what should be classified as a

technical debt and how to identify it.” The difficulty surrounding technical debt

 203

identification not only created a big obstacle for the project team, but also incurred

high cost at the beginning of their technical debt management experience. Meanwhile

the project team had low perceived usefulness of technical debt management to their

project, as indicated in an interview with the project leader. When we asked the

project leader about his general impression on the technical debt management

approach, his answer was “it’s not very impressive.” The difficulty and the low

expectations of usefulness hindered application of technical debt management in their

project. Three project members, including the leader, were asked about the usefulness

of the proposed technical debt management approach. They all thought that the

approach was generally useful, but the leader stressed that it’s still hard to apply,

especially when facing time pressure, such as “delivering many features in a short

time frame”. This leads to the second major obstacle – time pressure.

According to the project leader, requirements/features were always given the highest

priority in their sprint planning. In the situation where the time was barely sufficient

to deliver requirements, “other processes tend to be completely ignored” and

“technical debt management is very vulnerable as a candidate to be cast away”. Such

situations did occur in this study when the second sprint planning meeting was about

to start. The project leader described the situation as a “very long” meeting with “a lot

of complicated features.” Therefore they did not spend time going through the

technical debt list or discussing any technical debt items during the sprint planning

meeting. Under time pressure, it was natural for the project team to consider technical

debt management an optional process on top of, rather than incorporated into, their

original sprint planning process. It also then makes sense that the team would revert

 204

back to their original process for prioritizing tasks because the original sprint

planning process ensures the requirements gain highest priority and are always treated

first even if they do not have enough time. When the project leader was asked about

the impact of technical debt management on the subject project, he explained this

tendency in another way: “we had not used the recorded values to make the decisions

and we usually paid the debts when the demand was low.”

Because we have realized that our technical debt management approach was not

strictly followed by the project team, we framed some interview questions for the

project leader as to what changes to the management approach would have made it

easier for the project team to adopt. The answer by the project leader brought up

another major obstacle – lack of process integration. The project leader suggested that

the integration of our approach with their project management tool would have helped

them in using the approach.

Actually the sprint planning process that the team was already following was very

similar to our technical debt management approach – walking through tasks,

estimating effort, prioritizing them accordingly, deferring some low priority tasks if

the required effort is more than what is available for the next sprint. Therefore, our

approach could have been organically integrated into their sprint planning process

although it was not presented that way to the team originally. So the project team

treated technical debt management as an addition onto their original process. It

became another, separate task, with a separate document (the technical debt list) to

deal with. They started trying to fit in discussion of technical debt items only after

 205

they finished all the items in their backlog, during the sprint planning meetings. For

example, during the first sprint planning meeting, the project team first spent 1.5

hours discussing each task in the backlog and assigning priorities. Then they moved

to technical debt management and spent another 35 minutes on discussion of updating

the technical debt list, which might have been saved, at least partially, if technical

debt management had been well integrated into their sprint planning process. The

same approach was taken during the second sprint planning meeting, but because

there was not enough time left over, technical debt management was only briefly

covered at the very end of the meeting and no other actions or decisions on technical

debt were made. In an interview with the team leader after the meeting, he stressed

that they didn’t have enough time to follow our approach to manage technical debt

before and during the meeting. This indicates that technical debt management was

very much viewed as an add-on, not an integrated part of the sprint planning process.

In summary, there were three major obstacles in this study for the project team. The

first obstacle, i.e. the difficulty of technical debt identification, together with the low

perceived usefulness by the project team, hindered motivation to apply the proposed

technical debt management approach and thus caused the actual technical debt

management process to deviate. Time pressure was an external factor that resulted in

the intended prioritization mechanism of our approach (i.e. principal and interest) to

be abandoned under some circumstances. Lack of process integration, another

obstacle, also aggravated the process deviation.

 206

7.6 Discussion

The original goal of this study was to uncover the costs of explicit technical debt

management. In the process of implementation of this study, we observed that the

project team encountered some obstacles and the actual process of technical debt

management they followed was different from the one we proposed. This deviation

provided us with the opportunity to investigate the obstacles to application of

technical debt management in software projects and reveal the reasons behind the

process deviation. In the end, we investigated three research questions, presented in

Section 7.1. We discuss the findings of our study in light of these three research

questions in this section, followed by a discussion of the validity of this work, and its

limitations.

7.6.1 Costs and Obstacles

The costs we have identified largely fall in four categories: cost of technical debt

identification, cost of updating the technical debt list, cost of using the technical debt

list for sprint planning, and cost of communication. Among these costs, technical debt

identification accounted for the majority of the total technical debt management cost.

The cost to update the technical debt list for the first time was also high, but it

dropped significantly in the subsequent sprints. Because technical debt identification

is the first step of technical debt management, and constructing and updating a

technical debt list immediately follows technical debt identification, the high cost

incurred by these first two steps created a large, almost prohibitive, overhead for

technical debt management, as illustrated in Figure 22. Other costs of technical debt

management are insignificant compared to this initial overhead. It should be noted

 207

though that the low effort of updating the technical debt list in Sprint 14 and 15

compared to Sprint 13 may result from the project leader’s decision of not managing

technical debt for sprint planning in the two release cycles. Therefore, the cost pattern

may have been different, or even the cost may have not formed a pattern, if the

technical debt management had been practiced during the two Sprints.

Figure 22. Cost Pattern of technical debt Management

However, we tend to believe this cost pattern is real because we found a similar one

(high initial overhead and subsequent minimal costs) in the Tranship study (presented

in Chapter 6). Because the actual technical debt management process deviated from

our proposed approach in this study, the cost pattern we identified may be different

from a case in which the proposed approach is strictly followed. But given the

consistency of this finding with that of the Tranship study, and the fact that this

finding is further elaborated and explained through interview data, we are confident

that the application of technical debt management has a significant initial overhead.

Before Sprint 1 Sprint 1 Sprint 2 Sprint 3

Technical Debt Management Costs

Technical Debt Identification Updating Technical Debt List

Other Costs Overall Cost

Initial Overhead

 208

In this study the actual technical debt management process followed by the project

team deviated from the one we proposed. The main deviation lay in the criteria used

to decide if an instance of technical debt would be paid off in the next sprint. Rather

than using technical debt principal and interest, in a cost-benefit analysis, to make this

decision (as proposed in the technical debt management approach), the project team

used a variety of other criteria, relying on their previous sprint planning process. In

theory, any decision-making criteria could have been incorporated into the process of

estimating principal and interest. For example, the availability of specific personnel is

often considered in these decisions. If the personnel best suited to paying off a

technical debt instance are not available, then this could be incorporated into that

instance’s estimate of principal, making the principal high enough that it would not be

considered cost-effective to pay off. Similarly, if a technical debt instance is

particularly important to a customer, that instance’s interest would increase, reflecting

the future cost (in terms of good customer relations) of not paying off the debt.

However, incorporating such decision criteria into the notions of principal and

interest is not intuitive, so the project team in this study preferred to use criteria other

than principal and interest in their decision making.

The deviation resulted from the significant obstacles that the project team

encountered in the course of managing technical debt in their software project.

Among the obstacles, those associated with technical debt identification, including

the learning curve of understanding technical debt and the technical difficulty of

technical debt identification, were major. In the entire period of the study, the project

team always faced the challenge of implementing a heavy load of requirements in an

 209

“unreasonably” short time frame. As a result, some tasks had to be postponed or even

cancelled if the tasks were considered non-critical. Because the technical debt

management approach was not organically integrated to the project release planning

process (which we learned from the interview with the project in the end of this

study) and thus was only treated as an optional task, it’s natural that the proposed

technical debt management approach became a candidate to be abandoned. Therefore,

time pressure and lack of process integration were obstacles to application of

technical debt management in the project.

7.6.2 Evaluation of Validity

The actual implementation deviated from the original study design in that the

proposed technical debt management approach was not followed in their sprint

planning process. This is a threat to the internal validity of this study as there might

have been other types of costs that were not captured due to the process deviation. In

addition, the cost pattern we identified, i.e. high cost of updating technical debt list

for the first time and insignificance of other types of costs for technical debt

management, may not accurately represent the cost pattern for other projects that

more fully used technical debt information in the sprint planning process. Therefore,

the reliability of our findings related to Research Question 1 is weak.

