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alignment methods to address the multidimensional character of activity patterns. The
theoretical background of the prediction model stems from micro-economic utility theory,
time-geographic theory on possibility and constraints, and psychological decision making
theory. The model predicts activity patterns as a result of a set of decision heuristics and
activity utility functions.

The measurement and prediction model are complementary in the sense that the
measurement model can be used to identify segments of homogeneous activity patterns so
that the prediction model can be estimated for each segment separately. The measurement
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1 Introduction

Following the seminal work of Pas (1982), Jones, et al. (1983) and Recker, et al. (1986a;
1986b), the transportation research community has gradually become interested in activity-
based analysis of transport demand. Especially since the mid-1990’s, the number of
publications in this area of research has rapidly increased. Two major streams of research
can be distinguished. On the one hand, activity-based analysis has led to a large literature on
the analysis (of facets) of complex activity-travel patterns, focusing on the classification of
such patterns, interdependencies between particular facets, and correlations between activity-
travel patterns and selected spatial and socio-demographic variables. On the other hand, it
has led to the development of models, which predict which activities are conducted, where,
when, where, for how long, with whom, and the transport mode involved. This wider set of
choice facets represents an attempt to build more comprehensive models compared to the
traditional four-step models, which only consider trip generation, transport mode, destination
and route choice. Progress in this area of research is reported in a series of progressive
resource papers (e.g., Recker & Kitamura, 1985; Pas, 1985; Kitamura, 1988; Axhausen &
Gärling, 1992; Jones, et al., 1993; Fox, 1995; Kitamura, et al., 1997; Bhat, 1997; Ettema &
Timmermans, 1997; Pas, 1998; Bhat & Koppelman, 1999; Timmermans, 2000;
Timmermans, et al., 2002a).

These resource papers witness the substantial progress that has been made in
developing complex models of transport demand. Activity-based models provide more detail
than the four-step approach and capture many interdependencies in activity-travel behavior.
Nevertheless, because these models typically are based on cross-sectional data, they still are
primarily suited to predict the effects of infrastructure and land use planning on transport
demand and traffic flows. They try to capture the structural relationships between the urban
and transport environment, the institutional context, socio-demographics and particular
facets of activity-travel patterns.

From a policy perspective, however, in many countries transportation policy is no
longer concerned only with the physical planning of the transportation network and land use,
but also with transportation demand management (Watterson, 1993). These policies, which
focus on the optimal use of the existing infrastructure, including congestion pricing, road
guidance and other ITS technologies, primarily have an impact on the implementation of
activity agendas on a short-term basis. To predict the impact of such policies on activity-
travel patterns, comprehensive models of activity scheduling and rescheduling behavior are
required.

An examination of the relevant literature indicates that such dynamic models do not
yet exist. Transportation demand management has led to a new model development, but such
models typically focus on isolated facets of the dynamics of activity-travel behavior. For
example, several models of departure time dynamics have been developed (e.g., Mannering,
1989; Mannering & Hamed, 1990; Caplice & Mahmassani, 1992; Mannering, et al., 1994;
Chin, 1990; Mahmassani & co-workers, 1990, 1991, 1998), but these models do not trace the
impact of departure time dynamics on the timing and duration of activity schedules.
Similarly, several studies have examined route switching behavior (e.g., Nakayama, et al.,
2001; Srinivasan & Mahmassani, 2002), but again implications on other facets of activity-
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travel patterns were typically not incorporated in the modeling attempt. There have been
some empirical studies on scheduling and rescheduling behavior (Doherty & Miller, 2000;
Chen & Kitamura, 2000), and even some proposals for conceptualization (Gärling, et al.,
1998; Doherty & Axhausen, 1999), but to date this has not (yet) led to comprehensive,
operational models of activity-rescheduling behavior.

Given this state of the art, this PhD project sets out to explore the possibilities of
developing a comprehensive model of activity rescheduling behavior. The aim of the model
is to predict activity schedule adaptations in response to changes in the transportation
environment. When faced with a changing transportation environment, time pressure or
unexpected events, individuals may decide to adjust any facet of their activity-travel
schedule (timing, duration, sequence, destination, mode, etc.) or any combination of these
facets.  The envisioned model should allow the prediction of adaptation in any combination
of these choice facets. Especially, the model should be sensitive to the sequencing of
activities. A study of adaptation behavior requires a measure that can capture the similarity
in the sequences of activities (and other facets) between activity-travel patterns and that can
be used to classify activity-travel patterns. Because such a measure was not readily available,
except perhaps the measure suggested by Recker, et al. (1985, 1986a, 1986b), a second goal
of this thesis was to formulate and test such a measure.
  Thus, the following research questions were formulated to guide the project:

•  How can activity-(re)scheduling behavior be conceptualized, taking into account
variability in behavior and different decision styles?

•   How can this conceptual framework be represented in terms of a mathematical model?

•   Knowing that any model of (re)scheduling behavior would necessarily be complex, how
can the parameters of the model be estimated?

•  What is the best way of measuring the multidimensional nature of activity-travel patterns,
taking into account the embedded sequence of activities?

This thesis reports the analyses that were conducted to provide an answer to these research
questions and the results that were obtained. The thesis is organized into two parts and nine
chapters. Part I deals with the measurement of similarity of activity-travel patterns, while
Part II is concerned with a model of activity (re)scheduling behavior. Following this
introductory chapter, Chapter 2 provides a brief review of the relevant literature. It should be
emphasized from the very beginning that this chapter is not meant to be a comprehensive, in-
detail review of activity-based analyses in general. Rather, this chapter will discuss in some
detail previous research that has some direct relevance to the problems that are addressed in
this thesis. In particular, we will discuss previous proposals of measuring activity-travel
patterns. The review serves to better understand the part of this thesis that is concerned with
the measurement of similarity of activity-travel patterns, capturing cross-sectional,
sequential and interdependency relations between individual events and between facets
embedded in the activity-travel behaviors. In addition, we will focus on previous work on
conceptualizing, modeling and predicting activity-travel dynamics in response to changes in
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the transportation environment. This review serves to position our conceptualization and
modeling of activity (re)scheduling behavior. The studies on respectively the measurement
and prediction of adaptation in activity-travel patterns are complementary.

Based on this general review, Chapter 3 then discusses the fundamentals of the
sequential alignment and illustrates one of possible ways to modify the original method to
deal with a particular problem of analyzing activity-travel patterns. Chapter 4 then develops
an extension of the sequence alignment methods, originally proposed in molecular biology.
This is followed by an empirical analysis to examine the validity of the proposed theory and
method. In particular, the analysis is concerned with a comparison of the performance of the
proposed method with other existing methods in terms of the appropriateness of the
information presented and computing time. The latter is highly relevant when the proposed
similarity measure is to be used for larger samples. Therefore, considerable effort was made
in developing heuristic methods to reduce the required computing time.

Having developed an appropriate multidimensional similarity measure and the
corresponding algorithms, Part II then reports on the development of the model of
rescheduling behavior, which was given the acronym A urora (Agent for Utility-driven
Rescheduling Of Routinized Activities). First, Chapter 5 discusses the development of a
comprehensive theory, model and implementation algorithm of activity-travel scheduling
and rescheduling behavior. The model is meant to simulate how travelers react to time
pressure and unexpected events by dynamically adjusting an existing schedule. An
illustrative example is presented using a simulated transportation environment to examine
the face validity of the model.

Having provided evidence of the face validity, the next step is to apply the model to
empirical data. This requires a method to estimate the model, which is far from a
straightforward task given the combinatorial nature and complexity of the proposed model.
In Chapter 6, we report on the development of an estimation method. The suggested
estimation method is first tested on simulated activity schedule data, examining whether the
estimation method can reproduce a ‘known’ set of parameters used to generate the simulated
data. The test is conducted first for deterministic schedule data and then for data
incorporating simulated noise of different magnitude to examine the extent to which the
suggested estimation method is robust for noisy data.

Explorations of several alternatives led to the identification of a sequential estimation
method that worked well for the simulated noisy data. This method was applied to activity-
travel data that were collected in the Amsterdam-Utrecht corridor in The Netherlands. The
results are presented in Chapter 7. First, method was applied to estimate a single set of
parameter values for the complete sample. Secondly, in addressing the problem of
heterogeneity, the proposed method was applied to estimate different sets of parameter
values for segments of more homogeneous activity patterns. The multidimensional similarity
measure that was developed in Part I was used to identify homogeneous groups of activity-
travel patterns. The estimation results are examined with regard to the profiles that define
each group and are compared between groups.

Chapter 8 then concludes the thesis. The chapter summarizes the modeling efforts
and analyses. This is followed by a discussion of the interpretation and implication of the
results. The chapter ends with some discussion of the future research agenda and a plan of
implementation of the developed models.
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2 Measuring and Predicting Activity-Travel Behavior: A

Literature Review

2.1 Introduction

Most travel behavior is the result of an implementation of a particular set of activities. The
activity-based approach was advocated to analyze and predict travel behavior, resulting from
such interrelated activity decisions. It implies an understanding of the holistic and dynamic
nature of the interrelated activity decisions. Decisions related to the implementation of a
particular activity are often hard to understand without information about the other activities
included in the schedule for a day, a week or a month.

Of central interest therefore are previous attempts to classify comprehensive activity-
travel patterns and describe the resulting segments in terms of some key underlying
attributes. In addition to being a relevant research stream in its own right, the various
approaches towards classifying activity patterns is of central interest in the context of
identifying prototypical patterns that may be used in subsequent modeling efforts (e.g.,
Recker, et al., 1985, 1986a, 1986b). In this chapter, we will therefore first summarize the
existing literature on the measurement of the similarity of activity-travel patterns and
evaluate this literature for the purpose of segmentation.

As indicated in the introduction, the second primary goal of this thesis is the
formulation and test of a model of activity (re)scheduling behavior. To position this model in
the literature, we will also briefly review existing models and modeling approaches, which
aim at predicting activity-travel patterns. First, we will consider cross-sectional approaches.
Because the ultimate goal of our efforts is concerned with choice dynamics, we will continue
discussing dynamic models. In particular, we will first discuss some of the models that have
been suggested to predict the dynamics of single facets of activity-travel patterns such as
route choice and departure time choice. Then, we will discuss some relevant
conceptualizations and models that have been suggested to simulate the dynamics of
comprehensive activity travel patterns.

It should be emphasized from the very beginning that this chapter is not meant to be
a comprehensive, in-detail review of activity-based analyses in general. Rather, this chapter
will discuss in some detail previous research that has some direct relevance to the problems
that are addressed in this thesis. This chapter is organized as follows. First, Section 2.2
provides a literature review of alternative ways of measuring the similarity between activity-
travel patterns. The review will focus on particular measures that cover particular aspects of
information embedded in activity-travel patterns. Section 2.3 then provides a review of the
literature on predicting activity-travel behavior. The review will focus on the research that
has attempted to to develop a truly activity-based approach that captures interrelated,
dynamic choices of activity-travel behavior.
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2.2 Measuring activity-travel behavior

2.2.1 Measurement purposes

The measurement of activity-travel patterns has raised significant interest in geography,
regional science and transportation research in the past. Multidimensional or multivariate
activity-travel patterns have been measured in terms of such crucial attributes as activity type,
activity location, start and end time, duration, transport mode, etc. In this line of research, the
measurement typically served two different purposes. First, a fundamental assumption of
activity-travel analysis is that particular characteristics of individuals and households and
contextual situations are systematically related to their activity-travel patterns (Hanson,
1982; Pas, 1984; Golledge & Stimson, 1987; Hanson & Hanson, 1993; Strathman, et al.,
1994). To explore this assumed relationship, the similarity between observed activity-travel
patterns has formed the basis for classifying and identifying homogeneous activity-travel
patterns. A matrix of similarities between observed activity-travel patterns is used as input
for a subsequent cluster analysis. The resulting cluster memberships or representative
activity patterns were then typically correlated with individuals’ locational and/or
sociodemographic characteristics. Examples include Hanson & Burnett (1981), Pas (1983,
1984), Koppelman & Pas (1985), Golob & Recker (1987), Hanson & Hanson (1993) and
Cha, et al. (1995). Another example is the work on space-time prisms, which have been
suggested to identify and explain interactions between individuals’ behavior and social-
institutional settings (Hägerstrand, 1970; Lenntorp, 1978; Pred, 1977, 1981a, 1981b; Thrift,
1983). Yet another example is the analysis of intrapersonal variability in activity-travel
patterns across the days of the week (Hanson & Huff, 1986, 1988; Pas & Koppelman, 1986;
Pas, 1988).

Secondly, the measures have been used to quantify the goodness-of-fit in assessing
how well observed activity-travel patterns are predicted by some activity-based model of
travel demand. Examples include Kitamura, et al. (1995) and Arentze, et al. (2001c).
Because activity-based models aim at predicting which activities are conducted where, when,
for how long, and the transport mode involved (Ettema & Timmermans, 1997), the
measurement of activity-travel patterns typically involve multiple variables, constituting the
multidimensional nature of activity-travel patterns.

2.2.2 Key measurement facets

In general, the formal properties of the measurement of activity-travel patterns should
capture the specific needs underlying the goals and objectives of the analysis. Many
applications require some representation of nominal and interval information. As argued in
Chapter 1 for the contextual approach, it is critical to realize that in addition to such nominal
and interval information, sequential information and information about interdependencies in
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activity-travel patterns are also crucial in these applications. Because activity-travel patterns
imply by definition a sequence of activities, any valid measure should allow one to quantify,
in addition to the composition of attribute elements, the sequential information of activity-
travel patterns. Sequential relationships are in particular a primary concern in research on
trip chains, activity sequencing, and sequential choice of activities and locations,
acknowledging that consecutive activities likely affect one another (Kitamura, 1984a;
Hatcher & Mahmassani, 1992; Arentze, et al., 1993; Kitamura, et al., 1996a; Timmermans,
1996; McNally, 1997). Moreover, because the choices of destination, travel mode, activity
type, etc. are likely interrelated (Gärling, et al., 1997; Arentze, et al., 2001c), any valid
measure should also incorporate such interdependencies in the quantification of the
measurement. Three existing representative groups of measures of activity-travel patterns
will be evaluated along these lines in the following section.

2.2.3 Measurement methods

Euclidean measures

The first group considers the element composition of activity-travel patterns and compares
the corresponding elements of two activity-travel patterns to quantify their difference. Some
scholars have suggested distance measures, using metric information, to quantify the
difference between activity-travel patterns (e.g., Cha, et al., 1995; Ma & Goulias, 1997).
Others have explored the problem of incorporating qualitative information of activity-travel
patterns (e.g., Burnett & Hanson, 1982; Pas, 1983; Golob, 1985). Differences in attributes
are summed across attributes to produce an overall measure of difference between the
activity-travel patterns.

Perhaps the best known of these measures is Pas’ (1983) similarity index, originally
developed in botanical taxonomy (Gower, 1971). Pas identified differences in the attributes
of activity-travel patterns using a generalized distance measure, and the sum of such
differences across choice dimensions was taken as a measure of difference between activity-
travel patterns. A hierarchical pattern description first identifies whether a stop (primary
attribute) is made at a particular moment and then describes the details (secondary attributes
such as activity type, timing, etc.). In equation:
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where,

cosφsg is a measure of similarity between activity-travel patterns s and g;
α is a relative weight assigned to the primary attribute;
β is a relative weight assigned to the group of secondary attributes (α + β = 1);
Wk is a normalized weight assigned to the kth secondary attribute, relative to other secondary
attributes;
L and l are respectively max[m,n] and min[m,n], where m and n are the number of stops in s
and g;
Skhsg is a similarity measure on the kth secondary attribute of the hth stop (h = 1, …, H where H
= l = min[m,n]);
skh and gkh are observed values for s and g on the kth secondary attribute of the hth stop.

The direction cosine between two H-element vectors a
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numerator in equation (2.1) corresponds to the outer product of this direction cosine and is
determined by the weighted sum of similarities across primary attribute and secondary
attribute group. If two vectors are completely identical in terms of primary and secondary
attributes, then cosφsg = 1. If two vectors are completely different, then cosφsg = 0. Note that
the expression, H = l = min[m,n] implies that no comparison is made for the (l+1)th, …, Lth

activities of the longer pattern because the details of the secondary attributes of the shorter
pattern are not defined.

The cosine similarities are then transformed into inter-point distances to locate
activity-travel patterns in Euclidean space by using Gower’s (1966) principal coordinate
method:

)cos1(2),( sggs φ−=d (2.3)

Pas (1984, 1988) subsequently used these inter-point distance measures as input for Ward’s
cluster algorithm.

The measure however does not properly capture the sequential information
embedded in each attribute sequence. Consider, for example, activity-travel pattern 1-2-3
and activity-travel pattern 3-1-2. Pas’ similarity index would indicate that the distance
between the two patterns is equal to 3 units because all corresponding activities differ (1≠3,
2≠1, and 3≠2), and hence, the two patterns are completely different. The same result would
be obtained if pattern 1-2-3 would be compared to its reverse order 3-2-1. The difference in
the former comparison is however merely due to the difference in position of activity 3
between the two patterns, and the costs for changing the order of only a single activity might
be smaller than the costs for substituting all three activities.

Koppelman & Pas (1985) realized this characteristic of their measure, and therefore
suggested to consider a linear assignment programming technique to overcome the problem.
The technique measures the extent to which the patterns have elements in common without
considering the possible differences in sequence between the patterns. Consider the above
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two patterns of 1-2-3 and 3-1-2 again. As their linear assignment pairs the common elements
without additional costs for matching the sequential order, these two patterns would then
become identical. This approach would provide the same results with comparison of patterns
having the elements ‘1’, ‘2’ and ‘3’ of any order, while the result would be different for a
comparison with a pattern of for example 4-1-2. Hence, their suggested approach does not
solve the problem of sequential information.

Signal processing theoretical measure

The second group of measures is concerned with both element composition and sequential
order of activity-travel patterns, but considers each attribute dimension separately. An
example is Recker, et al.’s (1985, 1986a, 1986b) feature extraction method, based on the
Walsh/Hadamard transformation, originally developed in signal processing theory (Young &
Calvert, 1974). Each activity-travel pattern is encoded by a pattern matrix consisting of
column vectors of attribute elements that respectively denote the temporal variation of the
distance from home and binary indices of different activity types and transport modes. Each
column vector is then transformed into a column of coefficients, each characterizing the
element’s sequence in terms of the degree of correspondence against the sequences of
various binary Walsh functions. Finally, the column vectors of Walsh/Hadamard-
transformed attribute elements are cluster-analyzed to classify the activity-travel patterns. In
equation:

NHHHNH ×××
⋅= XHY (2.4)

where,

H is the designated number of time slices a day;
N is the total number of levels across attributes (for example, when there are 5 different
activity types, 10 locations and 5 travel modes considered, N = 5+10+5 = 20);
X is an original activity-travel pattern matrix that consists of N column vectors, each
encoding the presence or absence of the level of a nominal attribute or the distance from
home (location attribute) at each time slice;
H is Walsh/Hadamard transformation matrix consisting of H binary Walsh functions that
define specific sequences and are orthogonal to each other;
Y is the transformed activity-travel pattern matrix that consists of N Walsh/Hadamard
feature coefficient vectors, each defining the sequence of the attribute’s level in terms of the
degree of correspondence against H different binary Walsh functions’ sequences.

Their method takes the sum of differences in corresponding coefficients between Ys
as a measure of dissimilarity between activity-travel patterns. The distance between s and g
is thus defined as:

∑∑ −=
n h

hnhn
gsd ),( gs (2.5)



10                                                              Measuring and Predicting Activity-Travel Behavior

where, shn and ghn are the nth feature coefficient of the hth time slice of s and g’s Ys,
respectively (n = 1, …, N where N is the number of columns of Y, and h = 1, …, H’ where
H’ (≤ H) is the number of feature coefficients taken from the first in each column of Y).

Because the differences in the coefficients are summed independently, this approach
excludes the possibility of collective comparison of multiple elements of different attributes
between activity-travel patterns. When the sequences of the presence and absence of
elements of different attributes over a time period are interdependent, a distance measure
should recognize the collective decisions made for the elements of different attributes
instead of measuring them separately. Consider, for example, two two-dimensional patterns

1 and 2, 
bac

BAC
 and 

cba

CBA
. Clearly, the attributes are perfectly correlated, and

therefore, a distance should be measured on a collective change of the first activity 
c

C
 of

pattern 1 into the last position. Recker, et al.’s measure calculates the costs for changing the
orders of C and c independently and produces a sum of these costs without recognizing the
interrelated decisions between activity contexts, C and c (as well as A and a, and B and b).

Evaluation

The literature review indicates that the existing methods measuring similarity between
activity-travel patterns do capture cross-sectional, sequential or interdependency relations
between scheduling decisions embedded in the multidimensional, multivariate activity-travel
patterns, but not all of them. The Euclidean measure involving the concept of primary and
secondary attributes focuses on the interdependencies across choice facets, but is incapable
of capturing the sequential relations between activities implemented in the pattern. The
signal process measure explicitly takes into account the sequence of a particular activity
attribute but does not incorporate the possibility of collective decision-making across choice
facets. Structural relationships between activities and choice facets may exist (Gärling, et al.,
1997), and a measurement method should take both into account to provide an accurate
measure of distance in behavioral space.

2.3 Predicting activity-travel behavior

In this section, we will review the literature on predicting activity travel behavior. First, we
will consider comprehensive activity-based models of transportation demand forecasting.
Next, models of dynamics of activity travel behavior will be discussed.
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2.3.1 Comprehensive models of transportation demand forecasting

Comprehensive models of activity-travel patterns focus on multiple, interrelated choice
facets that characterize activity-travel patterns. Several modeling approaches have been
suggested in the literature. These approaches can be labeled as constraints-based models,
utility-maximization models and computational process models. Constraints-based models
have their roots in time geography, utility-maximization models stem from microeconomic
theory and psychology, while computational process models have been inspired by
psychological decision process theories.

Constraints-based models

These models typically examine whether particular activity patterns can be realized within a
specified time-space environment. These models require as input activity programs, which
describe a set of activities of a certain duration that can be performed at certain times. The
space-time environment is defined in terms of locations, their attributes, available transport
modes and travel times between locations for various transport modes. One of the attributes
of interest is the opening hours of the facilities at that location. To examine the feasibility of
a certain activity program, a combinatorial algorithm is typically used to generate all
possible activity sequences. The feasibility of each sequence is then tested by checking
whether (i) the interval between the end time of the previous activity and the start time of the
next activity is sufficient to travel between locations; (ii) the activity can start after the
earliest possible start time and be finished before the latest possible end time, (iii) conditions
about the sequencing of activities are not violated. The number of feasible activity schedules
is often used as a measure of the flexibility that the time-space environment offers.

One of the first models in this tradition is Lenntorp’s (1976) PESASP model. A
similar model is CARLA, which basically is a combinatorial algorithm for generating
feasible activity patterns (Jones, et al., 1983). Huigen (1986) proposed another combinatorial
algorithm, BSP. This program is similar to CARLA in that it evaluates the options to
maintain the current activity pattern in a changed spatial-temporal setting. However, as
PESASP, it does so by exhaustively evaluating all possible sequences of activity/destination
combinations. Furthermore, there are minor differences with respect to how constraints are
incorporated. It allows that different trips in a chain are made by different modes. Another
difference is that it defines available time windows specifically for destinations and not for
activities.

Another similar model is MASTIC (Dijst & Vidakovic, 1997). Its goal is to identify
the action space of individuals, using the notion of a space-time prism. A potential action
space is defined as the area containing all activity locations that are reachable, subject to a
set of temporal and spatial constraints, including type and location of activity bases,
available time interval, travel speed, and the travel time ratio.

Kwan’s (1997) GISICAS can be classified as a constraints-based model as well,
although it also makes references to computational process models. Given an activity agenda,
this GIS-based system begins scheduling by fitting the activities on the agenda into the free
time a person has, and orders them into a sequence. Activities with higher priority are ordered
first, and the time constraints for performing certain activities are also taken into account.
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Various search heuristics can be specified to identify the locations where the activities can be
carried out. The system then reports a preliminary schedule and also lists the activities that
cannot be scheduled. The spatial search is based on a dynamic identification of feasible
locations.

A limitation of constraints-based models is that they lack the necessary mechanisms to
predict adjustment behavior of individuals. When faced with a changed time-space
environment, individuals are likely to adjust/reschedule their activity programs. Constraints-
based models, however, do not attempt to predict such behavior.
  
Utility-maximization models

The evolution of utility-maximizing models of activity patterns more or less followed the
general progress made in discrete choice modeling. In the beginning, the interest was on
applying multinomial logit models to predict the probability that a full activity profile is
selected. The seminal work by Adler & Ben-Akiva (1979) and Recker, et al. (1986a, 1986b)
are examples of this approach. Later, nested logit models of increasing complexity were
developed.

Perhaps the most advanced, nested logit model in this tradition is the daily activity

schedule model, initially proposed by Ben-Akiva, et al. (1996). Considerable progress has
been made since. A prototype was developed for the Boston area (Bowman & Ben-Akiva,
1995), and later implemented for travel forecasting in Portland (Bowman, et al., 1998). At
the core of their model is a daily activity schedule, which represents the individual's demand
for activity and travel as a multidimensional choice encompassing all the combinations of
activity and travel an individual might choose through the course of a day. A schedule
consists of a set of tours, which are organized and tied together by a daily activity pattern.
The daily activity pattern is characterized by (a) a primary activity, with one alternative
being to remain at home for all the day's activities; (b) the type of tour for the day’s primary
activity, including the number, purpose and sequence of activity stops; and (c) the number
and purpose of secondary tours. For each tour in the daily activity pattern the tour schedule
includes the choices of destinations for activities in the tour as well as the mode and timing
of the associated travel.

The choice of a daily activity pattern determines the number of secondary tours in the
daily activity schedule. The choices of secondary tour time, destination and mode are
conditioned upon the choice of a daily activity pattern. For daily activity patterns with two or
more secondary tours, the conditional choice probabilities of the secondary tours are
mutually independent, calculated from the same models. This approach ignores time and
space constraints across secondary tours, but simplifies the model structure. It would be
possible to incorporate these constraints using a conditional tertiary tour model, but at a large
cost in terms of complexity. The model structure is further simplified by removing
secondary destinations from the tour schedules. The destination and mode choice model
involves the choice of a mode for the tour, instead of the usual choice of mode for a trip. A
rule was selected to assign the sample to one of six modes, including auto drive alone, auto
shared ride, transit with auto access, transit with walk access, walk and bicycle. Other
examples of nested logit models include Wen & Koppelman (1999) and Fosgerau (1998).

These nested logit models of activity-travel patterns have the advantage of being



Measuring and Predicting Activity-Travel Behavior                                                              13

founded in a well-established statistical methodology and economic theory. However, there
are some theoretical and operational limitations. In order to be consistent with the theory of
utility-maximizing behavior, the estimated parameters of the model need to satisfy particular
constraints. However, most operational models have resulted in parameter values that do not
satisfy these constraints, placing doubt on the theoretical basis of the model and/or the
parameter estimation process and/or data quality. Another potential disadvantage is that
temporal, spatial and institutional constraints are usually not systematically included in the
model, implying that the domain of policy application of this modeling approach is rather
limited. Finally, in order to be able to estimate the model, researchers have to dramatically
reduce its complexity, limiting the number of activities, tours, etc.

The above models are all based on revealed preference data. In contrast, Cobra

(Wang & Timmermans, 2000) has been based on conjoint choice experiments. The
complexity of the choice problem required the authors to develop new experimental design
strategies (Wang, et al., 2000a, 2000b). The model specification however was the same: a
nested logit model was used. Although their study demonstrated the potential of the newly
developed methodologies, it is doubtful whether conjoint experiments suffice to build a
comprehensive activity-based model. As discussed in more detail by the authors, the
problem is simply too complex and would require a major data collection effort and
substantial finances.

The Prism-Constrained Activity Travel Simulator (PCATS) has been developed by
Kitamura & Fujii (1998). It is a system that simulates activity-travel behavior while
considering prism constraints, availability of travel modes, and recognition of potential
activity locations. Unlike the previous models that model the choice of activity pattern as a
nested structure, PCATS assumes that individuals maximize the utility associated within the
open periods, subject to the above constraints. The utility associated with a particular
activity-travel pattern is assumed to be the sum of the utility associated with activities and
trips.

Bhat (1999) developed a comprehensive framework for activity-travel generation.
This framework considers workers only. Their activity-travel pattern is divided into several
periods: before morning commute pattern, morning commute, midday patterns, evening
commute and post-home arrival pattern. These patterns are described by a series of
characteristics, including number of tours, number of stops, mode choice, etc. Bhat
suggested a series of models to predict these components. Although these have been largely
published as isolated modeling efforts, when used in combination, it will result a
comprehensive modeling approach. Misra, et al. (2003) extended this modeling effort to
handle non-workers’ activity schedules.

Computational process models

The assumption of utility-maximizing behavior, characteristic for the models discussed in
above, has been criticized by some scholars, arguing that individuals do not necessarily
arrive at “optimal” choices, but rather use context-dependent heuristics. Computational
process models constitute a powerful theoretical approach that conceptualizes choices as
outcomes of such heuristics.

The first model in this line of research is SCHEDULER, developed by Gärling, et al.
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(1989). It is primarily a conceptual framework for understanding the process by which
individuals organize their activities. Individuals and households are assumed to try and attain
certain goals. Activities are defined as means, which the environment offers to attain these
goals. Choice of participation in activities is determined by preferences in conjunction with
prior commitments and constraints. Activity scheduling entails an interrelated set of
decisions made by the individual, interactively with other (household) individuals,
concerning who will participate in the activities, when, where, for how long, and how to
travel between locations where the activities can be performed. SCHEDULER has been
operationalized in the form of a production system, which chooses the activities that are
subsequently performed at particular locations. The model has been applied to predict the
activity patterns of commuters after the introduction of telecommuting (Golledge, et al., 1994).
In a series of separate papers, parts of the model were further elaborated. Gärling, et al. (1999)
for example investigated the role of anticipated time pressure in activity scheduling. Many
aspects of the model, however, need further development and operationalization.

Another model system that bears some resemblance with computational process
modeling, is AMOS, a dynamic micro-simulator of household activities and travel over time
and space (Pendyala, et al., 1998). AMOS is an activity-based model of travel decisions that
simulates the scheduling, and adaptation of schedules and resulting travel behavior of
individuals and households. The model is a very useful approach for policy impact
assessment, but it does not represent a generalized approach. Data needs to be collected
specifically for each application.

Certain components of AMOS are very similar to Smash (Ettema, et al., 2000). This
model concentrates on the process of activity scheduling. The scheduling process is assumed
to be a sequential process consisting of a number of consecutive steps. In every step the
schedule, which is empty at the beginning of the process, can be adjusted by one of the
following basic actions: (i) adding an activity from the agenda to the schedule; (ii) deleting
an activity from the schedule; (iii) substituting an activity from the schedule with an activity
from the agenda; (iv) stopping the scheduling process. By repeatedly applying one of these
basic actions, the schedule is constructed and adapted until a satisfactory schedule is created.
To identify feasible scheduling decisions at each stage of the scheduling process, scheduling
decisions are subject to several constraints. A nested logit model is used to operationalize
this notion. The higher nest contains the decision to stop the scheduling process and accept
the current schedule, or to add, delete or reschedule an activity. The lower nest describes the
choice of the specific add, delete and reschedule options. The model was primarily
developed as a process model. It does not have a lot to offer as a planning tool.

The latest, most comprehensive and only operational computational process model is
A lbatross (Arentze & Timmermans, 2000). It can be considered a multi-agent rule-based
system that predicts activity patterns. The system consists of a series of agents that together
handle (the consistency of) the data, the derivation of choice heuristics from activity diary
data, the simulation or prediction of activity patterns, the assessment and reporting of model
performance, the calculation of various system performance indicators, and the evaluation of
alternative model scenarios.

The core of the system is the scheduling engine. It controls the scheduling processes
in terms of a sequence of steps. In each step, the scheduling engine identifies the condition
information required for making principal scheduling decisions, sends appropriate calls to
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agents for the required analyses, passes the obtained information to the rule-based system
and translates returned decisions into appropriate operations on the current schedule. An
initial schedule is derived from the given activity program in terms of the activities that need
to be performed that day as a consequence of longer-term commitments (i.e., job contract),
household constraints (e.g., bringing children to school) and, possibly, other pre-scheduling
decisions. Scheduling then involves selecting activities to add to the skeleton formed by
these fixed activities and, next, determining the schedule position and profile of each added
activity. The sequence of steps intends to simulate the way individuals solve the problem.
Several important extensions are realized in the second version of A lbatross. The most
important extension concerns the generation of schedule skeletons on a continuous time
scale, which in the original version was taken as given.

Typical for computational process models, reactions are mixed. Computational
process models are based on a large number of rules that represent context-specific behavior.
As such, they lack the appeal of a simple algebraic equation and generate the feeling of a
black box. Moreover, the derivation of decision rules from empirical data, which serves the
same role as parameter estimation in utility-maximizing models, is often seen as lacking
statistical, econometric rigor. This is true in the sense that the extracted rules do not have
error bounds and that the approach is not founded in statistical error theory. On the other
hand, the theoretical premises of this modeling approach and its flexibility in defining
complex interdependencies among facets of activity-travel patterns and incorporating more
facets, do have appeal in that different kinds of spatial, transport and economic policies can
be evaluated. Moreover, there is some evidence of better predictive performance (Arentze, et

al., 2001c). Considerable more work however is required to draw more definitive
conclusions.

Evaluation

This subsection discussed some key models that try to predict comprehensive activity-travel
patterns. The so-called activity-based approach has been an important step forward in the
sense that compared to earlier approaches it considers the dependencies between multiple
facets of activity-travel patterns. Arguably, there are two important aspects on which
existing activity-based models can be compared, namely the treatment of constraints and the
treatment of time (continuous or discrete). Although the activity-based approach allows one
to incorporate choice constraints in a more integrated fashion and to predict activity and
travel on a continuous time scale, not all of existing models fully realize this potential. First,
PCATS and A lbatross are the only operational models to date that realize full-fledged
interactions while taking into account a full set of constraints. Secondly, unlike other models,
A lbatross, PCATS and Bhat’s model address continuous time allocation, which is more
realistic and provides more detailed information. The existing models certainly represent a
step forward. However, all comprehensive models still have the cross-sectional property and,
therefore, heavily focus on the static correlation between observed behavior and explanatory
variables. They are static in the sense that they lack the possibility of adaptation during the
implementation of schedules.
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2.3.2 Studies on the dynamics of travel behavior and decision making process

The above review of the existing literature indicates that most comprehensive models of
activity-travel patterns have focused on structural properties. Very few of these models
include principles and mechanism to adapt activity schedules. This is not to say that models
of dynamic choice behavior are completely missing. Existing dynamic models however
typically are concerned with a single aspect of activity-travel patterns and have often been
developed to predict the impact of ITS on a particular aspect of travel behavior.

The dynamics of travel-behavior are driven by learning over time and short-term
adaptation based on within-day rescheduling. Both areas of research will be reviewed in this
section successively.

Travel-behavior dynamics based on learning

Starting point of many of these models is that transport systems and urban environments are
highly dynamic, non-stationary and uncertain. An excellent review about learning can be
found in Timmermans, et al. (2003). Travelers’ information is limited, imperfect and often
biased (Arentze & Timmermans, 2003). Their day-to-day decisions in activity-travel choice
rely on the experience of previous choices, which facilitates and guides the adaptations in a
long-term.

Arentze & Timmermans (2003) developed a model of learning and adaptation in
activity choice, where memory and search play an important role. Individuals explore choice
opportunities through search and keep a memory of cumulative reward or punishment based
on the implementation experience. The choice between exploration and exploitation of
current knowledge is reflected in the learning mechanism that they proposed. This includes a
reward function that simulates good or bad outcomes of implemented actions, a value
function that integrates the rewards received in the past to assess the current value of an
action, and a policy that defines a choice of an action given a perceived state of the
environment and action values. An event, which is the unit of experience, is stored in a long-
term memory defined as:

),,,,( ρwrx te = (2.6)

where,

x is a vector of values of attributes;
r is a vector of reward values related to particular objectives of the individual;
t is an index of the time moment when the event took place;
w is a vector of weights related to particular objectives;
ρ is the retrievability of the event from the memory.

Equation (2.6) expresses that the memory of the system stores attribute information
together with the reward value received for each event. Only the subset of attributes believed
relevant or potentially relevant for predicting rewards of events is included. Reward is a
numeric value of the intrinsic desirability of an event. Individuals have multiple objectives
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and are able to evaluate an event in relation to each objective differently. The reward
function can be written as:

tggtg fr ε+= )( *x (2.7)

where,

ft is a time-varying and individual-specific function;
xg is a vector of event attributes relevant for objective g;
εtg is a stochastic error component for objective g at time t.

The weight vector represents for each objective the perceived strength of the
association between event and reward. As the memory of an event may decay over time, a
retrievability parameter represents the strength of the memory trace or the ease with which it
can be retrieved from the memory. The goal of learning is assumed to maximize aggregate
reward as:
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where,

T defines a sufficiently long time horizon;
rt is the aggregate reward value for the tth event;
at is the vector of chosen levels for the attributes.

Accordingly, action selection refers to the problem of choosing a certain action in a
given state, based on its expected return. The value of an action should reflect the expected
return. The suggested specification of the incremental action update value function for a
given action facet k is:

ttatittatit rwQwQ αα +−=+ ),(,),(,1 )1( (2.9)

where,

Qt+1,i(t),a is the expected reward for choosing action a at time t+1 in state i;
α is a step-size parameter;
wt is the relative weight of the event.

This value function assigns a higher weight to a more recently received reward. Then,
a possible action-selection method selects an action a with probability:
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where, τ is a positive parameter. This selection function is a so-called softmax action-
selection rule based on Boltzmann distribution.

Learning and adaptation define dynamics of travel behavior, which is an important
area of transport research. Timmermans, et al. (2003) showed that much of the literature on
dynamic route and departure time choice can be viewed as special cases of this overall
framework. Related studies in this line of research have adopted the moving-average or a
distributed-lag method as the basic learning mechanism, i.e. Mahmassani & Chang (1986),
Ben-Akiva, et al. (1991), Iida, et al. (1992), Axhausen, et al. (1995), Nakayama, et al. (1999,
2000a, 2000b), Fujii & Kitamura (2000), Polak & Oladeinde (2000), and Polak & Hazelton
(1998). For example, Polak & Hazelton proposed a learning model in which the length of
memory is restricted to a certain time period. The value function of equation (2.9) shows that
the weight of past experience in the current action value is rapidly decreasing. Polak &
Hazelton’s weights are parameterized according to geometrically declining model as:
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with

Λ= i

iw α (2.12)

where,

0 < α ≤ 1 denotes the rate the discount of the past experience;
Λ is a scaling coefficient to ensure that the weights sum to unity.

By setting parameters, many action-value update functions can be modeled as a special case
of this method.

Decision process studies

The above models focus on dynamics based on learning over time often related to a single
facet of activity patterns, such as departure time and route choice. The goal of our study, in
contrast, is to develop a model of rescheduling comprehensive activity-travel patterns. In
that sense, the fundamental limitation of the above dynamic models, which do not try to
model the implications of changing a particular facet through the complete activity-travel
schedule, are alleviated. To our knowledge, fully operational models of activity rescheduling
do not yet exist, although some of the models discussed earlier could potentially be used to
that effect. There is a limited literature, however, on relevant conceptualizations, proposals
for model development and small-scale simulation. These studies will be summarized now.

Gärling, et al. (1998) suggested a simulation model of household activity scheduling
and rescheduling behavior. His model is based on a theory entailing behavioral principles of
how persons acquire, represent, and use information from and about the environment.
Simulation results from his proposed model tell that the model is sensitive both to agenda
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and to environmental differences. An important question was whether the different
conditions make it possible for the simulated person to perform all activities at preferred
times and locations. This criterion is similar to utility maximization. As one should expect,
in particular long work hours but also living away from the center and slow travel speed
prevented maximization of preferences. Thus in this respect the simulation results appear to
be realistic.

In a continuation of his innovative work on the role of anticipated time pressure in
activity scheduling, Gärling et al. (1999) argues that the major problem in individuals’
scheduling is that people frequently want to do more than they are able to. In other words,
they committed themselves to perform too many activities in a limited amount of time. To
solve conflicts in a short-term, individuals may consider several strategies such as re-
sequencing activities, compressing activity durations and changing priority (or
postponement). The most effective method for reducing the total activity duration is likely to
be elimination of activities. He accordingly suggests an activity classification based on these
notions that distinguish activities to be deleted, postponed with deletion, and postponed
without deletion and generally postponed, which depends on the characteristics of activities.

His study suggests a sequential process of adaptation of a schedule in a way that the
system minimizes the difference between total activity duration and time budget. This
opposes a full combinatorial optimization process that is unlikely in real life. More
specifically, the system (1) computes total duration of all activities in the set, (2) computes
difference between total duration and time budget, (3) computes the absolute difference
between this difference and the duration of each activity, (4) eliminate the activity with the
smallest absolute difference (if multiple such activities exist, eliminate one in random) and
(5) repeats the process from (1) if total duration still exceeds time budget. His work stresses
that anticipated time pressure is an important factor controlling the frequency of activity
scheduling and is an additional factor constraining the feasibility of schedules. He also
suggests that a distinction is to be made between planned, habitual and impulsive activities
on the basis of the degree of planning and time horizon of planning. Although these studies
are theoretically appealing and key concepts are supported by numerical simulations, this
line of work has not (yet) resulted in a fully operational model of activity rescheduling
behavior.

Doherty & Axhausen (1999) suggested another, similar conceptual model of
scheduling behavior. Scheduling is assumed a multi-stage process, which distinguishes
between routine scheduling decisions and short-term, impulsive, opportunistic decisions.
Routine planning is approached with optimization models, whereas a more sub-optimal,
rule-based simulation model replicates the decision process during the week within the
constructs of the optimized routine plan. An overall modeling work therefore consists of first
taking individuals’ household agenda, then optimizing a weekly skeleton schedule based on
a set of identified routine activities, and finally implementing a weekly scheduling process
model that replicates scheduling decisions including addition, deletion and modification
made by individuals during the execution of the weekly schedule. An activity priority
function plays a key role in combination with decision rules. In particular, they suggested the
following functional form:
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W

d i
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min
(2.13)

where, di is duration of activity i and W is the size of any feasible time windows. The
function therefore determines the flexibility of an activity in terms of duration in relation to
the possible time window. A higher value thus gives a higher priority.

The suggested decision rules are rather simple. For example, adding an activity to a
schedule is driven by a “highest priority” rule. Likewise, the decision of whether to continue
the scheduling is driven by the rule:

IF [Highest activity priority] > α ! THEN [Continue the scheduling] (2.14)

where, α is a empirically determined threshold value. Although the framework has now been
suggested a few years ago, to the best of our knowledge to operational or empirical results
have been published since.

Evaluation

In this sub-section, we have discussed the literature on dynamic models of travel behavior.
Many of these models have been proposed to predict the impacts of ITS on behavioral
change, especially related to route and departure time choice. It concerns an important area
of research in the sense that the proposed models attempt to predict a change in the
implementation of activity-travel patterns in response to some external source. Nevertheless,
the models typically focus on an isolated decision dimension and do not account for the
impact on the complete activity-travel pattern. In addition, we have discussed the very
limited literature on rescheduling decision processes, which potentially could be used for
such purpose.  The value of this literature is primarily conceptual. Operational models are
still virtually lacking.

2.4 Conclusions and discussion

This chapter reviewed the existing literature on the measurement and prediction of activity-
travel patterns. The review has identified a number of issues that are paramount to the
approach that will be taken in this thesis and that can also be used to differentiate and
position this work against earlier work.  First, we have argued that the literature on modeling
rescheduling decisions is still very scarce and hence there seem a need to explore the
possibility of developed an operational model of rescheduling decisions, with strong
theoretical underpinnings and that tries to capture the interdependencies of multi-faceted
activity-travel patterns. Secondly, to the extent that such modeling attempts are based on
classification or segmentation of activity-travel patterns, existing classification methods
should be replaced or elaborated such as to incorporate the sequential information embedded
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in activity-travel patterns. In the remainder of this thesis, we set out to make a contribution
in these areas of research.
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Part I: Measuring Activity Rescheduling Behavior





3 Uni-dimensional Sequence Alignment Methods

3.1 Introduction

In the previous chapter, we have argued that traditionally used Euclidean distance measures
are inappropriate to measure the similarity between activity-travel patterns. In particular,
these measures are not sensitive to difference in activity sequences. Sequence alignment
methods, as used in the biological sciences and introduced in the transportation and urban
planning literature by Wilson (1998), in principle have been developed for measuring
similarity between information sequences.

In this chapter, we therefore explore the potential of applying sequence alignment
methods to measure the similarity between activity-travel patterns. We will argue that
although sequence alignment methods have some interesting and useable properties, their
application to the study of activity-travel patterns is limited. First, positional information in
the sequence is not used in measuring similarity. Secondly, conventional sequence alignment
methods are essentially uni-dimensional, while the classification of activity-travel patterns
should ideally be based on multidimensional attribute profiles. Therefore, two extensions
were developed in the context of the present study: a position-sensitive sequence alignment
method, discussed in the present chapter, and a multi-dimensional sequence alignment
measure, discussed in the next chapter.

This chapter is organized as follows. Section 3.2 provides a formal description of
conventional sequence alignment methods as originally developed in biology. . In Section
3.3, the first extension of the original method is discussed. In particular, a position-sensitive
measure is developed. To illustrate the application of the conventional method and the
extension, examples of applications are given in section 3.4. The chapter ends with some
conclusions and a discussion.

3.2 Sequence alignment method

The sequence alignment method can be summarized as follows (Kruskal, 1983). Let two
sequences to be compared, s and g, have m+1 and n+1 elements, respectively (s=[s0 … sm],
and g=[g0 … gn]; m ≥ 0, and n ≥ 0, where s0 and g0 are ‘null’ elements that initialize
sequences. s and g are called source sequence and target sequence, respectively. Each
element represents a particular character. A missing character, such as ‘?’, represents
unknown elements. Distance or dissimilarity is then defined as the total amount of effort

required to equalize sequence s=[s0 … sm] with sequence g=[g0 … gn]. In this respect, the
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sequence alignment method distinguishes various operations. In particular, sequences can be
made equal by using ‘identity’, ‘substitution’, ‘insertion’ and ‘deletion’ operations.

To understand the nature of these operations, assume a two-dimensional table, called
comparison table or computational array (Figure 3.1). Let si and gj be initial parts of the
source and target sequences, respectively (si=[s0 … si], and gj=[g0 … gj]; 0 ≤ i ≤ m, and 0 ≤ j
≤ n). Each cell (i,j) of the comparison table stores the amount of effort required to equalize si

with gj. The grayed cell is called the corner and is set to 0, indicating the comparison of two
empty sequences. The cells in margin g are filled when s0 is equalized with the gj’s. Likewise,
the cells in margin s are filled when the si’s are equalized with g0. The equalization process
starts at cell (0,0) and ends at cell (m,n). The operations are represented by step-by-step
moves (transitions: arrows in the table) from one cell to another, first to equalize each si with
gj, and finally to change sequence sm into sequence gn.

A set of moves from the first to the last cell composes a trajectory, i.e. a path of
equalizations. For each (i,j), these moves can be made from one of three cells, (i−1,j),
(i−1,j−1) and (i,j−1), called predecessors. The cells in the margin s and g, however, have
only one predecessor each. The cells (0,j) in margin g have the predecessors (0,j−1), while
the cells (i,0) in margin s have (i−1,0). Moves into the opposite direction are never made
because they involve additional efforts that are not necessary.