Another threat to both the internal and construct validity came from the shifted focus

of this study. The original study design was to explore the costs of explicit technical

debt management. Therefore the study instruments, including the

observation/documentation guidelines and the interview questionnaire, didn’t focus

 210

on obstacles and process deviation until the second sprint that we tracked. This means

some details about the obstacles and process deviation that happened in the early

stage of this study may be missed or captured by indirect means. The threat is also

reflected in the data volume and level of detail, as most of the information regarding

obstacles and process deviations was collected in the later stage of the study.

However, because it was collected during the critical phase, i.e. sprint planning, we

do not believe this has a significant impact on the validity of this study, especially on

the conclusion regarding the obstacles and how they contributed to the process

deviations.

There is a threat to reliability in that the data collection techniques were not as robust

as they could have been. This is primarily due to the remote location of the

researchers during some phases of the study and the mix of languages used in

conducting the research. The cultural difference between some of the researchers and

the project team may have had an effect as well. These factors may have led to some

misunderstandings or to missing some context factors that might have been relevant.

However, we believe these effects are at least partially mitigated by the fact that two

research members were on-site during most of the data collection (one of them was

on-site for the entire study), and there was a mix of cultural backgrounds represented

in the research team.

7.6.3 Limitations

To overcome the limitations of the Tranship study, the subject project used for this

study has a different profile. The software project described in this paper was

 211

developed in an organization belonging to a multinational company. It was a larger

and more mature software project compared to the one used in the previous study. We

expected that this study could complement the previous one and improve the

generalizability of the conclusions drawn from them. However, the limitation of

generalizability couldn’t be fully addressed by this single case. From the perspective

of case selection, the project we used for this study was not the best choice as the

project was not obviously feeling the “pain” of technical debt. The project personnel

might have been more motivated, and thus offered less resistance, if the project had

had some obvious technical debt issues and wanted very much a solution to the

technical debt problem. This implies that our results, in particular the impact of the

obstacles we encountered, might not apply in contexts where the need for technical

debt management is recognized by all stakeholders.

The case used for this study was selected based on convenience and availability. Due

to business reasons, the subject project was interrupted several times during the study,

and was ultimately canceled right at the end of our study. As a result, we were not

able to conduct a second-round follow-up interview with the project leader or other

personnel. Thus, we were limited in the depth of insight we could elicit about the

project’s experience with technical debt management. This raises the possibility that

we are misunderstanding some of the data that we have collected. We have attempted

to mitigate this risk through careful analysis, direct observation where possible, and

peer checking within and outside our research team.

 212

Chapter 8: Discussion

This dissertation research started with exploring the nature of the problem that the

technical debt metaphor signifies. By investigating the phenomenon in software

development practice and reviewing academic work in related areas, we have learned

that the essence of technical debt lies in the two sides – short term benefit with long

term cost – and the uncertainty of interest payment. Technical debt could save effort

in the short run for a software project if it is properly leveraged, but a software project

may end up with higher maintenance cost in the long run because of the technical

debt it carries. Technical debt is a common problem in the software industry and the

impact is often serious enough to concern software project managers. Moreover, the

involved uncertainty further complicates the effect of technical debt on software

projects. Therefore, software managers need to balance the benefit with the cost when

they make decisions on when and what technical debt should be incurred or paid off,

which is the central problem of technical debt management.

Aside from the short term benefit and long term cost of technical debt, there are costs

and benefits associated with explicitly managing technical debt, which may affect the

overall cost of a software project. In other words, leveraging technical debt

information for better decision making will incur management cost, but may bring

benefit that could offset or even exceed the management cost, thus contributing to

reduction of the project cost. To help software managers make informed decisions on

technical debt management, we developed a general technical debt management

framework and carried out this research to refine and validate it. This research

 213

characterized the costs and benefits of explicit technical debt management. To be

specific, the research addressed the following questions. (1) What factors contribute

to the costs and benefits of measuring and monitoring technical debt? (2) How does

technical debt information contribute to decision making in software project

management?

To tackle the problem, we designed two types of studies, each of which focused on

one side, i.e. benefit or cost, of technical debt management. The first type of study

investigates the potential benefit gained from explicit technical debt management.

The study design is retrospective and requires that the subject project contain

technical debt in its past releases and that there were decisions made, either

intentionally or unintentionally, to pay off the technical debt during the releases

studied. Firstly, our proposed technical debt management approach is applied

retroactively from the beginning of the selected releases to simulate the decisions that

would have been made about what technical debt should be paid and when. Then the

results from the decision simulation are compared with the actual decisions that were

made to determine whether and how much cost could have been saved if the explicit

technical debt management approach had been used. The two types of studies are all

case studies per se, but given the nature of the first type of studies, i.e. decision

simulation on past releases of a software project, we call it a “retrospective” study.

By contrast, the second type of study, which we call a case study, is targeted to future

releases of a live software project. In these studies, the technical debt in the subject

projects is explicitly managed in real time using our proposed approach. Then the

 214

costs of explicit technical debt management are uncovered by tracking technical debt

and the related management activities continuously over several releases of the

subject projects. This type of study could also reveal how technical debt information

is used in decision making and thus help us understand how to refine the proposed

technical debt management approach to improve its adoption by software

practitioners. Finally, with the results from the two types of studies, we can compare

the benefits of explicit technical debt management with its costs to determine the

effectiveness of explicit technical debt management and thus answer the research

questions.

We have carried out two retrospective studies and two case studies. Because of the

nature of these studies, we gathered a rich body of qualitative data regarding technical

debt management, which helped us gain insights into the technical debt management

problem and allowed us to go beyond the research questions to discuss the effects of

technical debt on software maintenance from a wider perspective. In the following

subsections we discuss the results from the two types of studies separately. Then we

discuss the contributions of this line of research and future direction of technical debt

management research by combining the results of these studies.

8.1 Retrospective Studies

The two retrospective studies we carried out differ in profile of both the subject

project and the technical debt items. In the first study (SMB, elaborated in Chapter 4)

we chose a software application provided by our industrial partner as the subject

project, while the subject project for the second study (Hadoop, elaborated in

 215

Chapter 5) came from the open-source software community. The subject project for

the SMB study was much larger than the one for the Hadoop study in terms of total

lines of code, although both of them had a long evolution history, as required by our

study design. In the SMB study only one technical debt instance was used for

decision simulation, but it was a huge debt item involving modification of the entire

communication layer and other layers of the application, and hence had serious

impact on the project. By contrast, the technical debt items used for the Hadoop study

were relatively small and located in four classes that are independent of each other. In

general, the SMB study had a large subject project with one outstanding technical

debt instance, while the subject project used in the Hadoop study has a smaller profile

with many small technical debt items spreading over it. We believe that these

differences improved the generalizability of the conclusions drawn from the two

studies.

For most of the technical debt items in the two studies, the simulated decisions are

different from their actual counterparts, which indicates that the technical debt

information in the projects was not fully taken advantage of to help the software

managers reach the optimal decisions. The results of the two studies show that

explicit technical debt management could bring significant benefit to software

projects through optimizing the timing of incurring or paying off certain technical

debt items. In both cases, the benefits were significantly large compared to the effort

of constructing the artifacts that contained the technical debt items.

 216

In the Hadoop case, most of the technical debt items were small issues and any

individual item may not be serious enough to worry the project manager. Therefore, it

is highly likely that the impact of technical debt on the project would be overlooked

or underestimated when technical debt is managed in an implicit way, if at all. For

this type of case, the main value of explicit technical debt management lies in the

raised awareness of the impact of technical debt. Through explicit technical debt

management, software managers could have a holistic view of the technical debt in

their projects and thus avoid misunderstanding its impact. Among the four technical

debt items analyzed in this study, two of them would have turned out differently. The

modification effort that could have been saved is largely comparable to, or even

bigger than, the effort of constructing the classes containing the items although this

effort is not huge given the small size of the classes. Therefore, even if the benefit

gained from an individual technical debt item is limited, managing all technical debt

items collectively in an explicit way could still lead to big cost saving on the project

level.

Compared to the technical debt items in the Hadoop study, the one used in the SMB

case was much larger with respect to both principal and impact. It would take a great

amount of effort to modify the communication layer of the SMB application, i.e. the

principal of the technical debt. The persistence layer had to be changed, too, as it is

coupled with the communication layer, which means the modification would have

significant impact on other components of the application. Given its size and impact,

this type of technical debt item can hardly be overlooked. Instead, it is most likely to

be incurred intentionally. In the SMB case we can see that delaying upgrading of the

 217

communication protocol was indeed a serious decision made by the project team.

However, the actual decisions on this technical debt item did not lead to the best

outcome, due to a lack of cost-benefit analysis as our proposed technical debt

management approach suggests. Actually the extra cost of carrying the technical debt,

i.e. delaying upgrading the communication protocol, was two times as high as the cost

of upgrading and it could have been avoided if the simulated decisions had been

followed. Therefore, in this type of situation, a cost benefit analysis based on

measurement of technical debt, the core of our proposed approach, is essential for

software managers to avoid big losses and reach optimal decisions.

Through the two studies, we have demonstrated that explicit technical debt

management could bring significant benefit to software projects in the situations

where there are either one technical debt item with great value or many independent

debt items with limited impact. In reality, it is possible that a software project falls

into both of the situations, that is, the project has many technical debt items and only

a few of them have great impact. We believe our proposed approach is able to handle

such cases because it provides a prioritization mechanism to determine the order of

paying off technical debt items, in addition to the cost-benefit analysis of individual

debt items.

8.2 Case Studies

The two case studies were hosted by two different organizations with the help from

our industrial partners. They began almost at the same time. In the first case study

(Tranship, elaborated in Chapter 6), we identified and tracked technical debt items in

 218

a web system for enterprise management, while the subject project used in the second

case study (EducationHub, elaborated in Chapter 7) was to develop a software

application running on a mobile platform. The two projects are similar in the size of

development team, but they are significantly different in project history. The

EducationHub project had gone through more than ten sprints and had many versions

when the study began, while the Tranship project largely started from scratch. In

other words, the Tranship project was young compared to the EducationHub project.

Both of the projects followed the Scum development process, but the development

cycle, i.e. sprint, of the EducationHub project was much longer than that of the

Tranship project, which was one reason that the EducationHub study ended later than

the other one. The two projects were developed at two organizations with different

profiles. The company hosting the Tranship project was a start-up software

development and service provider, while SMB, where the EducationHub project was

developed, is a large software development and research institute. The technical debt

items used for the two studies largely conform to their organization profiles. In the

Tranship study no individual technical debt item had significant value, hence impact,

on the project, while some technical debt items, e.g. test automation, used for the

EducationHub study involved huge effort to change and a great amount of time to

make a decision for. These differences contributed to the generalizability of our

conclusion on the technical debt management cost. They also provided the

opportunity to compare the implementation processes of technical debt management

under different organizations and thus identify factors affecting the adoption of

technical debt management approach in the software industry. In fact, we indeed

 219

gained insights in this aspect from the EducationHub study, where the actual

technical debt management process significantly deviated from the one we proposed.

By digging deeper in the results, we found out the reasons behind this deviation,

which is another contribution of the study.

The results from the two studies show that managing technical debt could incur

various types of costs. The cost identified through the Tranship study falls into 4

categories: identification of technical debt items, analysis and evaluation,

communication and documentation, while in the EducationHub study the cost was

categorized slightly differently due to the actual process of technical debt

management implemented by the project. The cost categories used in the

EducationHub study are technical debt identification, updating the technical debt list,

sprint planning using technical debt, and communication. However, the difference in

the cost categorization of the two studies can be easily reconciled by comparing

similar categories in the two studies. According to the definition of the cost

categories, analysis and evaluation cost in the Tranship study refers to the effort of

understanding technical debt items and estimating their values, which subsumes the

major part of the cost for updating the technical debt list, i.e. the effort of

understanding technical debt and its status, defined in the EducationHub study. While

the minor part of the cost, i.e. updating the documentation according to the technical

debt analysis result, can be moved to documentation category defined in the Tranship

Study. Since using the technical debt analysis result to make decisions is an added

small step to the original release planning process and thus barely takes effort, we

expand the analysis and evaluation category to include the sprint planning category

 220

defined in the EducationHub study and name it “analysis” category. Figure 23 shows

the mapping of the cost categories used in the two studies.

Figure 23. Mapping of Cost Categories

If we view these costs in chronological order, rather than by category, the first one is

the initial technical debt identification cost. In the EducationHub study, the initial

technical debt identification cost was huge and accounted for the majority of the

technical debt management cost. Further analysis of the EducationHub data revealed

the reasons behind it – the learning curve of technical debt management and the

technical difficulty made technical debt identification the most time-consuming and

costly part of technical debt management. Due to resource constraints, the initial

technical debt identification in the Tranship study was not tracked and thus the cost

information was not collected.

Identification

Analysis and
Evaluation

Communication

Documentation

Identification

Communication

Documentation

Identification

Updating Technical
Debt List

Documentation

Sprint Planning

Analysis

Tranship Study EducationHub Study Reconciled Cost Category

 221

Coming after the initial technical debt identification was the initial analysis, which

incurred high cost in both studies. The result from the Tranship study shows that

understanding technical debt items and estimating their values accounted for the

majority of technical debt management effort. In particular, the cost of technical debt

analysis was high in the first sprint and dropped significantly in the subsequent

sprints. We observed a similar trend from the EducationHub study in which technical

debt analysis for the first time was the major part of the analysis cost because the

technical debt list was used for the first time and the project team had to go over the

entire list multiple times to determine their status and values.

Another technical debt management activity that could incur high cost is

identification of new technical debt items after initial technical debt identification. In

the Tranship study, identifying a new technical debt item took great effort, but we

may not conclude that it incurs high cost in general, given that only one new technical

debt item was identified in one of the three sprints. In the EducationHub study,

identification of new technical debt items after initial technical debt identification did

occur, but the cost could not be extracted from other efforts.

Compared to technical debt identification and analysis for the first time, other types

of cost in the subsequent release cycles in both studies were insignificant. Thus, we

can conclude that technical debt management is subject to a big initial overhead,

which consists of initial technical debt identification and the initial analysis of the

technical debt list in the first sprint in which technical debt is explicitly managed.

This overhead has significant impact on the overall cost of technical debt

 222

management. Under some conditions, such as that of the EducationHub study, the

overhead may hinder the project from carrying out technical debt management.

Therefore, reducing the overhead is essential to make technical debt management a

cost-effective approach, and advances in technical debt identification and

measurement are likely to improve the adoption of technical debt management.

Besides characterizing the cost of technical debt management, another goal of the

case studies was to understand how technical debt information contributes to decision

making in the process of software development, especially in release planning.

Through the Tranship study we have identified a set of factors that affect the

decisions on release planning. Technical debt information was used by the project

team in their release planning, but it was treated as one decision factor rather than a

process that incorporates other decision factors for release planning, as our proposed

approach suggests. The reason was that the project team preferred a simple approach

to estimation of technical debt principal and interest while keeping all the factors in

sight when they actually make the decision. In spite of the deviation of the actual

technical debt management process from the one we proposed, we learned how

technical debt is used for release planning in real settings through this study.

Moreover, the deviation helped us gain insights into how technical debt management

should be integrated into a software development process in practice.

From the perspective of implementing a prescribed process, the EducationHub study

went further off the course as we observed bigger deviation from our proposed

technical debt management process than that in Tranship study. In Tranship study

 223

most of the steps of the actual technical debt management process were actually same

as their counterparts of the proposed process. It’s just the timing of consolidating all

decision factors that differentiate the two processes (when estimating technical debt

values in the proposed process versus when the final decision is made in the last step

of the actual process in Tranship study). In EducationHub study technical debt items

were not always evaluated before being used in decision making. The decisions made

in the release planning were based on other criteria, not on technical debt value.

Among the decision criteria, some were subjective and qualitative compared to the

quantitative cost-benefit analysis approach we proposed. In general, technical debt

was managed in a more implicit way, while our approach was treated as an “add-on”

to their original release planning process and thus could be abandoned if necessary.

Based on the results of this study, we attributed the process deviation to obstacles that

the project team encountered in the course of managing technical debt in their project.

Due to its learning curve and technical difficulty, technical debt identification became

the first major obstacle to applying the technical debt management process to the

project. The difficulty of technical debt identification also incurred high cost at the

beginning of technical debt management, which contributed to the aforementioned

initial overhead. Another obstacle was rooted in the fact that the project team often

had tight schedule for bug fix and feature implementation, which are usually given

higher priority than maintainability problems like technical debt. For software

managers, a common strategy to deal with time constraints is to delay some non-

critical tasks, which is usually the primary reason that technical debt is incurred.

Ironically, in the studied case, the proposed technical debt management approach

 224

itself became a candidate to be abandoned. Therefore, time pressure was a significant

force that drove the technical debt management off the prescribed course.

By looking deeper into the results of EducationHub study, we also found that a lack

of process integration aggravated the process deviation, in that the project team

regarded the technical debt management approach as an addition to their original

sprint planning process rather than a part of it. In hindsight, there were clear ways that

technical debt management could have been better integrated into the tools and

processes used for release planning, as the two processes were not that different, but

opportunities for integration were not obvious initially. As an add-on, it became

easier for the project team to abandon technical debt management under time

pressure, as discussed above. Therefore, lack of process integration became another

obstacle.