Each of these moves represents an operation. The diagonal move represents ‘identity’
if si and gj are the same at cell (i,j), and represents a ‘substitution’ otherwise. In both cases,
the predecessor of cell (i,j) is cell (i−1,j−1). A horizontal move where the predecessor is
(i,j−1) represents an ‘insertion’ in that the move adds gj to si. Finally, a vertical move where
the predecessor is (i−1,j) represents a ‘deletion’ in that the move eliminates si from si.

At the cell (1,1) in Figure 3.1, for example, the first element ‘B’ of sequence s is
being compared with the first element ‘A’ of g. The predecessor of the vertical move in
Figure 3.1 is (0,1), dictating that the previous initial part s0=[s0]=[  ] was equalized with
g1=[g0 g1] by adding g1 and became s0=s0[s0 g1]=[A], which costs 1 unit of insertion. The
vertical move then deletes s1 from the current initial part s1=[s0 g1 s1]=[A B] and equalizes s1

with g1=[g0 g1], resulting in s1=[s0 g1]=[A], which costs additional 1 unit of deletion.
Likewise, the predecessor of the horizontal move is (1,0), dictating that the previous initial
part s1=[s0 s1]=[B] was equalized with g0=[g0] by deleting s1 and became s1=[s0]=[  ], which
costs 1 unit of deletion.

Figure 3.1: Comparison table (An example)

position 0 1 2 … n

A … … … g

0 0 1
1 B 1 2    margin g
2 …

… …
m …

s
                                             margin s
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The horizontal move then equalizes s1=[s0] with g1=[g0 g1] by adding g1 into s1, resulting in
s1=[s0 g1]=[A], which costs additional 1 unit of insertion. Similarly, the predecessor of the
diagonal move is (0,0), where s0=g0, and the diagonal move equalizes s1=[s0 s1] with g1=[g0

g1] by deleting s1 from s1 and adding g1 into s1, resulting in s1=[s0 g1]=[A], which costs
deletion and insertion of 1 unit each.

Each operation involves a certain amount of effort. The magnitude of these efforts is
denoted by weighting values we(si,gj), ws(si,gj), wd(si,φ) and wi(φ,gj) for respectively identity
(equality; si = gj), substitution (si ≠ gj), deletion and insertion operations. In particular,
we(si,gj) = 0. The ‘φ’ symbol implies that no operation is applied to the element denoted by φ.
When a missing character si is to be substituted with a missing character gj, either the
substitution or the identity weighting value is applied, depending on the context of the
analysis. The substitution operation may be thought of as the sum of deletion and insertion
operations. That is, ws(si,gj) = δ[wd(si,φ)+wi(φ,gj)], where i,j ≥ 1. If the substitution weighting
value is regarded as the simple summation of the weighting values of the two operations,
then δ = 1; otherwise, δ ≠ 1. Normally, ws(si,gj) ≥ wd(si,φ), and ws(si,gj) ≥ wi(φ,gj). The
computation of dissimilarity proceeds by using these weights. Dissimilarity is then defined
as the sum of operation weighting values required to change sequence s into sequence g.

Because there are many different possible trajectories, an additional operational
decision is required to calculate the dissimilarity measure. The sequence alignment method
is based on the calculation of the Levenshtein distance, which is defined as the smallest
number of substitutions, insertions and deletions required to change sequence s into
sequence g. The equations for the ‘weighted’ Levenshtein distance are:

),(),( nm
dd gsgs = (3.1)

d(s0,g0) = 0 (3.2)

d(si,g0) = d(si-1,g0)+wd(si,φ) (3.3)

d(s0,gj) = d(s0,gj-1)+wi(φ,gj) (3.4)

d(si,gj) = min [d(si-1,gj)+wd(si,φ),  d(si,gj-1)+wi(φ,gj),  d(si-1,gj-1)+w(si,gj)] (3.5)
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where,

i,j ≥ 1;
d(s,g) is the total cost of equalization of s (= sm) with g (= gn);
d(si,gj) is the cost of equalization of si with gj, cumulated from the equalization of s0 to g0.
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Equation (3.2) indicates that there is no predecessor of the corner cell. Equations
(3.3) and (3.4) imply that only one predecessor is given to each cell in the margins s and g,
representing the deletion and insertion, respectively. Equation (3.5) returns the minimum
value of the alignment cumulated from d(s0,g0) to d(si,gj). Equation (3.1) gives the overall
minimum cumulated effort until the last cell (m,n). The ‘weighted’ Levenshtein distance
defines dissimilarity as the smallest sum of operation weighting values required to change
sequence s to sequence g.

A specific set of weighting values can be assigned to reflect a particular analysis
context. A variety of weighting schemes exists in biology and computational linguistics.
They include various mutation probabilities among amino acids and among positions in the
sequence (Thompson, et al., 1994), generalized gap costs for speech recognition and long
deletions and insertions of introns (Bradley & Bradley, 1983; Russel, et al., 1986; Gusfield,
1997a), etc. In this section, however, we stick to the elementary operation weights; we(si,gj) =
0, wd(si,φ) = wi(φ,gj), and ws(si,gj) = wd(si,φ)+wi(φ,gj) ∀  i,j. This is partly because we simply
do not have enough information to utilize a more flexible weighting scheme for the analysis
of activity-travel behavior and because we wish to more clearly manifest the effect of
deletion and insertion by keeping the alignment as simple and close to the original sequence
alignment method as possible.

This section assumes the simplest form of the Levenshtein distance, where the cost
for substitution is the simple sum of the costs for deletion and insertion (Qij = W+W = 2W

∀ i,j if si ≠ gj), implying that a substitution is always decomposable into an elementary
deletion and an insertion. This recursive formula of the Levenshtein distance can be achieved
by the following (pseudo) computer code.

for i = 0 to m
begin

    for j = 0 to n
    begin

        if j = 0 and i = 0 then d(si,gj) = 0
        else if j = 0 and i > 0 then d(si,gj) = W × i
        else if j > 0 and i = 0 then d(si,gj) = W × j
        else

        begin

            Di = d(si−1,gj) + W
            Ij = d(si,gj−1) + W
            if si = gj then Qij = 0 else Qij = 2W

            Gij(s
i,gj) = d(si−1,gj−1) + Qij

            d(si,gj) = min[Di,Ij,Gij]
        end

    end

end

An interesting feature of this Levenshtein distance is that the resulting distance
measure always contains the maximum number of identity operations, which are cost-free.
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Let F and T be an arbitrary number of cost-Free operations (identity) and an arbitrary
number of cost-Taking operations (deletion and insertion) that are used, in sum, for changing
sequence s into sequence g of lengths m and n, respectively. Let F* and T* respectively be
the number of cost-free and cost-taking operations taken by the optimum alignment based on
the above formula. Let d(s,g) and d(s,g)* be the resulting distances from arbitrary and
optimum alignments, respectively. Then:

(F*,T*) ∈  {(F,T)} (3.7)

and

2F + T = m + n (3.8)

and

d(s,g) = W×T (3.9)

and

d(s,g)* = W×T* (3.10)

Equation (3.8) states that, in terms of the number of operations, one identity is equivalent to
a set of a deletion and an insertion. Given the definition of the Levenshtein distance:

d(s,g)* ≤ d(s,g) (3.11)

or
W×T* ≤ W×T (3.12)

or

T* ≤ T ∀  T (3.13)

Hence, by equations (3.7) and (3.8),

F* ≥ F ∀  F (3.14)

Capturing the largest number of cost-free identities results in the preservation of the
largest structural skeleton consisting of the elements common to both sequences. The
common structural skeleton implies not only the same list of elements but also the same
order of the elements between the sequences. The measure then computes the amount of
effort for deleting and inserting the remaining elements to equalize two sequences.
Accordingly, the resulting measure of distance captures the difference between sequences in
both terms of element composition and sequential order of the elements. This is the very
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property that distinguishes sequence alignment methods from the conventional position-
based distance measures.

In classification studies, the Hamming distance measure (Gower, 1971) has been
widely used for comparing activity attribute sequences (e.g., Burnett & Hanson, 1982;
Koppelman & Pas, 1985). It involves matching the activity attributes of the corresponding
positions of the two sequences that are compared and summing the results to calculate the
distance. This position-based distance measure does not capture the sequential information
embedded in the activity-travel behavior. The difference between the Hamming distance
measure and the sequence alignment method is illustrated in the following examples. Note
that each activity is represented as an element of the activity sequence.

Example 1: Comparison based on the Hamming distance

The Hamming distance measure in Example 1 indicates that activity patterns s and g
are completely different because all six activities of corresponding positions differ between
the two activity patterns. The sequence alignment method in Example 2 on the other hand
regards the two patterns as very similar because most activities are sequenced in a common
order. The required changes to equalize s with g only involve a substitution of h_keeping
(housekeeping) with sport and a deletion and an insertion (or a change of the position) of
p_care (personal care).

Example 2: Comparison based on the sequence alignment method

A numerical example can also be given. Consider the following pairs of sequences.

Pair 1
g  =  [A,B,C,D,E,F]
s1 = [D,E,F]

Pair 2
g  =  [A,B,C,D,E,F]
s2 = [D,E,F,G,H,I]

In equation, the Hamming distance is defined as:

pos 1 2 3 4 5 6
g p_care breakfast work shopping dinner sport

s breakfast work shopping dinner h_keeping p_care

pos 1 2 3 4 5 6
g p_care breakfast work shopping dinner sport

|| || || || || ||
s breakfast work shopping dinner h_keeping p_care
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Z = min[m,n]. (3.17)

Based on this Hamming distance measure, two pairs give the same result as:

|63|),(),1(
3

−+=∑
i

ii gsdd gs  = 6

and

|66|),(),2(
6

−+=∑
i

ii gsdd gs  = 6.

The sequence alignment method, on the other hand, gives different results, d(s1,g) =
3, and d(s2,g) = 6, as the method inserts three elements from sequence g and deleting three
elements from sequence s2 in the second pair while simply inserting three elements from
sequence g in the first pair. The origin of this difference is evident from the fact that in the
first pair the sequence alignment method does not count the costs for deleting D, E and F
because the sub-sequence D-E-F is identical in both sequences, and only inserting A, B and
C from sequence g into sequence s1 is required to change s1 into g.  As such, the sequence
alignment method detects the ‘similarity’ between s1 and g compared to the s2 and g pair
and likewise, recognizes the ‘difference’ between s2 and g compared to the s1 and g pair.

These simple examples demonstrate that the sequence alignment method considers
two kinds of differences when comparing sequences: the difference in sequential order of the
elements, and the difference in element composition. The ability to measure the degree of
difference in sequential order is a strong point of the sequence alignment method;
conventional position-based distance measures, including Euclidean, Minkowski, Block and
Hamming distances (e.g., Gower, 1971; Kruskal, 1983), do not share this property.
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3.3 An extension of the alignment method

3.3.1 Problem

In order to capture difference in element composition, the Sequence Alignment Method
(SAM) differentiates between ‘common elements’ and ‘unique elements.’ Common elements

are the elements that appear in both sequences, while unique elements appear in either the
source or the target sequence only. The unique elements are simply deleted from the source
sequence and inserted from the target sequence into the source sequence. Common elements
are also deleted (or inserted) but then again inserted (respectively deleted) and, as a result,
preserved during the alignment. Exceptions are the common elements whose number differs
between the sequences that are compared. For example, if the source sequence has four
common elements and the target has two of the same element, then two of the four common
source elements are regarded as being unique and removed during the alignment. Similarly,
when the source sequence has two common elements and the target has three, one of the
three common target elements is regarded as being unique and newly inserted. In other
words, SAM measures the degree of difference between the two sequences in terms of their
element composition by deleting the unique elements from the source sequence and inserting
these from the target sequence into the source sequence. At the same time, it measures the
degree of difference between the two sequences in terms of the sequential order of the
elements by changing the order of the common elements of the source sequence if it differs
from that of the common elements of the target.

However, this mechanism implies that the conventional SAM is not sensitive to the
distance (number of positions), by which the sequential order of the source elements is
changed. Consider the following examples. In both examples, the sequence pairs have
sixteen common elements of eight activities and are identical in terms of the element
composition. The paired sequences are different only in terms of the sequential order of the
elements, and the SAM is now equalizing them by changing the order of a common element,
shopping. The resulting distance measure is exactly the same between these two sequence
pairs. The fact that in Example 4, shopping occupies position 8 rather than 4 as in Example 3,
does not affect the distance measure at all. Thus, s1 and s2 would be considered equally
distant from g. However, this seems counter-intuitive in some application domains such as
activity scheduling, where not only the relative positions or order of elements but also the
difference between the absolute positions of each element before and after the alignment are
of interest. Methodologically, this means that some hybrid form of a Euclidean and a
biological distance measure would be desirable in the domain of activity scheduling.

Example 3
pos 1 2 3 4 5 6 7 8
g p_care shopping breakfast h_keeping work sport dinner banking
s1 p_care breakfast h_keeping shopping work sport dinner banking



Measuring Activity Rescheduling Behavior                                                                           33

Example 4

3.3.2 Conceptualization

As a solution to the above problem, we introduce the concepts of reordering and reordering
distance. Let us thus first define these concepts.

DEFINITION 1: Reordering is the change of the order of a known element of a sequence,
which is achieved by consecutive deletion-insertion or insertion-deletion
operations on that element. If an element is deleted from (or inserted into) a
certain position in a sequence and again inserted (respectively deleted) during
the alignments, it is said to be reordered.

DEFINITION 2: Reordering distance is the number of positions by which a known element of
a sequence is reordered. As reordering is related to change in the order of
concerned elements, reordering distance can be defined only if there is any
reordering.

Note that the reordering concerns only the ‘known’ elements as the reordering of ‘unknown’
elements does not make sense. Consequently, the method assumes that when a missing
character si is to be substituted with a missing character gj, the substitution operation is
applied. In the following, let the value of the reordering distance be denoted by h and
measured as h = |i−j|, where i and j are the positions of the reordered elements in the source
and target sequences, respectively. To operationalize this concept, it is necessary to specify
‘when’ the reordering is initiated and ‘which elements’ are reordered in the reordering
situation.

When are the reorderings initiated?

The reordering will be initiated if the order of two or more common elements is not identical
in the two sequences that are compared. The following diagrams are useful to illustrate this
principle, where the common elements of the same letter are connected with lines between
two sequences.

When the order of elements differs between two sequences, the lines must cross.
Hence, the intersection of the lines of g1-s1 pair of Example 5 indicates that there are
reordering(s), and either A or B is reordered, while the absence of any intersection of g2-s2
pair of Example 6 indicates no reordering.

pos 1 2 3 4 5 6 7 8
g p_care shopping breakfast h_keeping work sport dinner banking
s2 p_care breakfast h_keeping work sport dinner banking shopping
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Example 5 Example 6

Which elements are reordered?

It is obvious that whether A or B in the g1-s1 pair of Example 5 is reordered does not affect
the result. In both cases, the number of reorderings is 1, and the difference in positions is 1.
In general, however, the reordering situation is more complex. Consider the following
example.

Example 7

In this example, there are two common elements, B and A. Their relative positions are
reversed, thus reordering is required. If A is reordered, B stays non-reordered, and the
difference in positions is h = |6−7| = 1. However, the difference in positions is h = |7−1| = 6
if B is reordered and A stays non-reordered. Thus, depending on which element is reordered,
the result may change significantly. We therefore need to develop a principle to cope with
this problem of ambiguity.

A solution may be found by considering the purpose of including the reordering
distance effect into the conventional SAM. The underlying principle is that in changing the
order of elements, we assume that larger differences in positions require more effort. In
order words, the amount of alignment effort should, ceteris paribus, monotonically increase
as the difference in positions increases. The envisioned distance measure should be able to
describe such situations, and to this end, we need a rule to decide which elements are to be
regarded reordered (and thereby which elements remain non-reordered).

We will derive a guiding principle for this decision problem from the fundamental
characteristics of conventional sequence alignment methods, which indicates that if some
common elements are arranged in the same order in the two compared sequences, their
arrangement represents the two sequences’ structural integrity (McClure, et al., 1994) or
structural skeleton as mentioned in Section 3.2. In other words, sequence alignment methods
try to identify the sequential order of the elements and their positions that are identical
between two sequences compared.

1 2 1 2 3 4 5 6 7
g1 A  B  g2 B  C D E F G A  

s1 B A s2 H K J B M A I

1 2 3 4 5 6 7
g B  C D E F G A  

s H I J K L A B
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This fact appears in Examples 3 and 4. It is clear that ‘shopping’ has been reordered
in both examples, instead of ‘breakfast-h_keeping’ and ‘breakfast-h_keeping-work-sport-
dinner-banking’. There are two reasons for this conclusion. First, the sub-sequences,
‘breakfast-h_keeping’ and ‘breakfast-h_keeping-work-sport-dinner-banking’, are larger than
the sub-sequence, ‘shopping’. The sequence alignment method prefers the larger set of
elements for the application of identity operation among the common elements to preserve
the structural skeleton as large as possible during the alignments. Secondly, the shopping
activities in the source sequences are more distant from those in the target sequence,
compared to ‘breakfast-h_keeping’ and ‘breakfast-h_keeping-work-sport-dinner-banking’.
The sequence alignment method prefers the similar positions for the application of identity
operation among the positions of common elements to preserve the structural skeleton’s
positions as closely as possible during the alignments. Thus, for the case of two sets of
common elements, one of which is to be reordered, the set of elements that consists of a
smaller sub-sequence and/or involves more change in their positions is regarded as the set of
reordered elements. Following this guiding principle, in Example 7, B is regarded reordered,
and A remains non-reordered.

Having such a guiding principle, the next question is what would happen if these two
criteria were in conflict? We need another guiding principle to cope with this situation. We
suggest giving the size of sub-sequence priority over the number of positions to be changed
because an alignment method basically emphasizes more the sub-sequences of the same
order than the sub-sequence positions. Suppose that we have two common sub-sequences,
one of which has to be chosen for reordering. If one has a shorter reordering distance but a
smaller sub-sequence, and the other has a longer reordering distance but a larger sub-
sequence, the smaller one will then be considered reordered, in spite of its shorter reordering
distance.

This principle is illustrated in Example 8. In this example, there are two sets of
common elements (B and G-H-I). Their relative positions are reversed. Consequently,
reordering is initiated. The sub-sequence G-H-I has a longer reordering distance, but its size
is also larger than sub-sequence B. Hence, we consider B to be reordered. Some readers may
find this result counter-intuitive. Although we partly incorporate the concept of the changing
positions of common elements, we wish to stay close to the principles, underlying the
conventional sequence alignment method. Therefore, we argue in favor of the alignment,
which prefers preserving the structural skeleton as much as possible. Thus, this discussion
leads to the following rules for determining the set of elements to be reordered.

Example 8
1 2 3 4 5 6 7 8 9

g A B C D E F G H I

s G H I B J K L M N
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REORDERING RULE 1: If one of two sets of common elements is to be reordered, and if the

number of common elements differs between the two sets, the set with

the smaller number of elements will be reordered.

REORDERING RULE 2: If one of two sets of common elements is to be reordered, and if the

number of common elements in the two sets is the same, the set with

the larger reordering distance will be reordered.

Where to be reordered?

Another problem arises when the common elements are not in a one-to-one relationship
between the source and target sequences, and elements may be assigned in a variety of ways.
In this case, the position to which a common element is to be reordered is not unique, which
is unfortunately often the case in the comparison of actual activity patterns. Consider, for
example, the following sequence pair.

Example 9

Obviously, A, C-D and E remain non-reordered, while B is to be reordered in this example.
However, the position to which the inserted B is to be reordered is not unique. It may be
deleted from the 4th or from the 6th position of the source sequence to be inserted to the 2nd

position. We therefore need to specify the positions from and/or to which the elements are to
be reordered. We propose the following rule for positioning the reordered elements.

POSITIONING RULE: If common elements that need to be reordered have a one-to-many,

many-to-one or many-to-many relationship between source and target

sequences, the reordering positions are chosen such that the sum of

reordering distances is minimized.

3.3.3 A position-sensitive method

Finding the set of reordered common elements

Given the reordering rules, the problem then is how to obtain the set of reordered common
elements to calculate the reordering distances. By definition, reordered elements are always
associated with subsequent deletion-insertion or insertion-deletion operations. Because the

1 2 3 4 5 6
g A B  C D E F

s A C D B  E B  
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conventional SAM identifies the largest structural skeleton, the set of reordered common
elements can be found by tracing the history of deletions and insertions of the common
elements in the comparison table of the conventional SAM if there is only one largest set of
common elements. The comparison table of Example 8 in Figure 3.2 illustrates this. The
figure shows that the SAM detects the largest structural skeleton (G-H-I) and reorders
(inserts-deletes) the smaller one (B), following Reordering Rule 1. Note that the identity
operation applied to B is outside the optimum trajectory. The optimum trajectory was
obtained by back-tracking the recursive equations (3.1) to (3.6) from cell (m,n) to (0,0) as
follows.

d(si,gj) ! min [d(si-1,gj)+wd(si,φ),  d(si,gj-1)+wi(φ,gj),  d(si-1,gj-1)+w(si,gj)] (3.5a)

d(s0,gj) ! d(s0,gj-1)+wi(φ,gj) (3.4a)

d(si,g0) ! d(si-1,g0)+wd(si,φ) (3.3a)

where, ‘!’ implies that the predecessor (RHS) was chosen by the successor (LHS).

Unfortunately, however, the conventional SAM does not uniquely determine which
set of common elements is to stay non-reordered and which one is to be reordered, if two or
more of the largest common element sets of the same size exist. The comparison table of
Example 7, for instance, gives both possibilities (Figure 3.3). In the upper trajectory, A stays
non-reordered, and B is reordered (inserted-deleted). This situation is reversed in the lower
trajectory. The largest number of common elements staying non-reordered is the same in
both trajectories (A in the upper one and B in the lower one), and hence, Reordering Rule 2
is to be applied. However, the sizes of two common element sets are the same in this case,
and the information of the reordering distance is not available in the conventional SAM’s
comparison table. Which one of the two sets of common elements is to be reordered is
therefore not determined.

Figure 3.2: Conventional SAM’s comparison table of sequences g=[ABCDEFGHI] and
s=[GHIBJKLMN] of Example 8.

Note: Identities are applied to the cells of underlined numbers, while deletion-insertions or insertion-deletions
are applied to the cells of bold-italic numbers. The bold line denotes the optimum trajectory of the alignments.
The operation weights are assigned as wd = wi = 1, ws = wd+wi, and we = 0.

pos            0       1       2       3       4       5       6       7       8       9
       |    null       A       B       C       D       E       F       G       H       I
----------------------------------------------------------------------------------------
 0 null|    0.00    1.00    2.00    3.00    4.00    5.00    6.00    7.00    8.00    9.00
 1    G|    1.00    2.00    3.00    4.00    5.00    6.00    7.00    6.00    7.00    8.00  
 2    H|    2.00    3.00    4.00    5.00    6.00    7.00    8.00    7.00    6.00    7.00  
 3    I|    3.00    4.00    5.00    6.00    7.00    8.00    9.00    8.00    7.00    6.00  
 4    B|    4.00    5.00    4.00    5.00    6.00    7.00    8.00    9.00    8.00    7.00  
 5    J|    5.00    6.00    5.00    6.00    7.00    8.00    9.00   10.00    9.00    8.00
 6    K|    6.00    7.00    6.00    7.00    8.00    9.00   10.00   11.00   10.00    9.00
 7    L|    7.00    8.00    7.00    8.00    9.00   10.00   11.00   12.00   11.00   10.00
 8    M|    8.00    9.00    8.00    9.00   10.00   11.00   12.00   13.00   12.00   11.00
 9    N|    9.00   10.00    9.00   10.00   11.00   12.00   13.00   14.00   13.00   12.00
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Figure 3.3: Conventional SAM’s comparison table of sequences g=[BCDEFGA] and
s=[HIJKLAB] of Example 7.

Note: The operation weights are assigned as wd = wi = 1, ws = wd+wi, and we = 0.

The problem here is that many optimal trajectories for any sequence pair prevent us
from finding a fast solution. When computer time is not a concern, this might not be a real
problem. When we use the distance measure as we intend to do in real time, however, the
combinatorial problem presents a problem.

To solve this problem, we suggest modifying the identity weight in the conventional
SAM to identify common parts and also to differentiate their reordering distances. Because
the identity operation is always applied to any pair of identical elements as in the
conventional SAM, the largest set of common elements can be detected, and Reordering
Rule 1, if applicable, can be applied. At the same time, as the modified identity weight
detects the longer reordering distance between sets of common elements, Reordering Rule 2,
if applicable, can be applied. We shall call a SAM, based on a modified identity (equality)
weight, the eSAM. The relevant modified equations for the eSAM are:
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where,

pos            0       1       2       3       4       5       6       7
       |    null       B       C       D       E       F       G       A
------------------------------------------------------------------------
 0 null|    0.00    1.00    2.00    3.00    4.00    5.00    6.00    7.00
 1    H|    1.00    2.00    3.00    4.00    5.00    6.00    7.00    8.00
 2    I|    2.00    3.00    4.00    5.00    6.00    7.00    8.00    9.00
 3    J|    3.00    4.00    5.00    6.00    7.00    8.00    9.00   10.00
 4    K|    4.00    5.00    6.00    7.00    8.00    9.00   10.00   11.00
 5    L|    5.00    6.00    7.00    8.00    9.00   10.00   11.00   12.00
 6    A|    6.00    7.00    8.00    9.00   10.00   11.00   12.00   11.00  
 7    B|    7.00    6.00    7.00    8.00    9.00   10.00   11.00   12.00  
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i,j ≥ 1;
wd = wi = wo > 0;
we’ is the modified identity weight;
v = |i−j|  (v ≤ max[m−1,n−1]).

The v in equation (3.23) depicts position differences, and is a measure of the amount
of difference in a common element’s positions between the source and target sequences. The
position difference v is the same as the reordering distance h. We nevertheless give it a name,
and use a different notation to make explicit the fact that it is used to find the common
element set. The modified identity weight we’ reflects the amount of difference in a common
element’s source and target positions that are paired during the alignments. The we’ is,
however, doubly (but linearly) restricted so that:

(i)  any of the position differences is smaller than a single deletion or insertion weight

( ow
nm

v ⋅
],max[

 < wo = wd = wi), and

(ii)  any sum of the modified identity weights is smaller than a single deletion or insertion

weight (∑
Z

z

o

z w
nm

v
2],max[

 < wo = wd = wi; where Z (Z ≤ min[m,n]) is the total number

of modified identities along an alignment trajectory).

Like other dynamic programming algorithms, the eSAM returns the optimum value. It
applies the we’ to the paired source and target positions of each common element, and finds
the largest set of common elements (Reordering Rule 1) of the minimum sum of position
differences (Reordering Rule 2). As a result, the set of common elements to be reordered is
determined, which is the smaller sets of common elements deleted-inserted and/or inserted-
deleted along the eSAM’s alignment trajectory. Figure 3.4 presents an example of the eSAM,
which fixes the problem that appeared in Figure 3.3. (The backtracking method stays the
same as before).

pos            0       1       2       3       4       5       6       7
       |    null       B       C       D       E       F       G       A
------------------------------------------------------------------------
 0 null|    0.00    1.00    2.00    3.00    4.00    5.00    6.00    7.00
 1    H|    1.00    2.00    3.00    4.00    5.00    6.00    7.00    8.00
 2    I|    2.00    3.00    4.00    5.00    6.00    7.00    8.00    9.00
 3    J|    3.00    4.00    5.00    6.00    7.00    8.00    9.00   10.00
 4    K|    4.00    5.00    6.00    7.00    8.00    9.00   10.00   11.00
 5    L|    5.00    6.00    7.00    8.00    9.00   10.00   11.00   12.00
 6    A|    6.00    7.00    8.00    9.00   10.00   11.00   12.00   11.02
 7    B|    7.00    6.12    7.12    8.12    9.12   10.12   11.12   12.02

Figure 3.4: eSAM’s comparison table of g=[BCDEFGA] and s=[HIJKLAB] of Example 7.
Note: A is staying non-reordered, while B is reordered. The bold line is chosen by the eSAM. The operation

weights are assigned as wd = wi = wo = 1, ws = wd+wi, and v
nm

w
w o

e ⋅=
2'

],max[
.
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There may, of course, be two or more optimal trajectories of the same reordering
distance for eSAM as well. Compared to the conventional SAM, however, the number of
trajectories is fairly small. Thus, we will use this property for determining the set of
reordered elements.

Once the set of common reordered elements is identified, their reordering distances
can be calculated. The final solution, representing the overall costs in the equalization
process, can then be found by combining the costs for deleting and inserting the unique
elements and reordering the common elements. This principle is further elaborated in the
next section.

A method for calculating the costs of a position-sensitive SAM

We propose to measure the position-sensitive distance between activity sequences by using
the costs provided by the conventional SAM (cSAM) and the set of reordered elements
identified by the eSAM. In particular, we propose the following equations for calculating the
position-sensitive SAM (pSAM) costs.

]),(  ...,  ,),(  ...,  ,),(min[),( PSPSPSPS 1 Kk
dddd gsgsgsgs = (3.24)

with
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L
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where,

k
d PS),( gs  is the pSAM costs derived from the eSAM’s kth optimal trajectory;

d(s,g)CS is the costs measured by the cSAM (wd = wi > 0, and ws = wd+wi.);
D and I are the number of deleted, respectively inserted unique elements;
L is the number of reordered elements (the number of pairs of deletion-insertion and
insertion-deletion, each applied to the same element; L ≤ min[m−1,n−1]);
hl is the distance of reordering the lth common element (hl ≥ 0);
η is the reordering weight, a positive constant determined by the researcher (η ≥ 0).

Equations (3.25) and (3.26) imply first that the costs calculated by the cSAM consist
of the costs for deleting and inserting unique elements and the costs for deleting-inserting
and inserting-deleting common elements that need to be reordered. That is, d(s,g)CS =
(wdD+wiI) + (wdL+wiL). Secondly, the pSAM cost calculation does not regard the sum of
weights of deletions and insertions, wdL+wiL, but the sum of weights of reorderings, each
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multiplied by the reordering distance, ∑ ⋅
L

lh )(η , as the costs for reordering common

elements. Hence, the equations subtract the costs for deleting and inserting L common
elements that have been unnecessarily added to the cSAM costs and, at the same time, add

the costs for reordering them. Hence, d(s,g)CS − (wdL+wiL) + ∑
L

lhη . The sequence pair in

Example 6, for instance, involves 5 deletions and 5 insertions of unique elements, 1
reordering of a common element, and 1 identity of another common element. Consequently,
the costs calculated by the cSAM is:

d(s,g)CS = (wdD+wiI) + (wdL+wiL) = (1×5+1×5) + (1×1+1×1) = 12.

Figure 3.4 shows that there is only one optimal trajectory for the eSAM, which implies that
A stays non-reordered and B is reordered. Assuming η = 1, the cost for reordering B is:

∑
L

lhη =∑
1

lh = |7−1| = 6.

The costs for inserting and deleting B, wdL+wiL, have unnecessarily been added to d(s,g)CS.
Thus, we subtract them from d(s,g)CS :

d(s,g)CS − (wdL+wiL) = 12 − (1×1+1×1).

Finally, we obtain the overall cost as:

)(),(),(),( CSPSPS 1
LwLwhddd id

L

l +−+== ∑ηgsgsgs  = 12 + 6 − 2 = 16.

A further specification

An operational problem with the term ∑
L

lhη  in equation (3.26) arises when the position to

which a common element is to be reordered is not unique due to the off-one-to-one
relationship between the source and target sequences. We continue our discussion using the
sequence pair of Example 9, which is illustrated in Figure 3.5 using the eSAM’s comparison
table.

Confronting this situation, the positioning rule proposed in Section 3.3.2 implies that
equation (3.26) needs to be modified as follows:

)(),(),(
*

CSPS LwLwhdd id

L
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+−+= ∑ηgsgs (3.27)
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Figure 3.5: eSAM’s comparison table of g=[ABCDEF] and s=[ACDBEB] of Example 9.

Note: The operation weights are assigned as wd = wi = wo = 1, ws = wd+wi, and v
nm

w
w o

e ⋅=
2'

],max[
.

where, ∑
L

lh
*η  is the reordering cost of the minimum sum of reordering distances among

∑
L

lhη ’s.1

Equation (3.27) based on Positioning Rule provides the general solution to every
comparison case. To illustrate, consider the sequence pair of Example 9, which involves 1
deletion and 1 insertion of unique elements, 1 reordering of a common element, and 4
identities of other common elements. Hence, the cSAM cost is:

d(s,g)CS = (wdD+wiI) + (wdL+wiL) = (1×1+1×1) + (1×1+1×1) = 4.

Assuming η = 1, we obtain the cost for reordering B as:









= ∑∑

L

l

L

l hh ηη min*  = min[|4−2|,|6−2|] = 2.

The costs for inserting and deleting B have unnecessarily been added to d(s,g)CS. Thus, we
subtract it from d(s,g)CS, giving:

d(s,g)CS − (wdL+wiL) = 4 − (1×1+1×1).

Finally, the overall cost of the single optimal trajectory is:

)(),(),(),( *
CSPSPS 1

LwLwhddd id

L

l +−+== ∑ηgsgsgs  = 4 + 2 − 2 = 4.

                                                
1 We describe a method in Appendix 3.1 to obtain ∑ *

lh  for any comparison case, and its

appropriateness in Appendix 3.2.

pos            0       1       2       3       4       5       6
       |    null       A       B       C       D       E       F
----------------------------------------------------------------
 0 null|    0.00    1.00    2.00    3.00    4.00    5.00    6.00
 1    A|    1.00    0.00    1.00    2.00    3.00    4.00    5.00
 2    C|    2.00    1.00    2.00    1.03    2.03    3.03    4.03  
 3    D|    3.00    2.00    3.00    2.03    1.06    2.06    3.06  
 4    B|    4.00    3.00    2.06    3.03    2.06    3.06    4.06
 5    E|    5.00    4.00    3.06    4.03    3.06    2.06    3.06  
 6    B|    6.00    5.00    4.06    5.03    4.06    3.06    4.06
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A measure of the relevance of the proposed method

To check the relevance of the proposed method of measuring the position-sensitive
sequential difference on the basis of the sequence alignment method, we suggest employing
correlation analysis, as it measures the degree of linearity of the relation between the
concerned measures, regardless of the overall scale of their values. Before providing the
results of such an analysis in Section 3.4.2, we will first theoretically explore the behavior of
the correlation coefficient.

Given wd = wi = wo = 1, and ws = wd+wi, let D(s,g)PS and D(s,g)CS respectively be the
vectors of the pSAM and cSAM costs, and N be the number of comparisons. Pearson’s
correlation coefficient for our analysis then is defined as follows.
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Let Xa = 
aa

L

l

l

a

L

l

l

aa

h
N

h ∑ ∑∑ 





−




 ** 1
, Ya = ∑−

a

aa L
N

L
1

 and Za = ∑ +−+
a

aa ID
N

ID )(
1

)( ,

for convenience. Then, equation (3.29) can be rewritten as:

( )( )

( ) ( )∑∑

∑
++

++
=

a

aoao

a

aoa

a

aoaoaoa

ZwYwZwX

ZwYwZwX

r
22

2

2

η

η
(3.30)

where,

Xa represents the deviation of the sum of reordering distances of the ath sequence pair’s
comparison from the average across N comparisons;
Ya represents the deviation of the number of reorderings of the ath sequence pair’s
comparison from the average across N comparisons;
Za represents the deviation of the number of deletions and insertions of the ath sequence
pair’s comparison from the average across N comparisons.

The reordering weight η may significantly affect the size of r. Although an
appropriate size of η is to be determined by the researcher, we need to delimit the maximum
and minimum sizes of η that are reasonable regarding the context of the application. The
minimum reordering weight can be set as η = 0, assuming that reordering an element by any
distance does not require an alignment effort at all (A negative reordering weight is surely
nonsense. All elements in the sequence would be reordered endlessly to reduce the
alignment costs.). The maximum η may be set to 2wo (= wd+wi), reflecting the notion that the
amount of effort of reordering an element by one position cannot exceed the effort of
deleting and inserting the element. With η > 2wo, the common elements would be better
deleted and inserted rather than reordered. In practice, the reordering weight may therefore
be determined somewhere in between.

Additionally, it is to note that the correlation coefficient r is constant regardless of
the size of reordering weight η when all Za’s are zero. In other words, when activity
sequences of each pair of the data have the same set of elements, and hence, there are no
deletions and insertions of unique elements, the size of reordering weight does not affect the
correlation. In such cases, the correlation is even not defined if the reordering weight is zero,
which is evident from equations (3.25) and (3.30).

3.4 Illustration

The illustration in this section provides two analyses of activity sequences focusing on the
original sequence alignment method and the extended method, respectively. The analysis
using the original method will highlight the fundamental characteristics of the method as
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developed in biology, whereas the analysis using the extended method will present a
possible way of modification and use of this imported method for the activity-scheduling
problem.

3.4.1 An analysis of sequences using the original sequence alignment method

A set of store sequences data is available. A store choice sequence is an array of stores that
an individual visited for shopping, given a period of time. The data is a special case of a
more general activity-travel pattern, which collected only the attribute of shopping
destinations over time in sequence. A limited number of store names, denoted by pre-defined
nominal codes, repeatedly appear in the order that the individual visited. All sequences
convey the information of single alphabet or single attribute, but the order of stores visited
and the number of visitations differ between the sequences. The data structure is simple, but
the sequential information embedded in these data will provide the alignment method with
the basis for clearly illustrating the general characteristics of activity patterns.

Data

Scanner panel data provided by A.C. Nielsen Inc. is used for analysis. The data consists of
grocery shopping trips made by households for a period of three years (1986 through 1988)
in Springfield, Missouri, USA. Data are available for all shopping trips made by 945
households to five different store chains. On average customers made, in a total of 169661
shopping trips, 179.5 shopping trips with the minimum of 49 and maximum of 909 (std. =
87.5). As it appears, shopping behavior is characterized by a considerable amount of store
switching, while few households are completely store loyal. Store chain A consists of a
larger number of medium sized stores that have a combined market share of 40%, chains B
and D consist of a small number of larger stores with market shares of 23% and 18%,
respectively. Chain C consists of a few smaller sized stores with a share of 12%, while chain
E is an independent store with a market share of 7%.

Analysis scheme

It will be illustrated whether the alignment method as developed in molecular biology that is
applied to the measuring of shoppers’ purchase sequences actually results in different
segments, compared to the results based on conventional position-based distance measures.
To this end, this section compares the two measures in terms of (1) the set of pairwise
distances, (2) the cluster membership and (3) the set of influential properties distinguishing
between segments.

First, different sets of pairwise distances would lead to different segmentation results.
The cluster analysis however concerns only the relative pairwise distances between objects,
but not the overall scale of the distances. Hence, the correlation between the two measures
was analyzed, as the correlation coefficient is scale-irrelevant. The pairwise distances
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between 945 shoppers’ purchase histories were calculated by a position-based distance
measure (Hamming distance) and the alignment method (SAM), respectively.

Secondly, a direct way of illustrating the difference in segment solution between
approaches is to compute the degree of matching in the cluster membership. This section
compared the individual purchase sequences’ segment memberships between the two
measures by examining a (pseudo) confusion matrix. The pairwise distance matrices,
obtained by the Hamming distance and the SAM, were respectively input to a cluster
analysis as the proximity matrices. The individual purchase sequences’ segment
memberships based on the SAM were then compared with Hamming memberships.

Thirdly, different segment solutions from the same data set reflect different sets of
data properties. As seen in the previous section, conventional position-based distance
measures concern only the information of corresponding elements, while the SAM concerns
the sequential information as well. We identified, for each measure, which purchase
properties play an important role in distinguishing among segments, in particular whether the
SAM’s segments reflect the sequential properties. To this end, this section defined relevant
dimensions associated with cross-sectional and sequential properties of the shoppers’
purchase sequences, respectively. A stepwise discriminant analysis then identified the
influential purchase properties important to the discriminating of the segments.

Results

Pairwise distances: For calculating the distances between shoppers’ purchase sequences, the
empirical analysis used alphabetic letters, A, B, C, D and E, to distinguish among five
different grocery store chains that the shoppers visited for shopping. Consequently, the
sequence of a shopper h’s purchase history is represented as:

],...,,...,[ 0 hhh mih sss=s (3.31)

where,

hi
s  is shopper h’s ith visited store chain (

hi
s  ∈  {A, B, C, D, E});

mh is the overall shopping frequency of shopper h.
The comparisons of the 945 shoppers’ purchase sequences yielded 446040 pairwise

distances. The statistics about the resultant pairwise distances calculated by the two
measures are shown in Table 3.1. The analysis of the correlation between the two measures
returned Pearson’s correlation coefficient of 0.853. This result indicates that although the
two measures are highly correlated, the correlation is not perfect.

Table 3.1: Pairwise distances by two measures

Mean STD Min Max skewness kurtosis
Hamming 188.77 93.88 2 901 1.93 7.82
SAM 221.36 104.36 2 1164 1.23 3.16
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We observed in the previous section that unlike the conventional position-based
distance measure, the SAM uses the information of the elements in the longer part of the
longer sequence for the comparison of two sequences, instead of simply ignoring it. We
again use the following example.

Pair 1
g  = [A,B,C,D,E,F]
s1 = [D,E,F]

Unlike the position-based distance measure that compares the first three positions between
the two strings and ignores the three elements of the longer part of g, the SAM uses the
longer part information and matches it between the strings, which results in the different
distances between the measures. This implies that the alignment method is less affected by
the length and is more sensitive to the structural properties of information arrangement of the
strings.

Accordingly, we additionally examined whether the longer part information used by
the SAM significantly affects the pairwise comparison results in general. To this end, the
correlation between pairwise distance and difference in sequence length was computed for
each measure. If the distance is strongly related to the difference in the length between
sequences, this would imply that the sequential information embedded in the longer part is
virtually ignored, and the measure takes only the number of elements in the longer part into
account in determining the distance. Because the pairwise distance is primarily affected by
the sum of the two sequences’ lengths, however, we normalized the distance and length gap
by dividing them by the sum of sequence lengths, respectively.

Pearson’s correlation coefficients are 0.826 and 0.194 for the Hamming distance and
the SAM, respectively. The very small coefficient of 0.194 of the SAM indicates that the
SAM is much less affected by the difference in sequence length compared to the Hamming
distance, while indeed making use of the longer part’s sequential information. Based on
these observations, we expect that the SAM’s pairwise comparison results provide a
substantial amount of variation compared to the conventional measure’s results that lacks the
sequential information, which will in turn affect the results of the shopper segmentation.

Segment membership: From the wide variety of available clustering algorithms (Punji &
Stewart, 1983; Wedel & Kamakura, 2000), the non-overlapping hierarchical Ward’s
clustering algorithm was used to derive segments. The resulting dendrograms provide a clear
difference in the hierarchical structure of the solution between the two measures. To study
the difference in detail, we examined the proportion of the matching of the segment
membership between the two measures in a (pseudo) confusion matrix for each segment
solution. Note that a segment label that particular cases belong to is arbitrary. In other words,
segment 1 based on one distance measure may be labeled as, for example, segment 2 of the
other measure. We therefore calculated the matching proportion by enumerating all possible
segment label combinations of a measure, matching each of them to the other measure’s
segment label combination and finding the highest matching proportion. Given the number
of clusters to compute the matching proportion between the measures, the number of
segment label combinations to compute is defined as the factorial of the number of clusters.
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Table 3.2: Matching proportions of the segment membership between Hamming and SAM

segment solution* matching proportion % segment solution* matching proportion %
2 72.3 6 57.6
3 43.7 7 60.4
4 44.2 8 49.0
5 52.5

Note: ‘*’ denotes the number of segments of the solution.

The matching proportion P of a segment solution following such a procedure was therefore
computed as:

TC

MC

P
k

NCk
][max

}!,...,1{∈= (3.32)

where,

TC is the total number of cases (purchase sequences);
NC is the number of clusters;
MCk is the number of cases that belong to the same segments between the two measures,
counted for the kth segment label combination between the two measures.

As Table 3.2 shows, the matching proportions range from 43.7 to 72.3%, which
indicate significant differences in segments between the measures.

Influential purchase properties: A critical test of the alignment method is whether it has the
property, unlike the conventional position-based distance measures, to handle not only cross-
sectional but also sequential information embedded in the activity sequences. We expect that
the variables representing sequential characteristics of the strings distinguish segments better
for the SAM than for a conventional position-based distance measure. To test this, relevant
dimensions associated with cross-sectional and sequential properties of the shoppers’
purchase sequences were defined as follows.

- Variables for cross-sectional dimension: nA, nB, nC, nD and nE are a shopper’s shopping
frequency for store chains A, B, C, D and E, respectively, and Leng is a shopper’s shopping
frequency for all store chains (i.e., sequence length).

- Variables for sequential dimension: A, B, C, D and E are for a shopper, the number of
changes from store chains A, B, C, D and E to other chains, respectively, and Vseek is for a
shopper, the total number of store chain changes that is defined as:

Vseekh = ∑
=

h

h

h

m

i

iV
2

(3.33)

with
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

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where, Vseekh is the total number of shopper h’s store chain changes, whereas 
hi

s  and mh are

defined as in equation (3.31).
Given the set of explanatory variables, a stepwise discriminant analysis was used to

find the variables important to discriminating among segments. The sequential dimension is
particularly relevant to the illustration, as the store-chain changing behavior well represents
the sequential characteristics of activity behavior. Note that the sequence length is the sum of
the shopping frequencies for individual store chains visited. Likewise, the total number of
store chain changes is the sum of individual store chain changes. The discriminant analysis
after all filters out redundant variables through the stepwise processes.

In addition, we will also test whether the solutions differ significantly from a random
segmentation and which distance measure leads to the better solution. Arnold (1979)
mentioned that the objective of cluster analysis (at least a partitioning technique) is to
minimize the within-group variance and maximize the between-group variance and
suggested a measure, C = log(max |T|/|W|), where T is the total sum of variances, and W is
the sum of within-group variances. The only numeric information about the sequences at
hand is however the distances between the purchase sequences, and we cannot compute the
variance of the sequences without having the sequences’ numeric values that are not defined.
Hence, any direct test of statistical significance of the segment solution seems not feasible.
Instead, discriminant analysis provides information about how well the shoppers’ purchase
sequences are segmented in terms of the defined dimensions, as denoted by “% correctly
classified cases”. We shall use this information as a surrogate of segment homogeneity.

Having explained this, we state the following hypotheses to test the relevance of the
biological alignment method to our activity pattern study.

Hypothesis 1: The sequential characteristics of activity sequences (purchase sequences in

this illustration) will be better represented for the alignment method than for

the conventional position-based distance measure in the resulting

segmentations.

Hypothesis 2: The overall segment homogeneity will be better achieved by the alignment

method than by the conventional position-based distance measure in the

resulting segmentations.

Table 3.3: Statistics about the variables included in the discriminant analysis

nA nB nC nD nE Leng A B C D E Vseek

Mean 70.4 41.8 22.3 31.8 13.0 179.5 29.9 19.9 13.8 18.0 8.3 90.1
STD 60.6 61.7 39.8 39.8 28.6 87.5 22.8 23.1 21.0 18.5 15.1 66.5

Note: nA=number of visits to store chain A, A=number of changes from store chain A to others.
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Table 3.4: Correlation between the variables characterizing the purchase sequence

nA nB nC nD nE Leng Vseek

nB -.127
nC -.040 -.011

nD -.187 -.149 -.108
nE -.135 -.081 .005 .044

Leng .456 .518 .372 .185 .199
Vseek .209 .348 .452 .207 .277 .781
VseekR -.094 .035 .265 .108 .212 .199 .697

Note: Italic figures denote that the correlation is not significant at α = 0.01 level. The VseekR, representing
variety-seeking tendency (=Vseek/Leng), is included in this table to see its correlation with cross-sectional
variables, but not included in the discriminant analysis.

Tables 3.3 and 3.4 respectively provide the statistics about the variables included in
the discriminant analysis and the correlation between them measured on 945 sequences.
Table 3.4 shows that, except for some correlations involving sequence length, correlations
are low. For checking the unbiased discriminant power concerned with hypothesis 2, we
randomly divided the set of 945 sequences into analysis and holdout sets of size 630
(66.6 %) and 315 (33.3 %), respectively.

The results of the analysis are given in Table 3.5. The stepwise method entered at
each step the variable that minimizes the overall Wilks’ Lambda. The minimum partial F to
enter was set to 3.84 and the maximum partial F to remove to 2.71. Table 3.5 shows that the
sets of important dimensions listed by the stepwise discrminant analysis procedure are to a
large extent the same between the segment solutions for each measure. The table further
demonstrates that the Hamming segments were distinguished by cross-sectional dimensions
(primarily by the sequence length indicating the shopping frequency in general and mostly
by shopping frequency for each store chain) and by only few sequential dimensions (changes
from store chain B). On the other hand, the segments based on the SAM were distinguished
by both cross-sectional and sequential dimensions. Note that the variable ‘Vseek’ reflecting
the overall variety-seeking level of a shopper was included in the four-clusters solution of
the SAM’s segments, but included in none of the Hamming solutions.

This finding is consistent with the correlation analysis where the Hamming distance
measure was strongly correlated with the difference in sequence length between sequences,
whereas the SAM has low correlations. In addition, the ‘% correctly classified cases’ shows
that across segment solutions, the SAM led to better segment solutions than the Hamming
solutions. The holdout set does not show any big downfall of the correct classification ratio
compared with the analysis set, implying that the analysis set is not biased. In words, the
variable ‘Leng’ is the most influential determinant of the Hamming segments across
solutions, while many other variables including the sequential variables are characterizing
the SAM’s segments in combination with the ‘Leng’.

We further studied the characteristics of each segment by testing the canonical
discriminant functions on the analysis set of sequences. As the sets of important dimensions
are largely the same between the solutions for each measure, the four-segment solution was
arbitrarily chosen for the illustration for both the Hamming distance and the SAM, and the
results are shown in Table 3.6.
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Table 3.5: Stepwise discriminant analysis on several segment solutions

Hamming solution SAM solution
# Variables included in the

stepwise analysis
%1 %2

Variables included in the
stepwise analysis

%1 %2

2 Leng, nB, nC, B 88.3 89.2 Leng, nA, nB, B, C 94.3 94.3
3 Leng, nB, nC, B 88.6 86.7 Leng, nA, nB, nC, B, C, D 91.9 88.6
4 Leng, nB, nC, nD, B 87.6 90.5 Leng, nA, nB, nD, B, C, D, Vseek 89.7 89.8
5 Leng, nA, nB, nC, B 85.1 87.9 nA, nB, nC, nD, nE, A, B, C, D 89.4 87.6
6 Leng, nA, nB, nC, B 83.7 86.0 nA, nB, nD, nC, nE, A, B, C, D 86.0 85.1
7 Leng, nA, nB, nC, B 83.0 83.5 nA, nB, nC, nD, nE, A, B, C, D 83.2 83.8
8 Leng, nA, nB, nC, B 83.2 82.9 nA, nB, nC, nD, nE, A, B, C, D 83.5 79.7

Note: ‘#’ means the number of segments of the solution, ‘%1’ percent correctly classified cases of analysis set
and ‘%2’ percent correctly classified cases of holdout set.

First, the canonical discriminant function eigenvalue that represents the discriminant
function’s power of explaining the amount of difference between segments, demonstrates
that only function 1 appears to be significant in the Hamming segmentation, while all three
functions are significant in the SAM’s segmentation.

Secondly, the standardized canonical discriminant function coefficient that represents
the relative importance of each variable in each discriminant function, shows that for the
Hamming segmentation function 1 is associated with longer sequence length, function 2 with
higher frequency for store chain B and shorter sequence length, and function 3 with higher
frequency for store chain C. In case of the SAM’s segmentation, on the other hand, a more
diverse set of variables is used for characterizing each function. Function 1 is associated with
higher frequency for store chains B, A and D, shorter sequence length, and more changes
from store chains B and C. Function 2 is associated with higher frequency for store chains A
and D, shorter sequence length, more changes from store chain C, and less variety-seeking
behavior in general. Function 3 is associated with lower frequency for store chain D, higher
frequency for store chain A, and more changes from store chain D.

Finally, the segment centroids of discriminant functions that represent the
characteristics of the segments (each segment’s mean discriminant score for each function)
indicate for the Hamming segmentation that the shoppers with the longest purchase histories
constitute segment 4, those of smallest frequency for store chains constitute segment 2, and
those in the middle represent segments 1 and 3. Note that in the case of Hamming
segmentation, function 1 was the only significant discriminant function identified by
canonical eigenvalues, and sequence length was the only variable having a recognizable
importance in function 1. SAM’s segmentation, however, involves more diverse
distinguishable characteristics, as the SAM’s discriminant functions were all found
significant. The shoppers of segment 1 shop less frequently at store chains A, B and D, and
more often in general. They also show more variety-seeking behavior. Shopper segment 2 is
characterized by more frequent shopping at store chains A and B, a lower shopping
frequency in general, and less variety-seeking behavior. Likewise, Shopper segment 3 can be
described in terms of a higher frequency for store chains B and D, a lower shopping
frequency in general, and higher variety-seeking behavior. Shopper segment 4, finally is
characterized by more variety-seeking behavior in general.
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Table 3.6: Segment characteristics identified by discriminant function

Canonical discriminant function eigenvalues
Hamming distance SAM

function eigen-value % variance
canonical

correlation
function eigen-value % variance

canonical
correlation

1 3.036 83.1 .867 1 1.797 39.7 .802
2 .592 16.2 .610 2 1.490 32.9 .774
3 .027 .7 .161 3 1.240 27.4 .744

Standardized canonical discriminant function coefficients
Hamming distance SAM

discriminant function discriminant function
variable

1 2 3
variable

1 2 3
nA nA 1.185 1.645 .707
nB .148 .745 .039 nB 1.551 .485 .337
nC -.101 .292 1.076 nC

nD .122 -.163 .349 nD .968 .854 -1.165
nE nE

Leng .874 -.588 -.292 Leng -2.235 -1.781 -.275
A A

B .232 .365 .109 B .587 .031 -.219
C C .801 .688 .073
D D -.001 .499 .723
E E

Vseek Vseek -.476 -.865 -.053

Discriminant functions at segment centroids
Hamming distance SAM

discriminant function discriminant function
segment

1 2 3
segment

1 2 3
1 .774 -1.093 -.223 1 -2.108 -1.565 -.165
2 -1.245 -.045 .090 2 -.353 1.228 .887
3 .384 1.555 -.211 3 .416 .752 -2.143
4 4.273 .099 .225 4 1.849 -1.179 .478

Based on the analyses in this subsection reported in Tables 3.5 and 3.6, we draw the
following conclusions. First, compared to the conventional position-based distance measure,
the alignment method better discriminates among segments regarding the sequential
characteristics of the purchase histories. Secondly, compared to the conventional measure,
the alignment method achieves higher overall homogeneity in the resultant segmentation in
terms of the defined dimensions representing both the cross-sectional and sequential
characteristics of the purchase histories. Both hypotheses 1 and 2 are therefore accepted.

In sum, the conventional position-based distance measure and the alignment method
of comparing activity sequences (purchase sequences in this illustration) generate different
segments. First, the segmentation based on the Hamming distance identifies mostly the
cross-sectionally differentiated segments only, while the segmentation based on the SAM
induces not only cross-sectionally but also sequentially differentiated segments.
Consequently, SAM’s segmentation provides richer information. Perhaps equally important



Measuring Activity Rescheduling Behavior                                                                           53

is the fact that the SAM’s segmentation is less affected by the sequence length. In other
words, the segments based on the SAM are distinguished not only by the sequence length
but also more by the proportions of individual activities (store chains in this illustration),
which is the structural skeleton of the activity sequence, another key aspect of interest. This
property of the distance measure results from the fact that the SAM captures the cross-
sectional and sequential information of particular store chains at the same time.

3.4.2 An analysis of sequences using the extended sequence alignment method

This subsection analyzes activity diary sequences. An activity diary sequence is an array of
activities that an individual implemented for a given period of time. A limited number of
activity categories repeatedly appear. All sequences convey the information of the order of
activities implemented and the number of activities that differs between the sequences.
Compared with the sequence data in the previous subsection, the current sequences do not
distinguish between different stores visited but encode ‘grocery shopping’ or ‘non-grocery
shopping’ for them all. Instead, the sequence also includes all other activities implemented
given a time horizon. The analysis of these sequences will show the impact of the
incorporation of the position sensitiveness into the original alignment method on the
alignment measures and the subsequent classification results.

Data

The data used in the analysis are part of a recent Dutch activity diary survey, collected in
1997 in two cities, Hendrik-Ido-Ambacht and Zwijndrecht. Both belong to the south
Rotterdam region. The survey was conducted as part of A lbatross research project. The
respondents were asked to report all their activities conducted during two consecutive days.
Each day begins at 3 a.m. and ends at 3 a.m. of the next day. The diary used open time
intervals. A total of 2974 activity-travel patterns were included in the data set. The empirical
analysis of this section used a sub-set of 77 activity diary sequences that were randomly
selected from the full data set and involved 2926 pairwise comparisons. The questionnaire
classification of the survey lists a total of 47 activities (Arentze & Timmermans, 2000, p.
466). The sequences used in the current empirical analysis simplified these into 17 activity
categories. An extra code, ‘unknown,’ was included when activities were not identified. A
total of 18 activity categories include work, bring/get of person/goods, grocery shopping,
non-grocery shopping, service, medial, sport, tour, eating, sleeping, out-of-home leisure, out-
of-home non-leisure, receiving visit, paying visit, other work, other activities, doing nothing
and unknown activities. The substitution operation was applied to any alignment with the
element of ‘unknown’ activity. The average length of the activity sequences was 15.86 with
a maximum of 29, a minimum of 8 and a standard deviation of 4.90 activities.
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Analysis scheme

This sub-section will examine whether the position-sensitive SAM (pSAM) is sensitive to
the various reordering distances when compared to the conventional SAM (cSAM) and
whether the identified position-sensitiveness of the pSAM, if any, affects the results of an
activity-travel behavior analysis. To this end, we will first measure the correlation between
the two SAMs dependent on the size of reordering weight. We expect on the basis of
equation (3.27) that the two SAMs give different results, as the size of the second term of the
RHS of equation (3.27) will often differ from the size of the third term. Furthermore, the
difference is expected to be amplified as the reordering weight increases.

Next, we will examine the specific contribution of the reordering distance to the
alignment costs. For the latter analysis, we compare the pSAM with a SAM that takes only
the reordering weight but not the reordering distance into account. For convenience, we shall
call the SAM of the latter case the nrSAM, as it is only concerned with the number of
reorderings, weighted by the reordering weight. Note that nrSAM and cSAM are equivalent
if the reordering weight is set to two units (i.e. η = 2wo). The correlation coefficients r(η)
between cSAM and pSAM and between cSAM and nrSAM will therefore be compared. We
also expect on the basis of equation (3.27) that the correlation between cSAM and pSAM is
lower than the correlation between cSAM and nrSAM. This is because by taking both the
number of reorderings and the reordering distances into account the sum of the second and
third terms of RHS of equation (3.27) will likely result in greater diversity than in the case of
taking into account only the number of reorderings.

Secondly, the set of pairwise distances respectively measured by cSAM and pSAM
will be used for classifying activity diaries as an example of the analysis of activity-travel
behavior. We will test whether cluster solutions differ much between the two measures by
comparing the cluster memberships.

The equations used to calculate different SAM costs are based on equations (3.24) to
(3.27). The variants of SAM are defined as:

cSAM: LwIDwd oo 2)(),( CS ++=gs (3.35)

pSAM: 





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l

lo hIDwd
*

PS )(),( ηgs (3.36)

nrSAM: LIDwd o η++= )(),( nrgs (3.37)

The illustration uses twenty-one different reordering weights, ranging from 0 to 2wo as
mentioned in Section 3.3.3. When η = 0, the costs of pSAM of equation (3.36) and of
nrSAM of equation (3.37) become the same and are always smaller than the cSAM costs, if
any reordering happens (that is, Li > 0). As discussed before, when η = 2wo, the costs of
cSAM of equation (3.35) and of nrSAM of equation (3.37) become the same and are always
smaller than or equal to the pSAM costs. Other nineteen reordering weights are evenly
distributed over this range.
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Figure 3.6: Correlation between pSAM and cSAM

Results
  
Correlation coefficients: Figure 3.6 shows the correlation coefficients between pSAM and
cSAM. The X-axis in this figure represents pSAMs with varying reordering weight. The
figure demonstrates that pSAM is highly, positively correlated with cSAM, but the
correlation is not perfect. The two sequence alignment measures are highly correlated
because the sum of reordering distances likely increases as the number of reorderings
increases. Their correlation is, however, not perfect, indicating that the sum of reordering
distances is not a perfectly linear increment of the number of reorderings.

Figure 3.6 also shows that the functional curve of the correlation coefficient is
globally concave. This result can also be deducted by comparing the second terms of the
RHS of equations (3.35) and (3.36). When the sizes of reordering weights are very small, the
cost for reorderings becomes near to zero regardless of the reordering distances, and the
correlation between the two SAMs is mostly determined by the relation between the sum of
the first and second terms of equation (3.35) and the first term of equation (3.36). The
correlation is increasing as the relative sizes of the second terms of the RHS of equations
(3.35) and (3.36) are getting close to each other by the increment of the reordering weight.
The correlation, however, starts decreasing as the reordering weight decreases after a certain
point. A more detailed examination showed that the critical value of the reordering weight
inducing the stationary point of the correlation coefficient is determined near to 2wo

multiplied by the ratio of standard deviations of the number of reorderings and the sum of
reordering distances. This is because the impact of disagreement between the sum of
reordering distances and the number of reorderings on the costs of deletions and insertions of
unique elements will be amplified as the reordering weight is increased.
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Figure 3.7: Pearson’s correlation between pSAM, nrSAM and cSAM

The correlation between pSAM and cSAM and the correlation between nrSAM and
cSAM using the same data set are compared in Figure 3.7. The figure clearly indicates that
nrSAM is more strongly correlated with cSAM than pSAM is and that the effect of
reordering distances systematically increases as the reordering weight increases. The result
demonstrates, our earlier expectation, that the reordering distances provide greater diversity,
and it is amplified by the increment of the reordering weight.

Cluster membership: Finally, how well pSAM matches cSAM in a cluster based on pairwise
distances was examined. To this end, the following procedures were performed. First, the
pairwise distance matrices produced by the two measures were respectively input to the
SPSS cluster analysis as the proximity matrix. The Ward method was used as the clustering
algorithm. A total of four clusters could be identified in both measures. Then, the individual
activity diary cases that each cSAM cluster contains were identified. Next, for each cSAM
cluster, the individual activity diary cases that each pSAM cluster contains were identified.
Finally, the number of individual cases of the biggest pSAM cluster for each cSAM cluster
was identified.

Table 3.7: Comparison of pSAM’s membership with cSAM’s membership

cSAM solution pSAM solution
cluster cases match-cases*

Matching
(%)

1 15 9 60.0
2 20 13 65.0
3 23 19 82.6
4 19 12 63.2

Note: ‘*’ denotes the number of cases of the biggest pSAM cluster matching with the corresponding cSAM
cluster.
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As shown in Table 3.7, the resultant matching ratios of cluster membership range from 60.0
to 82.6 %, which demonstrate a substantial difference in the cluster solution between the two
measures and affirm the findings of the correlation analysis.

Based on these observations, it can be concluded that the reordering distance indeed
affects the cluster solution. It is necessary to take this conclusion into account because the
properties of sub-sequence do matter in the analysis of activity-travel behavior as discussed
in the introduction.

3.5 Conclusions and discussion

This chapter has introduced the sequence alignment method, originally developed in the
molecular biology to measure the biological distance between DNA, RNA or protein
sequences. Because, by definition, sequential information is of crucial importance in
analyzing the activity-travel patterns, which consist of sequences of activities, sequence
alignment methods have potential for the analysis of activity-travel patterns.

The current chapter extensively explored the application of sequence alignment
methods to particular problems of activity analysis. More specifically, the original alignment
method was applied to the identification of shopper segments on the basis of their purchase
histories. It was found that conventional Euclidean distance measures only capture the cross-
sectional (dis)similarity of corresponding elements between the sequences compared. This
may lead to a significant loss of information about the sequential (dis)similarity between
sequence of information. We therefore suggested using sequential alignment methods for the
analysis of activity sequences.

This is not to say that the method cannot be improved specifically for activity-based
analysis in transportation and urban planning research. To this effect, an extension of the
original method was proposed. It measures the difference between sequences in terms of
both the sequential order and the positioning of common elements in the sequence as well as
the composition of the overall sequence. The proposed method includes (1) reordering rules
by which particular common elements are selected for the reordering, (2) a repositioning rule
by which particular positions are determined as the destinations of the selected common
elements and (3) rules for finding the set of common elements to be reordered. Based on
these, a position-sensitive distance measure is defined. The sizes of weights for the deletion
and insertion of unique elements and reordering of common elements are the parameters of
the method.

An empirical application of this method to activity diary data led to the following
conclusions. First, the proposed method does differ from the conventional sequence
alignment method. Furthermore, the degree of difference between the two sequence
alignment methods varies with the size of reordering weight. This implies that one may
incorporate the effect of the difference in positions of common elements into the overall
difference between sequences, dependent on the application. Secondly, the size of the
reordering distance, in addition to the reordering weight, affect the results, confirming the
importance of an appropriate reordering weight in the context of the analysis. Additionally, a
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mathematical interpretation of the correlation equation indicates that the results of the
proposed method would be less sensitive to the reordering weight as the element
composition becomes more homogeneous between sequences compared. In such cases, the
determinant of the position sensitiveness of the proposed method is the difference between
the number of reorderings and the sum of reordering distances itself rather than the sum of
reordering distances multiplied by the reordering weight. Finally, the cluster solutions
substantially differ between the conventional position-irrelevant sequence alignments and
the proposed measure.

Based on these findings, we conclude that the proposed method is useful to calculate
the degree of difference between sequences of information for both classification and
goodness-of-fit test purposes. However, the original as well as the extended method assumes
uni-dimensional strings. This implies that although we argue that the position-sensitive
method may be a valuable method to measure the similarity between uni-dimensional facets
of activity sequences, it does not suffice to analyze multi-attribute activity-travel patterns.
Therefore, in the next chapter a multidimensional sequence alignment method will be
developed and it will be this measure, instead of the position-sensitive uni-dimensional
method that will be used in the context of the model to be developed in this project.
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Appendix 3.1: A mathematical method for calculating the minimum sum of reordering

distances

When the source common elements of a letter to be reordered do not have one-to-one
relationships with the target elements, as mentioned in Example 9, the pairs of common
elements of the source and target sequences are to be selected such that the sum of
reordering distances is minimized. To calculate the minimum sum of the reordering
distances, we developed a mathematical method, and we shall call this a Minimum

Reordering Distance Calculator (MRDC).
We will introduce the MRDC by using a calculation example. Consider the following

operation set consisting of deletion and insertion operations applied to eight common
elements of the same letter, as well as the positions to which those operations are applied,
identified by the eSAM.

{i2, d4, i5, d7, i8, d9, i15, i17}

where, d and i represent deletion and insertion operations, respectively; the attached
numbers indicate the positions to which the concerned operations are applied.

There are three deletions and five insertions. In other words, all of three source
elements must be reordered (deleted-inserted) to particular positions of the target elements,
while two of five target elements are simply inserted. As such, the number of reorderings is
determined by the operation of the smaller number, and hence, we shall call the operation of
the smaller number the anchor operation, and the operation of the larger number the
counterpart operation. Summing across the reordering sets the number of anchor operations
returns L of equation (3.27). We may rewrite the above operation set such that the anchors
come first, and the counterparts next.

{d4, d7, d9; i2, i5, i8, i15, i17}

Each reordering distance is measured as h = |i−j|, where i and j are the positions of the
reordered elements in the source and target sequences, respectively. The reordering distance
hence is calculated by pairing each anchor operation with a counterpart operation. There are
many ways of doing this, and the purpose of the MRDC is to find the ‘best’ set of pairs of d
and i such that the sum of reordering distances is minimized.

Note that the anchor operations should maintain their order when paired with their

counterparts. For example, d7-i2 and d4-i5 pairings, which lead to the distance |7−2|+|4−5|

= 6, are worse than d4-i2 and d7-i5 pairings of the distance |4−2|+|7−5| = 4. This fact
introduces the following table of the common element pairing. The positions to which the
anchor operations (deletions in this example) are applied are arranged in rows, and the
counterpart operation positions are represented in columns. Note that the positions are
arranged in an increasing order of positions, and the reordering operations are not applied to
the shadowed cells because of the pairing order mentioned above.
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where, each cell represents a pair of positions of the common elements deleted (d) and
inserted (i).

Consequently, the reordering of this common element set should end with one of
three cells, ",# and $, and there are ten possible reordering combinations to reach them as
shown below.

Also, the pairwise reordering distances are identified as:

The MRDC then finds the reordering history of the minimum distance as defined as.

)],( ..., ),,(min[),( yx
d

xx
dd rrr qpqpqp = (3A1-1)

0),( 00 =qpdr (3A1-2)

0),( 0 =qpu
dr ∀  u (3A1-3)

0),( 0 =v
dr qp ∀  v (3A1-4)

),()],( ..., ),,(min[),( 1111
vud

vu
d

uu
d

vu
d qprrrr += −−−− qpqpqp

1≤ u ≤ x ; i ≤ v ≤ y−(x−u) (3A1-5)

where, pu and qv are the positions of the u-th anchor and v-th counterpart operations in their
sequences, respectively; rd(pu,qv) is the reordering distance between the u-th anchor

2 5 8 15 17 i counterpart

4 % & '

7 ( ) *

9 " # $

d

anchor

" ← %-( # ← %-( $ ← %-(
%-) %-)
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operation and the v-th counterpart operation (pu < pu’ where u < u’, and qv < qv’ where v < v’);
x and y are the number of anchor and counterpart operations of the concerned reordering set,
respectively (x ≤ y); rd(p

u,qv) is the minimum reordering distance cumulated from rd(p
0,q0) to

rd(p
u,qv); rd(p,q) is the final solution of the minimum sum of reordering distances.

Note that pu and qv do not dictate the initial parts of the source and target sequences
BUT the initial parts of the anchor and counterpart operations. To emphasize this, we
denoted the anchor and counterpart operations of positions u and v by pu and qv, respectively.
Thus, we use pu and qv instead of si and gj to avoid any confusion. Equations (3A1-2) to
(3A1-4) imply that no reordering operation is applied to the null cells. Equation (3A1-5)
finds the best history of reordering operations out of the possible combinations of the
reordered predecessors defined by the conditions of u and v that maintain the pairing order.
Equation (3A1-1) finally finds the minimum sum of reordering distances among the cell
values of the last anchor operation.

We continue the above example to illustrate how the MRDC actually works.

The values of the cells are:

rd(p
1,q1) = rd(p

0,q0) + rd(p1,q1) = 0 + 2 = 2;
rd(p

1,q2) = min[rd(p
0,q0), rd(p

0,q1)] + 1 = 1;
rd(p

1,q3) = min[rd(p
0,q0), rd(p

0,q1), rd(p
0,q2)] + 4 = 4;

rd(p
2,q2) = rd(p

1,q1) + 2 = 4; :from (p1,q1)
rd(p

2,q3) = min[rd(p
1,q1), rd(p

1,q2)] + 1 = 2;
rd(p

2,q4) = min[rd(p
1,q1), rd(p

1,q2), rd(p
1,q3)] + 8 = 9;

rd(p
3,q3) = rd(p

2,q2) + 1 = 5; :from (p2,q2)
rd(p

3,q4) = min[rd(p
2,q2), rd(p

2,q3)] + 6 = 8;
rd(p

3,q5) = min[rd(p
2,q2), rd(p

2,q3), rd(p
2,q4)] + 8 = 10;

Hence,

rd(p,q) = min[rd(p
3,q3), rd(p

3,q4), rd(p
3,q5)] = 5. :from (p3,q3)

The minimum sum of reordering distances includes the reordering history of rd(p1,q1),
rd(p2,q2) and rd(p3,q3) (%→(→"). Summing the weights of the minimum sums of

reordering distances across the reordering sets returns the ∑
L

lr
*  in terms of equation (3.27).

pos  0 1 2 3 4 5 qv 
   2 5 8 15 17 i 
0  0 0 0 0 0 0  
1 4 0 2 1 4    
2 7 0  4 2 9   

3 9 0   5 8 10  

pu d        
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Appendix 3.2: Appropriateness proof

It can be proven that under the condition that the proposed method remains an alignment
method that keep the skeleton of original sequence as much as possible, the position-
sensitive SAM matches our intuition about reordering in the sense that the elements of a
smaller number or of a bigger reordering distance are reordered, and that the cost of position-
sensitive SAM monotonically increases as the reordering distance increases, ceteris paribus.

THEOREM.  Let s = [s1…sm] and g = [g1…gn] respectively be the source and target sequences.
Let o = {p1,…,pd,…,pD, q1,…,qi,…,qI, f1,…fz,…,fZ} be an arbitrary alignment of any pair of s
and g, consisting of D deletions, I insertions, and Z modified identities (D ≤ m; I ≤ n; Z ≤
min[m,n]). Let ZCS and ZES respectively be the number of identities of the optimum alignment
of original SAM and the number of modified identities of the optimum alignment of eSAM.

Let vz
*, *

'zew  and hl
* respectively be the position difference and the modified identity weight

of fz of the optimum alignment of eSAM and the reordering distance of (pd,qi)l of the
optimum reordering calculation (l = 1,…,L). Let wo = wd = wi > 0. Let d(s,g)CS, d(s,g)ES and
d(s,g)PS respectively be the optimum alignment cost of original SAM and eSAM and
position-sensitive SAM. Let A = {

a
p1 ,…,

aDp , 
a

q1 ,…,
aIq , 

a
f1 ,…,

aZf } and B = {
b

p1 ,…,
bDp ,

b
q1 ,…,

bIq , 
b

f1 ,…,
bZf } respectively be the optimum alignment of eSAM for the pairs of sa

and ga and of sb and gb. Then, ZCS = ZES, and (D+I)wo +∑
ES

*
Z

zv  ≤ (D+I)wo+∑
ESZ

zv  ∀

(D+I)wo+∑
ESZ

zv , {(D+I)wo+∑
ESZ

zv } ∋  (D+I)wo+∑
ES

*
Z

zv , and if Da+Ia = Db+Ib, and

∑∑ >
b

b

a

a

L

l

L

l hh
** , then d(sa,ga)PS > d(sb,gb)PS.

Proof.  It will be shown that the set of elements staying unreordered in an eSAM represents
one of the optimal trajectories of original SAM, as the number of modified identities applied
by eSAM is the same as the number of identities applied by original SAM, that the sum of
position differences obtained by the optimum alignment is the smallest one among others in
eSAM, and that the cost of position-sensitive SAM monotonically increases as the
reordering distance increases, ceteris paribus. Then, we will show that the proposed method
incorporating the reordering distance effect into original SAM, is appropriate.

LEMMA 1. Given o={p1,…,pd,…,pD, q1,…,qi,…,qI, f1,…,fz,…,fZ}, defined as any modified
identity-applied arbitrary alignment of a pair of s and g, ZCS and ZES, respectively defined as
the number of identities of the optimum alignment of original SAM and the number of

modified identities of the optimum alignment of eSAM, *
'zew , defined as the modified

identity weight of fz of the optimum alignment of eSAM, wo, defined as wo = wd = wi > 0, and
d(s,g)CS and d(s,g)ES, respectively defined as the optimum alignment costs of original SAM
and eSAM, then ZCS = ZES.
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Proof.  Given o={p1,…,pd,…,pD, q1,…,qi,…,qI, f1,…,fz,…,fZ}, d(s,g)CS and d(s,g)ES, according
to the definitions of original SAM and eSAM,

n(o) = D+I+Z (3A2-1)

and

d(s,g)CS = [ ]eo ZwwID ++ )(min (3A2-2)

and

d(s,g)ES = 







++ ∑

Z

eo z
wwID ')(min (3A2-3)

Since,

[ ]eZwmax  = 0 < wo (3A2-4)

we have

d(s,g)CS = [ ]owID )(min + + ZCSwe (3A2-5)

Because









∑

Z

e z
w 'max < wo (3A2-6)

we also have

d(s,g)ES = [ ]owID )(min + +∑
ES

*
'

Z

e z
w (3A2-7)

According to equations (3A2-5), (3A2-7) and (3A2-1),

[ ]ID +min + ZCS = [ ]ID +min + ZES (3A2-8)

Hence,

ZCS = ZES (3A2-9)

LEMMA 2. Given o={p1,…,pd,…,pD, q1,…,qi,…,qI, f1,…,fz,…,fZ}, defined as any modified
identity-applied arbitrary alignment of a pair of s and g, ZES, defined as the number of
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modified identities of the optimum alignment of eSAM, vz
* and *

'zew , respectively defined as

the position difference and the modified identity weight of fz of the optimum alignment of
eSAM, wo, defined as wo = wd = wi > 0, and d(s,g)ES, defined as the optimum alignment cost

of eSAM, (D+I)wo+∑
ES

*
Z

zv  ≤ (D+I)wo+∑
ESZ

zv  ∀  (D+I)wo+∑
ESZ

zv , {(D+I)wo+∑
ESZ

zv } ∋

(D+I)wo+∑
ES

*
Z

zv .

Proof.  Given o={p1,…,pd,…,pD, q1,…,qi,…,qI, f1,…,fz,…,fZ} and d(s,g)ES, according to
equation (3A2-7) of Lemma 1,

d(s,g)ES = min[(D+I)wo]+∑
ES

*
'

Z

e z
w  ≤ (D+I)wo+∑

Z

e z
w ' (3A2-10)

Since,

{(D+I)wo+∑
Z

e z
w ' } ⊃  {min[(D+I)wo]+∑

ES

'

Z

e z
w } (3A2-11)

we have

min[(D+I)wo]+∑
ES

*
'

Z

e z
w  ≤ min[(D+I)wo]+∑

ES

'

Z

e z
w (3A2-12)

According to equation (3A2-1) of Lemma 1,

(D+I)wo+∑
ES

*
'

Z

e z
w  ≤ (D+I)wo+∑

ES

'

Z

e z
w (3A2-13)

Given we’ = v
nm

wo ⋅
2],max[

,

(D+I)wo+∑ ⋅
ES

*

2],max[

Z

z

o v
nm

w
 ≤ (D+I)wo+∑ ⋅

ES

2],max[

Z

z

o v
nm

w
(3A2-14)

Hence, since 
2],max[ nm

wo  is a non-negative constant for each comparison case,
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(D+I)wo+∑
ES

*
Z

zv  ≤ (D+I)wo+∑
ESZ

zv  (3A2-15)

LEMMA 3. Given A = {
a

p1 ,…,
adp ,…,

aDp , 
a

q1 ,…,
ai

q ,…,
aIq , 

a
f1 ,…,

aZf } and B =

{
b

p1 ,…,
bdp ,…,

bDp , 
b

q1 ,…,
bi

q ,…,
bIq , 

b
f1 ,…,

bZf }, respectively defined as the optimum

alignment of eSAM for the pairs of sa and ga and of sb and gb, hl
*, defined as the reordering

distance of (pd,qi)l of the optimum reordering calculation (l = 1,…,L), and d(s,g)CS, d(sa,ga)PS

and d(sb,gb)PS, respectively defined as the cost of original SAM and position-sensitive SAM
of the optimum alignment of the pairs of sa and ga and of sb and gb, d(sa,ga)PS > d(sb,gb)PS if

Da+Ia = Db+Ib, and ∑∑ >
b

b

a

a

L

l

L

l hh
** .

Proof.  Given d(s,g)PS,

d(sa,ga)PS = )(),( *
CS aiad

L

laa LwLwhd
a

a
+−+ ∑ηgs (3A2-16)

or

d(sa,ga)PS = )()()( *
aiad

L

laiadaiad LwLwhLwLwIwDw
a

a
+−++++ ∑η (3A2-17)

or

d(sa,ga)PS = ∑++
a

a

L

laiad hIwDw
*)( η (3A2-18)

Similarly,

d(sb,gb)PS = )(),( *
CS bibd

L

lbb LwLwhd
b

b
+−+ ∑ηgs (3A2-19)

or

d(sb,gb)PS = )()()( *
bibd

L

lbibdbibd LwLwhLwLwIwDw
b

b
+−++++ ∑η (3A2-20)

or
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d(sb,gb)PS = ∑++
b

b

L

lbibd hIwDw
*)( η (3A2-21)

Given Da+Ia = Db+Ib, and wd = wi,

bibdaiad IwDwIwDw +=+ (3A2-22)

Hence, according to equations (3A2-18), (3A2-21), and (3A2-22), and given ∑∑ >
b

b

a

a

L

l

L

l hh
** ,

d(sa,ga)PS > d(sb,gb)PS (3A2-23)



4 A Multidimensional Sequence Alignment Method

4.1 Introduction

In Chapter 3, a sequence alignment method was introduced for the analysis of activity
sequences. Unlike Euclidean distance measures, the sequence alignment method can also
measure the sequential similarities between activity patterns. As repeatedly stated in Chapter
2, this implies that the suggested measure captures not only the compositional information
but also, more importantly, the contextual information embedded in activity patterns.
Moreover, the original sequence alignment method was extended to a position-sensitive
measure that captures not only the nominal difference between corresponding elements of
two sequences but also the information of how many positions they are apart. The empirical
analyses reported in Chapter 3 provide evidence of the potential of these measures for a
variety of applications in transportation and urban planning research, where sequential
information is of importance.

Nevertheless, an analysis of activity-travel behavior should consider not only the
sequence of activities, which the uni-dimensional alignments can handle, but also the
interdependency relations across attributes of an activity, which cannot be captured by the
uni-dimensional alignments. Given the background work on the uni-dimensional sequence
alignment method, in this chapter we will propose such a multidimensional extension of the
original sequence alignment method. A crucial challenge here is how to incorporate
interdependency between activity attributes while maintaining the central property of the
alignment methods of capturing sequential information.

This chapter is organized as follows. Section 4.2 explains what the multidimensional
extension of the uni-dimensional methods means to the analysis of activity-travel behavior.
Section 4.3 accordingly defines the problem of multidimensional activity-travel pattern
comparison. A way to handle the interdependency between attributes is suggested, which is
subsequently formalized as an operational method. An example of an application of the
method is given to illustrate the method. Because the computing time for calculating
similarity in terms of an exhaustive search will be prohibitive for any realistic data set,
Section 4.4 develops efficient implementation algorithms to compute the suggested method
in reasonable time. As there are several ways to implement the suggested method in practice,
the section addresses the details of the alternative algorithms at some length. Section 4.5
uses activity-travel data collected in The Netherlands to show the fundamental properties of
the suggested method in activity-travel analysis in comparison with the conventional
Euclidean measures. In Section 4.6, the new and existing alternative algorithms are
compared in terms of accuracy of the solution and computing time using a recent Dutch
activity-diary data set. The chapter ends with some conclusions and discussion.
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4.2 Implication of multidimensional extension of uni-dimensional method

The problem that arises in activity analysis is that the alignment costs for multidimensional

activity-travel patterns having two or more attribute sequences is not the simple sum of uni-
dimensional alignment costs because of the interrelations between activity elements of
different attributes. A variety of interdependency relationships between attributes complicate
the problem of calculating the minimum-effort equalization.

In the absence of an algorithm for such multidimensional sequence alignment,
Wilson (1998) suggested combining the attribute levels of interest and then performing a
conventional uni-dimensional sequence alignment. For example, a three-dimensional profile
of an activity, [activity type=Shopping, location=Amsterdam, travel mode=CarDriver]′ can
be encoded as a single activity code, (Shopping-Amsterdam-CarDriver), which is nominally
different from another activity code, (Shopping-Amsterdam-CarPassenger). The comparison
problem then is simply a question of uni-dimensional alignment of uni-dimensional strings
of multidimensional information. By differentiating substitution weights between activity
code pairs based on their degree of correspondence, the uni-dimensional code system can
detect the difference in a subset of elements between activities at the level of single activities.

The positive feature of this approach is its simplicity. Unfortunately, however, this
uni-dimensional encoding scheme presents a problem at the level of comprehensive patterns.
Assume, for example, that two four-dimensional source patterns s1 and s2, consisting of
activity-type, location, travel-mode and accompanying-person attributes, are compared with
a target pattern g. The activity-travel patterns can be represented by either a uni-dimensional
sequence of multidimensional activity information or a set of multiple sequences of uni-
dimensional attribute information, as shown in Figures 4.1 and 4.2. In the figures, the grayed
cells indicate elements that involve mismatches with the target pattern g.

Activity1 and Activity2 of s1 partly share the activity contexts (Car-Alone and
Work-Rotterdam) with Activity1 of g, while only Activity1 of s2 does this. Despite this fact,
the costs for uni-dimensional alignments of uni-dimensional pattern pairs, s1-g and s2-g, are
both 2+4 = 6 units for the mismatch (Figure 4.1).

g
Activity 1

Work Rotterdam   Car   Alone

s1
Activity1 Activity2
Shopping Amsterdam   Car   Alone Work Rotterdam   Bus  WithOthers

s2
Activity1 Activity2
Shopping Amsterdam   Car   Alone SocialVisit Maastricht   Bus  WithOthers

Figure 4.1: Comparison of multidimensional activity-travel patterns based on uni-
dimensional encoding scheme
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      g s1 s2
Activity1 Activity1 Activity2 Activity1 Activity2

Work Shopping Work Shopping SocialVisit
Rotterdam Amsterdam Rotterdam Amsterdam Maastricht

Car Car Bus Car Bus
Alone Alone WithOthers Alone WithOthers

Figure 4.2: Comparison of multidimensional activity-travel patterns based on
multidimensional encoding scheme

The uni-dimensional encoding scheme conducts a full deletion of Activity2 of both s1 and s2.
On the other hand, an alignment based on a multidimensional encoding scheme allows one
to distinguish the alignment costs for multidimensional pattern pairs as 2+2 = 4 units for the
mismatch between s1 and g, and 2+4 = 6 units for the mismatch between s2 and g (Figure
4.2). This encoding scheme conducts a full deletion of Activity2 of s2 but a partial deletion
of Activity2 of s1. Thus, it allows one to differentiate between various interdependency
relationships in the sequential alignments. Employing the multidimensional encoding
scheme that copes with the interdependency relationships is therefore critical to the
development of a multidimensional distance measure.

4.3 Method

4.3.1 Problem definition

Consider the problem of comparing two multidimensional activity patterns, called a source
and target pattern, respectively, in terms of K qualitative attributes. These attributes may
refer to activity type, location, transport mode, accompanying person, etc. Each activity
pattern then consists of K attribute sequences, and each attribute sequence consists of a set of
m, respectively n elements for source and target pattern. The activity patterns to be compared
can also concern a day, week, month, year, or any other time horizon. The source and target
patterns to be compared can then be represented by K×m and K×n matrices, respectively, as:

source pattern s = [s1. … sk. … sK.]′

with

sk. = [sk0 … ski … skm]

and
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target pattern g = [g1. … gk. … gK.]′

with

gk. = [gk0 … gkj … gkn]

where,

sk. and gk. are the vectors of the kth attribute sequences of the source and target pattern,
respectively;
ski and gkj are the ith and jth element of the kth attribute sequence of the source and target
pattern, respectively (i = 0, …, m; j = 0, …, n; k = 1, …, K);
ski ∈  Ak, and gkj ∈  Ak.

Consequently, row vectors sk.=[sk0 … ski … skm] and gk.=[gk0 … gkj … gkn] represent
the sequential order of elements of the kth attribute of the source and target pattern,
respectively, while column vectors s.i=[s1i … ski … sKi]′ and g.j=[g1j … gkj … gKj]′ potentially
represent the interdependency between the dimensions of the ith and jth activity of the source
and target pattern, respectively. The problem of multidimensional activity-pattern
comparison then is to find the minimum amount of effort required to change s=[s1. … sK.]′
into g=[g1. … gK.]′ as a measure of similarity.

4.3.2 Conceptualization

The minimum-cost trajectories of the uni-dimensional alignment allow one to capture the
sequential relationships within activity-travel patterns. They, however, do not capture any
interdependencies between attributes. Simply summing the uni-dimensional optimum
alignment costs across dimensions would not solve this problem because activity type,
location, transport mode, etc. would be aligned independently of other attributes’ elements.
To solve this problem, we propose the set of deletions, insertions and substitutions that are

applied to the elements belonging to the same activity to be treated as a single deletion,

insertion and substitution, respectively. This integrated operation combines a set of elements
that can be aligned simultaneously as if it were one element. We call such a set of elements a
segment. If there were no interdependencies, the resulting alignment costs would be identical
to the simple sum of uni-dimensional optimum alignment costs. Any costs-savings are
indicative of interdependencies across the dimensions underlying the activity-travel patterns.

Consider the comparison case shown in Figure 4.3. Note that Pattern 1 is equalized to
Pattern 2 by using deletion and insertion operations. The elements ‘B’ of attribute 1 and ‘3’
of attribute 2 are independently deleted and inserted, because they occupy different positions.
In contrast, elements ‘D’ and ‘4’ are deleted from and inserted into the same positions in
both sequences, and hence, the alignments of these elements can be combined into a single
segment.
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Pattern 1 Pattern 2

D B A C A B C D

4 1 3 2 1 2 3 4

Figure 4.3: A comparison of two-dimensional patterns

Assuming unit weights for both the deletion and insertion operations, this combined
alignment requires six units (deletions and insertions of ‘B’, ‘3’ and ‘D and 4’), while the
independent uni-dimensional alignments require eight units (deletions and insertions of ‘B’,
‘3’, ‘D’ and ‘4’).

If this reasoning is accepted, the problem then is how to determine the aggregate
alignment costs. Unless the weights attached to attributes are all the same, the alignment
costs depend on the method of aggregation that is used. In general, several methods for
aggregating a set of values may be used, such as, for example, determining the average,
median, maximum, etc. We argue that the maximum weight across attributes of the segment
is the most appropriate method of aggregation. It reflects the notion that people’s decisions
in activity scheduling may be dominated by the most important attribute. For example, let wd

be the weight attached to the deletion of an element, and βk be the weight attached to the kth

attribute. Then, the deletion of segment ‘D and 4’ in Figure 4.3 costs max(β1,β2)×wd because
these elements are aligned together instead of (β1+β2)×wd. This results in a cost reduction of
(β1+β2)×wd − max(β1,β2)×wd = min(β1,β2)×wd. In general, the alignment of two
multidimensional activity patterns will involve varying degrees of cost reductions. The
stronger the interdependency between attributes, the higher the cost reduction.

The problem of multidimensional pattern comparison then is to find the set of
segments that minimizes alignment costs. Unfortunately, this is not an easy problem as the
only known way to guarantee the optimality of the multidimensional comparison is to try all
possible alignments of each attribute, generate all possible combinations of the alignments
across attributes and then find the minimum costs among all possible alignment
combinations. It will be evident that enumerating all alignments of even a single attribute
may already require an enormous amount of computing time. We therefore suggest
employing a heuristic method. This will become a guiding principle later on for developing
the implementation algorithms that effectively reduce the search space. We will develop
such a method in the following section.

4.3.3 Specification of the method

The multidimensional alignment method proposed in this chapter first finds the uni-
dimensional least-cost alignments, then integrates the alignments across attributes and,
finally, computes the costs for the integrated alignments. More specifically, given a pair of
K-dimensional activity patterns, the proposed method first obtains K sets of operations used
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for the uni-dimensional optimum alignments, then identify the sets of elements to which the
same operations are applied and next integrates K sets of operations applied to elements into
a single set of operations applied to segments, and finally, computes the costs of the
operations for segments. The rationale underlying this heuristic lies in the expectation that
the combination of the uni-dimensional least-cost alignments likely generates a result that is
nearer to the multidimensional optimum than any other approach within acceptable
computing time. The method is detailed below.

Uni-dimensional operation set

To formally specify the proposed segment-based alignment method, we first introduce a set
representation of the alignments of uni-dimensional sequences by using the ‘trajectory’
information from the comparison table. As discussed in Section 3.2, a trajectory is a set of
operations used for equalizing or aligning two sequences. Alignments can therefore be
summarized by recording the operations, the positions to which these operations are applied,
and the attributes on which the operations are applied, translating each trajectory into a set of
operations. Note that the identity operation is not recorded because it is cost-free. We shall
call this a uni-dimensional operation set and define it as:

Ok,l = {p|p=d(i,k) ∨  p=i(j,k) ∨  p=s(i,j,k)} (4.1)

with

i ∈  {1, .., m},  j ∈  {1, .., n}, 1 ≤ k ≤ K

where,

Ok,l is the lth uni-dimensional operation set of the kth attribute sequence, containing the
deletions, insertions and substitutions;
d(i,k) is the deletion of the ith element of the kth source sequence;
i(j,k) is the insertion of the jth element of the kth target sequence into the jth position of the kth

source sequence;
s(i,j,k) is the substitution applied to both the ith and jth elements of the kth source and target
sequences, respectively;
m and n are the number of elements of the source and target sequences, respectively.

For example, assume that Figure 4.4 represents the 2nd attribute of an arbitrary
activity pattern. The alignment represented by the trajectory in that figure is summarized as:

O2,l = {i(1,2), d(3,2)}

The set representation facilitates the identification of segments. By comparing the K sets
relating to K tables, we can easily identify the operations that can be linked into a segment.
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pos j 0 1 2 3 (=n)

i null A B C g
0 null  !
1 A  "   #
2 C   $
3 B

(=m) s

Figure 4.4: Comparison Table (An example)

As this set representation is derived from the optimum trajectories, we shall call the
proposed method the uni-dimensional Optimum Trajectories-based MultiDimensional
Sequence Alignment Method (OT-MDSAM).