The difficulty surrounding technical debt identification calls for more automatic

approaches. Most of the approaches and tools currently available tend to yield a

comprehensive set of technical debt items, but they rarely provide accurate

interpretation of the importance of individual items. Thus the users often face the

situation that they have a large set of technical debt candidates, but barely know

which ones are more important or critical in the context of their project. A strategy of

narrowing the focus of initial technical debt identification is particularly important to

large and mature software projects such as the one chosen in the EducationHub study

because the size of the code base and the length of the maintenance phase provide

more opportunities for technical debt of a larger variety to be incurred. Certainly it is

 225

not always true that a larger, more mature project will have more technical debt of

more types than a smaller and younger software project, but one can intuit that this is

likely to be the case often.

In both case studies, the criteria used for decision making about technical debt

differed between the proposed technical debt management approach and the actual

projects. In theory, principal and interest could incorporate notions of resource

availability, customer preferences, and other decision criteria important to projects.

But in reality, principal and interest were seen as representing only required effort. So

during decision making, technical debt principal and interest needed to be combined

(or, in the case of the EducationHub study, supplanted) with other factors to

determine the priority of a debt item. This complicated the process of decision

making, when the intent of the technical debt management approach was to simplify

it. This experience leads us to recommend an approach to adopting explicit technical

debt management that allows for a “transition” time, in which a project’s familiar

decision making process and criteria are maintained. The notions of principal and

interest are introduced, but initially represent simply required effort (e.g. to pay off

the debt, in the case of principal). Gradually, ways to incorporate other decision

criteria important to the project into the notions of principal and interest could be

devised and evaluated. Eventually, guidelines could be developed to deal with any

relevant decision criteria by folding it into the estimate of principal and interest,

allowing a straightforward cost-benefit analysis to be used for prioritization of

technical debt items. In this way the decision makers would be more likely to try

technical debt management in their projects without worrying about its effect on their

 226

original decision making process. This would make it more likely to see the benefit of

technical debt management earlier, and thus improve the acceptance of technical debt

management eventually in software practice.

8.3 Addressing the Research Questions

Through the series of studies, we have uncovered a set of benefits and costs

associated with explicit technical debt management. These findings allow us to

address the research questions. They also help us evaluate the effectiveness of explicit

technical debt management by comparing the benefits with the costs.

8.3.1 RQ1: Costs and Benefits

Our first research question asks:

RQ1: What are the characteristics of the costs and benefits of measuring and

monitoring technical debt?

We rely on findings from all four of our studies to address this question.

In the SMB retrospective study, we tracked a single technical debt item that had

significant impact on the project. We compared the benefit, i.e. the effort that could

have been saved, of explicit technical debt management to the effort of upgrading the

communication protocol, which itself is a major maintenance task for the project.

Through the decision simulation we demonstrated that the benefit could be two times

as high as the upgrading effort. By contrast, four technical debt items with low

principal and interest were used to evaluate the benefit of explicit technical debt

management in the Hadoop retrospective study. Although the benefit, i.e. the change

 227

effort that could have been saved through explicit technical debt management, was

smaller in number, it is proportional to the development effort of software artifacts

containing the technical debt items, which is also the case in the SMB study. Given

that the subject projects and technical debt items used in the two studies have very

different profiles, we believe the finding about the magnitude of benefit achieved

from explicit technical debt management can be generalized to some extent, e.g., to

the cases we studied on the cost side of explicit technical debt management. It is in

this sense that we consider the two types of studies we conducted are comparable and

hence we can combine the results of the studies to address the research questions.

The Tranship case study and the EducationHub case study helped us understand the

cost of technical debt management. According to the results from the Tranship study,

managing technical debt in an explicit manner costs 1.325 person-hours per sprint on

average, a 26% increase of the original release planning cost. Although 26% seems

to be significant, 1.3 person-hours is very small compared to the project development

cost, which is 37 person-hours on average for implementing a use case. In other

words, technical debt management didn’t add much burden to the project from the

perspective of total project cost.

Through the two case studies we identified various types of costs and a cost pattern

associated with technical debt management. As elaborated in Section 8.2, managing

technical debt is subject to a large initial overhead, which includes the cost of

technical debt identification and analysis for the first time. Analysis cost had a

significant drop after the first development cycle, while other types of costs, such as

 228

communication and documentation, remained low during the entire period of

technical debt management practice. Therefore, reducing the initial overhead cost is

most likely to reduce overall cost significantly. Because technical debt management

has a learning curve, and technical debt identification is difficult technically and takes

great effort, we consider an exhaustive search for technical debt items to construct an

initial technical debt list may not be beneficial. Instead, we suggest that projects start

with a small number of known technical debt instances whose impact on the project is

relatively obvious or serious enough to warrant immediate attention, for example, the

most “painful” technical debt items in the project. It has been demonstrated in the

SMB study that a careful analysis of just one technical debt item could pay off, while

the results from the EducationHub study show that managing a large technical debt

list was not a cost-effective approach. Actually focusing on particular technical debt

items rather than dealing with all technical debt issues at the same time not only

reduces the management cost, but also helps the users overcome the learning curve

and thus improve their confidence on using, or at least their willingness to try,

technical debt management in their projects.

According to the Unified Theory of Acceptance and Use of

Technology (UTAUT) [160], perceived ease of use and usefulness are two

determinants of user acceptance of a new technology. In the case of technical debt

management, perceived ease of use and usefulness mean higher expectation on the

usability of the management approach and the benefit that explicit technical debt

management can bring. Since the strategy of focusing on particular technical debt

 229

items rather than dealing with all technical debt issues have such effect, it would

contribute to the acceptance of technical debt management positively.

In summary, the explicit technical debt management approach can bring significant

benefit, i.e. cost-saving, without adding much overhead to software projects when it

has better process integration, more focused technical debt items or less costly

technical debt identification approaches. The effort that can be saved through explicit

technical debt management is largely proportional to the effort to construct the

software artifacts that contain the technical debt items. Technical debt management

incurs various types of cost. Among these costs, technical debt identification cost and

the analysis cost for the first time account for the majority of the cost and are much

higher than other types of cost and the analysis cost in the subsequent release cycles.

The majority cost of technical debt management occurs in its early stage, which we

identified as a large initial overhead, while the benefit remains on a constant level

over time as long as the technical debt is controlled and paid off on time. Even the

initial overhead can be reduced by following the suggested improvements of the

technical debt management, such as the non-exhaustive technical debt search strategy

discussed in this section. Therefore, we conclude that with the enhancements we

suggest, explicit technical debt management can be an affordable approach that

benefits software projects in different ways.

 230

8.3.2 RQ2: Decision-making

Besides the cost and benefits insights, the results of the studies also provide a clear

view on the use of technical debt information for decision making, which corresponds

to our second research question:

RQ2: In what ways does technical debt information contribute to decision

making?

There are different ways in which technical debt information can be used for decision

making in release planning. In our proposed approach, we assume that technical debt

information is used in release planning in a cohesive way, where other decision

factors such as customer request and resource availability are incorporated into the

notion of technical debt and reflected by the technical debt principal and interest.

Then technical debt alone is used for release planning. But in the case studies

technical debt information was used in ways different from the way we proposed. In

the Tranship study, technical debt information was used as a single decision factor

like other decision factors for the release planning. Because technical debt

information was still used in release planning, we consider it a minor deviation from

the way we proposed. In the EducationHub study, technical debt management was

treated as an add-on process. In some situations the project team just followed their

original release planning process without considering the technical debt information

in decision-making at all, which we consider a major deviation from the way we

expected them to use technical debt information for decision making.

 231

In the case studies, we also gathered opinions of the project personnel on the benefits

of technical debt management to complement the numeric evidence. The benefits of

technical debt management perceived or observed by the project team include

increased awareness of the technical debt problem that may be overlooked otherwise

and improved understanding of technical debt impact through technical debt

measurement. These opinions and observations also shed light on how technical debt

information contributes to decision making.

In summary, technical debt information may serve as a comprehensive input, an

individual factor, or an add-on part for decision making in software projects,

depending on how effective their technical debt identification approaches are and

how well the technical debt management is integrated into their decision making

process. Technical debt information can be used in providing a holistic view of the

potential maintenance problems hidden in software projects, and in analyzing the cost

and benefit of project management strategies, thus raising managers’ awareness of the

impact of the problems and improving their decision making.