In general, there are multiple least-cost trajectories for each attribute. Many of these
least-cost trajectories, however, often result in identical operation sets. An illustration of this
many-to-one relationship between trajectories and operation sets is given in Figure 4.5. The
uni-dimensional operation sets corresponding to the trajectories are:

O2,1 = {i(1,2), i(3,2), d(2,2), d(3,2), i(5,2)}

and

O2,2 = {i(1,2), d(2,2), i(3,2), d(3,2), i(5,2)}

While these trajectories are different in terms of the order of the underlined operations, the
operation sets are identical. In other words, the order of operations included in a set is
arbitrary, and it does not make a difference in which alignment step an element is aligned.
The proposed method therefore develops an efficient algorithm that ignores the order of
operations, applied when tracing the optimum trajectories.1

pos j 0 1 2 3 4 5 (=n)

i null A B C D E g

0 null 0 1 2 3 4 5
1 B 1 2 1 2 3 4
2 E 2 3 2 3 4 3
3 A 3 2 3 4 5 4
4 D 4 3 4 5 4 5

(=m) s

Figure 4.5: Two different trajectories of the same operation set

                                                
1 The algorithm and its optimality proof are detailed in Appendix 4.1.



74                                                                  Multidimensional Sequence Alignment Method

Multidimensional operation set

The proposed OT-MDSAM integrates K sets of operations applied to elements into a single
set of operations applied to segments. Because there are multiple uni-dimensional operation
sets for each attribute, multiple combinations of K uni-dimensional sets for operation
integration exist to be tested. Let Tk be the number of uni-dimensional operation sets of the
kth attribute sequence. The number of combinations of uni-dimensional operation sets, T, is
given by:

∏
=

=
K

k

k
TT

1

(4.2)

For each combination, t (t = 1, …, T), we have K operation sets, Ot
1,l’, …, Ot

k,l, …, Ot
K,l’’,

where Ot
k,l is the lth uni-dimensional operation set of the kth attribute sequence included in the

tth combination. We shall call such a combination of uni-dimensional operation sets a
multidimensional operation set. Let Ot be the tth multidimensional operation set. Then:

Ot =  {p|p=d(i,k) ∨  p=i(j,k) ∨  p=s(i,j,k)} (4.3)

where, k identifies the set of attributes to which the concerned operation was applied.
Thus, the set k defines a segment and represents interdependency between the

concerned attributes. For example, if the uni-dimensional operation sets of three attribute
sequences (a three-dimensional case) included in the tth combination are:

Ot
1,l’   = {d(2,1), i(4,1), s(5,6,1)},

Ot
2,l   = {d(3,2), i(4,2), s(5,5,2)},

Ot
3,l’’  = {d(2,3), i(4,3), s(5,5,3)},

then the tth multidimensional operation set is:

Ot = {d(2,{1,3}), d(3,{2}), i(4,{1,2,3}), s(5,5,{2,3}), s(5,6,{1})},

implying that the 2nd elements of 1st and 3rd source attribute sequences are deleted, the 3rd

element of 2nd source attribute sequence is deleted, the 4th element of 1st, 2nd and 3rd target
attribute sequences are inserted, the 5th elements of source and target attribute sequences are
substituted, and the 5th element of source attribute sequence and the 6th element of target
attribute sequences are substituted. The multidimensional operation set, Ot, represents the
overall trajectory in multidimensional space.

Multidimensional similarity

The weighting value of each operation is determined as its own weighting value multiplied
by the maximum attribute weight across the attributes to which the operation is applied. This
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set is represented by k. Hence, the alignment cost calculated from the tth multidimensional
operation set, Ct, is:
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t
cC (4.4)
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where,

wd, wi and ws are the weighting value attached to the deletion, insertion and substitution
operation, respectively (wd = wi, and ws = wd+wi);
βk

max is the maximum weight across attributes in the set k.
Finally, the minimum alignment cost, C*, is:

C* = min [C1, …, Ct, …, CT] (4.5)

That is, the minimum cost across trajectory combinations is taken as a measure of
multidimensional similarity.2

Illustration

Consider the following example, where K = 4, and length of the source and target patterns is
m=4 and n=5, respectively. We assume that β1=2, and β2=β3=β4=1.

source pattern target pattern

A D B C A B C D E % activity-type sequence
1 6 2 3 1 2 3 4 5 % activity-location sequence
a b c f a b c d e % transport-mode sequence
α δ ϕ γ α ϕ γ δ ε % accompanying-person sequence

The optimum trajectories are shown in Figure 4.6. In the figure, activity type, location and
accompanying person sequences have one optimum trajectory, respectively, while the
transport mode sequence has five. Hence, the number of trajectory combinations in this
example is:

                                                
2 Multidimensional sequence alignment should not be confused with the multiple sequence
alignments developed in molecular biology. For interested readers, this difference is explained in
Appendix 4.2.
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activity type activity location
nul A B C D E g1 nul 1 2 3 4 5 g2

nul 0 1 2 3 4 5 nul 0 1 2 3 4 5
A 1 0 1 2 3 4 1 1 0 1 2 3 4
D 2 1 2 3 2 3 6 2 1 2 3 4 5
B 3 2 1 2 3 4 2 3 2 1 2 3 4
C 4 3 2 1 2 3 3 4 3 2 1 2 3
s1 s2

transport mode accompanying person
nul a b c d e g3 nul α ϕ γ δ ε g4

nul 0 1 2 3 4 5 nul 0 1 2 3 4 5

a 1 0 1 2 3 4 α 1 0 1 2 3 4

b 2 1 0 1 2 3 δ 2 1 2 3 2 3

c 3 2 1 0 1 2 ϕ 3 2 1 2 3 4

f 4 3 2 1 2 3 γ 4 3 2 1 2 3
s3 s4

Figure 4.6: Optimum trajectories of each attribute sequence

T = 1×1×5×1 = 5.

The operation sets for the first combination are:
O1,1 = {d(2,1), i(4,1), i(5,1)},  O1,2 = {d(2,2), i(4,2), i(5,2)},
O1,3 = {i(4,3), i(5,3), d(4,3)},  O1,4 = {d(2,4), i(4,4), i(5,4)},

the operation sets for the second combination:
O2,1 = {d(2,1), i(4,1), i(5,1)},  O2,2 = {d(2,2), i(4,2), i(5,2)},
O2,3 = {i(4,3), s(4,5,3)},           O2,4 = {d(2,4), i(4,4), i(5,4)},

the operation sets for the third combination:
O3,1 = {d(2,1), i(4,1), i(5,1)},  O3,2 = {d(2,2), i(4,2), i(5,2)},
O3,3 = {i(4,3), d(4,3), i(5,3)},  O3,4 = {d(2,4), i(4,4), i(5,4)},

the operation sets for the fourth combination:
O4,1 = {d(2,1), i(4,1), i(5,1)},  O4,2 = {d(2,2), i(4,2), i(5,2)},
O4,3 = {s(4,4,3), i(5,3) },           O4,4 = {d(2,4), i(4,4), i(5,4)},

and the operation sets for the fifth combination:
O5,1 = {d(2,1), i(4,1), i(5,1)},  O5,2 = {d(2,2), i(4,2), i(5,2)},
O5,3 = {d(4,3), i(4,3), i(5,3)},  O5,4 = {d(2,4), i(4,4), i(5,4)}.

By equation (4.3), the unique operation set for each combination is:
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O1 = {d(2,{1,2,4}), d(4,{3}), i(4,{1,2,3,4}), i(5,{1,2,3,4})},
O2 = {d(2,{1,2,4}), i(4,{1,2,3,4}), i(5,{1,2,4}), s(4,5,{3})},
O3 = {d(2,{1,2,4}), d(4,{3}), i(4,{1,2,3,4}), i(5,{1,2,3,4})},
O4 = {d(2,{1,2,4}), i(4,{1,2,4}), i(5,{1,2,3,4}), s(4,4,{3})},
O5 = {d(2,{1,2,4}), d(4,{3}), i(4,{1,2,3,4}), i(5,{1,2,3,4})}.

By equation (4.4), the alignment costs calculated from these operation sets are:
C1 = 2×1 + 1×1 + 2×1 + 2×1 = 7,
C2 = 2×1 + 2×1 + 2×1 + 1×2 = 8,
C3 = 2×1 + 1×1 + 2×1 + 2×1 = 7,
C4 = 2×1 + 2×1 + 2×1 + 1×2 = 8,
C5 = 2×1 + 1×1 + 2×1 + 2×1 = 7.

By equation (4.5), the optimum alignment costs, C*, are:

C* = min [C1, C2, C3, C4, C5] = 7.

This example illustrates OT-MDSAM’s fundamental property discussed in the
conceptualization of Section 4.2.2. The costs of the MDSAM in a perfectly independent case
would be 6+3+3+3 = 15, in a perfectly interdependent case, 15/4. The reduction of 8-units
cost according to the proposed method, compared to the perfectly independent case, is
achieved by the integration of operations, d(2,{1,2,4}) (2-units reduction), i(4,{1,2,3,4}) (3-
units reduction) and i(5,{1,2,3,4}) (3-units reduction).

In general, the interdependency relationships between attributes may be quite
variable, leading to different MDSAM results that the integration of uni-dimensional
optimum alignments cannot perfectly project. To date, the only possible way to guarantee
the optimality of the multidimensional comparison result is to try all possible alignments of
each attribute (i.e., all uni-dimensional operation sets that lead to a solution), generate all
possible combinations of the alignments across attributes and then find the minimum costs.
Unfortunately, the enumeration of all possible alignments of even a single attribute already
requires an enormous amount of computing time. This is the reason why we proposed the
OT-MDSAM, as a principle of the heuristic sequence alignment method to guide the
development of the implementation algorithms that approximate the true solution of the
problem at our hand by reducing search space in the way that the guiding principle defines.
The implementation algorithm to achieve the proposed method can however be manifold.
The question is, which one is more efficient regarding the accuracy and the computing time.
In the following sections, we suggest alternative heuristic approaches and examine their
performance.
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4.4 Algorithms

We develop several alternative heuristic algorithms in this section to implement the
suggested method. This will include a genetic algorithms-based heuristic algorithm that
employs an evolutionary search technique in Section 4.4.1, and a heuristic that is based on a
dynamic programming technique using domain knowledge of uni-dimensional sequence
alignments in Section 4.4.2. From the algorithmic nature of the two proposed approaches,
genetic algorithms and dynamic programming, we derive a hybrid algorithm that integrates
the two previous algorithms in Section 4.4.3 to seek possible improvements. The
performances of these three alternatives will then be examined and illustrated in Section
4.5.2.

4.4.1 A heuristic based on genetic algorithms

Genetic Algorithms (GAs) constitute a heuristic algorithm, inspired by Darwinian evolution
theory. Its solution representation and search mechanism are modeled in analogue to
evolutionary processes of biological species. In this approach, a possible solution is
represented as an organism consisting of one or more chromosomes. A chromosome is a
string of genes containing genetic information. GAs do not search the entire space of a
possibly infinite number of solution candidates, but consider only a population: a pre-
defined, tractable number of organisms. It starts with initializing the population (called the
0th generation) by using a random generator and evaluates all organisms of the population
according to some mathematical function, resulting in a fitness value of each organism. A
certain number of organisms are then probabilistically selected from the population, based
on their fitness values. The higher the fitness of an organism, the greater the probability of
being selected. GAs then generate a new population by applying genetic operators such as
reproduction, crossover and mutation to the selected organisms. This cyclic procedure of
evaluation-selection-application of genetic operators continues over generations until the
evaluation result meets a pre-defined stop condition. The new organisms genetically
modified from the selected old ones often represent further improvement of the fitness
values.

The principle underlying GAs can be expressed using a pseudo code (Buckles &
Petry, 1992) as in the following box. The structure is common to all GAs. The specific
challenge in any application domain concerns ! the specification of a representation scheme
of the possible solutions, " the specification of the fitness function, # the choice of genetic
operators, and $ the choice of stop condition. Note that each generation selects and applies
only one genetic operator. Equally important is a list of parameters, to be set by the
researcher, that controls the algorithmic flow. It includes & the size of a population, ' the
selection probabilities of genetic operators in each generation, ( the number of organisms to
be selected from a population, and ) the application probabilities of reproduction and
crossover to each selected organism and the mutation probability of each gene of the selected
organism.
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begin
    initialize population
    evaluate initial population
    while not (stop condition) do

    begin
        select organisms
        select a genetic operator
        generate new population by applying a genetic operator
        evaluate newly generated population
    end

end

We will develop a Genetic Algorithms-based MultiDimensional Sequence Alignment
Method (GA-MDSAM) by incorporating some problem-specific modifications of these
principles.

Representation scheme

The terms underlying GAs are used as follows for our problem at hand:

generation % generation
population % population
organism % trajectory set (consisting of K uni-dimensional trajectories)
chromosome % trajectory
gene % move (vertical, horizontal and diagonal)

where, a set of moves in the comparison table constitutes a trajectory of alignments of an
attribute, a set of trajectories composes a trajectory set as a solution of multidimensional
alignments, and a set of trajectory sets constitutes a population of the current generation. The
population then is represented as:

}......{)( 1 Yy EEEtE =     (4.6)

]'...... [ 1 Kykyyy EEEE =     (4.7)

] ...  ... [ )(1 knmlkkky XXXE +=     (4.8)

where,

E(t) is the population of the tth generation (t ≥ 0);
Ey is the yth trajectory set of E(t) defined as an ordered set of K trajectories (K > 0);
Y is the number of trajectory sets in E(t) (0 < Y << TY);
Eky is the kth trajectory of Ey defined as an ordered set of moves in the comparison table;
Xlk is the lth move of the kth trajectory encoded as V, H or D representing the vertical,
horizontal or diagonal move, respectively.
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When two K-dimensional activity-travel patterns of lengths m and n are compared,
the number of operations is fixed and equal to m+n for all trajectories as expressed in
equation (4.8). In other words, GA-MDSAM employs a ‘fixed-format’ representation
scheme although the lengths of actual trajectories in the comparison tables may vary because
the lengths of the trajectories having diagonal moves of identity operation are shorter than
those of off-diagonal moves. GAs in general and this heuristic in particular separate random
population generation (initialization and genetic operator application) from problem-specific
evaluation of the resulting population. The offspring trajectories generated by initialization
and genetic operators are always of the same length, m+n (as said ‘fixed format’) as their
parent trajectories, but may fail to constitute real trajectories. Any alignment of two
sequences must yield a trajectory that ends with the last pair of source and target elements
(the mth and the nth) in the comparison table. However, a randomly initialized or genetically
randomly modified fixed-format trajectory may not satisfy this condition. Nevertheless,
allowing illegal trajectories can dramatically improve the results in later generations by
keeping the diversity of the solutions.

Fitness function and trajectory-set selection

Assuming that the trajectory sets with lower multidimensional alignment costs are the better
ones, GA-MDSAM selects the best-of-generation solution for producing the offspring (Koza,
1992) in each generation. Each trajectory Eky of Ey, consisting of vertical, horizontal and
diagonal moves, is converted into the corresponding uni-dimensional operation set that
contains deletion and insertion operations. Unlike vertical and horizontal moves that are
always converted into deletion and insertion operations, it is checked whether a diagonal
move implies identity (in the case where the source and target elements compared are the
same) or substitution (otherwise). The diagonal move is then decomposed into vertical and
horizontal moves if it is identified as substitution. The uni-dimensional operation sets are
then integrated into multidimensional operation sets. The fitness values Cy of individual
trajectory sets Ey are defined as the sum of the costs for the deletions and insertions included
in the multidimensional operation sets. Finally, the fitness of population C* at the tth

generation is determined. Note that the number of multidimensional operation sets of GA-
MDSAM of each generation is much smaller than a complete set of all possible solutions of
the exhaustive MDSAM.

Now the problem is how to evaluate particular trajectory sets whose uni-dimensional
trajectories do not end with the element pair (m,n). Dracopoulos (1997) suggested three
alternative techniques for handling the ‘illegal children’ problem: ! Repair illegal solutions,
" Cancel the illegal solutions and initialize a new one, and # Redesign the algorithm so that
it produces legal solutions only. We choose the first technique because the second requires
too much computing time, and the third does not seem appropriate for our problem. In
particular, we will handle this ‘illegal children’ problem by temporarily ignoring and/or
amending for evaluation the trajectories that do not satisfy this requirement.

Consider, for example, a trajectory of alignments, involving two sequences of lengths
3 and 4 (Figure 4.7). The trajectory resulting from a random generation is Eky = [D V H V D V
V] in the comparison table of the left hand side of Figure 4.7, where n(Eky) = m+n = 3+4 = 7.
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g0 g1 g2 g3 g4 g g0 g1 g2 g3 g4 g

s0 s0

s1 s1

s2 % s2

s3 s3

s s

Figure 4.7: ‘Illegal’ trajectories and their correction for evaluation

The underlined elements in the trajectory vector are the moves not in the comparison table,
which are thus ignored by the evaluation procedure. Instead, new moves are assumed as in
the right hand side of Figure 4.7, and Eky = [D V H V H H] is evaluated.

Note that these changes are temporarily assumed only for the evaluation purpose,
while the illegal trajectories remain unchanged and applied as they are for the successive
genetic operators. One may find this counterintuitive as the ‘illegal’ individuals still have the
right to be selected to contribute to the next generation. Interpreting an illegal trajectory as
the one that has some defected part instead of being dead and utilizing its information
instead of dumping it provide however substantial benefits. First, it increases the possibility
of sudden improvement of the illegal trajectories genetically modified by context-free
operators. Secondly, and more importantly, it maintains the size of population to be tested
that would sharply decrease otherwise. Furthermore, the fact that a particular part of a
trajectory set is defected is in itself informative. An illegal trajectory that has some part
outside the comparison table is therefore not changed or deleted from the current generation
in advance of the trajectory-sets selection for the next population generation. The employed
GAs strictly separate random application of genetic operators from problem-specific
evaluation and maintains the diversity of trajectory-set candidates.

The employed GAs probabilistically select the trajectory sets for generating new
populations in proportion to their fitness values. While there are some other important
methods such as tournament selection and rank selection (Mitchell, 1997), this so-called
roulette wheel selection scheme (Goldberg, 1989) is rather standard (Davis, 1991a). The
employed selection scheme can be expressed as:
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where, S(Ey) is the selection probability, also called survival rate, of the yth trajectory set.
Note that equation (4.9) holds for each selection of a trajectory set in the current

generation. In other words, the selection of trajectory sets is made with replacement, and
gives higher chances to better solutions of being selected.
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Genetic operators

GA-MDSAM employs reproduction, crossover and mutation operators that are commonly
used in GAs. It is well known however that these genetic operators may vary considerably,
depending on the data (e.g., Syswerda, 1991). We therefore explored several combinations
of genetic operators of different forms to identify the best for our problem.

First, we explored three different kinds of crossover operators: a one-point, two-point
and uniform crossover, as illustrated in Figure 4.8. One-point crossover is an operator that
exchanges one piece of information between two selected trajectories, designated by a single
cutting point somewhere in the sequence. Two-point crossover is an operator that exchanges
one or two pieces of information between two selected trajectories, designated by two
cutting points somewhere in the sequence. Uniform crossover is an operator that exchanges
the information of each corresponding position between two selected trajectories by chance.
It is a crossover operator, possibly involving multiple cutting points (Davis, 1991b).

Secondly, we explored two kinds of mutation operators: a point and order-based
mutation. Point mutation is an operator that changes by chance the kind of move. Order-
based mutation is an operator that randomly selects two moves and exchanges them within a
single trajectory.

one-point crossover

Eky 1 2 3 4 5 6 % 1 2 # $ & '

Eky’ ! " # $ & ' % ! " 3 4 5 6

two-point crossover

Eky 1 2 3 4 5 6 % ! " 3 4 5 '

Eky’ ! " # $ & ' % 1 2 # $ & 6

uniform crossover

Eky 1 2 3 4 5 6 % 1 2 # 4 & '

Eky’ ! " # $ & ' % ! " 3 $ 5 6

selected trajectories newly generated trajectories

Figure 4.8: Illustration of the employed crossover operators.
Note: The vertical lines represent crossover points. Each cell may represent a vertical, horizontal or diagonal
move. The number of cells (moves) of a trajectory is m+n. Each crossover event works on a pair of trajectories
for the same attribute. That is, k = k’ in any pair of Eky and Ek’y’ where y ≠ y’.
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Finally, we used the reproduction operator as it is commonly done in conventional
GAs. Once a selection of trajectory sets has been made on the basis of fitness values, the
reproduction operator simply copies the selected trajectory sets to the next generation.

Stop condition

In general, three different stop conditions can be identified. First, the number of generations
for a run can be a priori given. Secondly, a certain threshold value of the fitness of an
organism may be employed. Finally, a certain degree of stability or convergence rate across
consecutive generations can be specified. We decided to use as the stop condition a
convergence rate, or a certain number of consecutive generations that do not represent an
improvement. A particular rate of convergence was determined based on some preliminary
experiments that we conducted.

Parameters

Three additional parameters are particularly relevant. First, we specified the choice
probability of the diagonal move in initializing the population and in point mutating
trajectory sets. Because we have vertical, horizontal and diagonal moves, a choice
probability of 1/3 given to every mutated move may be considered reasonable. However,
since many diagonal moves involve, rather than an identity, a substitution operation that is
decomposed into deletion (vertical move) and insertion (horizontal move), the equal choice
probability is not fair for the problem at hand. We therefore introduced an additional
parameter of diagonal move choice probability for initialization and point mutation that is
bigger than 1/3.

Secondly, we defined a parameter to select the best trajectory set(s) for the next
generation. The best trajectory set of the current generation contains all the efforts
accumulated from the first generation. When the best combination(s) of a generation is not
selected by chance, the algorithm may put in the same effort again and again over
generations (Davis, 1991b). To prevent this inefficiency, we specified the number of best
trajectory sets to be preserved for the next generation, instead of being selected by chance.

Finally, we were concerned about the possible limitation of conventional genetic
operators with respect to their ability to derive better trajectory sets from the selected ones.
In our problem context, the random application of genetic operations with fixed format
representation may produce a trajectory set that is often worse than the selected one. To
increase the probability to find a locally better trajectory set, we generated several offspring
around the selected trajectory set and picked the best. This nearest neighbor search selects
the locally superior alternatives at each search step (Rich & Knight, 1991; Reeves & Höhn,
1996). Of course, not all neighbors of a selected trajectory set were tried as all possible
crossover or mutation of a trajectory set would involve too much computing time. Instead,
we examined a few neighbors by introducing a parameter for the number of neighbors. Thus,
GA-MDSAM can now be summarized as in the following box.
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begin
    t = 0 // t indicates the tth generation //
    no_improve = 0
    initialize E(t)
    calculate C*(t)
    Best_Fitness = C*(t)
    while not (no_improve ≥ convergence_rate) do

    begin
        select a genetic operator
        create E1(t) by selecting and copying a subset of E(t)
        t = t+1
        no_improve = no_improve+1
        create E1(t) by applying the selected genetic operator to E1(t−1)
        create E2(t) by selecting and copying a subset of E(t−1)
        create E(t) by summing E1(t) and E2(t)
        calculate C*(t)
        if C*(t) < Best_Fitness then Best_Fitness = C*(t) and no_improve = 0
    end

end
Note: C*(t) denotes the fitness of E(t). Note that E1(t) consists of the trajectory sets newly generated by the
single or multiple applications of a genetic operator to each of the selected trajectory sets and that E2(t) includes
the best trajectory set(s) of the (t−1)th generation.

4.4.2 A heuristic based on dynamic programming

GA-MDSAM separates the solution search procedure from the solution evaluation procedure
and keeps the solution search context-free. This general-purpose search may find better
solutions by avoiding premature application of the knowledge about uni-dimensional
alignments to the integration of operation sets. In theory, the uni-dimensional optimum
alignments are not necessarily an appropriate basis for the multidimensional integration of
operation sets in terms of the optimality of the solutions. In practice, however, we may
expect that the integration of uni-dimensional optimum trajectories will result in a solution
that is near to the multidimensional optimum as those trajectories involve the largest number
of cost-free identity operations. Even then, there are often many possible optimum
trajectories, and the number of combinations of trajectories across attributes to consider may
become intractably large. We may therefore employ a more simplified heuristic approach
that considers, for each attribute dimension, only one optimum trajectory along the diagonal
region of the comparison table. The optimum trajectory was sought by a dynamic
programming (DP) technique, as used for the uni-dimensional optimum alignments of the
OT-MDSAM.

This heuristic approach was inspired by the fact that most uni-dimensional optimum
trajectories run along the diagonal region of the comparison table (Kruskal & Sankoff, 1983;
States & Boguski, 1991). The reason is that the diagonal moves often involve identity
operations, which do not involve any costs. The integration of diagonal-oriented trajectories
across attribute dimensions is therefore expected to produce a good solution.
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Figure 4.9: Diagonal region of the comparison table

More similar loci or trajectories across different attribute dimensions imply more similar sets
of operations that result in more occasions of operation integration in the multidimensional
space. Examples of the diagonal region are shown as shadowed cells in Figure 4.9.

The general solution of the MDSAM problem involves the existence of multiple uni-
dimensional operation sets and, hence, assumes the existence of multiple multidimensional
operation sets. Although reducing the number of multidimensional operation sets to test, the
previously discussed GA-MDSAM searches multiple opportunities for the solution because
it also involves multiple uni-dimensional operation sets. In contrast, the proposed Dynamic
Programming-based MultiDimensional Sequence Alignment Method (DP-MDSAM)
considers only one multidimensional operation set. In other words, whereas GA-MDSAM
searches multiple uni-dimensional trajectories that are not necessarily optimal, DP-MDSAM
searches only one trajectory that is optimum and is within or closest to the diagonal of the
comparison table. The only uni-dimensional operation set of each attribute dimension that is
selected for the inclusion in a single multidimensional operation set is defined as:

Ok = {p|p=d(i,k) ∨  p=i(j,k)}   (4.10)

with

Ok = conv(Qk)   (4.11)

and

Qk = {q|q = e(i,j,k)1, …, e(i,j,k)r, …, 
kRkji ),,(e }   (4.12)

and

F(Qk) = F( *
kv

Q ) = max[F(
k

Q1 ), …, F(
kvQ ), …, F(

kVQ )]   (4.13)

and
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k
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R

r

rv eQF )(   (4.14)

and
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where,

Ok is the cost-taking deletion and insertion operation set of the kth attribute dimension;
d(i,k) and i(j,k) are respectively the deletion and insertion operations applied to the ith and jth

elements of the kth attribute dimension;
Qk is the cost-free identity operation set of an optimum alignment of the kth attribute
dimension;
conv(Qk) is a procedural function that converts Qk into Ok;
e(i,j,k)r is the rth identity operation applied to the ith source element and the jth target element
of the kth attribute dimension;
Rk is the number of identity operations of the optimum trajectory of the kth attribute
dimension;

kvQ  is the identity operation set of the vth optimum trajectory of the kth attribute dimension;

Vk is the number of optimum trajectories that can be traced in the comparison table of the kth

attribute dimension; (All optimum trajectories of an attribute dimension have the same
number of identity operations as shown in Appendix 4.1.)

F(
kvQ ) is a ‘diagonal’ function measuring how much 

kvQ is involved with the diagonal

region of the kth attribute dimension, denoted by D{e(i,j,k)};

vr
e  is a dichotomous value denoting whether the coordinate of the rth identity operation of the

vth optimum trajectory falls in the diagonal region;

vr
kji ),,(e  is e(i,j,k)r of the vth optimum trajectory.

More specifically, the value of 
vr

e  in equation (4.15) is determined as:

vr
e = 


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otherwise               0

)|(|  if               1 pnmqp
  (4.16)

where, p and q are the positions of the shorter pattern and the longer pattern appeared in

vr
kji ),,(e , respectively.

Qk can be easily converted into Ok by comparing the coordinates of two adjacent
identity operations. All the source and target elements in-between these are identified as the
elements that are respectively deleted and inserted. When there are multiple 

kvQ ’s, with the

maximum value of the ‘diagonal’ function, one of such 
kvQ ’s is arbitrarily selected as *

kv
Q .

The major difference of the DP approach from the previously suggested GAs is that
the DP approach considers, for each attribute dimension, only a single optimum trajectory
within or nearest to the diagonal region, while the GAs seek, for each attribute dimension,
more possibilities also including non-optimum trajectories.
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4.4.3 A hybrid algorithm

The nature of the above two approaches stimulates the design of this hybrid alternative. This
section addresses this alternative to possibly improve the heuristics. First, if the accuracy of
the DP-MDSAM’s results is rather acceptable given its ‘single-hit’ nature, this would indeed
prove that most of the different combinations of uni-dimensional trajectories induce the
same set of operations in the multidimensional space. Then, bounding the search space to the
diagonal region of the comparison table should be a better starting point than randomly
picking up the initial search points. Secondly, unless being extremely lucky to obtain exactly
the true value, the method would gain benefit from further search starting from the DP-
MDSAM’s single hit. The method could make use of the ability of the search built in GA-
MDSAM. This suggests that a hybrid algorithm, which uses the DP solution as an initial GA
solution and the random application of genetic operators for further search, may combine the
best of speed and accuracy.

The hybrid alternative maintains the overall framework of genetic algorithms as
discussed in Section 4.3.1 but replaces the random initialization by the solution of the DP-
MDSAM as in Section 4.3.2. This change requires a few subsequent modifications of the
algorithm. This section introduces the details of these modifications, and Section 4.5.2
examines the performance of the suggested Hybrid MultiDimensional Sequence Alignment
Method (Hy-MDSAM).

Changes in representation scheme

The multidimensional operation sets associated with the DP-MDSAM’s solutions are of
various lengths. Hy-MDSAM, employing the DP solution as the initial solution, therefore
represents the trajectories and trajectory sets that are no longer of fixed format. Consequently,
the representation of a trajectory of equation (4.8) should be modified to a flexible length-
format as follows:

] ...  ... [ 1 Lklkkky XXXE =   (4.17)

where, L is the number of moves of a trajectory (L ≤ m+n), which can vary with attribute
dimensions of even the same activity-travel pattern.

Changes in crossover

Two trajectories of different lengths could be crossed over. Crossover points within the
range of the shorter trajectory would then always allow crossover to happen. One-point, two-
point and uniform crossovers are illustrated in Figure 4.10, instead of Figure 4.8. Similarly,
mutation is also applied to the positions within the range of shorter trajectory.
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4.5 Illustration

Section 4.3 discussed the fundamental features of the proposed method of multidimensional
activity pattern comparison with an illustration of its application in a simple example.
Section 4.4 subsequently developed alternative algorithms to implement the method in real
time. This section will provide a practical illustration of how the suggested method works
with empirical data of activity-travel patterns collected in The Netherlands to show the
method’s fundamental properties and also reports the results of the comparative analysis of
the performance of three alternative search algorithms regarding the solution’s accuracy and
the computing time.

4.5.1 Fundamental properties of the method examined by the OT-MDSAM

application

Analysis scheme

The fundamental properties of the proposed multidimensional sequence alignment method
are studied by examining whether the method is capable of capturing the interdependency
between attributes in empirical data.

one-point crossover

Eky 1 2 3 4 % 1 2 # $ & '

Eky’ ! " # $ & ' % ! " 3 4

two-point crossover

Eky 1 2 3 4 % ! " 3 $ & '

Eky’ ! " # $ & ' % 1 2 # 4

uniform crossover

Eky 1 2 3 4 % 1 2 # 4

Eky’ ! " # $ & ' % ! " 3 $ & '

selected trajectories newly generated trajectories

Figure 4.10: Illustration of the crossover operators of Hy-MDSAM.
Note: The number of cells (moves) of a trajectory is L ≤ m+n. (Compare with Figure 4.8.)
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To this end, we compare the amount of cost reduction achieved by the proposed method with
the sum of costs of the original Uni-Dimensional sequence alignment method (UDsum). In
addition, the correlation between the two methods will be examined because the relative
(rather than absolute) pairwise distances are relevant to the classification and the goodness-
of-fit measurement. A significant cost reduction would demonstrate that the proposed
method captures interactions between attribute dimensions. An imperfect correlation would
also suggest a variety of interdependency relationships between attributes. Empirical proof
along these lines would be indicative of the superiority of the additional value of the
proposed method.

Data

The same activity diary data collected in 1997 in Hendrik-Ido-Ambacht and Zwijndrecht is
used as in Section 3.4.2. The empirical analysis of this section used only a sub-set of 71
activity-travel patterns that were randomly selected from the full data set consisting of a total
of 2974 activity-travel patterns. The selection involves 2485 pairwise comparisons. Unlike in
Section 3.4.2 that used only single dimension of activity type, however, this section analyzed
three dimensions of activity-travel patterns including activity type, location and transport
mode. The patterns involve twenty-five out-of-home activities, thirty-two out-of-home
locations and four transport modes including car, walk, bike and car passenger. An extra
code, ‘unknown,’ was included to represent the attribute elements that were not identified.
The substitution operation was applied to any alignment with the unknown element. The
average length of the activity patterns was 6.80 with a maximum of 17, a minimum of 1 and
a standard deviation of 3.77 activities. Figure 4.11 shows an example.

Results

The UDsum costs and the OT-MDSAM costs were calculated on 2485 pairs of activity-
travel patterns. The deletion and insertion weights were given the value of 1, and the
substitution weight was assumed to be the sum of deletion and insertion weights. All
attribute weights were also given the value of 1.

The results are shown in Table 4.1. The difference in cost reduction between the two
methods is 14.63, which is fairly large considering the size of the UDsum costs (reduction is
52.75 % of 27.7336). This finding provides empirical evidence of the fact that the proposed
method captures interdependency in multidimensional activity profiles. Moreover, this result
suggests that interdependencies are significant.

actual pattern encoded pattern

in-home activity grocery shopping in-home activity 99 20 99
at home at location 3342 at home * 0 3342 0

unknown mode walk walk 9999 2 2

Figure 4.11: An example of the encoding of activity pattern
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Table 4.1: Pairwise comparison results

# comparisons Mean Min Max STD
Sum of UDSAMs 2485 27.7336 2 73 12.2389
OT-MDSAM 2485 13.1038 2 32   5.1867

The constant amount of cost reduction across different weights of the primary
attribute should be evident from equation (4.4). It occurs because a change in the weight of
the primary attribute does not affect the total amount of cost reduction, which is caused by
the integration operation that is applied only to the alignments of smaller-weight attribute
elements. Consequently, as the primary attribute weight increases, the ratio of the OT-
MDSAM cost to the UDsum costs becomes larger, and the cost reduction becomes less
important. This finding implies that a fine-tuning of the size of the primary attribute weight
is required, depending on the context of analysis. Given a proper size of the primary attribute
weight, OT-MDSAM should be expected to significantly change the similarity between
activity-travel patterns as compared to the UDsum.

The next step in the analysis involved the examination of the correlation between the
two methods to investigate whether the significant amount of cost reduction changes the
relative distances between activity patterns. The Pearson correlation coefficient and rank
correlation coefficient are 0.951 and 0.953, respectively. This finding indicates that although
the two measures are highly correlated, the correlation is not perfect.

Evidence of the decreasing effect of cost reduction can be found in Figure 4.12. The
left-hand side of the figure shows that the correlation between UDsum and OT-MDSAM
becomes close to 1 as the weight of the primary attribute becomes 3 or higher. The effect of
the cost reduction caused by the integration of operations applied to the second and third
attributes is virtually disappearing as illustrated by the right-hand side of the figure that
shows the diminishing ratio of cost reduction to the UDsum.

Figure 4.12: Correlation between UDsum costs and OT-MDSAM cost with varying weights
of activity-type attribute.
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Table 4.2: Correlation between UDsum and two-dimensional OT-MDSAM

Attributes included in the activity patterns Pearson’s r Spearman’s r
activity type,       activity location 0.977 0.977
activity type,       transport mode 0.970 0.973
activity location, transport mode 0.967 0.969

To investigate the interdependency between attributes in more detail, we further
examined which pairs of attribute dimensions demonstrate co-existences of attribute
elements. The correlation between UDsum and OT-MDSAM costs employing two attribute
sequences was computed for this purpose (Table 4.2). A higher correlation is indicative of a
weaker interdependency. The attribute weights were all assigned the value of 1. Table 4.2
shows that the simultaneous alignment of activity types and transport modes occurs more
often than the simultaneous alignment of activity types and activity locations. These
different degrees of coexistence of attribute elements suggest that the transport modes to
reach particular activity locations are rather fixed, while the locations to conduct particular
activities are more flexible. The fact that there are more locations encoded than transport
modes encoded as choice alternatives may also have affected these results. Furthermore, the
lowest correlation between activity location and transport mode provides evidence of the
effect of physical constraints on mobility.

4.5.2 Performance of alternative algorithms

Analysis scheme

The MDSAMs employing alternative heuristics (DP, GAs and Hybrid) were compared in
terms of how close their solutions were to the ‘true’ distances, calculated by an exhaustive
algorithm, and in terms of the computing time required to reach the solution. The importance
of the accuracy of the solution and the computing time is paramount in the analysis of
activity-travel behavior. In classification study, the accurate relative distances between
activity-travel patterns is crucial for the subsequent clustering procedure. In prediction of
actual activity-travel patterns using simulated patterns, the correct measure of goodness-of-
fit is a pre-requisite of the model establishment.

Table 4.3: GA-MDSAMs and Hy-MDSAMs to test

one-point crossover two-point crossover uniform crossover
point

mutation
order-based

mutation
point

mutation
order-based

mutation
point

mutation
order-based

mutation
1 neighbor (1-1-1) (1-2-1) (2-1-1) (2-2-1) (3-1-1) (3-2-1)
5 neighbors (1-1-5) (1-2-5) (2-1-5) (2-2-5) (3-1-5) (3-2-5)

Note: The first numeral in the bracket represents the kind of crossover (1=one-point, 2=two-point, 3=uniform),
the second the kind of mutation (1=point, 2=order-based), and the last the number of neighbor trajectory sets to
try.
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Table 4.4: Parameters commonly used for twelve GA-MDSAMs

parameter value parameter value
# trajectory sets 100 trajectory set proportion for reproduction 30 %
# best trajectory sets 1 trajectory set proportion for crossover 40 %
convergence rate 50 trajectory set proportion for mutation 20 %
vertical move choice prob. 20 %
horizontal move choice prob. 20 %
diagonal move choice prob. 60 %
reproduction selection prob. 20 % reproduction application prob. 100 %
crossover selection prob. 70 % crossover application prob. 100 %
mutation selection prob. 10 % mutation application prob. 1 %

A reasonable amount of computing time with acceptable accuracy should allow the study.
Different crossover and mutation operators and a different number of neighbors of each
selected trajectory set were examined for the genetic algorithms, yielding twelve GA-
MDSAMs and Hy-MDSAMs, respectively (Table 4.3).

Table 4.4 presents a summary of the other operational decisions. Based on
preliminary experiments, population size was restricted to 100 trajectory sets. The
convergence rate was set to 50 so that the GAs procedure stopped when no improvement in
the best-of-generation fitness was reported over 50 generations since the last improvement.
The choice of diagonal move for initialization and point mutation was given a higher
probability than the choice of a horizontal or vertical move. The selection of crossover that is
known as the main engine of genetic evolution was given a higher probability than the
selection of reproduction and mutation. In addition, we conducted multiple runs of each
measure on the same data set and averaged the results to avoid that a single run could lead to
a lucky hit or an improbable miss (Davis, 1991a).

Data

A total of 20 runs involving 1540 pairwise comparisons of 56 three-dimensional activity-
travel patterns consisting of activity type, location and travel mode sequences and averaged
the results were conducted for each measure. As the exhaustive search requires a
considerable amount of computing time, only this small number of activity-travel patterns
was analyzed. The set of 56 activity-travel patterns was arbitrarily selected from a total of
1128 diaries, representing two-days records of 670 individuals from 333 households,
collected in Voorhout in The Netherlands in 1997 (Arentze, et al, 2001b). The 1128 diaries
distinguish 17 activity types, 252 locations and 6 transport modes. The activity locations
were encoded by four-digit zip codes, except for the home location that was encoded ‘0’. In
addition, the analysis in this section includes an extra code representing the attribute
elements that were not identified. The substitution operation was applied to the alignment of
the unknown element. The analysis also included an extra activity type, ‘in-home activities.’
This activity type was identified if an activity was conducted at home. Once identified, each
set of consecutive in-home activities was encoded as a single in-home activity. The activity-
travel patterns distinguish 13 activity types (in-home activities, out-of-home work/school,
bring/get person or goods, grocery shopping, non-grocery shopping, service activity, medical
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visit, eat, sleep, out-of-home leisure, out-of-home non-leisure, paying social visit and others),
52 locations and 6 transport modes (car, walk, bike, car pool, car passenger and public
transport mode including bus, tram, train and subway). The average length of the 56 activity-
travel patterns was 5.57 with a maximum of 16 and a minimum of 1 activities, while the
average of the full set of 1128 activity-travel patterns was 5.32 with a maximum of 19 and a
minimum of 1.

Results

Table 4.5 shows the performance of DP-MDSAM, GA-MDSAMs and Hy-MDSAMs. It
clearly shows that the MDSAMs of all three alternative algorithms dramatically reduce the
computing time compared to the exhaustive search, while providing relatively accurate
solutions. The performance of the heuristic algorithms is good. We first report the
comparison of DP-MDSAM and GA-MDSAM, and then discuss the performance of the Hy-
MDSAM, which is a hybridization of the DP- and GA-MDSAMs.

As for relative performance, the DP-MDSAM clearly outperforms the GA-MDSAM
in terms of computing time. DP-MDSAM completed the 1540 comparisons in just 2 seconds
on average across runs, while the GA-MDSAM’s algorithms took, on average, 4 minutes 52
seconds across runs, and even the best GA-MDSAM (2-1-1), took 3 minutes 15 seconds
across runs. Although the convergence rate is a critical determinant of the computing time of
the GA-MDSAM’s, the incremental procedure underlying a GA will never be faster than the
‘single-hit’ procedure of a DP. The difference in computing time between the two
approaches is indeed proven substantial.

In contrast, the comparison of the solution accuracy between DP- and GA-MDSAMs
does not produce consistent results. While some GA-MDSAMs show a higher accuracy than
the DP-MDSAM, the difference between the two heuristic approaches is relatively small.
The best GA-MDSAM (3-2-5) outperforms the DP-MDSAM by 4.3%, but this may not
compensate the difference in computing time (7 minutes 5 seconds versus 2 seconds).
Whether obtaining a slightly better accuracy at the expense of a significantly higher
computing time is worthwhile will depend on the aim of the study. While one might expect
that computing time is not critical in classification studies, if the alignment measure is used
to calibrate an activity-based model, the larger computing time may be prohibitive.

Next, an examination of the results of the Hy-MDSAM compared with the results of
the previous two algorithms leads to the following observations. First, a surprisingly high
increase in accuracy (about 20%-up) has been achieved. Secondly, computing time also
increased, but not as sharp as the increase in accuracy. Thirdly, the deviation and the average
difference are sharply reduced, indicating that a more stable similarity measure has been
obtained. Finally, the differences in accuracy between the MDSAMs become very small.

The reason of this success of Hy-MDSAM can be explained as follows. First, DP-
MDSAM’s result was rather accurate given its ‘single-hit’ nature, and therefore, bounding
the search space to the diagonal region of the comparison table indeed provided a good
starting point to the GA-MDSAM. Secondly, as demonstrated by the significant differences
in accuracy between single-neighborhood and multiple-neighborhoods GA-MDSAMs, more
search leads to a better accuracy. Multiple-neighbors GA-MDSAMs on average outperform
single neighbor GA-MDSAMs by 6%. Single-neighbor GA-MDSAMs are inferior to DP-
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MDSAM in terms of solution accuracy, while searching for more neighbors reverses relative
performance. Similarly, a further investigation showed that, in 49.4% of the cases, the DP-
MDSAM solutions were better than the solutions of the 1st iterations of GA-MDSAMs that
start with the random initializations, while being inferior in only 8.1%. Given the high speed
of the DP algorithm, the suggested hybrid algorithm, which uses the DP solution as an initial
GA solution and the random application of genetic operators for further search, succeeded in
combining the best of speed and accuracy. However, the computing time could still be a
problem in conducting a Hy-MDSAM in real time for a large set of comparisons. In these
situations, one might still wish to employ the DP algorithm and accept less accuracy.

Table 4.5: Performance of alternative MDSAMs(20 runs of 1540 comparisons for each measure)

MDSAMs =I rangeII avedifIII Computing timeIV

exhaustive search - - - 1 hour 16min 54sec
DP-MDSAM 929 (60.3%) 0 - 4.00 .423 2 sec

(1-1-1) 853 (55.4%) 0 - 6.35 .575 3 min 16 sec
(1-1-5) 935 (60.7%) 0 - 5.95 .435 6 min   3 sec
(1-2-1) 857 (55.6%) 0 - 7.15 .580 3 min 16 sec
(1-2-5) 944 (61.3%) 0 - 5.45 .434 6 min   1 sec
(2-1-1) 879 (57.1%) 0 - 6.50 .559 3 min 15 sec

(2-1-5) 964 (62.6%) 0 - 5.70 .402 6 min   9 sec
(2-2-1) 864 (56.1%) 0 - 7.10 .564 3 min 16 sec
(2-2-5) 956 (62.1%) 0 - 5.45 .408 6 min   5 sec
(3-1-1) 890 (57.8%) 0 - 6.35 .546 3 min 27 sec
(3-1-5) 994 (64.5%) 0 - 5.10 .391 7 min 10 sec

(3-2-1) 893 (58.0%) 0 - 6.70 .554 3 min 23 sec
(3-2-5) 995 (64.6%) 0 - 5.45 .394 7 min   5 sec

best 3-2-5 3-1-5 3-1-5 2-1-1

GA-
MDSAMs

worst 1-1-1 1-2-1 1-2-1 3-1-5

(1-1-1) 1276 (82.9%) 0 - 3.90 .157 4 min 55 sec

(1-1-5) 1286 (83.5%) 0 - 3.90 .141 9 min 28 sec
(1-2-1) 1276 (82.9%) 0 - 4.00 .167 4 min 57 sec
(1-2-5) 1281 (83.2%) 0 - 4.00 .161 8 min 55 sec
(2-1-1) 1277 (82.9%) 0 - 3.95 .155 5 min   5 sec
(2-1-5) 1291 (83.8%) 0 - 3.80 .137 9 min   5 sec
(2-2-1) 1272 (82.6%) 0 - 4.00 .163 5 min 13 sec
(2-2-5) 1283 (83.3%) 0 - 4.00 .157 8 min 58 sec
(3-1-1) 1278 (83.0%) 0 - 3.75 .157 5 min 14 sec
(3-1-5) 1283 (83.3%) 0 - 3.75 .141 10 min  3 sec
(3-2-1) 1275 (82.8%) 0 - 4.00 .165 5 min 22 sec
(3-2-5) 1282 (83.2%) 0 - 4.00 .159 10 min 55 sec

best 2-1-5 3-1-5 3-1-5 1-1-1

Hy-
MDSAMs

worst 2-2-1 1-2-1 1-2-1 3-2-5

I: Heuristic MDSAM distances are the same as the true distances from the exhaustive search.
II: Range of deviation of each measure’s results from the true distances, averaged on 20 runs.
III: Average deviation from the true distances, averaged on 20 runs.
IV: Computations based on a 450MHz Pentium II processor, averaged on 20 runs.
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4.6 Comparative analysis of measurement methods

4.6.1 Introduction

In this chapter, we proposed a new method to measure the similarity between activity-travel
patterns in terms of their compositional, sequential and interdependency properties. The
method is theoretically appealing, and its potential was proven by analyzing real
multidimensional activity diary data. This section investigates whether this potentially
powerful method indeed offers comparative advantages over other existing distance
measures by empirically analyzing the performance of the method in a classification study.

The classification of activity-travel patterns has traditionally been a topic in activity
analysis that has received considerable attention. The classification of activity-travel patterns
provides the foundation for more theoretically or empirically oriented research activities, and
sometimes the basis for subsequent modeling work in the sense that most modeling
approaches require some simplification of the complexity underlying observed activity-
travel patterns to derive a feasible model. The aim of the classification may either be to
identify typical activity-travel patterns or to arrive at some segmentation of more
homogeneous activity-travel patterns.

In this section, we will examine (1) whether sequential relationships and
interdependency play a significant role in determining the dissimilarity of activity-travel
patterns, and if so, (2) whether the newly suggested multidimensional sequence alignment
measure results in cluster solutions that better discriminate the cross-sectional information
embedded in activity-travel patterns and are better correlated with individuals’ socio-
demographic characteristics. It should be noted that most of the first question was already
dealt with in Sections 3.4.1 and 4.5.1, where the fundamental properties of the uni-
dimensional alignment methods were illustrated and compared with Euclidean measures, and
the proposed multidimensional extension was compared with the simple sum of uni-
dimensional alignments. We nevertheless repeat this analysis but in a broader context where
the proposed method is compared with other existing methods in activity analysis. Particular
attention is given to the comparison of the suggested multidimensional sequence alignment
method with a Euclidean distance measure (Koppelman & Pas, 1985) and a signal detecting
method (Recker et al., 1985, 1986a, 1986b).

In the following, a brief introduction to the various measures is provided in Section
4.6.2, and the results of the empirical analysis using recent Dutch activity-diary data are
reported in Section 4.6.3.

4.6.2 Empirical analysis

The empirical analysis employs the Dynamic Programming-based MultiDimensional
Sequence Alignment Method (DP-MDSAM) introduced in Section 4.4.2.
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Objectives

The empirical analysis reported in this chapter considers the question whether the structural
information (sequential relationships and interdependency) embedded in activity-travel
patterns is well reflected by the multidimensional sequence alignment method and, if so,
whether the incorporation of the structural information affects the final cluster solutions. To
this end, we first examine the overall relationships between distances calculated based on the
different measures. We then investigate whether sequential relationships between activities
are captured by the sequence alignment method by comparing uni-dimensional sequence
alignment and Euclidean measures calculated for each attribute sequence, respectively. We
also examine whether interdependency is captured by the newly proposed method by
comparing it to the sum of uni-dimensional alignments. Finally, we examine which cluster
solution better discriminates between the cross-sectional characteristics of activity-travel
patterns and stronger correlates with individuals’ socio-demographic status.

The following set of hypotheses represent our a priori expectations:

HYPOTHESIS 1: The distances measured by the proposed multidimensional sequence

alignment will differ from those measured by other methods.

HYPOTHESIS 2: The sequential information embedded in activity-travel patterns will lead to

differences in distance measures between Euclidean and uni-dimensional

sequence alignment methods.

HYPOTHESIS 3: The interdependency embedded in activity-travel patterns will lead to

differences in distance measures between the sum of uni-dimensional

sequence alignments and the proposed multidimensional sequence

alignment.

HYPOTHESIS 4: The proposed multidimensional sequence alignment’s cluster solutions will

be better discriminating cross-sectional characteristics of activity-travel

patterns.

HYPOTHESIS 5: The proposed multidimensional sequence alignment’s cluster solutions will

be stronger correlated with individuals’ socio-demographic status.

As said, although similar analyses with hypotheses 2 and 3 were already conducted in
Section 3.4.1 and Section 4.5.1, respectively, we repeat these but in the context of
comparison of the proposed method with other existing methods in activity analysis.

Data

The same activity diary data collected in 1997 in Hendrik-Ido-Ambacht and Zwijndrecht is
used as in Sections 3.4.2 and 4.5.2. The empirical analysis of this section used only a sub-set
consisting of 999 activity-travel patterns that were randomly selected from the full data set
consisting of a total of 2974 activity-travel patterns. The selection involved 498,501 pairwise
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comparisons. Each of these activity-travel patterns is described in terms of four attributes:
(1) activity-type, (2) travel-mode, (3) accompanying-person, and (4) location. The activity
classification used included 12 activity categories (bring/get person or goods, daily shopping,
non-daily shopping, service, medical, eat/drink, leisure, non-leisure, social visit, work/school,
other, and in-home activity), 6 locations, 5 travel modes (no travel, car driver, slow (walk
and bike), public transport mode, car passenger), and 4 accompanying-person situations
(alone, with others inside the household, with others outside the household, and with others
inside and outside the household). Consecutive episodes of in-home activities were
amalgamated into a single episode. The accompanying person dimension was identified
according to the first of these in-home activities. An extra code (unknown) was included to
represent the attribute elements that were not identified. The average length of these 999
activity-travel patterns was 5.54 with a maximum of 19 and a minimum of 3 activities. The
ratio of in-home activities to out-of-home activities was .516 on average.

Analysis scheme

The empirical analysis involved four different distance measures: Cosine Index, Feature
Extraction, the sum of Uni-Dimensional sequence alignments (UDsum), and the proposed
DOT-MDSAM. The analyzed activity-travel patterns were four-dimensional: activity-type,
location, travel-mode and accompanying-person. Thus, in the present analysis we concerned
ourselves with qualitative attributes only. It should be noted therefore that our analysis
differs from the application of the feature extraction methods by Recker, et al. (1985, 1986a,
1986b) and Golob & Recker (1987) in two respects. First, we used a nominal scale for the
location attribute instead of distance from home. Second, they used duration data because of
their time-slice scheme of activity encoding. In the Feature Extraction method that we
illustrate in this chapter, we employed a total of 128 time slices that covers an entire day.
Each of the time slices involves 11.25 minutes. Recker, et al. (1986a, 1986b) employed an
8.9-minute scheme of 128 slices from 5.5 a.m. to 12.5 a.m. They used the first 50
coefficients in each of transformed feature vectors, while we used here all 128 coefficients.
These differences should be kept in mind when interpreting the results of this study.

The following parameter values were selected: α = β = 0.5, W1 = 0.4 for activity type,
W2 = W3 = W4 = 0.2 for location, travel mode and accompanying person (Cosine Index); wd =
wi = 1, β1 = 2 for activity type, β2 = β3 = β4 = 1 for location, travel mode and accompanying
person (UDsum and DP-MDSAM). Unlike other measures, Feature Extraction did not
differentiate the weight between attributes nor included the ‘unknown’ level.

Results

Hypothesis 1: The distances measured by the proposed multidimensional sequence

alignment will differ from those measured by other methods.

The first hypothesis states that the distances measured by the proposed multidimensional
sequence alignment will differ from those measured by other methods. This might be evident
a priori, but this analysis was felt important to better understand to what extent the various
measures are (linearly) related.
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Table 4.6: Pearson correlation coefficient

Cosine Index Feature Extraction Udsum
Feature Extraction 0.427

UDsum 0.685 0.617
DP-MDSAM 0.601 0.643 0.963

Note: All are significant at the 0.01 level.

We therefore conducted a correlation analysis between the distances generated by the four
measures. A high correlation between the proposed method (DP-MDSAM) and the other
methods would lead us to rejecting hypothesis 1. In that case, the rather complex new
method would not add much to the conventional methods.

As said, the comparison of the 999 activity-travel patterns yielded 498,501 pairwise
distances for each method in multidimensional space. Pearson correlation coefficients were
calculated for these distances. The results are shown in Table 4.6. The positive, significant
correlations between DP-MDSAM and the other methods suggest the following.

First, DP-MDSAM shares the property of measuring the degree of difference in
element composition between activity-travel patterns with all other methods. Secondly, DP-
MDSAM shares the property of interdependency with the cosine index method. Finally, DP-
MDSAM shares the property of sequential information with feature extraction and UDsum.
However, these correlations are far from perfect. Thus, these results support hypothesis 1.

Hypothesis 2: The sequential information embedded in activity-travel patterns will lead to

differences in distance measures between Euclidean and uni-dimensional sequence

alignment methods.

We hypothesized that the sequential information embedded in activity-travel patterns will
lead to differences between Euclidean distance and uni-dimensional sequence alignment
methods. The Euclidean distance employed here is defined as the Hamming distance
between strings of information as given by equations (3.15), (3.16) and (3.17) in Section 3.2.
This hypothesis was tested by calculating the correlation between these measures. A high
correlation would contradict the hypothesis. It turned out that the correlation between the
two measures for activity-type, location, travel-mode and accompanying-person attributes
was 0.700, 0.709, 0.524 and 0.578, respectively. Thus, the two measures are only modestly
correlated, providing support for hypothesis 2.

The correlation between these measures computed on the store choice sequences of
shopping activity was reported as 0.853 in Section 3.4.1, whereas the correlation computed
on the activity sequences in the current section is 0.7. The fact that the sequences included
more diverse activity categories lowers the correlation in the current section, while the
results are consistent in the sense that both show high, but imperfect correlations.

Hypothesis 3: The interdependency embedded in activity-travel patterns will lead to

differences in distance measures between the sum of uni-dimensional sequence alignments

and the proposed multidimensional sequence alignment.
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The outcomes of the previous two tests suggest that sequence alignment methods may
capture different aspects of activity-travel patterns. Hypothesis 3 relates to the question
whether a multi-dimensional extension is valuable or whether the sum of uni-dimensional
sequence alignments would give similar results. If interdependency in activity-travel patterns
is insignificant, the two methods would produce identical results. We assume however that
interdependency is embedded in activity-travel patterns, and that it will therefore lead to
differences in distance measures between the sum of uni-dimensional sequence alignments
and the proposed multidimensional sequence alignment.

To test this hypothesis, we calculated the differences in the mean values of UDsum
and DP-MDSAM and performed a correlation analysis. A small difference in mean value
would reject the hypothesis. Table 4.6 reports the results of this analysis. It shows that
indeed the correlation was relatively high (0.963). This high correlation occurs either when
there is almost no integration of operations or when the integration of operations happens
very often due to the strong interdependency. The average distance of UDsum and DP-
MDSAM is 26.3748 and 14.4333 respectively. The difference between the two means is
11.9415, which is very high. This result suggests that the high correlation can be explained
by very frequent operation integration, resulting in a substantial portion of collective deletion
and insertion. The results therefore support hypothesis 3.

The correlation between these measures computed on the three dimensional activity-
travel patterns including activity type, location and transport mode was reported as 0.951 in
Section 4.5.1, which is almost identical with the result of the current analysis although this
section’s patterns are four dimensional including accompanying person too. The results are
consistent in the sense that both show high, but imperfect correlations, which gives the
evidence of the interdependency between attributes.

Hypothesis 4: The proposed multidimensional sequence alignment’s cluster solutions will be

better discriminating cross-sectional characteristics of activity-travel patterns.

We now come to a more critical phase of the analysis. The results of the previous analysis
indicate that some degree of interdependency is embedded in activity-travel patterns. We
designed the proposed multidimensional sequence alignment method to better capture such
interdependency. If it does this successfully, then the cluster solution based on the proposed
multidimensional sequence alignment method will better discriminate between activity-
travel patterns in terms of their cross-sectional characteristics.

The proportion of the cases, whose cluster memberships are in common between the
classification based on a particular distance measure and the classification based on the
cross-sectional characteristics of the activity-travel patterns, was used as an indicator for that
distance measure’s goodness-of-measurement. This proportion is in general called ‘the
correctly classified proportion’. A low proportion with the multidimensional sequence
alignment method than with other methods would reject the hypothesis.

The cluster solutions for each of the four methods were obtained by inputting the
corresponding pairwise distance matrix into Ward's clustering algorithm. CHAID (CHi-
squared Automatic Interaction Detector) analysis (Kass, 1980; Magidson, 1994) was then
used to partition the data based on the cross-sectional characteristics of activity-travel
patterns (predictor variables) into mutually exclusive and exhaustive subsets that best
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describe the cluster memberships (dependent variables). We assume that more homogeneous
clusters are associated with a higher proportion of correctly classified activity-travel patterns.
The CHAID classification was based on the following characteristics of activity-travel
patterns: the presence and absence of (1) in-home work, (2) bring/get person or goods, (3)
grocery shopping, (4) non-grocery shopping, (5) service activity, (6) out-of-home leisure, (7)
out-of-home non-leisure, (8) out-of-home social visit, and (9) out-of-home work.

For each measure, a classification model with cluster membership as dependent
variable and nine predictor variables was generated from the analysis sample (70 % of 999
activity-travel patterns), and its generalization was tested on the holdout sample (30 % of
999 activity-travel patterns) as denoted. The analysis set returns the result of the CHAID
model on the current data, whereas the holdout set shows the generalization power of the
model. If there is no big difference or downfall in the correct proportion with the holdout set
results, compared with the analysis set results, we could regard the results from the analysis
set as being a general conclusion. Several solutions of different numbers of clusters were
examined for a minimum of two and maximum of seven clusters.

The proportions of correctly classified activity-travel patterns are shown in Table 4.7.
The table shows that the cluster solutions based on DP-MDSAM discriminate considerably
better between cross-sectional variables than the solutions based on other measures. Thus,
the results of the cluster analysis support hypothesis 4.

Hypothesis 5: The proposed multidimensional sequence alignment’s cluster solutions will be

stronger correlated with individuals’ socio-demographic status.

Although it is fair to say that discrimination between the cross-sectional characteristics of
activity-travel patterns is the more fundamental test, we repeated the CHAID analysis with
the following variables, representing individuals’ situational and socio-demographic status:
(1) day of the week, (2) socio-economic class of the household, (3) age of the oldest person
in the household, (4) household composition and work status, (5) presence of children in the
household, (6) number of cars, (7) gender of the person, (8) official work hours of the person
per week, and the travel time to the nearest center for grocery shopping by (9) bike, (10) car,
(11) public transport mode, the travel time to the nearest center for service activity by (12)
bike, (13) car, (14) public transport mode, the travel time to the nearest center for non-
grocery shopping by (15) bike, (16) car, (17) public transport mode, and the travel time to
the nearest center for leisure activity by (18) bike, (19) car, (20) public transport mode.

Table 4.7: % correctly classified patterns in terms of cross-sectional variables

# clusters Cosine Index Feature Extraction UDsum DP-MDSAM
Analysis 74.6 74.5 71.3 82.3

3
Holdout 71.6 72.7 69.1 85.7
Analysis 69.1 70.0 65.0 77.8

4
Holdout 62.0 67.6 58.0 82.0
Analysis 60.9 64.5 51.7 71.5

5
Holdout 51.0 59.8 51.3 73.1
Analysis 57.2 59.1 50.7 67.4

6
Holdout 51.2 52.8 48.0 70.2
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Table 4.8: % correctly classified patterns regarding situational, socio-demographic variables

# clusters Cosine Index Feature Extraction UDsum DP-MDSAM
Analysis 47.6 70.7 53.9 75.3

3
Holdout 38.8 62.4 49.9 76.1
Analysis 47.3 66.5 47.9 63.2

4
Holdout 38.4 58.7 47.3 60.2
Analysis 32.9 61.6 40.0 48.5

5
Holdout 32.2 52.1 33.6 39.5
Analysis 31.6 52.4 39.5 45.5

6
Holdout 28.1 40.6 33.3 36.2

The proportion of correctly classified activity-travel patterns is shown in Table 4.8.
The predictors are the twenty variables as described above. It shows that the cluster solutions
based on feature extraction and DP-MDSAM are more or less equally correlated with an
individual’s socio-demographic status. Thus, because we do not find evidence of the
superiority of the multidimensional sequence alignment method, we reject hypothesis 5. It is
not readily evident why the two measures behave this way. One possible explanation is that
the information utilized by the feature extraction method that works on time sliced activity
patterns is richer, implying that it may correspond better with socio-demographic variables.

4.6.3 Conclusions

Empirical analysis compared the performance of the proposed multidimensional sequence
alignment method for classifying activity-travel patterns with Euclidean distance and signal
processing approaches. Previous efforts in activity-travel pattern classification were
reviewed, and the principles underlying this new method were discussed. The methods were
compared, using Dutch activity diary data as an example.

The analyses resulted in several observations. First, the pairwise comparison showed
differences between the newly proposed measure (DP-MDSAM) and more conventional
distance measures. Secondly, the sequence alignment method captures sequential
information that is not accounted for by conventional Euclidean distance measures. Thirdly,
the interdependency between attribute dimensions in activity-travel patterns is not
sufficiently captured by uni-dimensional sequence alignment methods, emphasizing the need
for the suggested multidimensional extension, which is consistent with the results in the
previous illustration sections. Fourthly, the cluster solutions based on the proposed DP-
MDSAM better discriminate between activity-travel patterns in terms of their basic
characteristics than the cluster solutions based on conventional similarity measures. Finally,
the cluster solutions based on the proposed DP-MDSAM do not outperform the cluster
solutions based on the feature extraction method of signal processing theory in terms of the
correlation with individuals’ socio-demographic variables. However, it does provide better
results in this regard compared to the solutions based on the cosine index and the sum of
UDSAM.
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4.7 Conclusions and discussion

This chapter developed a new measure of similarity between activity patterns that accounts
for both sequential information and attribute interdependencies in activity-travel patterns.
The proposed method is appropriate as a similarity measure in classificatory studies of
activity-travel patterns and as a goodness-of-fit measure in activity-based modeling studies.
In particular, we have proposed a method that can handle the multidimensional comparison
of activity-travel patterns. The method can be considered as an extension of the uni-
dimensional sequence alignment method, recently introduced in the transportation and time
use literature. The quintessence of the new method is that, while maintaining the central
property of the alignment methods of capturing sequential information, the method treats
multiple operations for aligning attributes belonging to the same activity as a single
operation, reflecting the notion of linkages between attribute dimensions in schedule
decision making.

The problem with this conceptualization is that it results in a combinatorial explosion.
We therefore developed a heuristic method to find the solution. This heuristic involves
segment alignment by first aligning each attribute sequence separately using a conventional
sequence alignment method, then integrating the operations that can be applied
simultaneously, and finally assigning a single weighting value to the integrated operations
unit as if it were a single operation.

Alternative algorithms are developed for the implementation of the suggested method
in real time because the basic heuristic algorithm might still be too time-consuming if the
number of optimal uni-dimensional trajectories for an attribute is large. Particularly, this
problem occurs when an activity-travel pattern consists of many identical elements.
Extensions of the basic algorithm were therefore developed to further economize the method
for such cases. The suggested alternative algorithms are based on genetic algorithms (GA), a
dynamic programming technique (DP) and a hybridization of these two (Hy). The major
difference between the DP-based and GA-based approaches is that the GA-based heuristic
repeatedly seeks better solutions using a general-purpose search engine, while the DP-based
heuristic tests only trajectories closest to the diagonal being the most promising candidate for
a solution. The hybridization was initiated to combine the DP-MDSAM as an initialization
tool and the GA-MDSAM’s multiple-neighbors search as a solution improvement tool for a
genetic algorithm.

An empirical application to an activity-diary data set provided evidence for the claim
that attribute interdependencies should be incorporated in measuring similarities among
activity-travel patterns. Moreover, it was shown that the inclusion of interdependencies
changes the similarity measurement results among activity-travel patterns.

A comparative study of alternative algorithms suggests that the DP-based heuristic
clearly outperforms the genetic algorithms in terms of computing time, while the genetic
algorithms with multiple neighbors improve the solution accuracy significantly. The results
strongly suggest that most trajectories belonging to the multidimensional optimum trajectory
set are the optimum trajectories, yet there are quite a few uni-dimensional non-optimum
trajectories resulting in a multidimensional optimum. This can explain the success of the
hybrid algorithm that combined the two algorithms, which sharply improved the solution
accuracy while only moderately increasing computing time.
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Furthermore, a comparative study of the new measure and existing measures
suggests that the proposed multidimensional sequence alignment method constitutes a
valuable and potentially more sensitive method for classification analysis in activity-travel
behavior research, especially when sequential information and the interdependency between
attributes are of great importance. Based on these findings, further research efforts should
seek to explore the application of the method in a policy context, such as for example
identifying different clusters with varying sensitivity to policy initiatives. For the current
research in particular, the proposed method will be used to classify activity schedule data for
subsequent analyses of segment-level estimation of activity utility functions.

Overall, the newly developed multidimensional sequence alignment method
represents a useful extension of the methodological tools of the transportation analyst,
interested in examining sequential information and attribute interdependencies in activity-
travel patterns. The recent (re-)interest in the structure of activity and trip sequences in the
identification and description of inter-related choices in the organization of activities in time
and space and in developing a multi-faceted model of activity-travel patterns demonstrates
the potential value of the proposed method. For the present study in particular, the method
will be applied to classify the activity schedules for a subsequent segment-level estimation of
activity utility functions.
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Appendix 4.1: An efficient algorithm for trajectory search and proof of its optimality

An efficient algorithm for searching the optimum trajectories employed by the OT-MDSAM
(Section 4.2.3) ignores the order of the applied operations by assuming that deletion and
insertion weights are the same and that the substitution weight is the sum of deletion and
insertion weights. As a result, the uni-dimensional operation sets of an attribute are identical.
The algorithm involves four procedures, applied in the following order.

! Uni-dimensional comparison table of each attribute sequence pair
" Number of identity coordinates of a least-cost trajectory of each attribute sequence pair
# Upper-most identity trajectory of each attribute sequence pair
$ Remaining identity trajectories of each attribute sequence pair

Procedure 1 provides the basic information of the step-by-step alignment costs represented
in the comparison table by which procedures 2, 3 and 4 can trace the history of optimum
alignments of the concerned attribute. All least-cost, or optimum, trajectories of a
comparison table have the same number of identities (see the proof below), and other
operations are appearing in between two adjacent identity operations. Because different
orders of other operations in between these identity operations do not affect the optimality of
the alignment (see proof below), the algorithm traces only the identified number of identity
operations for each optimum trajectory and will later recover other operations based on the
identified operations. Procedure 2 provides the number of identities, which procedures 3 and
4 have to consider. Once the identity trajectory running in the upper most of the comparison
table is identified by procedure 3. Procedure 4 searches the remainders by using a tree-search
algorithm that tries all possibilities of a new branch at each node. Searching in procedure 4
starts with the upper-most trajectory and ends with the lower most. As a result, the algorithm
identifies exhaustively the operation sets of optimum trajectories for each attribute
dimension.

Theorem 1.  Let o={p1,…,pd,…,pD, q1,…,qi,…,qI, h1,…,hz,…,hZ} be an arbitrary alignment
for any pair of sequences, consisting of D deletions, I insertions and Z identities (D ≤ m ; I ≤
n ; Z ≤ min[m,n] where m and n are the length of the source and the target sequences,
respectively). Let Z1

* and Z2
* respectively be the number of identities of two optimum

alignments of different trajectories. Let (D+I)1
* and (D+I)2

* be the number of deletions and
insertions of two optimum alignments of different trajectories. Let wo = wd = wi > 0. Let
d(s,g) be the alignment cost as defined in equations (3.1) to (3.6) of Section 3.2. Then,

Z1
* = Z2

* (4A1-1)

In words, all optimum trajectories have the same number of identity coordinates.

Proof.  Given o={p1,…,pd,…,pD, q1,…,qi,…,qI, h1,…,hz,…,hZ}, then

eoeo ZwwIDwZwIDd ++≤++= )()(),( *
1

*
1gs
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∀  (D+I), Z ; (D+I)1
*∈ {(D+I)}, Z1

*∈ {Z} (4A1-2)

or

oo wIDwIDd )()(),( *
1 +≤+=gs since we = 0 (4A1-3)

or

)()( *
1 IDID +≤+ (4A1-4)

Hence,

)min()( *
1 IDID +=+ (4A1-5)

Similarly,

eoeo ZwwIDwZwIDd ++≤++= )()(),( *
2

*
2gs

∀  (D+I), Z ; (D+I)2
*∈ {(D+I)}, Z2

*∈ {Z} (4A1-6)

or

oo wIDwIDd )()(),( *
2 +≤+=gs since we = 0 (4A1-7)

or

)()( *
2 IDID +≤+ (4A1-8)

Hence,

)min()( *
2 IDID +=+ (4A1-9)

By equations (4A5) and (4A9),

*
2

*
1 )()( IDID +=+ (4A1-10)

Since,

n(o) = D+I+Z given o={p1,…,pD, q1,…,qI, h1,…,hZ} (4A1-11)

we have

*
2

*
2

*
1

*
1 )()( ZIDZID ++=++ (4A1-12)
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Therefore, by equations (4A10) and (4A12),

Z1
* = Z2

*

Theorem 2. The operation sets of any two possible paths between two adjacent identity
operations in a comparison table are identical. To define this formally, let (k1,l1) and (k2,l2) be
two identity coordinates in an optimum trajectory. Let os={{di},{ij}} be the deletion-
insertion operation subset that contains the deletion and insertion operations in-between
(k1,l1) and (k2,l2). Let os’={{di}’,{ij}’} be an arbitrary deletion-insertion operation subset.
Then, the theorem states,

os’ = os (4A1-13)

if

k1 < i < k2 ∀  di ∈  {di}’ and l1 < j < l2 ∀  ij ∈  {ij}’ (4A1-14)

In words, there can be no other insertion-deletion operation sets between two adjacent
identity coordinates.

Proof. We establish the proof by assuming the negation of the above theorem, i.e.:

os’ ≠ os (4A1-15)

Then,

di ∈  {di}’ ∃  di ∉  {di} (4A1-16)

or

ij ∋  {ij}’ ∃  ij ∉  {ij} (4A1-17)

Because

k1 < i < k2 ∀  di ∈  {di} (4A1-18)

and

l1 < j < l2 ∀  ij ∈  {ij} (4A1-19)

we have

i ≤ k1, or i ≥ k2 ∃  di ∉  {di} (4A1-20)
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or

j ≤ l1, or j ≥ l2 ∃  ij ∉  {ij} (4A1-21)

Both equations (4A1-20) and (4A1-21) contradict equation (4A1-14), which is the condition
of the theorem, and hence, the negation expressed by equation (4A1-15) is false.

Therefore,

os’ = os
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Appendix 4.2: Multiple alignments and a multidimensional alignment

This appendix explains the difference between multidimensional sequence alignment and the
method of multiple sequence alignments developed in molecular biology. Multidimensional
sequence alignment refers to the pairwise alignment of multidimensional patterns consisting
of multiple sequences, whereas multiple sequence alignment concerns the multiple
alignments of uni-dimensional sequences. The two approaches have in common that both are
calculating the minimum operational-efforts to equalize sequential information, and that the
solutions do not necessarily result in the optimum pairwise alignments of uni-dimensional
sequences (see, Murata, et al., 1985; Carrillo & Lipman, 1988; Schuler, et al., 1991;
Thompson, et al., 1994; McClure, et al., 1994; Gusfield, 1997b) They differ however in
terms of application and methodological principle.

First, multidimensional alignment seeks the pairwise distance between
multidimensional patterns that can be used for the subsequent classification of observed
patterns or as a goodness-of-fit measure between observed and predicted patterns. The
alignment does not attempt to compare three or more patterns at a time. Multiple alignments,
on the other hand, identify the set of elements that are identical or similar between two, three
or more sequences and distinguish groups of sequences in this regard. The alignment result
provides a measure of the largest similarity calculated on a set of sequences as a whole. It
also provides information about which set of elements of sequences of a group involves the
biological information that distinguishes the sequences from those of other groups. Hence,
the alignment in general attempts to compare three or more sequences to compare.

Secondly, the methodological principle differs between the two measures.
Multidimensional alignment that compares two K-dimensional patterns aligns each
dimension between patterns independently and then integrates the uni-dimensional
alignments. The integration is achieved by identifying the deletion and insertion operations
applied to the elements of the same position in the sequences across different attribute
dimensions, which defines a multidimensional alignment. The alignment does not attempt
the comparison on different dimensions between the patterns. (For example, an activity type
sequence of an activity-travel pattern is not comparable with a location sequence of the
other.) Multiple alignments that compare K uni-dimensional sequences, on the other hand,
align one sequence or alignment against another and find the globally best alignments,
providing that the similarity is measured on all the sequences compared. Unlike the
multidimensional alignment, each sequence included in this multiple applications of uni-
dimensional pairwise alignment is comparable with all other sequences. (They are all for
example DNA sequences.) In principle, the pairwise trajectories included in the final
solution of the multiple alignments are near to the optimum pairwise trajectories because all
sequences are comparable to each other and seek the largest common structure. On the other
hand, the pairwise trajectories included in the final solution of the multidimensional
alignment can be quite different from the optimum pairwise trajectories because the
multidimensional optimum integration of uni-dimensional operation sets may not necessarily
be the integration of uni-dimensional optimum operation sets. The difference between the
two measures is illustrated in Figure 4.13.
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Set of pairwise alignments (dashed
arrows) and the resultant multiple
alignment solution (shadowed area):
S1, S2 and S3 represent for example
DNA sequences.

Set of uni-dimensional alignments
and the resultant multidimensional
alignment solution: In the upper
figure, A1-B1, A2-B2 and A3-B3
are the pairs of sequences of for
example activity-type, location and
travel mode dimensions of activity-
travel pattern A and B, respectively.
The alignment paths denoted by bold
lines, unlike the dotted paths are
integrated across dimensions in the
bottom figure.

Figure 4.13: Multiple alignments and a multidimensional alignment
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Part II: Predicting Activity Rescheduling Behavior





5 A Model of Activity Rescheduling – A uroraA uroraA uroraA urora

5.1 Introduction

Part-I has developed a comprehensive theory, method and implementation model of

measuring activity-rescheduling behavior. While this concerns a descriptive analysis of

activity-travel behavior, Part-II will develop a model of predicting such activity-travel

behavior. Measurement and prediction of activity-travel behavior are complementary to each

other. The model of measurement developed in Part-I provides natural definitions and

descriptions of activity-travel behavior to be predicted by the model of prediction that will

be developed in Part-II. In particular, the measurement model of Part-I will serve as a tool

for the classification of activity-travel patterns on which the prediction model of Part-II

estimates the model parameters that are specific to each group of homogeneous activity-

travel behavior.

A theory and model of predicting activity-travel behavior of Part-II will be developed

in the context of the activity-based approach. The theory and model will consider travel as a

derived demand and activity-travel behavior as a result of a dynamic decision-making

process of short-term schedule adjustments that an individual makes on the basis of his/her

evaluation on such rescheduling decisions. This contrasts most of the existing activity-based

travel behavior models, which focus on the structure of activity-travel patterns. Activity-

travel patterns are typically predicted as a function of their structural characteristics and

socio-demographic variables (Bhat & Koppelman, 1999; Timmermans, et al., 2002a). To

date, only few scholars have explicitly addressed the problem of dynamics of activity

scheduling decisions. Computational processes models such as Scheduler (Gärling, et al.,

1989), Smash (Ettema, et al., 2000), AMOS (Kitamura, et al., 1995) and A lbatross (Arentze,

et al., 2000) involve dynamics, but only in the sense that these models have derived rules or

mechanisms of activity scheduling behavior. Except for AMOS, these models do not

explicitly consider adaptation processes. Timmermans, et al. (2000) address learning and

long-term dynamics. They showed that their learning model was capable of representing

various typical behaviors, including habit formation and chaotic behavior. Their main focus

is however a long-term mechanism of learning processes.

From an applied perspective, the problem of how individuals adjust their planned

activity-travel schedules as a function of time pressure and unexpected results is even more

relevant. Congestion, for example, may require people to reschedule their activities,

implying that the distribution of traffic over time and space may change. The only

publication that we found on this topic is that from Gärling, et al. (1999), who suggested an

appealing framework to address this problem. They assumed that when faced with time

pressure, individuals first try to compress the duration of activities, or try to reschedule them.

If this is not sufficient, individuals are assumed to prioritize activities and eliminate the one

with the lowest priority. This process is assumed to continue until the total duration is below
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some threshold. Despite its appeal, however, this conceptual framework only addresses some

aspects of the effects of time pressure on the execution of activity programs. The theoretical

underpinnings of the framework are not fully elaborated, rescheduling decisions are not

examined in much detail, and the framework does not allow for any substitution of activities.

In this chapter, we develop a more comprehensive theory and model of activity

rescheduling decisions as a function of time pressure. Two distinguishing components of the

modeling approach should be stressed here. The first component defines the (anticipated)

utility of rescheduling options depending on duration, travel mode, location, sequence and

time-of-day of scheduled activities and (dis)utility of non-scheduled activities. Thus, this set

of equations defines a utility space of all feasible rescheduling operations that the individual

could possibly consider. Obviously, this search space is extremely large and bounded

rationality of individuals prohibits an exhaustive search strategy. The second component,

therefore, is complementary and defines heuristics for a partial search. The search tree

repeatedly makes decisions on schedule adjustments on the basis of the expected schedule

utility in an attempt to best improve the schedule utility at each time of adjustment until no

more improvement is available. In particular, the search tree mimics human search behavior

to find a (sub-)optimal solution by efficiently reducing the vastly wide solution space of

alternative adjustments. The utility function and decision tree both assume a continuous time

representation of the schedule.

The chapter is organized as follows. Section 5.2 conceptualizes the problem of

activity rescheduling as a function of unexpected events. The section includes the conceptual

framework of schedule adaptation, given the utility, constraints and behavioral rules that

control the internal and external components, and formalizes the definition of the

rescheduling problem. Utility is modeled as a function of the duration of activities. Having

discussed the background, Section 5.3 develops a utility function on which the evaluation of

the schedule adaptation is based. The description of the basic form of activity utility is

followed by an extension of the functional form to incorporate other than duration facets as

well, including location, transport mode, etc. Next, it will be shown how utilities across

activities produce the schedule utility as a whole. The chapter also discusses how adaptation

styles can be incorporated in the model that an individual may choose to cope with

uncertainty. Having explained the activity-specific utility functions, Section 5.4 introduces a

model of decision heuristics. The model implements the schedule adjustment based on the

individual activity utilities by applying a set of schedule adjustment operators. A theory and

assumptions are discussed and the model is detailed. It includes the overall structure of the

heuristics, the individual operators and the details of the application procedure. Section 5.5

then discusses the results of numerical simulations that were conducted to test the face

validity of the model using a simulated transportation environment. The chapter will end

with some conclusions and discussion.
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5.2 Conceptualization

Our theory of individuals� scheduling and rescheduling behavior involves the following

conceptual considerations. First, individuals execute activities to meet a variety of needs.

Fulfilling activities returns satisfaction or utility as a reward for meeting the needs. The list

of activities to conduct is determined by an individual's personal desires, responsibility for

family and work contract (Damm & Lerman, 1981; Bhat & Koppelman, 1993).

Secondly, a set of circumstantial conditions limits the extent to which individuals can

increase the utility. These conditions include individuals� physical condition, their role in

society and the physical environment surrounding them. These conditions guide individuals

and society to available means of fulfilling activities. Activities of particular purposes are

then organized in space and time (Pred, 1981a; Thrift, 1983).

Thirdly, uncertainty should also be taken into account. Given the needs and

conditions, individuals identify and evaluate activities in terms of their anticipated utilities

for possible implementation. Uncertainty, however, affects the evaluation due to the fact that

the activities in the later positions of the planned schedule may involve a larger amount of

uncertainty. The evaluation results differ between individuals faced with uncertainty,

dependent on their personalities or decision styles in dealing with uncertainty, which in turn

affect the schedule.

Fourthly, individuals are assumed to use heuristics in looking for alternatives instead

of becoming involved in an exhaustive search, due to the fact that their rationality is

bounded. Individuals usually have numerous alternative ways of planning a schedule given a

time horizon, each of which may result in a different level of utility. Cognitive constraints

however prevent individuals from identifying and evaluating every single alternative in the

universe of alternatives. Individuals therefore use a set of heuristics to reduce the burden of

search and to pursue cost effectiveness. A typical example is habitual behavior (Gärling, et

al., 1998), which is concerned only with routinized alternatives, and hence is far from

optimizing behavior. Heuristic behavior may result in sub-optimal, satisfying choices.

Finally, an activity schedule is tentative and may be changed at any time. Every

moment in time, there may be the need for changing the schedule of remaining not-yet-

completed activities. An individual may be forced to change the schedule due to time

pressure or may actively decide to change and improve the existing schedule. Any (sub-

optimal) decision is enforced until a further need to reschedule the activities arises.

Based on the above discussion, we formulate a conceptual framework of individuals�

scheduling and rescheduling behavior as illustrated in Figure 5.1. Initially, a tentative

schedule is given. The set of activities included in the current schedule is a subset of the

activity program. The individual evaluates the utility of activities for possible

implementation as well as non-implementation. When an individual with a certain decision

style evaluates the utility of alternative activities under a set of constraints, he/she examines

whether some change of the schedule is necessary.

More specifically, the individual examines whether there is any time pressure or any

increase in utility possible by changing the existing schedule. Because it is impossible to

identify and evaluate all possible alternatives due to cognitive constraints, individuals adopt

certain heuristic strategies to effectively and efficiently reduce the search space to reach

reasonably good solutions in real time. The adjusted activity schedule is then implemented.
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Figure 5.1: Conceptual framework

The utility of the remaining schedule is again subject to unexpected events, such as traffic

congestion, cancellation of a business meeting, etc., causing increased or reduced time

pressure. Therefore, the schedule will often be only partially implemented, and the adjusted

schedule remains tentative.

To develop our scheduling theory, we use the following notation. AP = {1, �, a, �,

A} represents an activity program, where a is an index for activities. S represents a set of

scheduled activities. R represents the complementary set of activities that are not scheduled

at the current stage of scheduling. U represents the total utility of rescheduling that consists

of the utility U(S) and the utility U(R). Although being assigned zero duration, the activities

included in set R also contribute to the total utility U because that non-performance of an

activity also returns positive, zero or negative utility. An activity schedule is a sequence of

activities [a1, �, ak, �, aK], where ak ∈  S, and k is an index for positions in the current

schedule. Each activity includes a variety of schedule resources such as duration v (v > 0),
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clock time of a day t (t ∈  {0, 1, �, T}), location l (l ∈  {1, �, L}), accompanying person w

(w ∈  {1, �, W}), transport mode b (b ∈  {1, �, M}), and travel time Λ (Λ ≥ 0).

The nature of each activity and institutional and situational constraints limit these

schedule resources. Activities can be conducted only with a particular set of locations }{l

and accompanying persons }{w . Institutional constraints confine the start and end times of

an activity. The start time s

at  should be in-between the earliest and latest possible start times

−s
t  and +s

t . Likewise, the end time f

at  should be in-between the earliest and latest possible

end times −f
t  and +f

t  (e.g., opening hours or work contract). Situational constraints limit

the temporal availability of particular schedule resources such as the transport modes

available at time t in the current schedule { }
tb

r
. While institutional contexts are static,

situational constraints are changing dynamically dependent on the context of the activity

schedule. For example, the car is not available as an alternative transfer mode after a train

trip to an out-of-home location even if one has a car at home and a driving license.

The problem of rescheduling under time pressure then is to find the activity schedule

at a particular point in time on a particular day by which an individual achieves the

following objective.

)()(max
},{

RUSUU
RS

+= (5.1)

subject to:

S ∪  R = AP (5.2)

S ∩ R = φ (5.3)

s

at  + av  = f

at ∀  a (5.4)

s

at  + av  = 
s

a
t 1+ ∀  a (5.5)

Bv
A

a

a =∑
=1

(5.6)

al  ∈  al}{ ∀  a (5.7)

aw  ∈  aw}{ ∀  a (5.8)

aΛ  ≤ av ∀  a (5.9)

−s

at  ≤ s

at  ≤ +s

at ∀  a (5.10)
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−f

at  ≤ f

at  ≤ +f

at ∀  a (5.11)

atb  ∈  { }
tb

r
∀  a (5.12)

where,

a+1 is the activity scheduled next to a;

B is the time budget of the day, which normally stands for 24 hours, as we consider the case

of daily scheduling;

other symbols are defined as before.

Equations (5.2) and (5.3) state that the list of activities to be scheduled should be a

subset of a given activity program. Equations (5.4) to (5.6) show that the sum of durations

across activities equals the total duration of the schedule, and hence, satisfies the time budget

constraints in all situations. Equations (5.7) and (5.8) mean that the location and

accompanying person of a scheduled activity a belong to the location and accompanying

person choice sets, respectively. Particularly important regarding equation (5.9) is that we

treat travel as part of an activity as opposed to an independent activity. This means that the

duration of an activity includes the duration of conducting the activity and the time for

traveling from the previous location to the location of the current activity. Equation (5.9)

hence dictates that the duration of conducting activity a should at least be equal to the

duration required to travel to the location of activity a. Equations (5.10) and (5.11) dictate

that the start and end time of activity a should meet the time constraints set by the

institutional context. Finally, equation (5.12) implies that the transport mode chosen for

activity a at time t should be available at that time in the current schedule S. Note that,

related to the issue of day-to-day variability in activity performance, the particular values of

most constraint variables are dependent on the day of the week.

Given the objective of maximizing the utility of (re)scheduling decisions, subject to

these constraints, an individual is assumed to try and optimize his/her schedule in a situation

of time lack, time surplus or any other event. Unlike the existing utility maximization

models, however, we assume bounded rationality as a result of incomplete information and

imperfect choice behavior. An individual is limited in his/her cognitive capacity to identify

and optimize a complex decision problem. In particular, the cognitive constraints induce the

following heuristic search strategy for schedule adaptation.

! Identify the problem

" Identify alternative courses of actions to change the schedule

# Evaluate these actions in terms of the total utility of rescheduling

$ Implement the action maximizing the total utility of rescheduling

% Repeat

Identifying alternative courses of action implies possible changes in the choice facets to

solve the emergent problem of time lack, time surplus, etc. These actions include the

application of a variety of rescheduling operators such as changes in the duration of

particular activities, the list of activities, the sequence of activities, and the location,
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accompanying person and travel mode of activities. Clearly, the assumption of bounded

rationality implies that the model does not consider such changes simultaneously. Rather, an

iterative procedure in which one operation at a time is evaluated and implemented is adopted.

In the following, we provide a formal description of two major components of the suggested

model, the utility functions and the heuristic solution methods, to operationalize the

conceptualization. In particular, we shall call the proposed model of rescheduling behavior

A urora (Agent for Utility-driven Rescheduling Of Routinized Activities).

5.3 Utility function

Individuals derive a certain level of utility directly or indirectly from participating in

activities. The utility function associates some selected characteristics of activities with

particular numeric values that are assumed to correspond to particular utility levels. The

utility also varies with characteristics of individuals and households. We assume that the

utility of an activity is a function of the amount of time spent on the activity, where longer

duration provides a higher level of utility.

Existing theories on time allocation in transportation and economics generally

assume that utility is a monotonically increasing function of duration. Regarding the rate of

increase, however, different assumptions have been made. Microeconomic theory assumes

an increasing utility function with a diminishing marginal utility over the entire range of

input variable values. The utility functions of activities used in activity-based approaches

adopting time-use microeconomic theory (Becker, 1965) almost invariably rely on the same

assumption of a logarithmic, ever-diminishing marginal utility over the entire range of

activity duration (Kitamura, et al., 1996b; Bhat, 1999).

In contrast, Supernak (1988) argued for different, more complicated, functions,

dependent on the characteristics of the given activity. It is important to note that the utility

function of the present study does not pursue the classical economic question of long-term

decisions such as how people allocate their time between work and leisure. Rather, the focus

here is on individuals� schedule adaptation decisions in the course of a day. Several long-

term decisions affect or constraint such short-term decisions. For example, the choice of the

duration of a work activity is an issue here only when working time is flexible in the short

term. Given this difference in focus there is a need to reconsider earlier concepts and develop

new theory. The present study therefore developed such an alternative utility function as

discussed in the following.

5.3.1 Basic form of the activity utility function

The functional form of utility is derived from particular theoretical assumptions on the

nature of the activity implementation over time. It may not be unrealistic to assume that the
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implementation of activities describes a certain general form of change in utility over time,

although the particular functional form may not be following the ever-diminishing

marginality.

Assuming a constant increase in utility for additional units of available time would

imply the functional form of a straight line. Alternatively, one might assume diminishing

returns over the entire time range or first increasing returns and then diminishing returns (i.e.,

an S-shape). To identify characteristics of activities that relate to particular forms, several

cases are instructive. First, consider an activity that consists of completing a list of items.

Assume furthermore that each item or task element yields a partial result that is positively

evaluated and requires an equal amount of time. An example is a shopping activity involving

a list of items to buy in the same store. If time is limited, only part of the list can be

completed. Assume that the utility attached to each item is the same. Then, clearly, the

function would describe a constant increase in utility. Now, assume that different utilities are

attached to the items, for example, because the need or urgency of obtaining the item differs.

Then, if time were limited, a rational individual would choose the highest prioritized items.

When time is extended, increasingly less prioritized items would be added. The result is a

diminishing return over the entire range of time. This is a logarithmic utility function that

most time use research derives from the assumption of a saturation effect, where marginal

returns generally diminish over time. As one spends more time on an activity, the marginal

increase in utility decreases whereas the overall utility increases.

The above-mentioned constant or diminishing returns may however hold only for

ideal type of activities. In reality, circumstances may be less perfect.  Consider the case

where the condition of equal time for the task elements does not hold in the sense that

spending more time yields a better result for each item. This is a realistic assumption in cases

where information is incomplete and searching increases the chances of obtaining a better

result. For example, in the case of a shopping activity, an individual could use time for

searching and finding a lower-priced item or one of higher perceived quality. If information

is complete, the assumption is also realistic in cases where different locations yield different

results. To stick to the example, changing stores to buy different items yields better

outcomes if (the disutility of) additional travel is outweighed by (the utility of) a better

quality or lower prices. In such cases where the utility depends on search or travel time,

marginal utilities may first be increasing and then decreasing, resulting in an S-shape form of

the utility function.

The discussion so far implicitly assumed that utility depends exclusively on the

outcome of the activity (e.g., the items bought-indirect utility: consuming the items-direct

utility). In general, however, individuals will derive, at least to some extent, also a direct

utility from the activity. That is, utility is derived from the process of performing an activity.

This is obvious in the case of discretionary activities such as for example leisure or social

activities. But also mandatory activities may have intrinsic value. For example, one may

derive direct satisfaction from working or studying. In the case of mandatory activities, the

direct component does not need to be positive. If efforts required to complete a task are

negatively valued, the component will be negative. Furthermore, the weight of the direct

component relative to the indirect component may vary from activity to activity. Lying on

the beach, for example, may be an extreme case where utility consists almost entirely of

direct satisfaction (unless a tan is the envisioned result).
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With respect to the direct utility component, we assume that marginal utilities of

successively added time units decrease when a saturation effect is dominant.  The more time

spent in the activity, the lower the value assigned to an extra time unit. Although diminishing

returns are obvious, it is not so obvious what happens when the initial duration is still short.

The direct relation between time spent in the activity and utility derived from it implies that

there is no minimum duration for the direct component. We assume, however, that marginal

utilities are initially small and increase as time is extending up to some point. This might be

interpreted as negative saturation or a �warming up� period.  The implication of this

reasoning is that the utility function follows an S-shape also for the direct component, which

dominates in discretionary type of activities.

Activities generally yield a mixture of direct and indirect satisfaction implying that

the actual functional form is determined by the sum of its constituents. Because the direct

and indirect utility functions are not necessarily aligned with respect to the reflection point,

i.e. the duration where marginal utilities start to decrease, the overall utility may be a more

complicated function of duration. If the inflection points occur at different moments, the

overall utility no longer follows an S-shape, but rather a more complicated form with two

reflection points, etc. In the following, we will conveniently assume that either the direct

component is small in comparison to the indirect component or is perfectly aligned with the

indirect component so that the S shape is maintained in the overall function.

The following equation is proposed to define the general form of the relationship

between utility and duration of an activity.

( ) a

aaaa
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)](exp[1 −+
−+= (5.13)

where,

a is an index of activities; v is the duration of the activity;

Umin and Umax are coefficients that asymptotically determine the minimum and maximum

utility of the activity, respectively;

α, β and γ are additional coefficients of the activity utility.

The general form of the activity utility function of equation (5.13) is an asymmetric

S-shaped curve with an inflection point. This functional form was originally developed in

biological science, called a generalized logistic curve or growth curve (Richards, 1959). A

typical example of the use of this form can be found in the prediction of the animal weights

over time elapsed since the birth. In that field, the functional value U denotes for example a

prediction of the weight of a cow at the moment in time v elapsed since its birth, given the

maximum possible weight of a cow Umax. The parameters are obtained by a curve fitting

procedure using a non-linear regression analysis. Alhough the original application of the

function far differs from the present research, we employ the functional form because it

suites the description of our theory of activity utility, which will be detailed below.

The maximum utility (Umax) represents the (anticipated) utility derived from the

activity if the time available is unlimited. The minimum utility (Umin) represents an

individual�s evaluation of the situation if activity duration is zero. This utility might be zero
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or negative, but is never positive. In most cases, the minimum utility is zero because not

conducting the activity often merely means the absence of benefits. This might, however, not

be true for biological needs, such as sleeping, eating, leisure, etc. where delaying satisfaction

might produce negative effects (hunger, lack of sleep, loss of concentration, etc.). The

minimum might also be negative in the case of maintenance activities that cannot be delayed

(e.g., shopping when stocks are empty).