8.4 Contributions

This dissertation research is targeted to address the central problem of technical debt

management – how technical debt should be leveraged to improve decision making of

software development and maintenance projects. A set of research questions were

developed accordingly and two types of studies were designed to investigate the

cost/benefit side of technical debt management and the way in which technical debt

information contributes to decision making. A total of 4 studies were carried out,

 232

involving software projects with different profiles (domain, size, etc.). The

exploratory nature of the studies facilitated gathering a rich body of qualitative data

regarding technical debt management. These data not only helped us answer the

research questions, but also allowed us to understand the rationale behind the

answers.

Contribution 1: empirical evidence that explicit technical debt management can be

cost-effective.

The results and findings from these studies together provided a chain of empirical

evidence for the value of explicit technical debt management in comparison with

implicit technical debt management, which is currently the dominant practice. The

cost and benefit insights gained from the studies show that significant benefit, such as

avoidance of high interest in future and fewer surprises on project outcome, can be

achieved through explicit technical debt management without triggering high

management cost. In spite of the obstacles to application of technical debt

management in software projects, it’s clear that explicit technical debt management is

the right direction towards better decision making and software project management.

Contribution 2: empirical evidence of why explicit technical debt management is

not always cost-effective.

Through the studies we also realized that high management cost could be incurred

under some conditions. The cost can be so high that it prevents technical debt

management practice, for example, in the case of the EducationHub study. In other

words, explicit technical debt management is not always cost-effective. In the studies,

 233

we observed both motivation and resistance towards using the explicit technical debt

management approach. On one hand, the software managers have accepted the notion

of technical debt and would like to try technical debt management in their projects,

while on the other hand, technical debt management was still given a low priority and

even becomes a candidate to be abandoned in case it competes for resources with

other management plans. Analysis of the results from these studies helped us

understand the reasons behind the phenomenon. We have found out that the project

team encountered three major obstacles in the process of managing technical debt in

their project using our proposed approach. It is these obstacles that resulted in the

resistance and high management cost. Therefore, besides the aforementioned

supporting evidence for the potential cost-effectiveness of technical debt

management, these studies also provided empirical evidence that helps explain why

and under what conditions the technical debt management approach may not be cost-

effective.

Contribution 3: empirically grounded proposals for improvement that will make

explicit technical debt management cost-effective more likely and more often.

Based on the findings and insights gained from the studies, we were able to propose

solutions in the form of improvements to address the obstacles to technical debt

management, including the non-exhaustive technical debt identification strategy at the

beginning of technical debt management and use of more efficient technical debt

identification approaches to reduce the initial management overhead and resistance

from the users, and addition of a transition period to ease the integration of technical

 234

debt management. We believe that these proposals for improvements will make

technical debt management cost-effective more likely and more often.

8.5 Research Implications and Future Work

Through these studies we also identified the areas that more research effort should be

devoted to. First, to facilitate incorporating decision factors into the technical debt

notions of principal and interest, researchers need to come up with better technical

debt principal and interest definitions that are more operational and easier to

incorporate more decision factors. Second, since one of the findings of the Tranship

case study is that large estimation error on technical debt principal or interest could

result in different decisions, more effective technical debt estimation approaches are

needed to improve the decision making. Third, the technical difficulty and high cost

of technical debt identification suggests that developing cost-effective technical debt

identification approaches is still an active area of research.

From the research point of view, we also call for more validation work on technical

debt management as more empirical evidence will contribute to both the advance of

technical debt management research and the adoption of explicit technical debt

management by software practitioners. So far all studies we conducted on technical

debt management, were hosted by commercial software companies from the private

sector of the software industry. One area we haven’t covered is governmental

systems, i.e. large contractors for government agencies, which differ from private

software businesses in such aspects as project cost control, management style, and

even enterprise culture. These aspects may influence technical debt and its

 235

management in their projects. Therefore, we’ve included in our future work to study

software projects in governmental systems, which will help us uncover more factors

affecting benefits and costs of technical debt management and thus improve the

generalizability of the theory we are building for technical debt management.

Similarly, we also plan to study non-Agile projects (all those we’ve studied have been

Agile), as software development process could affect technical debt management and

the related decision making as well.

 236

Bibliography

[1] M. M. Lehman, "Programs, life cycles, and laws of software evolution,"

Proceedings of the IEEE, vol. 68, no. 9, pp. 1060-1076, 1980.

[2] S. M. Dekleva, "The Influence of the Information Systems Development

Approach on Maintenance," MIS Quarterly, vol. 16, no. 3, pp. 355-372, 1992.

[3] G. Alkhatib, "The maintenance problem of application Software: An empirical

analysis," Journal of Software Maintenance: Research and Practice, vol. 4, no.

2, pp. 83 - 104, 1992.

[4] W. Harrison and C. Cook, "Insights on improving the maintenance process

through software measurement," in Software Maintenance, San Diego, CA ,

USA, 1990, pp. 37 - 45.

[5] B. P. Lientz and B. E. Swanson, "Problems in application software

maintenance," Communications of the ACM, vol. 24, no. 11, pp. 763 - 769,

1981.

[6] B. P. Lientz and E. B. Swanson, "Software Maintenance Management,"

05/01/1980 1980.

[7] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, "Object-oriented

software engineering," 1992.

[8] B. W. Boehm, Software engineering economics (advances in computing science

and technology series). Englewood Cliffs, N.J.: Prentice-Hall, 1981.

[9] ISO-20926 Software Engineering - Unadjusted Functional Size Measurement

Method - Counting Practices Manual, 2003.

 237

[10] A. Stellman and J. Greene, Applied software project management, Sebastopol,

Calif.: O'Reilly, 2005, p. 256 p. [Online]. Available.

[11] M. Jørgensen, "Estimation of Software Development Work Effort:Evidence on

Expert Judgment and Formal Models," International Journal of Forecasting,

vol. 23, no. 3, pp. 449-462, 2007.

[12] M. Jørgensen, "A Review of Studies on Expert Estimation of Software

Development Effort," vol. 70, no. 1-2, pp. 37-60, 2004.

[13] B. Kitchenham and S. L. Pfleeger, "Software Quality: The Elusive Target,"

IEEE Software, Article vol. 13, no. 1, p. 12, 1996.

[14] CAST, "Cast Worldwide Application Software Quality Study: Summary of Key

Findings," CAST Report 2010.

[15] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, "An enterprise perspective

on technical debt," in Proceedings of the 2nd Workshop on Managing Technical

Debt, 2011, pp. 35-38: ACM.

[16] E. Lim, N. Taksande, and C. Seaman, "A Balancing Act: What Software

Practitioners Have to Say about Technical Debt," IEEE Software, Article vol.

29, no. 6, pp. 22-27, 2012.

[17] W. Cunningham, "The WyCash Portfolio Management System," in Addendum

to the proceedings on Object-oriented programming systems, languages, and

applications, 1992, pp. 29-30.

[18] S. McConnell. (2007). 10x Software Development. Available:

http://forums.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-

2.aspx

 238

[19] Z. Li, P. Avgeriou, and P. Liang, "A systematic mapping study on technical

debt and its management," (in English), Journal of Systems and Software,

Article vol. 101, pp. 193-220, MAR 2015 2015.

[20] C. Izurieta and J. M. Bieman, "Testing Consequences of Grime Buildup in

Object Oriented Design Patterns," in 2008 1st International Conference on

Software Testing, Verification, and Validation, 2008, pp. 171-179.

[21] J. Bohnet and J. Döllner, "Monitoring code quality and development activity by

software maps," in Proceedings of the 2nd Workshop on Managing Technical

Debt, 2011, pp. 9-16: ACM.

[22] N. Zazworka, M. A. Shaw, F. Shull, and S. Carolyn, "Investigating the impact

of design debt on software quality," in Proceedings of the 2nd Workshop on

Managing Technical Debt, Honolulu, HI, USA, 2011, pp. 17-23, 1985366:

ACM.

[23] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic, "Mapping architectural decay

instances to dependency models," in Proceedings of the 4th International

Workshop on Managing Technical Debt, San Francisco, CA, USA, 2013, pp.

39-46, 2663304: IEEE Press.

[24] M. Fowler. (2009). Technical Debt Quadrant. Available:

http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

[25] J. Yli-Huumo, A. Maglyas, and K. Smolander, "The Sources and Approaches to

Management of Technical Debt: A Case Study of Two Product Lines in a

Middle-Size Finnish Software Company," in Proceedings of the 15th

 239

International Conference on Product-Focused Software Process Improvement

(PROFES 2014), Helsinki, Finland, 2014, pp. 93-107.