The α coefficient determines the duration at which the marginal utility reaches its

maximum value (inflection point). The β coefficient determines the slope of the curve, a

larger β-value meaning that the activity is more sensitive to duration and hence less flexible

in terms of adaptation. The γ coefficient determines the relative position of the inflection

point. If the value is close to 1, the curve approximates a symmetric curve, and the inflection

point is in the middle between the maximum utility and zero. When the value approximates

0, the utility at the inflection level is also close to zero, implying that marginal utility is

diminishing at virtually all levels of duration.

Figure 5.2 shows various forms of the activity utility function that illustrate the

impacts of coefficients determining the level of utility over duration. In the figure, the X-axis

represents activity duration v, while the Y-axis represents utility of activity.

Figure 5.2: Impacts of utility parameters
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Note that the meaning of the X- and Y-axes differs from conventional concepts in economic

theory of time use, where the X-axis usually represents clock time and the Y-axis a

cumulative utility (Winston, 1982). Thus, each point in the curve describes an individual�s

utility of the anticipated value of the activity under that duration choice.

The upper left figure of Figure 5.2 illustrates two activities having the same utility

parameter values, except for the α values, which are 100 and 150 for utility curves of

activities A and B, respectively. The utility curve of activity B is more to the right than

activity A by 50 units. As a result, the level of utility curve of activity B is much lower than

activity A�s for the same duration. In other words, activity B requires much more duration to

reach the same level of utility than activity A. The figure also illustrates the importance of

the location of the utility curve along the X-axis, regarding the impact of travel time on the

level of utility. Assume that the two curves refer to the same activity, instead of two different

activities, whereby the locations where the activity is conducted are different. The curve

denoted by A represents that the activity is conducted at the same location as in the previous

activity�s, while the curve denoted by B represents that the activity location is 50 minutes

away from the location of the previous activity. The curve A therefore is the utility of the

activity duration per se, while the curve B is the utility of the activity duration plus the effect

of the 50-minutes travel time from the previous activity location. This clearly shows that,

with other things being equal, the nearer activity location of shorter travel time must be

preferred to reach the desired level of utility, given the limited time budget.

The upper right graph of Figure 5.2 illustrates two activities with different β values

of 0.5 and 1.0, respectively. The utility curve of activity B is steeper and shows more rapid

changes of utility levels around the inflection point. Before the inflection point, the utility

level is higher in the flatter curve denoted by activity A, while the level becomes higher in

the steeper curve denoted by activity B afterwards. The implication of the bigger size of β is
that the activity has smaller interval of durations between very low (near zero) and very high

(near maximum) utilities and therefore is less flexible in duration adjustment.

The bottom left figure of Figure 5.2 illustrates two activities of different γ values of 1

and 0.1 for utility curves of activities A and B, respectively. The curve of activity A shows a

symmetric S shape with minimum level of utility of zero, maximum of 1000 and inflection

level of utility of 500 at the duration of 100, while the curve of activity B is asymmetric with

inflection level of utility of 400 at the duration of 100. Activity B has a bigger proportion of

the diminishing marginal utility, and the level of utilities before inflection point is quite

small compared with activity A. The implication of the bigger size of γ is that the activity

would more likely have the duration of either bigger than inflection point or rather zero, and

therefore, the actual schedule data would show the activity of saturated duration more often.

The bottom right figure of Figure 5.2 shows two activities of different Umax values of

1000 and 800 and Umin values of 0 and �100 for their utility curves, respectively. The higher

level of Umax offers a higher level of utility for the same amount of activity duration. The

minimum utility level is also associated with the minimum duration of the activity. The

minimum duration represents the duration in which the activity starts producing positive

outcomes when time is added. In the range of duration with positive utility, the individual

would choose to conduct that activity unless a competing activity would have higher returns.

Some �skeleton� activities of the schedule are expected to have negative Umin values.
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Having identified the generic form and parameters of the function, the next question

is how to set the parameters for a given activity. Schedule context may be a moderator in the

sense that the maximum of a utility may depend on the time of day and interactions with

other activities (preferred combinations of activities). History may be a moderator in the

sense that the time passed since performing the activity last may influence utility. We

assume that parameters α, β and γ exclusively depend on the nature of the activity. The

underlying notion is that these parameters relate to technical aspects of the activity related to

the productivity of time units (indirect utility) or strength of the saturation effect (direct

utility). In contrast, we assume that the minimum and maximum utility, Umin and Umax, are

moderated by context and history factors. The activity�s nature � i.e. the invariant property

of the activity across instances of the activity � determines a base line, which is moderated in

upward or downward direction by context and history effects. The more urgent the activity

(given its history) the bigger Umax will be. In addition, Umax will increase when the activity

can be conducted at the preferred time of day while negative carrying-over effects from

previous activities are absent.

5.3.2 An extension of the activity utility function

The utility function of equation (5.13) includes only duration as a facet of activity choice for

adjusting the activity-travel schedule. We should however also be able to consider other key

choice facets such as activity location, accompanying person, activity timing, travel time,

and transport mode. As pointed out earlier, Umax and Umin in equation (5.13) are moderated by

the schedule context. In particular, the utility function assumes that, with other things being

equal, the activity with higher (lower) Umax provides higher (lower) utility than other

activities over the entire range of duration. Thus, the Umax term captures the impacts of all

choice facets other than duration. We suggest the following general form of the max

aU

function.

( )
abablaaaaaxa TlwUfU

a
Ψ= ,,Λ,,,,,max κτ (5.14)

where,

axU  is the intrinsic level of maximum utility of activity a;

τ, w and l are respectively an index for episodes of a day, accompanying persons and

locations;

Ta is the time elapsed since the last implementation of activity a;

blaΛ  is the total time required for the completion of the travel from the previous location to

the current location l of activity a;
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laby
Λ  is the time required for mode b chosen to travel the yth stage in between the previous

location to the current location l of activity a ( ∑Λ=Λ
Y

y

labbla y
, where Y > 1 implies a multi-

modal trip.);

blabΛλ  is the total cost for the completion of the travel from the previous location to the

current location l of activity a; 
ybλ  is the generalized marginal cost for travel by mode b

chosen for the yth stage in between the previous location and the current activity location l

( ∑ Λ=Λ
Y

y

labbblab yy
λλ );

baκ  is the activity-specific level of preference for traveling by mode b;

Ψa represents the level of preference for the chain relationship between previous, current and

next activities.

The first term in the parenthesis of the right hand side of equation (5.14) implies that

the max

aU  level is primarily determined by a certain level of intrinsic maximum utility of

activity a. The rest of the terms indicate that the max

aU  level is also dependent on many other

choice facets and aspects of the schedule context. Different locations (i.e., city center vs.

local center, or floor space of the facilities), accompanying persons (i.e., alone vs. with

friends), and activity timings (i.e., afternoon vs. evening) attributes will adjust the level of

intrinsic maximum utility. Ta, the history of the implementation of activity a, will also

greatly affect the level of max

aU . As the history becomes longer, the urgency for conducting

the activity grows, and the max

aU  will increase. This is important in the sense that if the

functional relationship of history with the maximum utility is known, the frequency of the

activity could also be predicted by a schedule model.

Travel time Λ from the previous location to the current location l of activity a by

mode b, blaΛ , also contributes to the level of maximum utility. The contribution will be

negative with longer travel time. Travel time has another, more significant effect on the

overall utility, which is concerned with the activity duration. Longer travel time more

reduces actual duration of the activity. This effect shifts the overall utility curve to the right

along the X-axis, implying that the utility of the same activity duration becomes lower with

longer travel time. This will be detailed later in this section. baκ  term implies that particular

transport modes are likely preferred for particular activity types (i.e., car for shopping),

which have constant impacts on max

aU , regardless of the travel distance. Finally, the term Ψa

represents possible cross-effects between activities with respect to their order of the

implementation sequence. For some people, for example, the sports activity would be

preferred before dinner instead of after dinner. Although it is not explicitly represented here,

the choice of particular trip chains will also be realized through the schedule-reschedule

process. Chaining trips for a certain set of out-of-home activities would improve the

schedule by saving travel time. The transport mode also accounts for possible positive or

negative associations between activities within chains. The importance of the interactions

between activities in the schedule has been a critical issue in transportation research, and in
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particular, evidence of chain relationships between successive activities can be found in

Kitamura (1984a) and Arentze, et al. (1993).

The impacts of travel time also concern the actually dispensable amount of duration

for an activity because it reduces the available time for the activity. The total time budget at

any moment is limited. A particular amount of duration assigned to an activity is not used

only for that activity itself but also for the travel time to reach the location of that activity.

As said, the utility of an activity is an increasing function of duration spent on that activity.

Shorter duration corresponds to lower utility. Longer travel time makes the actually

dispensable activity duration shorter and therefore lowers the utility. This notion can be

reflected by revising equation (5.13) into equation (5.15).

( ) a

aaaa

aa
aa

v

UU
UU γαβγ /1

minmax
min

))]((exp[1 Λ−−+
−+= (5.15)

Figure 5.3 illustrates the travel time effect where the utility curve of an activity is

differentiated between different locations. It is clear from the figure that the travel time

greatly affects the utility level. It shifts the functional curve of the activity utility horizontally

to the right by the amount of travel time, and subsequently, lowers the level of the utility of a

given activity duration. When the activity is implemented at the same location as the

previous activity location and has no travel involved the amount of duration assigned can be

used entirely for that activity. With other things being equal, the activity with no travel time

achieves higher utility than others for the same amount of duration. For example, the

implementation of this activity without travel obtains utility level of 500 from duration of

100 while others require durations of 125 and 150 for the same level of utility.

However, the impacts of the choice facets are often mixed, which complicates the

effect on the utility level. Figure 5.4 shows combined impacts of different travel time and

attractiveness between locations, as an example of the complexity of the impacts of various

combinations of choice facets on the utility level. The location associated with the bold line

is more attractive than the other for this activity, and therefore the bold line�s Umax is higher

than the other�s according to equation (5.14).

Figure 5.3: Impact of travel time on activity utility
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Figure 5.4: Combined impact of travel time and location choice

Although it is more attractive, the location of the bold line requires travel time of 25 minutes

from the previous activity location in the current schedule context, whereas the less

attractive location requires no travel. This combined effect of the travel time and location

attractiveness results in the interception of the utility functions. The less attractive location

with no travel has higher utility from the beginning up to the duration of 130, and thereafter

the other more attractive location overcomes the disadvantage of the travel time and returns a

higher utility.

5.3.3 Total utility of rescheduling

Given the utility function for individual activities, the total function for an entire schedule

should aggregate the utilities across activities of S and R. The aggregation equation can be

manifold, and some multiplicative form may be desirable to reflect the mutual relationships

between activities. Obviously, certain activities have complementary or substitution

relationships. A business meeting, for example, has a complementary relationship with a

follow-up social event. In-home and out-of-home leisure activities likely have a substitution

relationship due to the fixed amount of time in the evening after work. To cope with these

activity-specific relationships, the constituent activities should be grouped in a multiplicative

term of an additive aggregate function. In the present study however we simplify the

problem and assume a simple additive aggregate utility function as:

∑
=

=
A

a

aUU
1

(5.16)

with

( ) a
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and

Bv
A

a

a =∑
=1

(5.18)

where, B is the total duration (B > 0), representing the budget constraint that limits the total

amount of time that can be assigned to activities at the moment of scheduling.

The equations show that the basic functional structure of the utility remains the same.

The summation in equation (5.16) re-states that the total utility includes the utilities not only

of the scheduled activities of S but also of the currently non-scheduled activities of R as the

non-performance of an activity may return a zero or negative utility. In particular, the

additive form with the time budget constraint implies that activities have a general

relationship with all others regarding their duration in the schedule. Increasing the duration

of an activity means that the duration of other activities is decreased, depending on their

utility function. To increase total utility, therefore, utility increase of the increased activities

must exceed utility decrease of the decreased activities, and no change is induced otherwise.

Thus, while the marginal utility of duration of an activity is positive, it may not always be

positive for the entire schedule due to the budget constraint. More specifically, while the

increase of av  increases the utility aU , it may sometimes decrease the total utility U because

of the bigger amount of decrease in the utilities of other 'aU s where a′≠a. However, an

activity does not have any activity-specific relationship with other activities.

5.3.4 Adaptation styles under uncertainty

The utility function introduced above would be sufficient to develop a model of schedule

adaptation based on utility maximization if we assume unbounded rationality. As we argued

in earlier sections, bounded rationality relates to problem solving, which will be discussed in

the next section, and incomplete information. Incomplete information implies that the exact

values of the function parameters are uncertain. Furthermore, individuals rather clearly know

the details and circumstances of an activity to be implemented right now, whereas they may

not have a concrete idea about an activity later in the schedule.

Consider, for example, a person who has a schedule involving a sequence of ten

activities for the day and has already conducted the first two activities. Now, the person is

faced with a time lack situation and is going to reschedule the remaining eight activities. The

person probably has a concrete idea about the details of the activity that is to be conducted

next at the third position of the schedule, whereas the person might have a less clear idea

about the tenth activity at the last position in the schedule. We assume that the amount of

uncertainty is an exponentially increasing function of time elapsed since the current stage of

implementing the rescheduling:

1'

' )1( −+= kupper

k ξξ (5.19)
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1'

' )1( −−= klower

k ξξ (5.20)

where,

k′ is an index for the position of an activity in the schedule still to conduct (k′ = 1, �);

ξ is a parameter of uncertainty (0 ≤ ξ < 1);
upper

k 'ξ  and lower

k 'ξ  define the amount of uncertainty for the utility function of activity ak′.

We distinguish three different decision styles, rational, conservative and

opportunistic, regarding the behavior under uncertainty. Under the situation of time lack, the

individual must reduce the total duration of the activities in S. A conservative person, as

opposed to an opportunistic person, would perceive the decrease in utility by reduction in

duration more seriously than what it really is. The perceived functional slope and maximum

utility of an activity at the kth position in the remaining schedule can be defined as
upper

kaak ''
ξββ =  and upper

kaa UU
k '

maxmax

'
ξ=  for a conservative person, and lower

kaak ''
ξββ =  and

lower

kaa UU
k '

maxmax

'
ξ=  for an opportunistic person.

As illustrated in Figure 5.5, a conservative person tends to perceive the functional

curve of each activity steeper (LHS) or the maximum utility bigger (RHS) than their reality,

whereas an opportunistic person tends to perceive the functional curve flatter (LHS) or the

maximum utility smaller (RHS) than what they are. Because uncertainty increases with time

elapsed from the current stage of rescheduling, the difference between these two decision

styles also grows and is biggest for the last activity in the schedule. The perceived slopes and

Umax of the activities later in the schedule become very steep and big for a conservative

person. Consequently, when a need for adjustment arises due to time pressure, a

conservative person focuses on the adjustments of the emergent activities to perform right

now because he/she is very reluctant to make any change in the later activities. Overall, due

to the overly perceived slopes and Umax across activities, a conservative person�s adjustment

would be smaller than what it might be.

Figure 5.5: Perceived functional slope (LHS) and Umax (RHS)
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On the other hand, the perceived slopes and Umax of the activities later in the schedule

become very flat and small for an opportunistic person. Consequently, he/she will perform

the emergent activities as scheduled without adjustment, while trying to adjust the later

activities. Overall, due to under-perceived slopes and Umax across activities, an opportunistic

person�s adjustment would be bigger than what it might be.

5.4 Search tree

The fundamental heuristic will embed the bounded rationality into our operational model of

schedule adaptation, given a utility function for each activity in S and R, and relevant

institutional and situational constraints. In the following, we first discuss the theory and

assumptions necessary for the model development and then provide the details of the

operational heuristic scheduling model.

5.4.1 Theory and assumptions

Assume an individual who has formulated an initial schedule of activities and related travel

for a given day. The initial schedule describes which activities are to be conducted and for

each activity how it is to be implemented in terms of a start time, duration, location and, if

travel is involved, transport mode. During the execution of the schedule, the individual may

consider to for example add one or more activities if time becomes available, due to shorter

travel or activity duration than was anticipated in the planned schedule.

The schedule adjustment model is a complementary component to the model of

activity utility. The model provides heuristics for schedule adjustment decisions by means of

a partial search that is a reduction of the entire search space of utility defined by all feasible

rescheduling operations. The heuristics of the search-space reduction mimic human search

behavior of bounded rationality. The proposed heuristic search model is based on the

following assumptions:

! Individuals evaluate elementary operations on an initial schedule one at a time and

implement the operation that offers the maximum increase in perceived utility.

" Consequently, the overall rescheduling heuristic describes an iterative process that stops

when the best possible operation does not increase utility.

# The mental effort involved in searching and the resistance to change the current schedule

impose a threshold for considering and implementing additional operations.

$ The total amount of mental effort invested is an individual-specific function of the

number of changes that have been implemented.

% Resistance to change is an individual-specific function of the type of change implied by

an operator.
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The fourth assumption means that a general tendency to reschedule activities and travel will

vary between individuals, and the fifth assumption implies that preferred ways of

rescheduling will vary between individuals as well.

5.4.2 Model

Based on these conceptual considerations, this subsection develops a model of rescheduling

behavior, the heuristic search component of A urora. As said, the model outlined here

assumes functions for evaluating the feasibility and utility of a schedule as given. We

emphasize that the model proposed here does not depend on a specific implementation of the

utility model. This section first outlines the structure of the model. Next, we focus on each of

the operators. Finally, we describe the calculation procedure.

Overall structure

We assume a set of operators that individuals may consider to adjust schedules. The

operators refer to a variety of choice facets such as list of activities, location, transport mode,

accompanying person, etc. The operators include the duration, substitution, insertion,

deletion, sequencing, location, accompanying-person and transport-mode operators. The

proposed model (Figure 5.6) uses a tree structure to arrange options for rescheduling and

control the search process.

The suggested search structure has several notable characteristics. First, the search is

conducted choice facet by choice facet as opposed to a structure that searches an exhaustive

set of combinations of adjustments across choice facets. The best adjustment alternative is

determined for each choice facet, and then, the best of the best ones across choice facets is

chosen. This process is repeated until no further improvement is possible.  As such, the

number of computations required for a solution is additive, instead of multiplicative.

Secondly, the search is repetitive and recursive. Obviously, a single adjustment

improves only a single choice. The suggested search structure allows the mental process to

go back again to the very first step that checks if there is any further adjustment to be made

again on the schedule.

Finally, we emphasize that the search does not rely on any a-priori hierarchy of

decisions but allows any order of operator applications. This non-hierarchical search

structure overcomes the possible limitation of a predetermined order of search processes and

offers much more flexibility. The resultant mental adjustment processes is therefore flexible

enough such that the application order of the operators could be anything like [sequence &

location & activity insertion], [duration & transport mode & accompanying person &

location], or whatever.

The model therefore is expected to successfully advance at each rescheduling step to

the better parts of the solution space by this choice facet-by-choice facet, recursive and non-

hierarchical search process, based on the expected utility of rescheduling.
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Figure 5.6: Search tree
Note: A = duration adjustment; S = substitution; I = insertion; D = deletion; Q = sequence change; L = location

change; W = accompanying-person change; M = transport-mode change; m = the number of activities that are

currently scheduled; n = the number of activities that are currently not scheduled yet; Each of operators denoted

by corresponding symbols contains the level of resistance to change.

The overall scheme of the proposed search model in Figure 5.6 depicts in detail the

following control mechanism.

! START with a schedule given as the current schedule.

" Evaluate the utility of rescheduling through each operation, respectively.

# Evaluate the utility of the current schedule, denoted by 'Current', assuming no adjustments

in any choice facet by any operator.

$ If any of the possible adjustments leads to an increase of utility compared to the current

schedule, implement rescheduling through the operator that offers the highest increase in

the utility, and recursively go back to START and set the adjusted schedule as the current
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schedule. Otherwise, Stop the process and implement the current schedule as it is. Each

'Going-back to START' procedure also increases the mental fatigue index by one unit.

% The duration operator is applied at START (initial and going-back after each operator). It

is repeated after each adjustment because a change through all other operators still

requires a set of incremental fine-tunings of the activity duration such that the schedule

comes to an equilibrium state.

' Each parent node in the tree includes a parameter representing the resistance to change,

defined as a reduction of the utility of rescheduling using the concerned operator.

Operators

This section provides a detailed description of the operators employed in the proposed search

model. As before, the set notations AP, S and R are used to respectively denote an activity

program, a set of scheduled activities and a complementary set of activities that are not

scheduled at the current stage of rescheduling, where S ∪  R = AP, and S ∩ R = φ.

Duration adjustments: The duration operator considers exchanges of duration units between

activities. To evaluate an exchange, the operator compares the marginal utility of one unit of

duration to be exchanged between two activities. The operator (mentally) increases the

duration for the activity offering the biggest marginal utility increase and decreases for the

activity having the smallest marginal utility decrease in the current distribution of durations

across activities of S. This adjustment continues until the biggest utility increase becomes

equal to or smaller than the smallest utility decrease. The result would then be accepted if the

total net utility increase exceeds a predetermined threshold, and the scheduling efforts do not

exceed a given tolerance level. When the duration of an activity is reduced to zero as a result

of the duration adjustments, the activity moves from S to R.

The duration-units exchange between two activities can be implemented in one of

two directions. Consider an exchange of one unit of duration as shown in Figure 5.7.

Currently, activities A and B have durations as in the top of the figure. Assume that the

exchange is taking place such that activity A gains one unit of duration from activity B.

Exchange case I of the figure shows the exchange taking place inner direction between the

two activities, whereas Exchange case II represents an outer-direction exchange. By

examining the possible ways of duration unit exchanges in this way, the system is able to

incorporate the timing preference of activities and, more importantly, the scheduling

constraints in the resultant rescheduling actions. The system tries both directions and

chooses the best one regarding the resulting utility of the possible adjustment.

activity A activity B

current durations

exchange case I → →

exchange case II ← ←

Figure 5.7: Duration exchanges (An example)
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Composition adjustments: Composition adjustment may include substitution, insertion and

deletion of activities. These operators change the compositions of sets S and R, the

operations of which are obvious from their names. The following details of deletion and

insertion however need to be mentioned. The deletion operator replaces a candidate activity

for deletion with a 'do-nothing' (d-n) activity that is assumed to have zero utility over the

entire range of duration. The operator then adjusts the durations of other activities of S. Due

to possible time constraints limiting the range of BT and ET of each activity, the duration

adjustment does not guarantee a complete re-distribution of the duration of the d-n activity to

other activities, and the d-n activity may sometimes not completely be removed from S.

The insertion operator adds a new activity from R to S, whose schedule position,

accompanying-person, location and transport-mode and duration are yet to be defined. To

determine the schedule position, the operator tries all the positions one at a time for each

new activity. To determine the other facets, on the other hand, the operator employs certain

'default' values. Accompanying person is assumed to be the same as that of the previous

activity. (The same holds for a substitution.) The location is chosen among the available

locations such that the sum of travel distances between the previous activity, new activity

and next activity is minimized. (The same holds for a substitution.) When the inserted

activity's location differs from that of the existing previous activity, the most preferred

transport mode for the inserted activity is chosen. (The same holds for substitution, deletion,

and sequence and location changes.) As for duration, an average duration is initially assumed

for an activity insertion from R. Furthermore, an insertion of a new activity from R requires a

reduction in the duration of another activity of S. This reduction is tried in two directions for

each existing activity of S, this corresponds to the adjustment directions as explained in

duration adjustment.

Adjustments of other choice facets: Individuals may also change other choice facets such as

the sequence of activities, location, accompanying person, and transport mode. Each of the

suggested sequencing, location and accompanying-person operators tries different values of

the concerned facet one at a time, and then (mentally) implements the best one. The

transport-mode operator, on the other hand, is applied to optimize a mode pattern at the tour

level. (A tour is a series of trips included in a home-to-home journey.) More precisely, the

tour-optimization operator works according to the following procedure. (1) The operator

identifies all the tours appearing in S, (2) enumerates all possible sequences of the transport-

modes for each tour, (3) examines the constraints for each mode sequence of a tour, (4)

evaluates the utilities of rescheduling based on the mode sequences across tours, and finally,

(5) (mentally) implements the best mode sequence across tours, which offers the highest

increase in utility of rescheduling. Note that the tour-based optimization of transportation

modes takes into account interdependencies of choices for the trips belonging to the same

tour. Importantly, the system allows tour optimization involving multi-modal trips that

connect two locations by a combination of public and other transport modes when there is no

direct public transport line available.

Note that at each time of rescheduling, individuals (mentally) implement the

adjustments using the operators described in this section and finally determine the actual

implementation of an operator that offers the maximum increase across operators in the

anticipated utility of scheduling. In addition to evaluating the utility of rescheduling,
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individuals also examine the feasibility of the resulting schedule. They remove from their

consideration the alternatives that violate at least one of the following constraints; (1) The

begin time (BT) and end time (ET) of an activity resulted from the adjustment should meet

timing constraints such as for example defined by opening hours of required facilities and

work contract. For example, one cannot buy goods at a supermarket after closing hour. (2)

The use of public transport mode should meet the earliest and latest possible BTs of public

transport lines. (3) The use of a transport mode should meet the temporal availability of the

concerned mode given previous mode uses. For example, one cannot ride a car when the car

is not available at a particular location at a particular moment (even if having a car at home

and a driving license).

Calculation procedure

Given the overall structure of the search tree depicted in Figure 5.6 and the details of the

operators, the calculation of the total rescheduling utility proceeds as follows. First, the

model calculates the utility of each leaf node representing a particular operator. Secondly,

the utility of each parent node is determined as the maximum utility among child nodes.

Finally, the node representing the overall maximum is chosen, and the concerned operator is

implemented at the concerned rescheduling step. As mentioned earlier, the mental effort is

cumulated as the rescheduling process goes on, and the level of resistance to change may

vary between operators.

In the proposed model, the utility of rescheduling using a particular operator is

defined as:

o

tt

o

t UUU ∆+= −1 (5.21)

with



 +>∆−=∆ −

otherwise                       0

)( if          
~

1 thUUU
U o

o

tt

o

to

t

θ
(5.22)

( ) 1)(
1 −Ω= −t

th

(5.23)

]
~

[max
~

yo

t
y

o

t UU = where y ∈  {1, �, Yo} if o ≠ A, and y = YA otherwise (5.24)

where,

t represents the rescheduling step (t ≥ 1; Going back to START in Figure 5.6 increases t by

1);

o is an index for operators;
o

tU  is the utility of the schedule after rescheduling when operator o is applied at t;
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Ut−1 is the utility of the schedule at t−1 (U0 is the initial utility of the schedule);
o

tU∆  is the utility increase achieved by rescheduling when operator o is applied at t, where

resistance and mental fatigue are taken into account;
o

tU
~

 is the maximum utility from rescheduling that the application of operator o can achieve

at t, without considering resistance and mental fatigue;

Yo is the number of computations of operator o at the current step of rescheduling (Yo ≥ 0);

θo is the amount of utility decrease induced by resistance to change when operator o is

applied (θo ≥ 0);

h(t) is the amount of utility decrease induced by mental fatigue, defined as an exponentially

increasing function of t (h(t) ≥ 0);

Ω is a parameter of mental fatigue of rescheduling, defined as a base of the exponential

function (Ω ≥ 1).

Equation (5.21) implies that the utility of rescheduling by operator o is determined by

the amount of improvement in utility. Equation (5.22) states that the utility increase should

exceed the chosen operator-specific resistance to change and the mental fatigue. Equation

(5.24) implies that the model chooses the best one of many possible ways to apply operator o,

i.e. the application that offers the highest utility for the concerned rescheduling step.

Furthermore, equation (5.24) treats the duration adjustment as a special case of rescheduling

as follows.

A
AA~ Y

tt UU = (5.25)
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This says that the schedule improvement by the duration operator is the sum of marginal (1-

unit) duration adjustments, each of which is applied to the current schedule, and continues

until the equilibrium is achieved at step YA.

The utility after each rescheduling step is finally determined as:

][max o

t
o

t UU = (5.27)

where, o ∈  {S, I, D, Q, L, W, M} or o = A. Equation (5.27) defines Ut as the outcome of the

competition between operators and its adjustment of duration at step t.

Given the number of activities of S and R, m and n, the required number of

computations for the different operators at each step of the search tree is defined as:

YS = m×n (5.28)

YI = m×n (5.29)
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YD = m (5.30)

YQ = m! (5.31)

YL = ∏
m

a
al (5.32)

YW = ∏
m

a
aw (5.33)

where,

YS, YI, YD, YQ, YL and YW respectively denote the required number of computations of

substitution, insertion, deletion, sequencing, location and accompanying-person operators for

each rescheduling step;

la and wa are respectively the number of available locations and accompanying-person

options of activity a.

Unlike other operators, the numbers of steps, YA and YM, required in duration

adjustments and tour optimization vary with the schedule specifications. Note that m and n

may change over rescheduling steps, while m+n stays the same.

Equations (5.31) to (5.33) express an exhaustive search for sequence, location and

accompanying-person facets, respectively, which require an unrealistically complex and high

computing effort. The model thus assumes the following simplification.

YQ = m(m−1)/2 (5.34)

YL = ∑ −
m

a
al )1( (5.35)

YW = ∑ −
m

a
aw )1( (5.36)

Compared to equations (5.31) to (5.33), equations (5.34) to (5.36) state that each step

computes only part of what is necessary for an exhaustive combinatorial search. In other

words, the choice facet-by-choice facet search is simplified again to be an activity-by-

activity search for each choice facet. We argue that this simplified heuristic is behaviorally

more likely, while at the same time, the power of the search is maintained by the recursive

and non-hierarchical characteristics that allow further improvements at later steps of

rescheduling. This again reflects that the overall mechanism of the heuristics should make

only a small adjustment at each step to reach the final adjusted schedule.

In sum, due to the overall structure of the choice facet-by-choice facet search as

shown in Figure 1, the size of computation for each rescheduling step (the adjustment of S, I,

D, Q, L, W or M and the fine-tuning of A) is thus:

Y = YS+YI+YD+YQ+YL+YW+YM+YA (5.37)
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instead of

Y = YS×YI×YD×YQ×YL×YW×YM+YA (5.38)

where, Y denotes the total number of computations for a rescheduling step.

5.5 Numerical Simulations

In this chapter, we have proposed a model of activity rescheduling behavior, which consists

of two complementary sub-models: i.e. the activity utility functions on which the scheduling

decisions are evaluated as developed in Section 5.3, and the search tree that searches the

(sub-)optimal alternative scheduling decisions in the solution space that is reduced in a way

that mimics human search behavior as suggested in Section 5.4. In this section, we examine

the proposed model on the basis of the following research questions.

•  Related to the search tree:

Sensitivity of rescheduling choice to parameter settings: When employing different sets of

values of the search-tree parameters, does the model produce courses of rescheduling

actions that are distinguishable in the end result?

Face validity: If the above is the case, are the different results interpretable in behavioral

terms?

•  Related to the transportation environment:

Accessibility: Does the model illustrate more restricted rescheduling actions when a poorer

transportation connection is provided?

To study the first questions of search tree, different sets of values of the search-tree

parameters were assumed in simulations. As a case, the simulations considered a

hypothetical set of activities and occurrence of an unexpected time lack situation at some

moment in time. It is to note that we do not concern ourselves with different adaptation

styles discussed in Section 5.3.4 because the primary purpose of this section is to capture the

mainline property of the proposed model, and to this end, we decided to assume that

individuals perceive the true utility functions. The second question of transportation

environment is particularly relevant to the study of multi-modal mode use. A better transport

connection likely offers more diverse, flexible ways of organizing the trips throughout the

schedule, and possibly improves the �quality� of the schedule. As a case, the simulations

study the difference in the rescheduling actions when the public transport lines are

disconnected in a given transportation environment.
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Simulation settings

Utility parameters: The decision regarding a choice facet is made on the basis of activity

utilities that are defined according to the following functional specifications:

∑
=

=
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1

(5.39)
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where,

U is the total utility of the activities across S and R;

Ua is the utility of activity a; A is the number of activities across S and R;

B is the time budget; va is the duration of activity a;
min

aU  is the lower asymptote of Ua;
max

awlU τ  is the maximum utility of activity a for the combination of particular w, l and τ; α, β
and γ are activity-specific parameters;

Λb is the travel time by transport mode b from the previous to the current activity;

λb is marginal cost of transport mode b;

Table 5.1: Average activity durations and utility parameters of activities and transport modes

Mode Preference (κ)
Activity in AP ND Umin α β γ

Car Public Slow

Sleep 480 -5 465 0.16 5 5 0 10

Pcare 60 0 55 0.10 1 5 0 10

Work1 180 -5 150 0.15 5 5 10 0

Lunch 60 0 35 0.15 1 0 5 10

Work2 300 -5 250 0.15 5 0 5 10

Dinner 60 0 55 0.10 1 0 5 10

Leis_I 360 0 100 0.10 1 5 0 10

Leis_O 180 0 200 0.10 1 0 10 5

Mcare 30 0 65 0.425 5 10 5 0

Dshop 10 0 35 0.30 1 10 5 0

Note: Pcare, Work1, Work2, Leis_I, Leis_O, Mcare, Dshop respectively denote personal care, work in the

morning, work in the afternoon, in-home leisure, out-of-home leisure, medical care and grocery shopping. ND
is the average duration of an activity that is assumed fixed in the short run.
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Table 5.2: Maximum utility ( max

τwlU ) varying with timing, location and accompanying-person

Combination Sleep Pcare Work1 Lunch Work2 Dinner Leis_I Leis_O Mcare Dshop

a 100 100 300 0 0 0 100 0 0 0
L1

w 100 100 300 0 0 0 100 0 0 0

a - - - 0 - 0 - 0 - 0
T1

L2
w - - - 0 - 0 - 0 - 0

a 0 0 0 100 200 0 100 0 100 100
L1

w 0 0 0 100 200 0 100 0 100 100

a - - - 100 - 0 - 0 - 80
T2

L2
w - - - 100 - 0 - 0 - 80

a 100 0 0 0 0 100 80 140 100 140
L1

w 100 0 0 0 0 120 80 140 100 140

a - - - 0 - 60 - 100 - 120
T3

L2
w - - - 0 - 80 - 100 - 120

a 100 0 0 0 0 0 80 140 0 0
L1

w 100 0 0 0 0 0 80 140 0 0

a - - - 0 - 0 - 100 - 0
T4

L2
w - - - 0 - 0 - 100 - 0

Note: T1, T2, T3 and T4 indicate morning, afternoon, evening and night timings, respectively. L1 and L2 imply

location 1 and 2, respectively. �a� and �w� denote �alone� and �with someone�, respectively. These parameters

of maximum utility represent the effects of different choice facets as follows.

- Accompanying person effect: Dinner = Higher with someone than alone

- Location effect: Leis_O = Higher at the center than in the neighborhood

- Timing effect: Leis_I = Higher in the evening than in the afternoon

- Location-Timing effect: Dshop = Higher at the center in the evening than in the neighborhood in the

afternoon

κba is level of preference for transport mode b for activity a.

The functional specification of max

aU  in equation (5.41) is suggested only for the

simulation. The decision heuristic is however not dependent on any particular form of the

utility function. Given the utility functions, the set of utility parameters used is:

Table 5.3: Transportation environment

Available

activities at

the location

Sleep, Pcare,

Leis_I,Lunch,

Dinner

Work1,

Work2,

Lunch

Dshop,

Dinner,

Leis_O

Dshop Leis_O

location Home Work Center Neighbor1 Neighbor2

Work 12*

Center 11* 5*

Neighbor1 5 15 13

Neighbor2 4 12 9 4

Medical 5* 17* 16* 4 7

Note: The numeral denotes the travel time by car between the two locations of the concerned cell. The speeds

of the transport modes are assumed as car : public : slow = 1 : 2 : 4. The marginal cost (λ) is set as 4, 0.5 and
0.25 for car, public (such as bus, tram and metro) and slow modes (such as walk, bike, scooter, etc.),

respectively. The asterisk indicates that the public transport mode is available between the two locations.
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Table 5.4: Institutional constraints

Constraints −s
t

+s
t

−f
t

+f
t

Work1 - 09:30 11:30 12:30

Work2 12:30 13:30 17:30 -

Mcare 10:00 - - 18:00
opening hours/work contract

Dshop 08:00 - - 20:00

public mode operating hours 08:00 24:00 - -

Note: 
−s

t , 
+s

t , 
−f

t  and 
+f

t  denote the earliest and latest possible begin times and the earliest and latest

possible end times, respectively.

UF = {{α, β, γ, min
U , max

τwlU , κb}a, λb} (5.43)

We assume a hypothetical specification of activities and transportation environment as

indicated in Tables 5.1 to 5.4, and a pictorial image is presented in Figure 5.8. The total

utility after rescheduling is the sum of utilities across all activities in the activity program.

As discussed in Section 5.1.1, the baseline shape of an activity's S-shaped utility function is

determined by the parameters α (the location of the functional curve along the X-axis), β
(the slope of the functional curve) and γ (the position of the inflection point on the functional

curve), which are dependent on the nature of the activity.

Figure 5.8: Pictorial image of a hypothetical transportation environment
Note: The listed activities are available at the concerned locations. The bold lines represent public transport

connection.
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For example, compared to the �grocery shopping� activity (Dshop) in Table 5.1, the �work in

the morning� activity (Work1) has a functional curve located much to the right (α), flatter

(β) and a much lower position of the inflection point (γ).

Search tree parameters: As Figure 5.6 indicates, the following parameters of the search tree

need to be specified.

ST = {θA, θS, θI, θD, θQ, θL, θW, θM, Ω} (5.44)

where,

θA, θS, θI, θD, θQ, θL, θW and θM are the resistance-to-change parameters when applying the

duration-Adjustment, Substitution, Insertion, Deletion, seQuence change, Location change,

accompanying-person (With-whom) change and transport-Mode operators, respectively;

Ω is explained in equation (5.23).

The simulation will vary the set of search tree parameter values to address our

research questions as shown in Table 5.5. In the table, Set 1 implies that all operators except

duration have an extremely high level of resistance-to-change (Case 1). Set 2 implies that all

operators can be freely applied (Case 2). Set 3 implies that all operators differ in resistance

level (Case 3). In Set 4, mental fatigue has a higher marginal value, compared to Set 3 (Case

4). Finally, Set 5 implies that the sequence, location, accompanying-person and transport-

mode operators have a combination of resistance levels, different from Set 3 (Case 5).

Results of the simulations for search tree study

The initial schedule assumed in the simulation is shown in Table 5.6. The schedule after

Work2 includes Dinner and Leis_I at home. The transport modes used are the car for all trips

of home-to-work for Work1, work-to-home for Lunch, home-to-work for Work2, and work-

to-home for Dinner in turn.

Now, the simulation first lets the hypothetical person optimize the initial schedule

and then describes how the person adjusts the optimized schedule when it is informed by the

ratio broadcast before the departure for Work1 that travel to work in the morning takes half-

an-hour longer than expected due to congestion.

Table 5.5: Testing sets of values of search-tree parameters

Operator Set 1 Set 2 Set 3 Set 4 Set 5

Duration (θA) 0 0 10 10 10

Substitution (θS) 1000 0 30 30 30

Insertion (θI) 1000 0 5 5 5

Deletion (θD) 1000 0 50 50 50

Sequence (θQ) 1000 0 10 10 5

Location (θL) 1000 0 40 40 2

With-Whom (θW) 1000 0 10 10 25

Mode (θM) 1000 0 2 2 50

(Fatigue: Ω) 1.05 1.05 1.05 7 1.05



Predicting Activity Rescheduling Behavior                                                                          143

Table 5.6: Initial schedule (Total utility = 588.4)

Activity Duration Location With Whom Travel Mode Begin Time End Time Travel Time

Sleep 480 H a - 0:  0 8:00

Pcare 60 H a - 8:00 9:00 0

Work1 180 Wrk a car 9:00 12:00 12

Lunch 60 H a car 12:00 13:00 12

Work2 300 Wrk a car 13:00 18:00 12

Dinner 60 H a car 18:00 19:00 12

Leis_I 300 H a - 19:00 24:00 0

Lesi_O 0 - - - - - -

Mcare 0 - - - - - -

Dshop 0 - - - - - -

Note: In the location column, H and Wrk denote home and work place, respectively.

Because Sleep and Pcare were already implemented before the congestion, they were not

candidate activities for rescheduling. Note that even if the initial schedule is the same across

hypothetical persons, the resulting optimized schedule before the event likely differs

between persons. Indeed, Tables 5.7 to 5.10 show the difference in the initially optimized

schedule between hypothetical persons. Rescheduling as a response to congestion was

implemented on those different optimized schedules.

Case 1 - Extremely high resistance-to-change except duration adjustment: Table 5.7 shows

the result of the applications of Parameter Set 1 before and after the congestion. First, the

initial optimization of the schedule improved the total utility from 588.4 to 747.3. Due to the

congestion, the utility of the schedule was reduced from 747.3 to 698.3. The schedule

adjustments after the congestion improved the total utility to 737.1. Secondly, due to the

very high level of resistance to change across all operators except the duration operator, the

system, as expected, applied the duration operator only. Finally, many activities underwent

big changes in the duration in the initial optimization before the congestion, while only few

activities were subject to adjustments after the congestion occurred.

Table 5.7: Extremely high resistance-to-change except duration adjustment (Parameter Set 1)

Before congestion After congestion

Dura Loc WW Mod BT ET TT
&

Dura Loc WW Mod BT ET TT

507 H a - 22:21 6:48 Sleep H a - 22:21 6:48

101 H a - 6:48 8:29 0 P_care H a - 6:48 8:29 0

Congestion

213 Wrk a car 8:29 12:02 12 Work1 198 Wrk a car 8:59 12:17

30
12

76 H a car 12:02 13:18 12 Lunch 61 H a car 12:17 13:18 12

309 Wrk a car 13:18 18:27 12 Work2 309 Wrk a car 13:18 18:27 12

90 H a car 18:27 19:57 12 Dinner 90 H a car 18:27 19:57 12

144 H a - 19:57 22:21 0 Leis_I 144 H a - 19:57 22:21 0

Note: The before-congestion schedule of the left hand side represents the one optimized from the initial

schedule, while the after-congestion schedule is the one optimized from the before-congestion schedule due to

the congestion. In the column labels, Dura, Loc, WW, Mod, BT, ET, and TT respectively represent duation,

location, accompanying-person, transport-mode, begin time, end time, and travel time (included in the

duration).
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Figure 5.9: Marginal utilities of activities

As Table 5.7 further shows in the before-congestion schedule, all seven activities

underwent the duration adjustments. Leis_I's duration was reduced by 156 units (from 300 to

144) and redistributed to other six activities. The amount of the redistribution differed

between activities. On the other hand, the after-congestion schedule shows that only two

activities Work1 and Lunch underwent the duration adjustments. Schedule adjustment

choices take into account the marginal changes in the activity utility and the schedule

constraints.

Figure 5.9 shows the marginal utility as a function of duration for each activity. First,

given the duration of each activity of the initial schedule, the marginal utility of Leis_I was

much smaller than that of all other activities. After a series of reductions of Leis_I's duration

and corresponding increases of other activities' durations, the system reached a state of equal

marginal utility across activities when the Leis_I's duration was reduced to 144. Next, when

Work1's duration was reduced from 213 to 183 due to the half-an-hour congestion, Work1�s

marginal utility was sharply increased. This situation disturbed the equilibrium state and

called for new adjustments by increasing Work1's duration and correspondingly decreasing

the duration of all other activities. However, the institutional constraints in Table 5.4 and the

before-congestion schedule in Table 5.7 shows that no more delay of the begin time of

Work2 is possible, and hence, the only reduction in duration can be made with Lunch. Equal

marginal utility between Work1 and Lunch was achieved by increasing Work1's duration by

15 units (from 183 to 198) and decreasing Lunch's duration from 76 to 61.

Case 2 - No resistance-to-change: When the resistance level was set to zero for all operators,

the system applied a variety of operators to improve the schedule. After evaluating the initial

schedule, the system first adjusted the duration of activities, and then implemented a series

of rescheduling choices; location & duration & transport mode & duration &

accompanying person & location & duration operators, which resulted in the before-

congestion schedule shown in Table 5.8. The adjustments in response to the congestion
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consist of transport mode & duration & insertion operators. The locations were optimized to

reduce the total travel time and increase the utility (work place for Lunch; center for Dinner).

For Dinner, an accompanying person was chosen to increase the utility. The optimized

transport modes public-slow-slow for the before-congestion schedule were changed back to

car to reduce the travel time for Work1. Insertion of Dshop before Dinner at the center

increased the total utility. To lessen the reduction in total utility due to the congestion,

Leis_I's duration was much reduced, and Work1�s duration was recovered. The total utility

changed from 588.4 for the initial schedule to 982.2 for the before-congestion schedule,

which is much bigger than that in Parameter Set 1. The utility was reduced to 837.4 due to

the congestion, but again increased to 906.1 for the after-congestion schedule, which is also

much bigger than that in Parameter Set 1.

Case 3 - Resistance-to-change differs across operators I: The zero value of resistance-to-

change parameters for Parameter Set 2 implies a very active rescheduling process without

operational costs. In reality, however, resistance likely limits further improvement that may

potentially be possible. The system applying Parameter Set 3 reflects this notion and resulted

in a rescheduled activity pattern that one would expect. Going again through the initial

duration adjustment, the rescheduling involved a smaller number of adjustments compared

to Set 2, viz. location & transport mode & duration & accompanying person, which

resulted in the before-congestion schedule. Table 5.9 shows that the high resistance level for

the location operator affected the adjustment choice. That is, as in the initial schedule, the

location for Dinner stayed the same in the before-congestion schedule and even in the after-

congestion schedule. Because of the higher resistance level for the insertion operator, the

insertion of Dshop did not occur either. After all, no operator was applied in the after-

congestion schedule, which would have been too expensive compared to the schedule

improvement. The total utility was also affected by this fact. It changed from 588.4 for the

initial schedule to 941.9 for the before-congestion schedule, which is in-between those in

Parameter Set 1 and 2. The utility was reduced to 868.6 due to the congestion. The level of

utility stayed equal to 868.6 for the after-congestion schedule because there was no

improvement by rescheduling.

Table 5.8: No resistance-to-change (Parameter Set 2)

Before congestion After congestion

Dura Loc WW Mod BT ET TT
&

Dura Loc WW Mod BT ET TT

499 H a - 22:21 6:40 Sleep H a - 22:21 6:40

88 H a - 6:40 8:08 0 P_care H a - 6:40 8:08 0

Congestion

217 Wrk a pub 8:08 11:45 24 Work1 210 Wrk a car 8:38 12:08

30
12

60 Wrk a - 11:45 12:45 0 Lunch 66 Wrk a - 12:17 13:14 0

291 Wrk a - 12:45 17:36 0 Work2 296 Wrk a - 13:18 18:10 0

Dshop 10 Centr a car 18:10 18:20 5

110 Centr w slow 17:36 19:26 20 Dinner 92 Centr w - 18:20 19:52 0

175 H a slow 19:26 22:21 44 Leis_I 143 H a car 19:52 22:15 11
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Table 5.9: Resistance-to-change different across operators I (Parameter Set 3)

Before congestion After congestion

Dura Loc WW Mod BT ET TT
&

Dura Loc WW Mod BT ET TT

505 H a - 22:21 6:46 Sleep H a - 22:21 6:48

97 H a - 6:46 8:23 0 P_care H a - 6:48 8:23 0

Congestion

223 Wrk a pub 8:23 12:06 24 Work1 193 Wrk a pub 8:53 12:06

30
24

66 Wrk a - 12:06 13:12 0 Lunch 66 Wrk a - 12:06 13:12 0

296 Wrk a - 13:12 18:08 0 Work2 296 Wrk a - 13:12 18:08 0

114 H w pub 18:08 20:02 24 Dinner 114 H w pub 18:08 20:02 24

139 H a - 20:02 22:21 0 Leis_I 139 H a - 20:02 22:21 0

Case 4 - High mental fatigue: A higher marginal level of mental fatigue may prohibit any

schedule adjustments if the improvement is not big enough compared to the cumulated level

of mental fatigue. The simulation results illustrate this mechanism (Table 5.10). When

employing Parameter Set 4 in which the marginal mental fatigue is increased from 5 to 7, the

rescheduling process stopped already after three steps in the before-congestion schedule;

while maintaining the contents of the rescheduling process up to that step. A premature

termination of the adjustment processes was also reflected by the total utility levels. The

utility changed from 588.4 to 910.4 for the before-congestion schedule. It was reduced to

707.5 due to the congestion. Rescheduling after congestion increased again the utility to

841.6.