[26] J. Rothman. (2006). An Incremental Technique to Pay Off Testing Technical

Debt. Available:

http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL

&ObjectId=11011&tth=DYN&tt=siteemail&iDyn=2

[27] A. Lester. (2008). Get Out of Technical Debt. Available:

http://petdance.com/perl/technical-debt/

[28] N. Brown et al., "Managing technical debt in software-reliant systems," in

Proceedings of the FSE/SDP workshop on Future of software engineering

research, Santa Fe, New Mexico, USA, 2010, pp. 47-52, 1882373: ACM.

[29] K. Schmid, "On the limits of the technical debt metaphor: some guidance on

going beyond," in Proceedings of the 4th International Workshop on Managing

Technical Debt, San Francisco, California, 2013, pp. 63-66, 2663308.

[30] P. Kruchten, R. L. Nord, and I. Ozkaya, "Technical Debt: From Metaphor to

Theory and Practice," (in English), IEEE Software, Editorial Material vol. 29,

no. 6, pp. 18-21, 2012.

[31] E. Tom, A. Aurum, and R. Vidgen, "An exploration of technical debt," (in

English), Journal of Systems and Software, Article vol. 86, no. 6, pp. 1498-

1516, 2013.

[32] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, "The

financial aspect of managing technical debt: A systematic literature review," (in

 240

English), Information and Software Technology, Article vol. 64, pp. 52-73,

2015.

[33] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, "Technical Debt in Test

Automation," in Proceedings of the 5th IEEE International Conference on

Software Testing, Verification and Validation, 2012, pp. 887-892.

[34] C. Izurieta and J. M. Bieman, "A multiple case study of design pattern decay,

grime, and rot in evolving software systems," Software Quality Journal, journal

article vol. 21, no. 2, pp. 289-323, 2013.

[35] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and P.

Abrahamsson, "Software Development in Startup Companies: The Greenfield

Startup Model," IEEE Transactions on Software Engineering, vol. 42, no. 6, pp.

585-604, 2016.

[36] J. Holvitie, V. Leppänen, and S. Hyrynsalmi, "Technical Debt and the Effect of

Agile Software Development Practices on It - An Industry Practitioner Survey,"

in Proceedings of the 6th IEEE International Workshop on Managing Technical

Debt (MTD' 14), Victoria, British Columbia, Canada, 2014, pp. 35-42.

[37] J. Bird, "Technical Debt - How much is it Really Costing you?," vol. 2012, ed,

2012.

[38] M. Fowler. (2003). Technical Debt. Available:

http://www.martinfowler.com/bliki/TechnicalDebt.html

[39] J. L. Letouzey, "The SQALE method for evaluating Technical Debt," in

Managing Technical Debt (MTD), 2012 Third International Workshop on,

2012, pp. 31-36.

 241

[40] M. Smit, B. Gergel, J. H. Hoover, and E. Stroulia, "Code convention adherence

in evolving software," in Proceedings of the 27th IEEE International

Conference on Software Maintenance (ICSM '11), 2011, pp. 504-507.

[41] J. Shore. (2006). Quality With a Name. Available:

http://jamesshore.com/Articles/Quality-With-a-Name.html

[42] A. Nugroho, J. Visser, and T. Kuipers, "An empirical model of technical debt

and interest," in Proceedings of the 2nd Workshop on Managing Technical

Debt, 2011, pp. 1-8: ACM.

[43] M. Fowler. (2007). Design Stamina Hypothesis. Available:

http://www.martinfowler.com/bliki/DesignStaminaHypothesis.html

[44] N. Ramasubbu and C. F. Kemerer, "Managing Technical Debt in Enterprise

Software Packages," (in English), IEEE Transactions on Software Engineering,

Article vol. 40, no. 8, pp. 758-772, 2014.

[45] F. A. Fontana, V. Ferme, and S. Spinelli, "Investigating the impact of code

smells debt on quality code evaluation," in Proceedings of the 3rd International

Workshop on Managing Technical Debt (MTD' 12), 2012, pp. 15-22.

[46] K. Schmid, "A formal approach to technical debt decision making," in

Proceedings of the 9th international ACM Sigsoft conference on Quality of

software architectures, Vancouver, British Columbia, Canada, 2013, pp. 153-

162, 2465492: ACM.

[47] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, "In Search of a

Metric for Managing Architectural Technical Debt," in Proceedings of Joint

 242

Working IEEE/IFIP Conference on Software Architecture (WICSA) and

European Conference on Software Architecture (ECSA), 2012, pp. 91-100.

[48] F. Bachmann, R. L. Nord, and I. Ozkaya. (2012) Architectural Tactics to

Support Rapid and Agile Stability. CrossTalk. 20-25.

[49] A. Martini, J. Bosch, and M. Chaudron, "Investigating Architectural Technical

Debt accumulation and refactoring over time: A multiple-case study,"

Information and Software Technology, vol. 67, pp. 237–253, 2015.

[50] R. N. Charette, Applications strategies for risk analysis (McGraw-Hill software

engineering series). New York: Intertext Publications : McGraw-Hill, 1990, pp.

xxiii, 570 p.

[51] B. W. Boehm, "Software Risk Management: Principles and Practices," IEEE

Software, Article vol. 8, no. 1, p. 32, 1991.

[52] S. Alter and M. Ginzberg, "Managing Uncertainty in MIS Implementation,"

Sloan Management Review, Article vol. 20, no. 1, pp. 23-31, 1978.

[53] G. B. Davis, "Strategies for information requirements determination," IBM

Systems Journal, vol. 21, no. 1, pp. 4-30, 1982.

[54] R. N. Charette, Software engineering, risk analysis and management (McGraw-

Hill software engineering series). New York: Intertext Publications, McGraw-

Hill, 1989, pp. xvii, 325 p.

[55] R. Fairley, "Risk Management for Software Projects," IEEE Software, vol. 11,

no. 3, pp. 57-67, 1994.

[56] R. P. Higuera and Y. Y. Haimes, "Software Risk Management," Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 1996

 243

[57] J. Kontio, Software Engineering Risk Management: A Method, Improvement

Framework and Empirical Evaluation. Helsinki, Finland: Suomen Laatukeskus,

2001.

[58] H. R. Costa, M. d. O. Barros, and G. H. Travassos, "Evaluating software project

portfolio risks," Journal of Systems and Software, Article vol. 80, no. 1, pp. 16-

31, 2007.

[59] R. L. Kumar, "Managing risks in IT projects: an options perspective,"

Information & Management, Article vol. 40, no. 1, p. 63, 2002.

[60] G. Stoneburner, A. Goguen, and A. Feringa, "Risk management guide for

information technology systems," Nat. Inst. Stand. & Technol., Washington,

DC, Gaithersburg, MD, USA, 2002, Available:

http://search.ebscohost.com/login.aspx?direct=true&db=inh&AN=7624734&sit

e=ehost-live.

[61] M. J. Carr, S. L. Konda, I. Monarch, F. C. Ulrich, and C. F. Walker,

"Taxonomy-Based Risk Identification," Software Eng. Institute,

PittsburghCMU/SEI-93-TR-6, 1993.

[62] (1994). Software Risk Evaluation Method.

[63] C. J. Alberts, A. J. Dorofee, R. Higuera, R. L. Murphy, J. A. Walker, and R. C.

Williams, Continuous Risk Management Guidebook. Pittsburgh, PA, USA,

1996: Software Engineering Institute, Carnegie Mellon University.

[64] Risk Management - Principles and guidelines on implementation, 2002.

[65] (2006). Risk Management Guide for DoD Acquisition.

 244

[66] (2002). Probabilistic Risk Assessment Procedures Guide for NASA Managers

and Practitioners.

[67] R. H. Hamm, "Selection of Verbal Probabilities: A Solution for Some Problems

of Verbal Probability Expression," Organizational Behavior & Human Decision

Processes, Article vol. 48, no. 2, p. 193, 1991.

[68] S. Lichtenstein and R. J. Newman, "Empirical Scaling of Common Verbal

Phrases Associated With Numerical Probabilities," Psychonomic Science, vol.

9, no. 10, pp. 563-564, 1967.

[69] R. L. Keeney and D. von Winterfeldt, "Eliciting probabilities from experts in

complex technical problems," IEEE Transactions on Engineering Management,

vol. 38, no. 3, pp. 191-201, 1991.

[70] D. A. Hillson and D. T. Hulett, "Assessing Risk Probability : Alternative

Approaches," presented at the PMI Global Congress, Prague, Czech Republic,

2004.

[71] N. Rescher, Risk: A philosophical introduction to the theory of risk evaluation

and management. Washington, D.C., USA: University Press of America, 1983.

[72] C. W. Kirkwood, Decision Tree Primer. Department of Supply Chain

Management, Arizona State University, 2002.

[73] J. E. Kelley Jr, "Critical-Path Planning and Scheduling: Mathematical Basis,"

Operations Research, Article vol. 9, no. 3, pp. 296-320, 1961.

[74] A. Gemmer, "Risk management: Moving beyond process," Computer, Article

vol. 30, no. 5, p. 33, 1997.

 245

[75] N. Dalkey and O. Helmer, "An Experimental Application of the Delphi Method

to the Use Of Experts," Management Science, Article vol. 9, no. 3, pp. 458-467,

1963.

[76] T. L. Saaty, The Analytic Hierarchy Process. McGraw-Hill, Inc., 1980.

[77] K. Lyytinen and L. Mathiassen, "Attention Shaping and Software Risk--A

Categorical Analysis of Four Classical Risk Management Approaches,"

Information Systems Research, Article vol. 9, no. 3, pp. 233-255, 1998.

[78] T. Addison and S. Vallabh, "Controlling software project risks: an empirical

study of methods used by experienced project managers," in Annual Research

Conference of Computer Scientists and Information technologists, Port

Elizabeth, South Africa, 2002, vol. 30, pp. 128 - 140.

[79] F. J. Heemstra and R. J. Kusters, "Dealing with risk: a practical approach,"

Journal of Information Technology, Article vol. 11, no. 4, pp. 333-346, 1996.

[80] R. C. Williams, J. A. Walker, and D. A. J, "Putting risk management into

practice," IEEE Software, Article vol. 14, no. 3, pp. 75-82, 1997.

[81] L. Wallace, M. Keil, and A. Rai, "Understanding software project risk: a cluster

analysis," Information & Management, Article vol. 42, no. 1, pp. 115-125,

2004.

[82] L. Wallace, M. Keil, and A. Rai, "How Software Project Risk Affects Project

Performance: An Investigation of the Dimensions of Risk and an Exploratory

Model," Decision Sciences, Article vol. 35, no. 2, pp. 289-321, 2004.

 246

[83] W. Han and S. Huang, "An empirical analysis of risk components and

performance on software projects," Journal of Systems and Software, Article

vol. 80, no. 1, pp. 42-50, 2007.

[84] J. J. Jiang, G. Klein, and R. Discenza, "Information system success as impacted

by risks and development strategies," IEEE Transactions on Engineering

Management, vol. 48, no. 1, pp. 46-55, 2001.

[85] E. H. Conrow and P. S. Shishido, "Implementing risk management on software

intensive projects," IEEE Software, Article vol. 14, no. 3, p. 83, 1997.

[86] B. A. Aubert, M. Patry, and S. Rivard, "Assessing the risk of IT outsourcing,"

in Proceedings of the 34th Hawaii International Conference on System

Sciences, Los Alamitos, CA, USA, 1998, vol. 6.

[87] M. Sumner, "Risk factors in enterprise-wide/ERP projects," Journal of

Information Technology, Article vol. 15, no. 4, pp. 317-327, 2000.

[88] S. Huang, C. I. Chang, S. Li, and M. Lin, "Assessing risk in ERP projects:

identify and prioritize the factors," Industrial Management and Data Systems,

Article vol. 104, no. 8, pp. 681-688, 2004.

[89] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software development

process (The Addison-Wesley object technology series). Boston, MA, USA:

Addison-Wesley, 1999.

[90] S. H. Kan, Metrics and models in software quality engineering, 2nd ed. Boston,

MA, USA: Addison-Wesley, 2003, pp. xxvii, 528 p.

[91] R. S. Pressman, Software engineering : a practitioner's approach, 6th ed.

Boston, MA, USA: McGraw-Hill, 2005, pp. xxxii, 880 p.

 247

[92] I. Sommerville, Software Engineering, 8th ed. Harlow, England ; New York:

Addison-Wesley, 2007, pp. xxiii, 840 p.

[93] K. Akingbehin, "A quantitative supplement to the definition of software

quality," in Proceedings of the 3rd ACIS International Conference on Software

Engineering Research, Management and Applications, Los Alamitos, CA,

2005, pp. 348-352.

[94] "IEEE Standard for Software Quality Assurance Processes," IEEE Std 730-2014

(Revision of IEEE Std 730-2002), pp. 1-138, 2014.

[95] J. L. Letouzey and T. Coq, "The SQALE Analysis Model: An Analysis Model

Compliant with the Representation Condition for Assessing the Quality of

Software Source Code," in Proceedings of the 2nd International Conference on

Advances in System Testing and Validation Lifecycle, 2010, pp. 43-48.

[96] Software engineering - Product Quality, 2011.

[97] J. McCall, P. Richards, and G. Walters, "Factors in Software Quality," US

Department of Commerce,1977.

[98] B. W. Boehm, Characteristics of software quality. Amsterdam and New York:

North-Holland, 1978.

[99] R. G. Dromey, "A Model for Software Product Quality," IEEE Transactions on

Software Engineering, Article vol. 21, no. 2, pp. 146-162, 1995.

[100] Systems and Software Engineering -- Vocabulary, 2010.

[101] J. Bansiya and C. G. Davis, "A Hierarchical Model for Object-Oriented Design

Quality Assessment," IEEE Transactions on Software Engineering, Article vol.

28, no. 1, pp. 4-17, 2002.

 248

[102] B. W. Boehm and P. N. Papaccio, "Understanding and Controlling Software

Costs," IEEE Transactions on Software Engineering, Article vol. 14, no. 10, pp.

1462-1477, 1988.

[103] G. A. Koru and H. Liu, "Building Effective Defect-Prediction Models in

Practice," IEEE Software, Article vol. 22, no. 6, pp. 23-29, 2005.

[104] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, "Early estimation of

software quality using in-process testing metrics: A Controlled Case Study," in

Proceedings of the 3rd workshop on Software quality, St. Louis, Missouri,

USA, 2005, pp. 1 - 7.

[105] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, "Early

Quality Prediction: A Case Study in Telecommunications," IEEE Software,

Article vol. 13, no. 1, pp. 65-71, 1996.

[106] Y. Jiang, B. Cuki, T. Menzies, and N. Bartlow, "Comparing design and code

metrics for software quality prediction," in Proceedings of the 4th International

Workshop on Predictor Models in Software Engineering, Leipzig, Germany,

2008, pp. 11-18.

[107] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software

Engineering, vol. 2, no. 4, pp. 308-320, 1976.

[108] S. Henry and D. Kafura, "Software Structure Metrics Based on Information

Flow," IEEE Transactions on Software Engineering, Article vol. 7, no. 5, pp.

510-518, 1981.

[109] D. N. Card and R. L. Glass, Measuring software design quality. Upper Saddle

River, NJ, USA: Prentice-Hall, 1990.

 249

[110] V. R. Basili, L. Briand, and W. L. Melo, "A validation of object-oriented design

metrics as quality indicators," IEEE Transactions on Software Engineering, vol.

22, no. 10, pp. 751-761, 1996.

[111] L. H. Rosenberg and L. E. Hyatt. (1997) Software Quality Metrics for Object-

Oriented Environments. CrossTalk.

[112] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented

Design," IEEE Transactions on Software Engineering, Article vol. 20, no. 6,

pp. 476-493, 1994.

[113] M. Lanza, R. Marinescu, and S. Ducasse, Object-oriented metrics in practice.

Berlin ; London: Springer, 2006, p. a 205 p.

[114] E. J. Weyuker, "Evaluating Software Complexity Measures," IEEE

Transactions on Software Engineering, Article vol. 14, no. 9, pp. 1357-1365,

1988.

[115] J. Tian and M. V. Zelkowitz, "Complexity Measure Evaluation and Selection,"

IEEE Transactions on Software Engineering, Article vol. 21, no. 8, pp. 641-

650, 1995.

[116] K. E. Emam, S. Benlarbi, N. Goel, and S. N. Rai, "The Confounding Effect of

Class Size on the Validity of Object-Qriented Metrics," IEEE Transactions on

Software Engineering, Article vol. 27, no. 7, pp. 630-650, 2001.