Case 5 - Resistance-to-change differs across operators II: Parameter Set 5 has the same

resistance level for the duration operator and the operators of the composition adjustments

(substitution, insertion and deletion) as Parameter Set 3. Yet, the resistance levels for the

sequence and location operators become much smaller, while those for the accompanying-

person and transport-mode operators become bigger. Given these parameter values, the

rescheduling choices were duration & location & transport mode & duration & location &

duration operators for the before-congestion schedule. The first and second applications of

the location operator changed the location for Lunch to work and the location for Dinner to

center, respectively.

Table 5.10: High mental fatigues (Parameter Set 4)

Before congestion After congestion

Dura Loc WW Mod BT ET TT
&

Dura Loc WW Mod BT ET TT

507 H a - 22:21 6:48 Sleep H a - 22:21 6:48

101 H a - 6:48 8:29 0 P_care H a - 6:48 8:29 0

Congestion

213 Wrk a pub 8:29 12:02 24 Work1 208 Wrk a car 8:59 12:27

30

12

76 Wrk a - 12:02 13:18 0 Lunch 63 Wrk a - 12:27 13:30 0

309 Wrk a - 13:18 18:27 0 Work2 299 Wrk a - 13:30 18:29 0

90 H a pub 18:27 19:57 24 Dinner 89 H a car 18:29 19:58 12

144 H a - 19:57 22:21 0 Leis_I 143 H a - 19:58 22:21 0
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Table 5.11: Resistance-to-change different across operators II (Parameter Set 5)

Before congestion After congestion

Dura Loc WW Mod BT ET TT
&

Dura Loc WW Mod BT ET TT

499 H a - 22:21 6:40 Sleep H a - 22:21 6:40

88 H a - 6:40 8:08 0 P_care H a - 6:40 8:08 0

Congestion

218 Wrk a pub 8:08 11:46 24 Work1 188 Wrk a pub 8:08 11:46

30
24

60 Wrk a - 11:46 12:46 0 Lunch 60 Wrk a - 11:46 12:46 0

291 Wrk a - 12:46 17:37 0 Work2 291 Wrk a - 12:46 17:37 0

109 Centr a slow 17:37 19:26 20 Dinner 109 Centr a slow 17:37 19:26 20

175 H a slow 19:26 22:21 44 Leis_I 175 H a slow 19:26 22:21 44

The system, however, applied no operator in the after-congestion schedule because the

operators other than the location operator were too expensive to apply, while all locations of

the listed activities were already optimized for the before-congestion schedule, and there was

no location improvement left for the after-congestion adjustment.

As Table 5.11 shows, the location operator was encouraged, while the

accompanying-person and transport-mode operators were discouraged, which reflect the

disproportional changes in the resistance level. The figure also shows that in spite of a lower

resistance level, there was no application of the sequence operator, which might imply that

the possibility of a sequence change is more limited than that of other operators due to the

constraints. The resulting total utilities of the schedules optimized on this parameter set were

independent of those in Parameter Set 3. The utility changed from 588.4 for the initial

schedule to 962.8 for the before-congestion schedule. It was reduced to 831.9 due to the

congestion. The level of utility stayed equal to 831.9 for the after-congestion schedule

because there was no improvement by rescheduling.

In sum, the results illustrate the following mechanisms. First, in Parameter Set 1

where the resistance levels of all operators, except the duration operator, were extremely

high, the schedule was adjusted by only the duration operator, and in such a case, the

adjustment results were explained by the marginal utilities of activities of S. Secondly, in

Parameter Set 2 where the resistance levels of all operators were equal to zero, providing

cost-free adjustment operators, the rescheduling process resulted in a diverse application of

different operators and a bigger improvement of the schedule in terms of the total utility,

compared to Parameter Set 1. Thirdly, given a combination of different levels of resistance

across operators, the rescheduling process resulted in an outcome in-between those in

Parameter Set 1 and 2. Fourthly, in Parameter Set 4 that has a bigger marginal value of

mental fatigue, the rescheduling process resulted in a premature termination and hence a sub-

optimal adjustment, compared to Parameter Set 3. Finally, a different combination of

resistance levels of operators encourages and discourages particular operators as shown in

the results based on Parameter Set 5.

Results of the simulations for transportation environment study

As discussed earlier in the second research question, the rescheduling actions when the

public transport service is removed from the originally given transportation environments are
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examined. As for the simulation setting, the only difference from Figure 5.8 is that there are

no public transport connections denoted by bold lines.

To focus on the effect of the public mode connection on the rescheduling behavior without

considering the effect of search tree parameters, we set the resistance-to-change levels to

zero for all parameters as of Set 2 in Table 5.5. The hypothetical person of zero resistance-

to-change level then optimizes the initial schedule of a day as given in Table 5.6 in the

transportation environment of no public mode connection. We compare the rescheduling

actions between this and that discussed earlier with the results of the before-congestion

scheduling of Case 2 with regard to the number of scheduling steps, the number of

alternative mode sequences considered, the resultant choices of transport mode of the day

and the utility level of the resultant schedule. The results are shown in Table 5.12.

The simulation results clearly show that the proposed model simulates the likely

rescheduling actions as expected. Given the limitation of the mode choice allowed only for

car and slow modes, the rescheduling actions become simpler. The number of scheduling

steps is reduced from four to two involving only the accompanying person and location

changes once, respectively. The total number of alternative mode sequences that have been

considered for composing the tours of the day throughout the scheduling steps has also been

sharply reduced from 616 to 64. Resultant mode sequence is much simpler as Car-Car

instead of the sequence of Public-Slow-Slow. Importantly, the limited availability of the

transport mode does not only means the limited choice alternatives of mode sequence but

also the limited choice options for activity sequences, which likely leads to the final schedule

having lower utility. In this example, the high marginal cost of the car use, as explained in

Table 5.3, contributed to the reduction of the utility of the resultant schedule.

5.6 Conclusions and discussion

This chapter proposed a model of activity-travel rescheduling behavior in response to

changes in the transportation environment. To this end, the chapter first conceptualized the

problem and developed two complementary components of the model: an activity utility

function and search tree for decision making related to schedule adjustment. This is followed

by a set of numerical simulations to examine the face validity of the model.

Table 5.12: The effect of public mode availability on the rescheduling actions

Public mode available Public mode not available

# Scheduling steps other than

duration adjustment

4: Location-Mode-WithWhom-

Location

2: WithWhom-Location

# Alternative mode sequences

considered
616 64

Chosen sequence of modes

Public (P_care→Work)

Slow (Work→Dinner_Out)

Slow (Dinner_Out→Leis_In)

Car (P_care→Work)

Car (Work→Dinner_In)

Resultant schedule utility 982.2 944.7
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The model is meant to make a contribution to a general theory and model of short-

term activity adaptation decisions. It is assumed that such adaptation or adjustment decisions

may involve changing the duration of activities, changing the sequence in which the

activities are conducted, and adapting the composition of the activity program by inserting or

deleting activities. Individuals are assumed to try to maximize the utility of their activity-

travel pattern, subject to cognitive constraints. They apply decision strategies and heuristics

to reschedule their activities in situations where unexpected events occur. The adaptation

processes may vary depending on the strategies adopted.

The utility for the duration of an activity can be represented by an asymmetric

logistic equation. The maximum, minimum, slope and inflection point of this equation are

assumed not only to depend on the kind of activity, but also on a variety of choice facets and

the history of the activity. Thus, the utility is assumed to be context-dependent. The S-

shaped function of a particular form also has the potential to cope with several styles of

adaptation. In particular, a distinction was made between risk-avoiding and opportunistic

styles, and between hedonistic and conservative behavior.

To account for cognitive constraints and cope with unexpected events, decision

heuristics were introduced to derive an operational model. These heuristics arranged in a

search tree simulate how individuals will adjust the various facets of an activity-travel

schedule, such as duration, destination, transport mode and schedule composition, in

situations of unexpected events, such as delay, congestion, missed connections, etc. The

search tree is complementary to activity-specific utility functions, and takes into account

possible resistance-to-change of particular facets of a planned activity-travel schedule and

mental fatigue. The search tree is framed in the context of bounded rationality and sub-

optimal, satisfying behavior, captured in terms of an iterative, recursive procedure.

The face validity of this extended theory and associated model was examined by

performing a set of numerical simulations for a series of typical cases. The results of

numerical simulations indicate that the proposed model is capable of representing the

assumed behavior. More specifically, the simulations lead to the following conclusions. First,

the system simulates many �invisible mental� adjustments that likely exist before one

actually �observes� the final schedule. Secondly, the system involves a rescheduling process

based on the marginal utilities of activities, subject to various constraints. Thirdly,

disproportional change in the resistance level across operators affect the adjustment process

in general and encourages and discourages the use of particular operators in particular.

Finally, and most importantly, the system is sensitive to different sets of parameter values

and supports the theory, giving face validity to the suggested model.

The proposed model is a potentially valuable tool to predict changes in planned

activity schedules as a function of time pressure and unexpected events in general. As such it

could complement the structural models of activity scheduling decisions and activity-travel

patterns. To be used for prediction, the parameters of the utility functions as well as the

choice heuristics need to be estimated based on observed choices. In the following chapter,

we will discuss the problem of estimation of activity utility functions and suggest suitable

methods to solve the problem.
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6 Estimation Method

6.1 Introduction

In Chapter 5, we have developed a comprehensive theory and model of the process of
scheduling and rescheduling activities. The system is comprehensive in that it allows
modeling the dynamics of activity scheduling and rescheduling decisions as a function of
unexpected events during the execution of activity programs. The model incorporates several
behavioral principles and decision styles, including risk-avoiding and opportunistic behavior.
The assumed activity utility function incorporates a variety of choice facets and the
complementary set of decision heuristics implements various scheduling operators to find
the near-best schedule adjustments.

The question considered in this chapter is how the parameters of the utility function
can be estimated. This is certainly not a trivial question as we are faced with several
problems. First, the model has no algebraic solution. Secondly, the theory underlying the
model argues that scheduling decisions are state-dependent. Finally, the model should satisfy
several sets of discontinuous constraints. The present chapter is devoted to describe the
development and test of such an estimation method. The chapter that follows will describe
an application to a (real) activity data set.

We stress that the proposed model of activity rescheduling behavior consists of two
complementary sub-models, and therefore there are two sets of parameters to estimate from
empirical data. The method described in the chapter concerns the parameter estimation of the
activity utility function only. The estimation of search tree parameters is left to future
research.

The chapter is organized as follows. Section 6.2 establishes a theory for estimating
the activity utility functions. A critical assumption is introduced because of the non-
analytical nature of the problem. Furthermore, the detailed description of the theory
addresses the issues of non-linearity, illegal solution and dual solution of the problem.
Having developed the theory, Section 6.3 develops an implementation algorithm. A tailored
genetic algorithm is suggested. In Section 6.4, the developed theory and the implementation
algorithm are tested on simulated schedule data to examine whether the proposed estimation
approach is indeed able to predict the parameter values with a certain precision. The model
first estimates the activity utility functions on the simulated data and compares the predicted
parameter values with the ‘known’ true values. The model is then tested on simulated data
with simulated noise of various sizes and of several types. This will show the extent to which
the suggested model is robust for noise, which inevitably is involved in real world data.
Section 6.5 ends the chapter with some conclusions and discussion.



152                                                                                                                Estimation Method

6.2 Theory

When faced with time pressure or unexpected events, an individual is assumed to mentally
adjust the schedule, as described by the search tree model. In the proposed model, various
operators are assumed to accomplish schedule adjustments. The schedule composition
operator changes the list of activities included in a schedule by deleting, inserting and
substituting activities. Sequencing, location, transport mode and accompanying person
operators change the means of implementing the concerned activity. The application of the
operators leads to incremental mental adjustments of the schedule and continues until no
more improvement is possible. The schedule improvement is evaluated based on the utility
that is assumed to be the sum of utilities of activities of the schedule, as defined in Section
6.3.3. In the following, we suggest a method to estimate such utility functions.

There are two unique features of our estimation method. First, the activity utility
function that we estimate does not describe an association of a set of external variables with
the likelihood of an observed behavior. Instead, the utility function represents a simple,
intrinsic relation between activity duration of continuous time and the level of utility. At the
same time, however, the utility function should be consistent with individual’s incremental
rescheduling decisions between competing activities, locations, etc., which finally results in
the observed schedule. Secondly, in spite of such intermediate rescheduling decisions,
however, the utility function will be estimated directly from the activity duration data
without consulting such intermediate rescheduling decisions. Having the utility of
continuous time function is particularly important in the sense that most available activity
diary data only provide the information of the activity durations as the final results of the
scheduling/rescheduling processes. The estimation of the model will therefore be specially
designed for the duration data.

Assume that we know in advance the maximum level of utility Umax of each activity,
and we can observe the level of utility U of each activity over time. We could then linearize
the suggested activity utility function and, using the information of duration v of the
observed schedule data, directly solve the equation for the parameter values α, β and γ for
each activity. This is unfortunately not the case because the utilities of the activities (U and
Umax) are unobservable and unknown. Furthermore, unlike the logarithmic function of ever-
diminishing marginality (e.g., Kitamura, 1984b; Bhat & Misra, 1999), the suggested utility
function assumed here does not provide an algebraic solution for the durations that maximize
the schedule utility. Therefore, we cannot directly ‘solve’ the estimates but have to ‘find’ the
estimates that best fit the observed durations by searching iteratively multiple combinations
of parameter values. The number of such combinations would however be prohibitively
large for an exhaustive search.

For the above reasons, we suggest a heuristic method that searches only part of the
entire solution space, but at the same time, provides good, near optimum solutions. The
method is based on the critical assumption that the marginal utility of activities in the
schedule is the same. If this would not be the case, an individual would further adjust
durations to increase the total utility. The duration of the activity of the higher marginal
utility will be increased while the duration of the other activity will be decreased.
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Figure 6.1: Equilibrium with saturated/unsaturated durations

However, given the marginal utility, there are generally two duration points where
the marginal utility is reached. Because of this fact, the equal marginal utility that is assumed
above indeed corresponds to two duration points that are saturated, where marginal utility is
diminishing, and also unsaturated, where marginal utility is increasing. For the sake of
argument, we assume for the moment that we know or are able to observe the level of
marginal utility of each activity over time. Consider first the activities of saturated durations
as in the LHS of Figure 6.1. The figure illustrates two marginal utility curves, which is the
derivative of utility function discussed in Chapter 5. The X-axis denotes the duration and Y-
axis the level of marginal utility. When there is a difference in marginal utility between
activities as denoted by the two black dots in the figure, the adjustment takes place such that
the marginal utilities of the activities are equalized to increase the total utility that is the sum
of integrals of the marginal utility curves from zero to the current duration points. The result
of the adjustment is to reach the equal level of marginal utility by increasing the duration of
the activity of the higher marginal utility and decreasing the other activity’s duration.

Next, consider two activities, one of which is saturated, and the other unsaturated as
in the RHS of Figure 6.1. There is also a difference in marginal utility, and the adjustment
results in increasing the duration of the activity of the steeper marginal curve and decreasing
the other activity’s duration because the increased integral of the activity of the steeper
marginal curve is bigger than the decreased integral of the other activity. The two activities
are in equilibrium at the durations indicated by the white dots. Obviously, the equilibrium
that includes unsaturated activities would be observed much less frequently, but we do not
exclude such cases from consideration.

In principle, based on these theoretical decisions, an estimation method could be
developed. However, the value of the equal marginal utility of the schedule is unknown in
reality, and multiple solutions for the parameter estimates that satisfy the equal marginal
utility across activities of the schedule could exist. Therefore, an additional assumption is
required.  To find a solution, we postulate that the level of equal marginal utility of the
schedule is partly reflected by the amount of time pressure of the schedule, measured as the
total duration of the fixed activities of the schedule, and the number of activities. The level of
equal marginal utility can then be approximated as a function of these variables. The
rationale behind this assumption is that given the number of activities, higher time pressure
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(less available time) would also raise the level of equal marginal utility. On the other hand,
given the time pressure, a larger number of activities would raise the marginal utility for
each activity. These assumptions seem appropriate given our theory especially for saturated
activities. Equation (6.1) expresses this critical assumption.
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where,

Xk is the kth attribute of the equal-marginal-utility function (X1 = fixed duration, X2 = number
of activities of the schedule);
δk is the marginal contribution of the kth attribute Xk to the level of equal marginal utility,
which is attribute-specific;
S denotes the current schedule.

By solving equation (6.1) for v, given each of the combinations of possible values of
parameters, the overall goodness-of-fit of the predicted set of parameter values can be
calculated as in the following, and the set of parameter values that corresponds to the best
goodness-of-fit can then be identified.
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where,

Gl is the goodness-of-fit of the lth predicted combination of parameter estimates, where l = 1,
…, L, and L is the number of the parameter values combinations to be examined;

laG  is the goodness-of-fit of the lth predicted combination of parameter estimates for activity

a;
o

av  and p

al
v are respectively the observed duration of activity a and the duration of activity a

predicted by the lth predicted combination of parameter values.
Still, however, some further operational problems need to be solved for obtaining the

duration prediction vp in order to compute the goodness-of-fit of the associated set of
predicted parameter estimates. First, there is no direct, algebraic solution for vp that satisfies
equation (6.1), and therefore, we used an algorithm of golden section search to ‘find’ the
duration instead of ‘solving’ it.

Secondly, the predicted set of parameter values may have no cross points between
the equal marginal utility line given by the RHS of equation (6.1) and the marginal utility
curve given by the LHS of equation (6.1). That is, it may be the case that the predicted time
pressure goes beyond the maximum of the marginal utility. It then has no cross points
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needed for the duration prediction. In reality, it may be that when the time pressure is so high,
and the schedule requires very high marginal utilities for activities to be included, the
activities with a lower maximum marginal utility will not survive, and therefore, we would
not observe such activities in the schedule. In our estimation, however, we do observe the
activity that was implemented in the schedule, and therefore, if the predicted parameters
result in no cross points, that predicted solution would clearly be wrong. The predicted
parameters associated with such ‘illegality’ and their neighbors should not be visited again in
the iterative solution search procedure. This can be enforced by assigning an appropriate size
of penalty. To this end, the goodness-of-fit of an activity should be revised from equation
(6.3) as:
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where,

o
av  is the observed duration of activity a;

TD is the total sum of duration units of a day, which is computed as 1440 in the current
study;
gapa is the difference between the predicted time pressure and predicted maximum of
activity a’s marginal utility.

As implied by this equation, the measure of the goodness-of-fit of the illegal solution
for an activity is the sum of three sources of differences. The first source of difference is the
pure difference between observation and prediction. As discussed above, if the time pressure
is much too high compared to the maximum level of an activity’s marginal utility, that
activity should not be included in the schedule, and therefore, the predicted duration vp of
this activity is zero. The second source of difference is a penalty for being illegal. In the
current study, we used 1 minute as the unit of duration. The added number 1440 then means
the entire time of a day in minutes. Equation (6.4) distinguishes illegal solutions from legal
ones by adding this big number, which makes the resulting measure of goodness-of-fit worse
than any possible legal solution. The final source of difference for the illegal solutions is the
degree of illegality to make the search sensitive for direction.

Figure 6.2 illustrates three different solutions of an activity, where the predicted
parameter values of this activity’s marginal utility curve α, β, γ, αx, βx and Ux are the same,
and only the time pressure parameter values δ are different. The first solution is legal in the
sense that the marginal utility curve and the time pressure line (TP1) crosses at least one
point. The second and third solutions are however illegal, because the marginal utility curve
and time pressure lines do not cross. The lower part of equation (6.4) should be applied. The
first two terms of the RHS of the lower part of this equation are the same for the second and
third solutions, which makes their goodness-of-fit measure much worse than the first
solution. The vertical arrows between the time pressure lines and the maximum of the
marginal utility curve makes a further distinction between these illegal solutions, which
states that the third solution is even worse than the second.
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Figure 6.2: Illegality of the solutions

Finally, the existence of the equilibrium durations at both sides of the inflection point
raises the question of how to choose the one that is used for prediction. We let the method
choose the one that gives the better match. This can be illustrated by the graph in Figure 6.3.
In the figure, the black dots are the predicted durations vp corresponding to the cross points
of the observed level of equal marginal utility and the marginal utility curve. The white dot
is the observed duration vo of this activity. The black dot on the RHS is chosen in this
illustration because it is closer to the observation than the other black dot. Accordingly, the
goodness-of-fit of an activity is again revised from equation (6.4) as:

Figure 6.3: Decision of predicted duration
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av  are the predicted durations of activity a that are respectively on the

LHS and the RHS of the inflection point.
The problem addresses in the proposed estimation method can therefore be

summarized as:
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where,
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G is the goodness-of-fit of the predicted parameter values combination;
Ga is the goodness-of-fit of the predicted parameter values specifying the utility function of
activity a;
(Σ(ΣGa)s)

* denotes the sum of the goodness-of-fit across the best predicted activity utility
functions;
s is an index of schedules, where s ∈  Γ = {1, …, TS}, and TS is the total number of the
schedules of the data;
l is an index of the predicted parameter combinations, where l = 1, …, L, and L is the total
number of the parameter value combinations to be examined;
( )

saMU  is the marginal utility of activity a, computed for schedule s;

sTP  is the time pressure, computed for schedule s;

(Xk)s is the values of the kth time pressure attribute of schedule s;
δk is the kth time pressure attribute-specific parameters, denoting the marginal contributions
of Xk to the time pressure of the schedule, respectively.

Solving equations (6.9) to (6.11) for v across activities of the schedule, such that the
equilibrium condition of equation (6.8) is met, provides the prediction of activity duration.
For each activity of the schedule, the prediction error then is computed based on equation
(6.5), and the overall goodness-of-fit of a current set of parameter estimates is the sum of
prediction errors across activities as in the parenthesis of the RHS of equation (6.7). Note
that equation (6.10) specifies the Umax function assuming an S-shaped curve like the U

function and is a function of the activity history. The associated parameters of this Umax

function are also estimated simultaneously with the parameters of the U function. In this way,
the model once estimated is not only able to predict activity durations (based on the U

function), but also activity frequencies (based on the Umax function).

6.3 Algorithm

Our problem thus is to estimate from schedule data the activity-specific parameters α, β, γ,
αx, βx and Ux, given the information of duration v, history T and time pressure attribute X. A
genetic algorithm was applied to solve equations (6.6) and (6.8). The following operational
decisions were made.

6.3.1 Representation of the solution candidates

We employed a real coding scheme to represent the solution candidates of the real parameter
values. The real-coding genetic algorithm (RCGA) does not binary-digitalize the real
number information but uses real numbers directly representing the solutions with minimum
and maximum possible values (Wright, 1991). Given m parameters to estimate for each of n
activities and p time-pressure parameters, a solution candidate is represented as an array of
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mn+p elements of real numbers, and an element of a real number represents a corresponding
parameter. In a preliminary study, this RCGA representation scheme outperformed the
ordinary binary representation scheme in terms of precision and speed. In particular, the
increased speed was obtained by the RCGA representation scheme, where the encoded
information (genotype) for genetic modification and the real form (phenotype) for candidate
evaluation are the same, and hence, a decoding process that transforms the genotype
information into the phenotype is not required.

6.3.2 Genetic operators

Our RCGA also employed crossover and mutation operators for genetic modification of the
solution candidates like any other GA. The details of the operators of the RCGA are
however different from ordinary binary GAs. After a series of preliminary studies, we chose
the BLX-0.5 crossover and Mühlenbein mutation (Herrera, et al., 1998). As for crossover,

assume two solution candidate arrays C1 = [ 11
1 ,.., pmncc + ] and C2 = [ 22

1 ,.., pmncc + ] that are

selected from the current pool of solution candidates to be modified for the next pool. The hi

of the offspring H = [ pmnhh +,..,1 ] is determined such that the value randomly lies in-between

ω⋅− Icmin  and ω⋅+ Icmax , where 1 ≤ i ≤ mn+p, ],min[ 21
min ii ccc = , ],max[ 21

max ii ccc =  and
21
ii ccI −= . We chose 0.5 for ω. As for mutation, assume a randomly selected solution
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kiiii abcc η , where ai and bi are the minimum and maximum values that

the ith parameter can take, ηk is randomly determined to be 1 with a probability of 1/16 and 0
with a probability of 15/16, and the + or – sign is chosen with a probability of 0.5.

6.3.3 Genetic parameters

After an extensive study, we chose the following operational parameter values for the
genetic procedure.

- Size of the pool or Number of solution candidates for an iteration = 100
- Stop condition = 10000 iterations after the initialization
- Probability of choosing crossover instead of mutation for the current round iteration = 70 %
- Number of solution candidates selected for crossover from the previous pool = 50
- Number of solution candidates selected for mutation from the previous pool = 90
- Selection of solution candidates for modification = Random selection with replacement
- Probability of mutating a parameter of the solution candidate selected for mutation = 10 %
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6.3.4 Overall procedure

Overall, our RCGA works as follows. ! The RCGA randomly initializes 100 solution
candidates, each of which is an array of mn+p real numbers that represent m parameters of n
activities and p time pressure parameters. " It then evaluates each candidate, which is a
rather complex procedure. Each solution candidate is a prediction of parameter values of the
activity utility function at the current step of iteration. Given these values and the time
pressure information of the observed schedules, the system finds the predicted duration of
each activity included in the observed schedule. More specifically, this is done by using the
relation of equality between the marginal utilities mathematically derived from the utility
function and the marginal utility predicted based on the time pressure attributes X. The
absolute difference between predicted and observed durations of that activity is then
computed, and these differences are summed across activities of the schedule, and finally
across schedules of the entire data to produce a measure of goodness-of-fit of the solution
candidate. # The RCGA selects solution candidates, and the selection probability is
proportional to the goodness-of-fit. Better goodness-of-fit increases the chance for a
candidate to be selected. The following probabilistic roulette wheel is used at each time of a
selection.
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where, Pl and Gl are the selection probability and the goodness-of-fit measure of the lth

solution candidate (l = 1, …, 100).
Note that the goodness-of-fit of a candidate is the sum of prediction errors across

schedules, and hence, a smaller value means a better fit. The selection is repeated 100 times
with replacement. $ Among the selected candidates, the RCGA modifies randomly selected
50 (for crossover) or 90 (for mutation) candidates. % The RCGA again evaluates the new
pool of genetically modified solution candidates. An iteration consists of the steps #-$-%
and is repeated 10000 times to complete a run.

6.4 Model test

Before an application to an empirical data, we examined the properties of the suggested
estimation method on simulated data. The purpose of this study was to investigate whether
the suggested method produced the correct results using a set of simulated schedule data.
Furthermore, we wanted to better understand the performance of the suggested approach for
noisy data. To this end, we prepared a set of simulated activity schedule data, which
assumed no noise for activity duration and time pressure attributes, and another set of
activity schedule data, using the same value with some added amount of noise. In the
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following, we first examine whether the suggested estimation method is capable of
reproducing the parameters, and then further examine the robustness of the suggested
method for various sources of noise in the simulated data.

6.4.1 Estimation results for simulated activity schedules using exact data

The specification of the model used for the current simulations is the same as the one
expressed in equations (6.6) and (6.8), except that we simulated five time pressure attributes,
instead of two, and hence we have five time pressure parameters, δ1 to δ5, for the purpose of
testing the method.

We assumed two types of activities, which entails a total of seventeen activity utility
parameters (= 2×6+5) to estimate. The simulated data consists of fifty simulated schedules of
these two types of activities. A schedule provides information about the duration v and
history T of each activity and the values of five time pressure attributes X of that schedule.
The observed history is simulated in the range from 1 to 30 integer values, and the observed
time pressure attributes are varied in the range from 0 to 100 real values across cases. The
‘true’ values for parameters were prescribed arbitrarily but reasonably representing assumed
activities. Given these simulated observations and the true values of the activity utility
function parameters (the column of ‘true value’ in Table 6.1), the simulated duration
observations for the activities of each schedule can be obtained from equation (6.8).

Table 6.1: Estimation results with exact data

parameter true value estimated

activity 1 75 75.31
α

activity 2 420 421.39

activity 1 0.15 0.15
β

activity 2 0.10 0.11

activity 1 0.8 0.58
γ

activity 2 0.1 0.27

activity 1 7 7.64
αx activity 2 3 3.06

activity 1 0.15 0.14
βx activity 2 0.20 0.19

activity 1 250 307.20
Ux

activity 2 150 173.02

δ1 0.0125 0.01587

δ2 0.0500 0.06253

δ3 0.0240 0.02952

δ4 0.0800 0.09671

δ5 0.0100 0.01213

GOF - 0.09946
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As mentioned in Section 6.3.1, the RCGA needs predefined minimum and maximum
parameter values. The following ranges for the parameter values were used: α = 10 ~300; β
= 0.01 ~1; γ = 0.1 ~1; αx = 1 ~30; βx = 0.01 ~1; Ux = 50 ~500.

The proposed estimation method was run 30 times on the same data. Each run was
terminated after 10000 iterations. The total of 30 runs took approximately 22 hours to
complete, indicating the complexity of the problem. Table 6.1 shows the estimation results
averaged across the 30 runs. The results suggest that the parameter estimates are close to the
true parameter values that were used for generating the simulated schedule data. This means
that if our assumption that individual activity-rescheduling behavior is based on equalizing
marginal utilities is true and the assumed form of utility functions is adequate, and data do
not exhibit any noise, then the suggested estimation method will produce fairly exact
estimates of activity utility parameters.

A more detailed inspection of the results suggest that the α, β, αx and βx values are
estimated more precisely than γ and Ux. This can be explained by examining Figure 6.4
which portrays the marginal impacts of the parameters and shows that the impact of γ and Ux

is relatively small. In case of γ, it is difficult to recognize the difference in the curve between
different γ’s under a certain level of time pressure. In case of Ux, unless the difference is very
large (500 and 100), the curves show little difference between Ux’s (500 and 450). The GA is
therefore less sensitive to these two parameters in the estimation. In contrast,  changes in
duration are most sensitive to the α parameter, which is consistent with the estimation results
where the α value has the highest accuracy.

An additional concern when estimating these types of functions is the possible linear
correlation between parameter estimates.

Table 6.2: Correlations between parameter estimates

Activity 1

α β γ αx βx Ux

α 1 -.616** -.842** -.415* .493* -.567**

β -.616** 1 .698** .935** -.943** .899**

γ -.842** .698** 1 .410 -.453* .654**

αx -.415* .935** .410* 1 -.990** .839**

βx .493* -.943** -.453* -.990** 1 -.842**

Ux -.567** .899** .654** .839** -.842** 1

Activity 2

α β γ αx βx Ux

α 1 .610** -.551** -.201 .200 -.871**

β .610** 1 .322 .106 -.097 -.258

γ -.551** .322 1 .340 -.341 .769**

αx -.201 .106 .340 1 -.921** .402

βx .200 -.097 -.341 -.921** 1 -.424*

Ux -.871** -.258 .769** .402 -.424* 1

Note: * and ** denotes that the correlation is significant at the 0.05 and 0.01 levels, respectively.
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Table 6.2 shows the correlation between parameter estimates over 30 runs of estimation.
There exist significant linear correlations between parameter estimates. These results suggest
that when dealing with the empirical data, a sequential estimation strategy may be preferable
if we face substantial interaction between parameter estimates, resulting in unstable
parameter estimates over runs. As shown in Figure 6.4, the α parameter is most sensitive to
the change in the duration and is thus expected to be most accurate and stable in predictions,
which is proven in Table 6.1. The sequential estimation may therefore begin with the
estimation of α given other parameter values of averages of the initial simultaneous
estimations.

        Change in α (60 & 75 & 90: to right) Change in β (0.5 & 0.3 & 0.1: to bottom)

   
     Change in αx (10 & 20 & 25: to bottom) Change in βx (0.05 & 0.1 & 0.15: to bottom)

    
     Change in γ (0.2 & 0.5 & 1: to bottom) Change in Ux (500 & 450 & 100: to bottom)

Figure 6.4: Impacts of parameter values on the marginal utility curve
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6.4.2 Estimation results for simulated activity schedules using noisy data

Three types of noise were considered: (i) rounding of reported activity duration, (ii) inexact
observation of the time pressure attributes and (iii) inexact observation of activity duration.
These sources of noise can be expressed in a single equation as:

( ) n
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evTU
+=

+−+
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αβαββ
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xxx
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(6.13)

where, v
)

 is the duration rounded by  respondents; en is the error term of the time pressure for
the nth observed schedule; evn is the error term of the duration observation.

The goal of the analysis here was to examine the robustness of the suggested
estimation method in the presence of such noise for each source separately, one at a time.

Rounding noise

The original simulated data represent activity duration to the precision of three digits after
decimal points. Given the simulated observed T and X, a search algorithm finds the value of
v based on equation (6.8) at this level of precision.

Table 6.3: Estimation results with rounded data

parameter true value no rounding
1 minute
rounding

10 minutes
rounding

activity 1 75 75.31 75.89 80.11α
activity 2 420 421.39 421.80 422.92

activity 1 0.15 0.15 0.14 0.18β
activity 2 0.10 0.11 0.11 0.13

activity 1 0.8 0.58 0.27 0.76γ
activity 2 0.1 0.27 0.48 0.87

activity 1 7 7.64 6.61 9.14αx activity 2 3 3.06 3.02 3.18

activity 1 0.15 0.14 0.15 0.13βx activity 2 0.20 0.19 0.20 0.19

activity 1 250 307.20 248.52 171.89
Ux

activity 2 150 173.02 176.77 142.70

δ1 0.0125 0.01587 0.01603 0.00979

δ2 0.0500 0.06253 0.06445 0.04069

δ3 0.0240 0.02952 0.03003 0.02402

δ4 0.0800 0.09671 0.09735 0.07987

δ5 0.0100 0.01213 0.01211 0.01197

GOF - 0.09946 0.34374 11.81063
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However, the respondents likely round the numbers in reporting the start and end time of
activities, and therefore, the estimation model should be prepared with this inaccuracy. The
assumed rounding noise is simulated,1 and Table 6.3 presents the results of the estimation for
different degrees of rounding error. As expected, more rounding error results in less accurate
estimates, in particular the estimates of γ and Ux as discussed in Figure 6.4. Considering the
homogeneous activity durations resulting from the rounding, however, the results are still
rather accurate and promising.

Time pressure attribute observation noise

To study this effect, two scales of the error en were introduced in the RHS of equation (6.13)
in terms of standard deviation of an assumed normal distribution N (0,σ 2). One has a
standard deviation size of 10 % of the average time pressure level 2.7, and the other the
standard normal distribution. That is, en ~ N (0,0.272) and en ~ N(0,1). The results shown in
Table 6.4 state that the estimates appear to be relatively robust for this type of noise, except
for some scale. If the estimation method is perfect, the introduction of a random error term en

in the RHS of equation (6.13) should not affect the results. Given the limited number of
simulated observations and the small size of time pressure, however, the result is not very
disappointing. The random error of scale, STD = 1, seems to confuse the GA too much,
considering the small size of time pressure.

Table 6.4: Estimation results with noisy time-pressure data

parameter true value no noise STD = 0.27 STD = 1

activity 1 75 75.31 77.93 80.37
α

activity 2 420 421.39 424.66 426.76

activity 1 0.15 0.15 0.17 0.19
β

activity 2 0.10 0.11 0.13 0.13

activity 1 0.8 0.58 0.58 0.16
γ

activity 2 0.1 0.27 0.19 0.18

activity 1 7 7.64 6.93 11.16
αx activity 2 3 3.06 3.42 3.71

activity 1 0.15 0.14 0.16 0.12
βx activity 2 0.20 0.19 0.16 0.27

activity 1 250 307.20 211.23 361.45
Ux

activity 2 150 173.02 126.98 178.28

δ1 0.0125 0.01587 0.01767 0.03461

δ2 0.0500 0.06253 0.06288 0.09891

δ3 0.0240 0.02952 0.03223 0.07479

δ4 0.0800 0.09671 0.09972 0.09974

δ5 0.0100 0.01213 0.00759 0.02435

GOF - 0.09946 4.59547 11.60373

                                                
1 Appendix 6.1 presents an example of the simulated data.
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Increasing the number of observations should improve the estimation results.
Optionally, the time pressure parameters would improve their accuracy by a

sequential estimation, instead of the current simultaneous approach. More specifically, we
may estimate the time pressure parameters of the RHS of equation (6.13) by taking an
ordinary linear regression analysis where the independent variables are the time pressure
attributes X, and the dependent variable is computed on the LHS of the equation having the
estimated values of the parameters.

Duration measurement noise

Measurement error evn is added to the duration both in the numerator and denominator of the

LHS of equation (6.13) as vnev + . The errors were drawn at random from a normal

distribution N (0,σ2). The average simulated duration of activity 1 and activity 2 is 86 and
429 minutes, respectively. Hence the “STD 10%” condition includes the error evn ~ N(0,8.62)
for activity 1 and evn ~ N(0,42.92) for activity 2 added to the duration v in both the numerator
and the denominator of the LHS of equation. The “STD 5%” condition results in evn ~
N(0,4.32) for activity 1 and evn ~ N(0,21.452) for activity 2.2

Table 6.5: Estimation results with measurement noise on the data of different sizes

50-cases data

parameter true value no error STD = 10% STD = 5%

activity 1 75 75.31 83.20 82.74
α

activity 2 420 421.39 410.46 418.40

activity 1 0.15 0.15 0.47 0.24
β

activity 2 0.10 0.11 0.04 0.08

activity 1 0.8 0.58 0.64 0.64
γ

activity 2 0.1 0.27 0.53 0.62

activity 1 7 7.64 17.38 11.09
αx activity 2 3 3.06 6.47 6.45

activity 1 0.15 0.14 0.22 0.32
βx activity 2 0.20 0.19 0.34 0.33

activity 1 250 307.20 207.95 166.70
Ux

activity 2 150 173.02 430.42 390.40

δ1 0.0125 0.01587 0.04447 0.04911

δ2 0.0500 0.06253 0.01751 0.04327

δ3 0.0240 0.02952 0.05218 0.06489

δ4 0.0800 0.09671 0.05001 0.05607

δ5 0.0100 0.01213 0.00807 0.01505

GOF - 0.09946 44.00144 22.10836

to be continued

                                                
2 The simulated duration and measurement error are illustrated in Appendix 6.2.
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200-cases data

parameter true value no error STD = 10% STD = 5%

activity 1 75 75.57 79.03 78.58
α

activity 2 420 421.31 421.55 423.48

activity 1 0.15 0.15 0.18 0.17
β

activity 2 0.10 0.11 0.05 0.06

activity 1 0.8 0.51 0.70 0.63
γ

activity 2 0.1 0.44 0.55 0.62

activity 1 7 7.65 8.91 7.42
αx activity 2 3 3.02 6.13 6.05

activity 1 0.15 0.14 0.14 0.15
βx activity 2 0.20 0.19 0.30 0.29

activity 1 250 288.17 288.00 279.12
Ux

activity 2 150 174.95 326.01 271.48

δ1 0.0125 0.01522 0.02678 0.02406

δ2 0.0500 0.06057 0.06283 0.07522

δ3 0.0240 0.02835 0.03579 0.04032

δ4 0.0800 0.09343 0.09786 0.09879

δ5 0.0100 0.01176 0.01231 0.01332

GOF - 0.17417 36.42288 18.13449

To investigate the effect of the duration measurement noise, we tested two sets of
simulated schedule data of different sizes. The estimation results are shown in Table 6.5. The
following observations can be made. As for the sample size, the bigger sample (n=200)
returns a better result than the smaller sample (n=50). As for the goodness-of-fit, the size of
the GOF of the estimated model is almost the same across the sizes of the error, and the
estimates are converged.

The figures of Table 6.6 show the results averaged across n cases. As for the
accuracy of the estimates, the estimates are not very accurate for some parameters. Moreover,
the inaccuracy is amplified with the size of the introduced error across parameters of both
activities in both data sets. The reason may be the following. When measurement error evn is
introduced from a normal distribution, duration for the actual estimation is changed to

vnev + . If the estimation method is insensitive to the introduced random duration error, the

marginal utility (the LHS of equation) should be averaged to the true values. In other words,

given the marginal utility )(vfMU = , ( ) 2/)()()( evfevfvf −++≈ .

Table 6.6: Goodness-of-fit across error sizes

sample size error size GOF error sum

STD=10% 44.00 47.97
n = 50

STD=5% 22.11 23.98

STD=10% 36.42 37.41
n = 200

STD=5% 18.13 18.70

Note: The introduced error sum = |e1n|+|e2n|.
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Figure 6.5: Average marginal utility curve with exact measurement and with measurement
error of 10% (LHS) and 5% (RHS) of average duration

For example, the marginal utility of the true duration 440 should (more or less) be the same
as the average of two marginal utilities of duration 440+40 and duration 440-40.

Assume that α, β, γ, αx, βx and Ux are 75, 0.15, 0.8, 7, 0.15 and 250, respectively, T is
15, and the average duration v is 86. Then, the STD of the random error is 8.6 and 4.3, which
are 10 % and 5 % of the average duration, respectively. The average of the absolute values
of the error randomly drawn from these sizes then was 6.7 and 3.3, respectively.

Figure 6.5 shows the error-size impacts in terms of the difference between )(vf  and

( ) 2/)7.6()7.6( −++ vfvf  for error size of 10% and the difference between )(vf  and

( ) 2/)3.3()3.3( −++ vfvf  for error size of 5%. The error-averaged marginal utility is

drawn as bold lines.
The difference between the two is explained in Figure 6.6. In both figures, the thin,

dotted and bold lines denote the true value, the value with negative error, and the value with
the positive error, respectively. The introduction of a single measurement error changes the
α value, and hence, the inflection point of the critical point of the function. As long as the
introduced measurement error is from a symmetrical normal distribution, however, the
averaged marginal curve maintains the inflection point as before, which also keeps the
predicted α values as before.

Figure 6.6: Marginal utility curve with exact measurement and with measurement error of
±10% (LHS) and ±5% (RHS) of average duration
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Meanwhile, all other aspects of the functional curve changes as can be seen in Figure 6.4. As
a result, the error introduction from a symmetric (normal) distribution implies the disruption
of estimates of β, αx and βx to some extent, but not α. In fact, throughout the estimation
simulation, the α estimate was relatively irrelevant to the measurement error size.

6.5 Conclusions and discussion

In this chapter a method of estimating utility parameters of the A urora model based on
activity duration data was introduced and tested. Unlike other utility models of time use,
A urora is based on a complex asymmetric S-shaped utility function. While we argue that
this specification has some clear theoretical advantages, the estimation of the model becomes
highly complex. Before applying a method to real empirical data, we felt it was important to
first study the performance of the suggested approach on simulated data.

The suggested estimation uses a combination of searching the solution space, using a
tailored genetic algorithm, and some theoretical concepts. In particular, a key assumption is
that an activity schedule is the result of equalizing the marginal utilities of activities subject
to time pressure. The method was specifically developed for the case where duration (time
use) data are available.

The results of the simulations suggest that the proposed estimation method performs
well on the exact data, and reasonably good on noisy data but with some exceptions of
particular parameters. The simulated noises that the method was tested on include time
pressure, duration rounding and the overall measurement error in duration. Among the
simulated errors, the overall measurement error in duration has the biggest impact on the
accuracy of the parameter estimation, bigger than the error in measuring the time pressure
variables and the systematic rounding in reporting the duration. This suggests the need to
increase the quality of duration data to the extent possible. It also shows the typical problems
of non-linear models, especially the interaction between parameter estimates. The latter
suggests using a sequential estimation strategy where each parameter is estimated in turn. In
a preliminary study, it did provide the most stable results for the present model, and these
results can probably be generalized to similar models.

Having developed this estimation model, we will apply and test the estimation model
to real, empirical data. The results of this effort will be discussed in Chapter 7.
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Appendix 6.1: Example of the simulated schedule data (no rounding, 1-minute and 5-

minutes rounding)

no rounding

case v1 v2 T1 T2 X1 X2 X3 X4 X5

1 85.616 422.797 24 25 2.62 29.41 59.2 23.3 23.68

2 96.986 421.676 22 1 9.40 5.72 14.58 2.44 21.95

3 88.115 421.881 17 7 44.35 0.35 45.41 12.54 63.88

4 89.351 427.553 18 8 11.11 32.59 0.34 12.14 19.60

5 83.345 427.412 12 23 40.48 9.26 50.68 14.46 86.35

6 92.574 436.768 26 22 8.27 10.79 22.74 4.25 70.86

7 93.965 438.813 23 16 1.80 5.78 39.95 3.80 22.22

8 75.334 444.023 2 22 21.04 7.56 9.96 0.91 24.98

9 91.649 434.218 27 15 4.65 4.73 34.40 6.20 92.67

10 82.997 425.829 12 17 53.92 17.02 11.46 24.87 54.58

… … … … … … … … … …

1-minute rounding

case v1 v2 T1 T2 X1 X2 X3 X4 X5

1 86 423 24 25 2.62 29.41 59.2 23.3 23.68

2 97 422 22 1 9.4 5.72 14.58 2.44 21.95

3 88 422 17 7 44.35 0.35 45.41 12.54 63.88

4 89 428 18 8 11.11 32.59 0.34 12.14 19.6

5 83 427 12 23 40.48 9.26 50.68 14.46 86.35

6 93 437 26 22 8.27 10.79 22.74 4.25 70.86

7 94 439 23 16 1.8 5.78 39.95 3.8 22.22

8 75 444 2 22 21.04 7.56 9.96 0.91 24.98

9 92 434 27 15 4.65 4.73 34.4 6.2 92.67

10 83 426 12 17 53.92 17.02 11.46 24.87 54.58

… … … … … … … … … …

10-minutes rounding

case v1 v2 T1 T2 X1 X2 X3 X4 X5

1 90 420 24 25 2.62 29.41 59.2 23.3 23.68

2 100 420 22 1 9.4 5.72 14.58 2.44 21.95

3 90 420 17 7 44.35 0.35 45.41 12.54 63.88

4 90 430 18 8 11.11 32.59 0.34 12.14 19.6

5 80 430 12 23 40.48 9.26 50.68 14.46 86.35

6 90 440 26 22 8.27 10.79 22.74 4.25 70.86

7 90 440 23 16 1.8 5.78 39.95 3.8 22.22

8 80 440 2 22 21.04 7.56 9.96 0.91 24.98

9 90 430 27 15 4.65 4.73 34.4 6.2 92.67

10 80 430 12 17 53.92 17.02 11.46 24.87 54.58

… … … … … … … … … …

Note: v1 and T1 denote the duration and history of activity 1, and X1 denotes the time pressure attribute 1.
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Appendix 6.2: Data with measurement error of different sizes

error size of 10% of average duration

original duration introduced error duration with error
case

activity 1 activity 2 std10% act1 std10% act2 activity 1 activity 2

1 83.720 442.837 -16.19 -13.34 67.530 429.497

2 84.856 423.586 -2.76 -76.64 82.096 346.946

3 93.901 436.775 -20.59 31.91 73.311 468.685

4 85.396 431.398 -6.86 -19.63 78.536 411.768

5 91.466 434.846 2.93 -10.68 94.396 424.166

6 90.889 430.142 10.94 -58.65 101.829 371.492

7 87.401 427.610 4.53 39.37 91.931 466.980

8 92.693 422.688 8.47 -41.10 101.163 381.588

9 90.541 430.078 4.88 28.22 95.421 458.298

10 89.534 431.238 -4.73 -1.59 84.804 429.648

… … … … … … …

error size of 5% of average duration

original duration introduced error duration with error
case

activity 1 activity 2 std5% act1 std5% act2 activity 1 activity 2

1 83.720 442.837 -8.09 -6.67 75.630 436.167

2 84.856 423.586 -1.38 -38.32 83.476 385.266

3 93.901 436.775 -10.3 15.95 83.601 452.725

4 85.396 431.398 -3.43 -9.82 81.966 421.578

5 91.466 434.846 1.47 -5.34 92.936 429.506

6 90.889 430.142 5.47 -29.32 96.359 400.822

7 87.401 427.610 2.27 19.68 89.671 447.290

8 92.693 422.688 4.23 -20.55 96.923 402.138

9 90.541 430.078 2.44 14.11 92.981 444.188

10 89.534 431.238 -2.37 -0.79 87.164 430.448

… … … … … … …

Note: For example, ‘std10% act1’ means that the error is randomly drawn from a normal distribution of size σ,
which is 10 % of the average duration of activity 1 in the data.
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7 Estimation of A uroraA uroraA uroraA urora using Activity-Diary Data

7.1 Introduction

In the last chapter we have developed a method for estimating the activity utility functions of
the A urora model. In particular, the method was designed to estimate the model from
activity duration data, which can relatively easily be collected in an activity diary survey.
The proposed method employs a genetic algorithm that seeks the solution in a wide and
discontinuous search space. The promising results made us decide to use this method to
estimate the utility function using real world activity travel diary data.