[117] G. A. Koru and J. Tian, "Comparing High-Change Modules and Modules with

the Highest Measurement Values in Two Large-Scale Open-Source Products,"

IEEE Transactions on Software Engineering, Article vol. 31, no. 8, pp. 625-

642, 2005.

 250

[118] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code. Addison-Wesley, 1999.

[119] E. V. Emden and L. Moonen, "Java quality assurance by detecting code

smells," in Proceedings of the 9th Working Conference on Reverse

Engineering, 2002, pp. 97-106.

[120] H. Leung and Z. Fan, Software Cost Estimation. Handbook of Software

Engineering and Knowledge Engineering, 2002.

[121] N. E. Fenton and S. L. Pfleeger, Software metrics : a rigorous and practical

approach, 2nd ed. Boston, MA, USA: PWS, 1997, pp. xii, 638 p.

[122] G. Hall and J. Munson, "Software evolution: code delta and code churn," vol.

54, no. 2, pp. 111–118, 2000.

[123] W. Li and S. Henry, "Object-oriented metrics that predict maintainability,"

Journal of Systems and Software, vol. 23, no. 2, pp. 111-122, 1993.

[124] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, "The evolution and

impact of code smells: A case study of two open source systems," in

Proceedings of the 3rd International Symposium on Empirical Software

Engineering and Measurement, 2009, pp. 390-400: IEEE Computer Society.

[125] S. Karus and M. Dumas, "Code churn estimation using organisational and code

metrics: An experimental comparison," vol. 54, no. 2, pp. 203–211, 2012.

[126] T. L. Graves and A. Mockus, "Inferring change effort from configuration

management databases," in Software Metrics Symposium, 1998. Metrics 1998.

Proceedings. Fifth International, 1998, pp. 267-273.

 251

[127] A. Mockus and L. G. Votta, "Identifying reasons for software changes using

historic databases," in Proceedings of the 16th International Conference

on Software Maintenance, 2000, pp. 120-130.

[128] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå,

"Quantifying the Effect of Code Smells on Maintenance Effort," IEEE

Transactions on Software Engineering, vol. 39, no. 8, pp. 1144-1156, 2013.

[129] K. E. Emam, "A Methodology for Validating Software Product Metrics," 2000.

[130] S. G. MacDonell, "Comparative review of functional complexity assessment

methods for effort estimation," Software Engineering Journal, vol. 9, no. 3, pp.

107 - 116, 1994.

[131] A. J. Albrecht, "Measuring Application Development Productivity," in IBM

Application Development Symposium., 1979, pp. 83 - 92.

[132] C. R. Symons, "Function Point Analysis: Difficulties and Improvements," IEEE

Transactions on Software Engineering, Article vol. 14, no. 1, pp. 2-11, 1988.

[133] R. D. Banker, R. J. Kauffman, and R. Kumar, "An Empirical Test of Object-

based Output Measurement Metrics in a Computer Aided Software Engineering

(CASE) Environment," Journal of Management Information Systems, Article

vol. 8, no. 3, pp. 127-150, 1991.

[134] L. H. Putnam, "A General Empirical Solution to the Macro Software Sizing and

Estimating Problem," IEEE Transactions on Software Engineering, Article vol.

4, no. 4, pp. 345-361, 1978.

[135] C. N. Parkinson, Parkinson (1957) Parkinson's law, and other studies in

administration. Boston: Houghton Mifflin, 1957.

 252

[136] A. J. Albrecht and J. E. Gafeney Jr, "Software Function, Source Lines of Code,

and Development Effort Prediction: A Software Science Validation," IEEE

Transactions on Software Engineering, Article vol. 9, no. 6, pp. 639-648, 1983.

[137] B. W. Boehm, Software cost estimation with Cocomo II. Upper Saddle River,

NJ: Prentice Hall, 2000.

[138] B. W. Boehm, C. Abts, and S. Chulani, "Software Development Cost

Estimation Approaches - A Survey," Annals of Software Engineering, vol. 10,

no. 10, pp. 177-205, 2000.

[139] C. F. Kemerer, "An Empirical Validation of Software Cost Estimation Models,"

Communications of the ACM, Article vol. 30, no. 5, pp. 416-429, 1987.

[140] F. J. Heemstra and R. J. Kusters, "Function point analysis: evaluation of a

software cost estimation model," European Journal of Information Systems,

vol. 1, no. 4, pp. 229-237, 1991.

[141] A. L. Lederer and J. Prasad, "Information systems software cost estimating: a

current assessment," Journal of Information Technology, Article vol. 8, no. 1,

pp. 22-33, 1993.

[142] R. T. Hughes, A. Cunliffe, and F. Young-Martos, "Evaluating software

development effort model-building techniques for application in a real-time

telecommunications environment," IEEE Proceedings-Software, vol. 145, no. 1,

pp. 29-33, 1998.

[143] I. Myrtveit and E. Stensrud, "A Controlled Experiment to Assess the Benefits of

Estimating with Analogy and Regression Models," IEEE Transactions on

Software Engineering, Article vol. 25, no. 4, pp. 510-525, 1999.

 253

[144] L. C. Briand, K. E. Emam, D. Surmann, I. Wieczorek, and K. D. Maxwell, "An

assessment and comparison of common software cost estimation modeling

techniques," in Proceedings of the 21st International Conference on Software

Engineering, Los Angeles, CA, USA, 1999, pp. 313-322.

[145] M. Shepperd, C. Schofield, and B. Kitchenham, "Effort Estimation Using

Analogy," in Proceedings of the 18th International Conference on Software

Engineering, Berlin, Germany, 1996, pp. 170 - 178.

[146] S. L. Pfleeger, F. Wu, and R. Lewis, Software cost estimation and sizing

methods : issues, and guidelines. Santa Monica, CA, USA: Rand Corp., 2005,

pp. xxvii, 97 p.

[147] F. Walkerden and R. Jeffery, "An empirical study of analogy-based software

effort estimation," Empirical Software Engineering, vol. 4, no. 2, pp. 135-158,

1999.

[148] M. Jørgensen and M. Shepperd, "A Systematic Review of Software

Development Cost Estimation Studies," IEEE Transactions on Software

Engineering, Article vol. 33, no. 1, pp. 33-53, 2007.

[149] M. Shepperd and G. Kadoda, "Comparing Software Prediction Techniques

Using Simulation," IEEE Transactions on Software Engineering, Article vol.

27, no. 11, pp. 1014-1022, 2001.

[150] C. Hinsman, N. Sangal, and J. Stafford, "Achieving Agility Through

Architecture Visibility," in Proceedings of the 5th International Conference on

the Quality of Software Architectures, Berlin, Germany, 2009, vol. 5581, pp.

116-129.

 254

[151] B. Flyvbjerg, "Five misunderstandings about case-study research," (in English),

Qualitative Inquiry, vol. 12, no. 2, pp. 219-245, 2006.

[152] Y. Guo et al., "Tracking technical debt - an exploratory case study," in

Proceedings of the 27th IEEE International Conference on Software

Maintenance (ICSM '11), 2011, pp. 528-531.

[153] N. Zazworka et al., "Comparing four approaches for technical debt

identification," Software Quality Journal, journal article vol. 22, no. 3, pp. 403-

426, 2014.

[154] Y. Guo, R. Spinola, and C. Seaman, "Exploring the costs of technical debt

management - a case study," (in English), Empirical Software Engineering,

Article vol. 21, no. 1, pp. 159-182, 2016.

[155] R. Marinescu, "Assessing technical debt by identifying design flaws in software

systems," (in English), IBM Journal of Research and Development, Article vol.

56, no. 5, pp. 9:1-9:13, 2012, Art. no. ARTN 9.

[156] P. Wang, J. Yang, L. Tan, R. Kroeger, and D. J. Morgenthaler, "Generating

precise dependencies for large software," in Proceedings of the 4th

International Workshop on Managing Technical Debt (MTD '13), 2013, pp. 47-

50.

[157] R. K. Yin, Case Study Research: design and methods, 2nd ed. Thousand Oaks:

Sage Publications, 1994.

[158] Y. Guo, C. Seaman, and F. Q.B. da Silva, "Costs and obstacles encountered in

technical debt management – A case study," Journal of Systems and Software,

vol. 120, pp. 156-169, 2016.

 255

[159] Y. Guo, C. Seaman, N. Zazworka, and F. Shull, "Domain-Specific Tailoring of

Code Smells: An Empirical Study," in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering, 2010, vol. 2, pp. 167-170.

[160] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, "User acceptance of

information technology: Toward a unified view," (in English), Mis Quarterly,

Article vol. 27, no. 3, pp. 425-478, 2003.