This chapter describes the results of this estimation, using activity diary data
collected in the Amsterdam-Utrecht corridor in the context of the A madeus research
program (Timmermans, et al., 2002b). Two estimations are conducted. The first estimation
is based on the entire activity pattern data, ignoring possible differences between groups.
Next, we investigate whether there are significant differences between groups. To that effect,
the activity patterns are segmented into a limited number of groups of more homogeneous
patterns, using the multi-dimensional sequence alignment method developed in Chapter 4,
and the estimation procedure is repeated for each of the resulting segments.

This chapter is organized as follows. Section 7.2 briefly introduces the sample
selection scheme, followed by Section 7.3 that details the A madeus activity-travel diary data
used for the empirical analysis. Section 7.4 then reports the results of the estimated utility
functions for the total sample, and the segmented activity patterns respectively. The chapter
ends with some conclusions and discussion.

7.2 The activity-travel diary data

The data used to estimate A urora was collected in the Amsterdam-Utrecht corridor, The
Netherlands, in the context of the A madeus research program. The survey was conducted in
April and September 2000. The study area is shown in Figure 7.1. Within this study area, a
number of neighborhoods were chosen for the sample selection. (The ‘neighborhood’ is the
spatial unit defined by the Central Bureau of Statistics (CBS) of The Netherlands).

The selection was based on a neighborhood classification scheme, to balance the
sample on a number of relevant spatial and non-spatial characteristics. The characteristics
considered include size (i.e., hyper, high, medium and low), urban characteristics (i.e.,
central city, suburban and others) and public transportation-network characteristics (i.e.,
inter-regional, regional, local and car-dominated).
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Figure 7.1: A madeus Study area (Graphic source: Krygsman, 2004)

In addition, other characteristics were considered, which included density, facility proximity,
park-and-ride availability, travel infrastructure, one- or multiple-center orientation and
acceptable representation of households with higher income categories and with children.
Figure 7.2 shows the resulting spatial distribution of the selected neighborhoods. A total of
50,000 questionnaires were distributed to randomly selected households in the selected
neighborhoods. Of the 50,000 households, 7488 (15.0 %) returned the questionnaires. Of
these 7488, 4800 (64.1 %) were willing to participate in the main survey.

In the main survey, respondents were asked to complete an activity-travel diary for
two designated consecutive days. Each day started at 3 am and ended at 3 am on the next day.
To avoid bias in the frequency of the days of the week, households were distributed across
days. Saturdays and Sundays were however deliberately underrepresented in the sample. The
diary contained activity-pattern information such as the list of activities, duration, location,
transport mode if traveled, accompanying person, etc. In addition, respondents were asked to
complete an activity questionnaire, asking details of activities and personal, household and
institutional contexts. In particular, it entailed: (1) an extensive list of activities that the
respondents may conduct, (2) the temporal and spatial details of crucial activities such as
work, school, daily shopping, non-daily shopping, union and sports activities and bringing
and getting children, and (3) scheduling details of out-of-home activities reported by the
individual in the diary of the two days. Of the 4800 households who were willing to
participate in the main survey, 1966 (41.0 %) returned the questionnaires.
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Figure 7.2: Selected neighborhoods (Graphic source: Krygsman, 2004)

The data of 6950 activity patterns of 3575 individuals, belonging to these 1966 households,
were finally employed for the analysis.

In addition to diary data, the part of the questionnaire concerned with the scheduling
details are used in the present analysis. In this part of the questionnaire, respondents could
indicate for each implemented (out-of-home) activity when the activity was last conducted
and when the decision to conduct the activity was made. Furthermore, respondents could
indicate whether an activity planned for the reported activity pattern was cancelled and, if so,
the reason why the activity was cancelled. The question about the implementation history –
i.e. when the activity was last conducted − is used here together with the duration and
schedule data.

7.3 Activity-travel diary data used to estimate the utility functions

The dimensions of an activity-travel pattern considered in the current analysis included
activity type, location and transport mode. Activities were classified as indicated in Table
7.1. A total of twenty-one activity categories were distinguished to specify the activity-travel
patterns for the present study.
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Table 7.1: List of activities

out-of-home activities in-home activities

fixed activities
work/education, medical, sport, church,
union, cultural, waiting and etc.

sleep, personal care, eating, childcare,
work/education, illness, waiting and
etc.

flexible activities
grocery shopping, non-grocery
shopping, personal business, social,
outside-entertainment, recreation

social, in-home task , in-home leisure

The categorization is based on two criteria: whether an activity is conducted inside or
outside home, and whether an activity is assumed to be flexible in determining duration and
frequency or fixed. Strictly speaking, all activities can be conducted anywhere, and no
activities are completely fixed in duration and frequency. These criteria were however useful
in deciding on the categorization. For the interested reader, a recent discussion on the
activity categorization can be found in Doherty (2003).

The ‘work/education’ category also includes voluntary, non-paid work. The category
‘cultural’ includes activities such as visiting a theater, concert or museum. The ‘grocery
shopping’ category includes visits to a supermarket, butcher, bakery, etc. for daily goods.
The ‘non-grocery shopping’ category also includes window-shopping. The ‘personal
business’ category includes visits to bank, post office, library, snack bar, etc. The category
‘social’ includes paying visit to family or friends and receiving visit. ‘Outside-entertainment’
includes such activities as eating outside, visiting a café, discotheque or other out-of-home
entertaining location. The ‘recreation’ category includes visiting a swimming pool or
amusement/natural park.

Table 7.2 shows the frequency and average duration of activities. For example,
grocery shopping appears in 20.7 % of the activity patterns. On average, the in-home task
and in-home leisure activities occur almost everyday, whereas grocery shopping is
conducted once in five days.

Table 7.2: % Frequency of activity occurrences per activity pattern

Activity % freq
Duration

in minutes
Activity % freq

Duration
in minutes

Dshop 20.7 31.6 Medical 5.2 47.2
nDshop 13.0 58.1 sport 8.9 102.2
Pbiz 4.8 30.0 church 1.6 114.0
social 28.6 159.3 union 2.9 164.1
entertain 9.1 113.5 cultural 3.1 150.6
recreat 5.0 133.5 other out 17.8 68.4
task 81.7 150.6 childcare 25.9 78.3
leis 92.8 224.1 illness 0.1 1047.6
pickup 2.6 23.6
work/edu 72.7 418.4

# episodes per activity pattern: Mean=14.39 (STD=5.31)
Note: Dshop denotes grocery shopping, nDshop non-grocery shopping, Pbiz personal business, entertain
outside-entertainment, recreat recreation, task in-home task, leis in-home leisure, work/edu work/education,
other out other out-of-home activity and Pcare personal care activity.
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Table 7.3: # activity episodes with particular location and transport mode per activity pattern

Attributes Level Mean STD
home 11.99 5.28
work 0.66 0.88activity location
other 1.73 1.96

no 10.61 4.92
slow 1.91 2.06

public 0.33 0.75
transport mode

auto 1.33 1.73

Non-grocery shopping is conducted once a week, and recreation is conducted much less
frequently. The table also states that, on average, an activity pattern has fourteen episodes.
The average durations as shown in the table were calculated across occurrences of an activity,
whereby the activity may occur multiple times in an activity pattern. On average, grocery
shopping and personal business activities took about half an hour, non-grocery shopping
activity lasted about an hour, whereas social, out-of-home entertainment and recreation
activities took much longer.

Each activity involves a choice such as the location where the activity is conducted
and transportation mode used to reach the activity’s location from the previous location.
Activity location categories include ‘home’, ‘work’ and ‘elsewhere’ Transport mode
categories include ‘no transport mode’, ‘slow’, ‘public’ and ‘auto’. The slow mode includes
walk, bike, scooter and motorbike. The public mode includes bus, tram, metro, taxi and train.
The auto mode includes the categories ‘driver’ and ‘passenger’. In case of a multi-modal trip
involving multiple stages of different modes, the present study encodes the main mode as the
mode of the trip stage of the longest time of the trip to the activity location. The ‘in-home
task’ category includes housekeeping, telebanking, teleshopping and other in-home activities.
The ‘in-home leisure’ category includes free-time activities such as reading, TV watching,
internet and relaxation.

Table 7.3 reports the distributions of these choice facets across activities per activity
pattern. The number of episodes at the work location is 0.66 per activity pattern, which
shows that the work activity is not often split into different episodes within activity patterns.
The 11.99 episodes at the home location indicate that most of the fourteen activity-episodes
are in-home activities.

The cluster analysis considered all twenty-one activity categories for pairwise
comparison of activity-travel patterns, whereas the estimation used only the flexible
activities, assuming the fixed activities as given. As said, the entire diary data set contains
6950 activity patterns. However, after removing missing values and outliers, 5904 activity
patterns remained for analysis.

As indicated before, the question on the implementation history of activities was
important for the analysis. Table 7.4 shows the mean and standard deviation of the
implementation history of the flexible activity categories. The figures are generally
consistent with the frequency data of Table 7.2, except that the grocery shopping is slightly
over-reported.
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Table 7.4: Average history of activity implementation (in days)

Activity Mean STD
Dshop 2.8 1.9
nDshop 7.0 6.8
Pbiz 19.6 15.6
social 8.3 8.0
entertain 8.2 8.9
recreat 10.7 20.8

On average across activities, respondents reported that the same activity was
implemented on the same day in 7.9 % of the occurrences, in the same week in 71.1 % of the
occurrences, in the same month in 13.8 % of the occurrences, in the same year in 6.5 % of
the occurrences or earlier in 0.7 % of the occurrences. Implementation of an activity that was
implemented on the same day or one day ago amounts to 37 % of the occurrences.
Implementation of an activity that was implemented within two weeks ago amounts to
86.5 % of the occurrences. Implementation of an activity that was implemented within one
month ago amounts to 93.2 % of the occurrences. These figures clearly indicate that daily
life mostly consists of highly routinized activities, as the name of our model, A urora,
implies.

The term, ‘routinized,’ however does not mean that activities do not need a
scheduling effort or that they are not subject to schedule adaptation. It simply means that
those activities are included in the schedule often or regularly. The scheduling decisions on
the details of the activities are made rather dynamically. As for the planning horizon,
activities were implemented routinely in 40.5 % of the occurrences or were instantaneously
implemented in 14.5 % of the occurrences, on the same day in 13.2 % of the occurrences, in
the same week in 14.7 % of the occurrences and earlier in 17.1 % of the occurrences.
Virtually no deliberate decision is required to include a routine activity in the schedule.
Likewise, the instantaneous decision or a decision planned on the same day does not seem to
require much planning effort, but may be impulsive. A week ahead or even earlier decision
on the other hand likely involves a deliberate planning effort. The proportion of impulsive
activities (14.5+13.2 = 27.7 %) is approximately equal to the proportion of activities
involving a deliberate decision (14.7+17.1 = 31.8 %).

The dynamic nature of rescheduling decisions is more evident when we consider the
cancellation rate. Of the implemented activities, 28 % were originally not in the plan. On the
other hand, of the planned activities, 13 % were not implemented on the day considered. The
reported reason of these cancellations is time pressure during the implementation of the
schedule in 27.7 % of the cancellations, change of the schedule in 15.1 % of the
cancellations, replacement with another activity in 10.3 % of the cancellations, unordinary
event happening in 8.9 % of the cancellations, traffic congestion in 1.1 % of the
cancellations and other reasons such as sickness, etc. in 36.9 % of the cancellations.

In addition to the diary data, the cluster analysis also used the socioeconomic and
situational data to profile the resulting clusters. These data concern personal, household and
institutional attributes such as gender, car availability, income, age, weekly working hours,
the presence/absence of children in the household, and the day of the week on which the
schedule is implemented.
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Table 7.5: Socioeconomic characteristics of 3575 individuals and situational characteristics
of the activity patterns (%)

Variable Value
gender (PP) female (52.3), male (47.7)
car availability (PP) not always available (46.2), always available (53.8)
children (HH) no (47.7), yes (52.3)
diary day 1 (SS) weekday (84.3), weekend (15.7)
diary day 2 (SS) weekday (84.0), weekend (16.0)

income (PP)

0 (13.0), 0~10000 (7.5), 10000~20000 (6.4),
20000~30000 (9.2), 30000~40000 (12.8),
40000~50000 (13.3), 50000~60000 (11.4),
60000~70000 (7.3), 70000~ (19.2)

age (PP) Mean 42.68 (STD 15.18)
weekly work hours (PP) Mean 21.71 (STD=19.37)

Note: ‘HH’ denotes that the value of the variable is specific to the household of the person, ‘PP’ the person, and
‘SS’ each activity pattern.

Table 7.5 shows the distributions of these variables associated with activity patterns. The
categorical variables including gender, car availability, presence of children in the household
and income are all approximately evenly distributed across the categories that were defined.
The mean values of the metric variables also seem reasonable.

7.4 Estimation of activity utility functions

7.4.1 Principles and scheme of analysis

The estimation of activity utility functions is based on the observed activity durations and
histories in the reported activity patterns. The utility functions were estimated first on the
entire data set and then separately for each segment of more or less homogeneous activity-
travel patterns. The latter estimation at the segment level will reveal any heterogeneity in the
utility functions underlying activity-travel patterns. In this section, we will discuss the results
of these two estimations in turn.

In order to estimate segment-level utility functions, the activity-travel patterns were
first clustered using pairwise similarities. These pairwise similarities between patterns were
computed with regard to the compositional, sequential and interdependency information of
the attributes of the activity-travel patterns. The attributes included in the analysis were
activity type, location and transportation mode. The multidimensional sequence alignment
method proposed in Chapter 4 was used for this purpose. Next, the resulting similarities
between activity patterns were used as input to a cluster analysis. Ward clustering algorithm
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was employed for a hierarchical cluster analysis, which explicitly attempts to minimize the
within-segment distance and maximize the between-segment distance.

Having identified the clusters or segments, the segments were profiled using
properties of the activity patterns and the socioeconomic characteristics associated with the
activity patterns. Profiles were created using descriptive statistics (mean values) of the
relevant properties of activity patterns and associated socioeconomic variables of each
segment. The results were tested on statistical significance in a subsequent logistic
regression analysis.

Finally, the activity utility functions for each segment were estimated using the
estimation method developed in Chapter 6. The estimated parameters were evaluated against
two criteria. The first is the stability of the solution over repeated estimation runs on the
same data. This was motivated by the fact that the proposed estimation method uses a
heuristic search algorithm. The solution may therefore differ depending on the initialization
and the probabilistic search processes, and thus, the consistency of the generated solutions is
an issue. The second criterion is that the estimated utility parameters should be interpretable
for each activity and for each segment. For example, the in-home leisure activity likely has a
flatter utility function than the grocery shopping activity. It can also be expected that the
activity patterns of busy people would show steeper utility functions than the activity
patterns associated with, for example, retired people.

The analysis also involved a comparison of the aggregate and the segment-level
results.  The expectation is that the stability and interpretability of the estimated parameters
will be better with the segment-level model than for the aggregate model because the
segments are based on more homogeneous activity patterns.

7.4.2 Estimation method

The proposed estimation method is based on the assumptions that the marginal utility is the
same across activities, and that the level of equal marginal utility can be predicted by some
cross-sectional characteristics of the activity patterns. The mathematical equations
underlying the applied estimation method stay the same as equations (6.5) to (6.11) of
Chapter 6. Equation (6.11) that specifies the function of the time pressure level was further
specified as follows:

sss XXTP )()( 2211 δδ += (7.1)

where, (X1)s and (X2)s are the duration of fixed activities and the number of flexible activities
of activity pattern s, included as indicators of time pressure.

Equation (7.1) is consistent with our theory. Given the number of flexible activities
chosen to implement, a longer total duration of fixed activities implies a shorter disposable
time budget and hence a higher time pressure. Given the disposable time budget, more
flexible activities to implement would increase the time pressure. In both cases, the increase
in time pressure raises the level of equal marginal utility across activities of the activity
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pattern. In the proposed estimation method, the parameters of the time-pressure function are
estimated simultaneously with the parameters of the utility functions, as explained in the
previous chapter.

A preliminary study suggested the following range of real numbers to be used for
simulating the parameter estimates as: α = –300~500, β = 0.01~1.0, γ = 0.1~1.0, αx = 0~100,
βx = 0.01~10, and Ux = 0~10000. The values of β that are bigger than 1.0 offer no substantial
difference from 1.0 in terms of the steepness of the overall utility function. No activity is
expected to have a warming-up phase longer than the saturated phase so that γ > 1.0. These
ranges are determined based on the observed ranges of estimated values in the preliminary
study.

7.4.3 Aggregate model

The estimation of activity utility functions was conducted on the entire activity patterns in
the data. In the following, we first describe the data that we used for this estimation and then
report the estimation results with regard to the stability of the estimates over runs and the
interpretability of the estimated utility functions.

Data: The total number of activity patterns identified as useful in principle for the estimation
is 5904. This number was, however, too large for the present study. A sub-sample was used
to reduce the computation time. For the overall estimation, a total of 303 activity patterns
were randomly selected from the entire data set of 5904 activity patterns. The selection was
not completely random because a pure random selection would not provide enough
observations for activities such as personal business and recreation. A subset of activity
patterns was obtained such that each activity appears at least 60 times in the selection. For
each activity pattern, we record the list of activities, their duration and history. In each
activity pattern, if multiple episodes of an activity occur, the duration of that activity was
computed as the sum of durations across the episodes. Hence, the activity subdivision in
episodes was not considered. The history of an activity is defined as the history recorded for
the first occurrence of that activity.

Table 7.6 shows the percent frequency of activities both for the entire sample and the
sub-sample used for estimation. For example, grocery shopping appears in 22 schedules out
of 100 in the entire sample, whereas 33 schedules out of 100 in the sub-sample. Table 7.7
lists descriptive statistics for the selected 303 cases. Fortunately, the mean and standard
deviation of activity duration and history show that the sub-sample is virtually indifferent
from the entire sample, despite the biased selection. This means that the sub-sample can be
safely used to replace the entire sample.

Table 7.6: % Frequency of activity occurrences per activity pattern

Dshop nDshop Pbiz social entertain recreat task leis
All data 22 14 6 19 9 5 81 90
303 data 33 25 20 25 20 20 85 91
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Table 7.7: Activity duration and history of selected 303 activity patterns

duration (minutes) history (days)
Activity # occurrences

Mean STD Mean STD
Dshop 101 28.2 18.3 2.68 1.8
nDshop 75 61.4 40.7 7.41 7.0
Pbiz 61 23.1 18.2 18.80 14.7
social 76 144.5 97.6 7.53 7.5
entertain 62 108.6 79.1 8.42 9.2
recreat 60 84.5 63.7 9.42 19.1
task 259 152.1 117.5
leis 275 206.7 134.0
Note: By definition, the everyday activities, in-home task and in-home leisure, do not have history information.

Stability: An estimation run was repeated 30 times to examine the stability of the parameter
estimates across runs. Each run involved random initializations of the genetic algorithm.

Table 7.8: Correlations between parameter estimates

Dshop nDshop

α β γ αx βx α β γ αx βx

β -0.13 β -0.41*

γ 0.57** 0.20 γ 0.32 -0.24

αx 0.07 0.03 -0.09 αx -0.07 0.52** -0.30

βx 0.01 -0.27 0.10 -0.46* βx -0.22 -0.12 0.40* -0.48**

Ux -0.24 0.14 -0.18 0.27 0.07 Ux 0.09 0.09 0.12 0.37 -0.44*

Pbiz social

α β γ αx βx α β γ αx βx

β -0.41 β -0.81**

γ 0.32 -0.24 γ 0.05 0.08

αx -0.07 0.52 -0.30 αx -0.27 0.30 -0.31

βx -0.22 -0.12 0.40 -0.48 βx -0.02 -0.06 0.36 -0.64**

Ux 0.09 0.09 0.12 0.37 -0.44 Ux 0.34 -0.21 0.00 0.12 -0.30

entertain recreat

α β γ αx βx α β γ αx βx

β 0.55** β -0.44*

γ 0.21 0.25 γ 0.21 0.04

αx -0.09 -0.26 -0.06 αx 0.19 -0.03 -0.04

βx 0.24 0.24 0.03 -0.43* βx -0.30 0.11 -0.07 -0.41*

Ux 0.00 0.13 -0.25 0.19 -0.22 Ux 0.07 0.03 0.12 -0.22 0.14

task leis

α β γ α β γ
β -0.57** β 0.16

γ 0.61** -0.11 γ 0.83** 0.21

Ux 0.01 -0.28 -0.02 Ux 0.08 0.69** 0.14

Note: * and ** denotes that the correlation is significant at the 0.05 and 0.01 levels, respectively.
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Similar to the findings in estimation on the simulated activity pattern data in the previous
chapter, certain parameters were highly correlated (Figure 7.3), which is typical for this kind
of non-linear equations including a large number of parameters (Table 7.8).

α β

γ αx

βx Ux

Figure 7.3: Estimated parameter values across 30 runs using simultaneous estimation
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Therefore, it was decided to apply a sequential estimation process. After examining
different orders of parameters in a sequential estimation in terms of stability of the parameter
estimates across runs, it was decided to estimate parameters in the following order: α, β, γ,
αx, βx and Ux.

α β

γ αx

βx Ux

Figure 7.4: Estimated parameter values over 30 runs using sequential estimation
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That is, in the initial run when all parameters are simultaneously estimated, α was the best
parameter and decided to be estimated. Given all other parameters’ average values across 30
initial runs, α was estimated 30 times. The average across these 30 runs was taken as the
estimate of α. Then, β was chosen to estimate as it showed the most stable estimates in the
next initial 30 runs given the α estimate. In this way, γ, αx, βx and Ux were also estimated in
turn. The results are shown in Figure 7.4. As shown in the figure, the stability of the
parameter estimates across runs is dramatically improved. Personal business shows the least
stability, which is likely due to the small number of observations with relatively small
variations in duration (see Table 7.7).

Interpretability: The sizes of parameter estimates for the different activities were studied to
examine the face validity of the model. By taking the averages across 30 runs, the parameter
estimates were obtained as shown in Table 7.9. The α estimates are all slightly smaller than
the average duration of the corresponding activity, which implies that individuals on average
conduct the activities a little longer beyond the maximum marginal utility point. An activity
likely continues while it gains utility at an increasing rate and stops somewhere when the
marginal gain is decreasing because the duration allocation is a competition between
activities to occupy longer durations, which is judged by the marginal gains of total utility.
The order of magnitude of the α estimates is [leis > task = social > entertain > recreat >
nDshop > Dshop > Pbiz], where task at home and social activities are almost the same, and
grocery shopping and personal business are also quite similar. Note that non-grocery
shopping is in-between outside entertainment and recreation activities.

The β estimate size is consistent with one’s expectations as [Pbiz > Dshop > nDshop
> recreat > entertain = task = leis = social]. Personal business and grocery shopping have
relatively high values, while all others are more flexible. An activity with a β-value bigger
than 0.2 represents a very inflexible activity in terms of duration adjustment. Grocery
shopping and personal business do not have much variation in duration and indeed have high
β values. An interesting result is that non-grocery shopping including window-shopping has
almost the same β estimate as recreation.

As the value of the γ estimate approaches 1, the S-shape becomes symmetric, and a
vice versa. The order of the estimated sizes of this parameter is [recreat > Dshop > leis =
entertain = task = nDshop = Pbiz > social], implying that recreation has a nearly symmetric
utility curve and a relatively long warming-up period, whereas the marginal utility of social
activities is mostly diminishing across the duration range.

Table 7.9: Parameter estimates of selected 303 activity patterns

Activity α β γ αx βx Ux

Dshop 25.77 0.347 0.707 22.34 0.045 1274
nDshop 58.97 0.108 0.522 21.92 0.057 1392
Pbiz 22.20 0.412 0.520 0.59 0.823 1695
social 134.87 0.029 0.104 12.54 0.044 1242
entertainm 90.68 0.047 0.572 26.27 0.044 1241
recreat 76.14 0.091 0.882 18.85 0.030 1231
task 134.53 0.039 0.552 1313
leis 183.47 0.035 0.603 1243
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Both shopping activities are closer to the more symmetric recreation than to the more
asymmetric social activity, implying that they have relatively long warming-up periods. In-
home task and in-home leisure activities were also expected to have a mostly diminishing
marginal utility, but are rather unexpectedly similar to other activities.

Like the α parameter, the αx parameter value reflects the timing of the start of
diminishing marginal utility for the Umax curve. The diminishing phase of Umax starts very
early for personal business activities and very late for outside-entertainment activities.
History does not seem to play a role at all in case of personal business. The marginal utility
of Umax for entertainment activities on the other hand increases over a longer time, namely
for about a month. All other activities are in-between the extremes. The order is [entertain >
Dshop = nDshop > recreat > social > Pbiz].

The estimation of βx parameters results in a very clear difference between personal
business with a very high value, and all other activities with very low values. This implies
that personal business activities have a very low flexibility and need to be urgently
implemented after a certain number of days since the last implementation, whereas other
activities need not. The non-daily shopping’s βx is a bit higher than that of other activities,
and this parameter is lowest for the recreation activity. Again, however, differences are not
very significant.

Finally, the Ux estimates are quite homogeneous across activities. The Ux estimate is
rather high for personal business activities, but at the same time is also highly unstable
across runs. Non-grocery shopping has the next highest Ux value, followed by in-home task
activity, which is perhaps because of a high level of indirect utility, rewarded for the
completion of the task. The estimates for the remaining activities are remarkably similar. In
sum, the overall estimation results in well interpretable parameter values for the activities in
general.

Figure 7.5 displays the resulting U and Umax functions of all eight activities. In the U-
graph, Umax is set equal to Ux. The Umax-graph suggests that a further simplification of this
function might be possible by using a constant value for personal business activity’s Umax

and a linear function for other activities.

Figure 7.5: Estimated U and Umax functions of selected 303 activity patterns
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7.4.4 Segment-level model

The estimation of activity utility functions was also conducted for segments of homogeneous
activity patterns. To this end, first, the activity patterns of the data were clustered into a
limited number of segments with regard to their multidimensional sequential information by
using the multidimensional sequence alignment method developed in Part-I of this thesis. In
the following, we first describe the results of the cluster analysis and then report the
segment-level estimation results. Again, we discuss the estimation results here with regard to
the stability of the estimates across runs and the interpretability of the estimated utility
functions, and compare them with the results of the aggregate model.

Cluster analysis

Data: The total number of activity patterns identified useful for the analysis is 5904. Again,
this number is too large for the comparison of multidimensional activity-travel patterns in
the present study. The number of pairwise comparisons is 17,425,656, which is far too large
to complete in reasonable time. We therefore decided to randomly sample 1000 activity
patterns out of 5904 only for the reason of reducing computation time. A set of randomly
selected 1000 activity patterns requires 499,500 pairwise comparisons of three-dimensional
activity-travel patterns, which was possible to finish in 15 days of computation time on a
Pentium II PC of 450 MHz. Tables 7.10 and 7.11 show some statistics of the selected
activity patterns. The percent frequency of activities in the random selection (% frequency,
mean and standard deviation) do not show notable differences from those in the entire data
set of 5904 activity patterns (compare with Table 7.2). In that sense, the selected subset of
activity patterns can be said to be representative of the entire data set.

Pairwise comparison: The 499,500 pairwise comparisons including the dimensions of
activity type, location and transport mode were conducted using the Hybrid MDSAM as
developed in Chapter 4, which combines dynamic programming and genetic algorithms. The
weights of 2, 1 and 1 units were assigned to activity type, location and transport mode
attributes, respectively. The genetic parameter values were set as follows.

Table 7.10: % Frequency of activity occurrences per activity pattern

Activity % freq Activity % freq
Dshop 21.4 medical 4.8
nDshop 13.3 sport 9.4
Pbiz 5.4 church 1.8
social 28.6 union 2.9
entertain 8.9 cultural 3.0
recreat 3.8 other out 17.7
task 80.9 childcare 26.9
leis 93.2 illness 0.2
pickup 3.7
work/edu 72.9

# episodes per activity pattern: Mean 14.41 (STD=5.42)
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Table 7.11: Number of activity episodes with particular locations and transport modes per
activity pattern

Attributes Level Mean STD
home 11.91 5.49
work 0.70 0.93activity location
other 1.80 2.23

no 10.62 5.14
slow 1.93 2.08

public 0.35 0.74
transport mode

auto 1.27 1.67

- Number of solution candidates for an iteration = 100
- Stop condition = 50 iterations of successive generations of no improvement
- Elitism size = 1
- Neighborhood size = 1
- Diagonal path probability = 60%
- Probability of choosing reproduction/crossover/mutation for each iteration = 20/70/10
- Number of solution candidates selected for crossover from the previous pool = 40
- Number of solution candidates selected for mutation from the previous pool = 20
- Selection of solution candidates for modification = Random selection with replacement
- Crossover type = one-point crossover
- Mutation type = point mutation
- Probability of mutating a parameter of the solution candidate selected for mutation = 1%

Cluster solution and profiling: In an ordinary cluster analysis using commercial software
such as SPSS, the objects to be clustered are represented by a set of cross-sectional variables.
For example, individuals are often clustered in terms of their socioeconomic characteristics
such as income, age, gender, etc. However, activity-travel patterns cannot be clustered in this
way because the patterns cannot directly be compared on any cross-sectional variables but
on their sequential and interdependency information by using the proposed multidimensional
alignment method. In other words, we have only the pairwise distances between activity-
travel patterns, but we do not have any numerical data points describing the activity pattern
itself. As a consequence, this does not allow any non-hierarchical clustering algorithms such
as K-means analysis, which requires the mid points of segments that can be obtained only
when the numerical data points of individual objects are available. The hierarchical
algorithm is therefore the only option, as it requires only the information of the pairwise
distances between objects.

Ward method was used for iterative hierarchical clustering. The SPSS Cluster
Analysis provides a tree-like dendrogram that connects homogeneous cases into larger and
larger segments. Based on the dendrogram, seven clusters (or segments) could be identified.

Tables 7.12, 7.13 and 7.14 summarize the cross-sectional characteristics of the
activity patterns and the socioeconomic/situational characteristics associated with the
activity patterns for each segment. Regarding cross-sectional characteristics, Table 7.12
describes the average relative frequency of each activity per activity pattern, whereas Table
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7.13 reports the average number of episodes associated with each location and transport
mode.

Table 7.12: % Frequency of activity occurrences per activity pattern per segment

Activity
Segment1

(160)
Segment2

(301)
Segment3

(114)
Gsegment4

(149)
Segment5

(90)
Segment6

(111)
Segment7

(75)
Dshop 31.9 13.6 37.7 16.8 14.4 16.2 30.7
nDshop 13.8 8.0 28.9 8.7 13.3 12.6 20.0
Pbiz 6.3 2.3 12.3 4.0 7.8 3.6 8.0
social 48.8 17.9 41.2 23.5 21.1 18.9 42.7
entertain 11.9 7.3 6.1 20.1 3.3 4.5 4.0
recreat 7.5 0.3 1.8 6.0 2.2 7.2 5.3
task 92.5 65.8 100.0 69.8 86.7 82.9 100.0
leis 98.1 96.3 97.4 75.2 97.8 90.1 98.7
pickup 3.1 2.0 3.5 2.7 2.2 10.8 5.3
work/edu 36.3 95.3 42.1 79.2 95.6 84.7 50.7
medical 4.4 2.3 6.1 2.0 8.9 10.8 5.3
sport 12.5 8.0 7.9 9.4 16.7 8.1 4.0
church 2.5 1.0 5.3 0.0 0.0 1.8 4.0
union 1.9 4.0 2.6 4.7 1.1 1.8 1.3
cultural 5.0 2.3 5.3 5.4 1.1 0.0 0.0
other out 10.0 9.6 22.8 24.8 27.8 24.3 22.7
childcare 10.6 8.0 20.2 6.7 20.0 97.3 92.0
illness 0.0 0.3 0.0 0.7 0.0 0.0 0.0
# episodes
/pattern

13.88 11.55 20.41 9.68 16.61 14.23 24.93

Table 7.13: # activity episodes with particular locations and modes per pattern and segment

Attribute Level
Segment1

(160)
Segment2

(301)
Segment3

(114)
Segment4

(149)
Segment5

(90)
Segment6

(111)
Segment7

(75)
home 11.69 9.27 18.22 5.75 14.01 11.96 22.99
work 0.28 1.14 0.19 0.88 0.72 0.70 0.25location
other 1.91 1.15 2.00 3.02 1.88 1.56 1.69

no 10.04 8.00 16.74 5.88 12.54 10.27 20.65
slow 2.14 1.61 2.28 1.29 2.16 1.99 3.11

public 0.09 0.54 0.24 0.47 0.39 0.36 0.01
mode

auto 1.34 1.18 1.00 1.56 1.27 1.45 1.05

Table 7.14: Socioeconomic/situational characteristics

Variable
Segment1

(160)
Segment2

(301)
Segment3

(114)
Segment4

(149)
Segment5

(90)
Segment6

(111)
Segment7

(75)
male 46.5 54.5 34.5 61.2 61.8 43.7 21.3
car avail 62.6 47.5 48.4 64.4 40.0 61.3 42.3
child yes 40.8 51.6 39.8 41.1 59.1 97.2 91.7

Category
(%)

weekend 55.0 24.0 37.8 36.4 12.6 28.2 34.7
age 46.4 39.4 51.0 41.7 40.0 38.1 38.4
income 5.5 5.6 4.2 6.2 5.5 5.7 4.2Metric
work hr 17.52 27.67 12.17 29.91 22.01 29.11 17.8
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Based on the characteristics of activity patterns and the socioeconomic/situational
characteristics of seven clusters as shown in these tables, we can describe each segment’s
profile. Segments 2 and 4 represent work-oriented, simple activity patterns of long working
young people. Their cross-sectional characteristics state that the number of episodes per
activity pattern is the smallest among all seven segments, and work/education activities have
high frequency while the implementation of most other activities is suppressed. They do not
engage often in shopping, personal business or social activities. It is very rare that they
participate in a childcare activity. They even sometimes skip the in-home task activity,
which is supposed to be an everyday activity. The associated socioeconomic characteristics
of these two segments tell that they are relatively young and childfree, their income is high,
and they have a long weekly working hour. Most instances of the segment consist of
weekday activity patterns. However, differences between the two segments can also be
found. Segment 2 is more home-activity oriented after work, while Segment 4 is more out-
of-home oriented. This is shown by that Segment 4 has high occurrence for outside-
entertainment and cultural activities and low occurrence for in-home leisure activity, while
for Segment 2 this is the other way around. Additionally, car is more often available in
activity patterns of Segment 4 than Segment 2. Segment 2 can therefore be labeled as ‘work-
home only activity patterns,’ while Segment 4 can be labeled as ‘activity patterns of work-
and-outside activities.’

In contrast to Segments 2 and 4, Segment 3 shows activity patterns typically of
relatively work-free older people who conduct many activity episodes on a day. These
people very often conduct grocery and non-grocery shopping activities and social activities.
While being relatively free from work/education activity, they often visit church, medical
center, theater or museum. Although they mostly originate from childfree households,
childcare is often included. In sum, Segment 3 can be labeled as ‘work-free old people’s
busy activity patterns.’

Segment 5 consists of the activity patterns of relatively young people. Like Segment
2, the activity patterns are also very work-oriented with smaller frequency of shopping
activities and everyday-based in-home leisure activities. Their working hour is not that long
as in Segment 2, but is still much longer than in Segment 3. The activity patterns are often
from households with children, but the childcare frequency is not very high but more or less
the same as in Segment 3. The most distinguishable figure of this segment is the frequency
of sport activity, which is much higher compared to all other segments. This segment can be
labeled as ‘work-oriented, sportive activity patterns.’

Segments 6 and 7 represent the activity patterns typically of the youngest persons
among all seven segments. The activity patterns are also characterized by high frequency of
childcare activities. The childcare frequency is higher than 90%, and most of the activity
patterns are from households with children. The difference between the two is as follows.
Segment 7 shows more female-oriented characteristics with less work, more shopping and
high occurrence of social activities. On the other hand, Segment 6 shows a higher frequency
of work and the highest frequency of pickup and medical visits. Recreation also has a high
frequency for Segment 6, which is accompanied by high frequency of childcare activities.
Segment 6’s weekly working hour is much longer than Segment 7, and car is in majority of
cases available for Segment 6 but not for Segment 7. Segment 6 can be labeled as ‘the
activity patterns of both work and childcare-oriented, busy young people,’ while Segment 7
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may be called ‘the work-free, childcare and entertaining-oriented young females’ activity
patterns.’

Finally, Segment 1 is rather different from all others. The activity patterns of this
segment are least concerned with work activity, but show highest occurrence of social and
recreation activities and also high occurrence of cultural, outside-entertainment, sport and
grocery shopping activities. The associated age is high on average, weekly working hour is
very short, car is often available, and most of all, the day of the week that these schedules
were conducted fell in a weekend. This segment can be labeled ‘entertaining activity
patterns.’

Following these descriptive analyses on the segment profiles, a series of binary
logistic regression analyses were conducted to examine the extracted segment profiles in
terms of statistical significance. Given the membership of each activity pattern to one of the
seven segments as the dependent variable, two types of independent variables were input to
the binary logistic regression analyses, respectively: i.e., activity pattern characteristics and
socioeconomic/situational characteristics associated with the activity patterns.

Table 7.15: Estimated binary logistic regression model of activity-pattern characteristics

Variables Estimates sig. Variables Estimates sig.
Segment 1 a_Dshop

a_social
a_task
a_leis

a_work/edu
l_work

l_elsewhere
m_slow

m_public
m_auto
n_act

Constant

.529

.986
1.420
2.629
-1.573
-.587
-.173
.274
-.531
.151
-.204
-.095

.034

.000

.000

.000

.000

.008

.021

.000

.027

.065

.000

.847

Segment 5 a_Dshop
a_pickup

a_work/edu
n_act

Constant

-.791
-1.099
2.515
.112

-5.693

.020

.148

.000

.000

.000

Segment 2 a_recreat
a_leis

a_work/edu
l_work
m_slow

m_public
n_act

Constant

-2.097
1.863
1.705
.424
.096
.176
-.236
-.745

.045

.000

.000

.000

.047

.086

.000

.235

Segment 6 a_social
a_recreat

a_leis
a_pickup

a_work/edu
l_work

l_elsewhere
m_auto

Constant

-.486
1.183
-.634
1.665
.979
-.351
-.167
.110
-.587

.076

.008

.078

.000

.002

.027

.025

.088

.149

Segment 3 a_Dshop
a_nDshop
a_recreat

a_task
a_work.edu

l_work
m_slow
m_auto
n_act

Constant

.650

.729
-1.363
6.969
-.632
-.581
-.244
-.266
.182

-7.584

.017

.011

.109

.538

.021

.024

.000

.001

.000

.183

Segment 7 a_workedu
l_elsewhere

m_public
n_act

Constant

-.685
-.395

-1.596
.426

-9.548

.043

.001

.090

.000

.000

Segment 4 a_horeca
a_recreat

a_task
l_work

l_elsewhere
n_act

Constant

.967
1.710
1.360
1.159
1.397

-1.385
10.711

.036

.041

.000

.000

.000

.000

.000
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Table 7.16: Estimated binary logistic regression model of socioeconomic/situational
characteristics

Variables Estimates sig. Variables Estimates sig.
Segment 1 age

car available
work hour
weekend
Constant

.025

.666
-.017
1.592

-2.142

.004

.004

.006

.000

.000

Segment 5 male
car available

weekend
Constant

.754
-.958

-1.357
-2.990

.007

.001

.025

.000

Segment 2 car available
children

work hour
weekend
Constant

-.451
-.583
.027

-1.579
-2.204

.009

.001

.000

.000

.000

Segment 6 age
male

income
car available

children
weekend
Constant

-.047
-.938
.224
.617

4.578
-.873

-3.421

.002

.004

.001

.026

.000

.056

.000

Segment 3 age
income

work hour
weekend
Constant

.043
-.216
-.027
.659

-2.216

.000

.000

.002

.031

.000

Segment 7 male
children

work hour
Constant

-1.249
2.437
-.017

-2.802

.000

.000

.061

.000

Segment 4 age
male

car available
children

work hour
Constant

-.019
.538
.461

-1.011
.011

-1.238

.029

.020

.038

.000

.070

.007

The employed independent variable input method was the backward removal method with
the probability of removal of 0.1 and the number of iterations of 20. Each of two binary
logistic regression analyses, respectively based on the independent variables of activity-
pattern characteristics and the socioeconomic/situational independent variables, provided the
list of significant independent variables with their marginal contributions to the membership
of each segment and their statistical significance.

As for the analysis based on the activity-pattern characteristics, the independent
variables include: (1) The presence/absence of grocery shopping, non-grocery shopping,
personal business, social, outside-entertainment, recreation, in-home task, in-home leisure,
pickup and work/education activities; (2) The activity locations at work and elsewhere; (3)
Transportation modes distinguishing slow, public and auto; (4) The number of activities per
schedule on average. As for the analysis based on the socioeconomic/situational
characteristics associated with the activity patterns, the independent variables include: (1)
gender of the person; (2) car availability of the person; (3) children in household; (4) day of
the week of the schedule; (5) income of the person; (6) age of the person; (7) weekly work
hours of the person. The results of the binary logistic regression analysis based on each type
of independent variables are shown in Tables 7.15 and 7.16. These results show that the
logistic regression analyses support the segment profiles that were derived from the
descriptive analyses.

Segment-level estimation

Given the segments of more homogeneous activity-travel patterns, our problem is to estimate
for each segment the activity-specific parameters α, β, γ, αx, βx and Ux on the data of
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duration v and history T. The estimation results are examined with regard to the stability of
the estimates over repeated runs of different initializations of the heuristic estimation
procedure and the interpretability of the estimated values.

Data: Whereas the classification study was based on activity-travel patterns of categorical
attribute dimensions of activity type, location and transport mode, the estimation uses metric
data of activity duration and history. We accordingly reconstructed the input data of activity
patterns just as for the aggregate model.

A concern with the data preparation for the estimation in this case is that some
activities do not provide enough observations for some segments. Personal business, outside-
entertainment and recreation activities fall in this category. Even worse is that other key
activities such as grocery and non-grocery shopping activities and social activities do not
have enough observations for certain segments because of many missing values in activity
history information. For example, Segment 4 consisting of 149 activity patterns has only
nine activity patterns including a grocery-shopping activity, two activity patterns including a
non-grocery shopping activity and five activity patterns including a social activity with both
duration and history information. Given the number of parameters of six to be estimated for
each activity, this situation does not allow the estimation of these activities. We therefore
decided not to estimate parameters for the three activities with the smaller number of
observations (personal business, outside-entertainment and recreation) and merge some of
the seven segments into bigger segments, considering the dendrogram obtained in the cluster
analysis.

The result is three bigger segments, which now provide at least the minimum number
of observations for the five main activities including grocery and non-grocery shopping
activities, social activity, and in-home task and in-home leisure activities. Segment Group 1
(SG1) consists of small Segments 1, 5 and 6. Segment Group 2 (SG2) consists of Segments
2 and 4. Segment Group 3 (SG3) consists of Segments 3 and 7. Table 7.17 provides the
number of observations of grocery shopping, non-grocery shopping and social activities
before and after the merging.

Table 7.17 in combination with Table 7.13 also indicates that the primary difference
between segments was the average number of episodes per activity pattern. This implies that
the length of the activity pattern had the biggest influence on splitting the segments in the
first place. Segment Group 2 can be labeled as ‘young people’s work-oriented simple
activity patterns’, whereas Segment Group 3 can be labeled as ‘older people and females’
busy activity patterns of non-work activities’. Segment Group 1 is a mixture of Segment
Group 2 and Segment Group 3. It consists of the segments of activity patterns of long
working people (Segments 5 and 6) and of non-work entertaining people (Segment 1). They
are combined into one segment because of the following reasons. Although Segments 5 and
6 people work long, they participate in other activities too (sport for Segment 5 and childcare
for Segment 6), which complicates the activity patterns more than those of Segments 2 and 4
and increases the number of activity episodes per activity pattern on average. Segment 1
people are mostly participating in non-work activities, but their activity patterns are not as
simple as those of Segments 2 and 4 because they also participate in shopping, social and
sport activities frequently.
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Table 7.17: The number of observations of activities in each activity-pattern segment

Seg Group SG1 (361) SG2 (450) SG3 (189)
Segment G1 G5 G6 G2 G4 G3 G7
Dshop 16 5 2 23 11 9 20 17 8 25
nDshop 7 5 5 17 12 2 14 11 6 17
social 17 1 3 21 8 5 13 7 9 16

Stability: An estimation run was repeated 30 times to examine the stability of the parameter
estimates across runs. Each run involved random initializations of the genetic algorithm.
Given the high correlations between parameter estimates, the current segment-wise
estimation also applied the sequential estimation strategy. The estimation results across 30
runs are shown in Figures 7.4 to 7.6 for Segment Groups 1 to 3, respectively.

Parameter estimates of social activity in Segment Group 2 are the least stable among
activities, which is likely due to the small number of observations. Umax is the least stable
parameter, which is likely due to the wide range of possible solutions. βx is also less
consistent, which perhaps is due to the smaller marginal impacts on the utility level. Overall,
the parameter estimates across runs are quite stable. It is however not obvious whether the
stability of the parameter estimates of activities for each segment is improved compared to
the overall estimation. This is because the number of observations for each activity is smaller,
which may counterbalance the effect of more homogeneous activity patterns.

Interpretability: The sizes of parameter estimates for the different activities were examined
to assess the face validity regarding the profiles of the segments. By taking the averages
across 30 runs, the parameter estimates were obtained as shown in Table 7.18. The α
parameter size is in the order of [in-home leisure > social > task > non-grocery > grocery
shopping activities] for Segment Group 1, [social > in-home leisure > in-home task > non-
grocery > grocery shopping activities] for Segment Group 2 and [in-home leisure > in-home
task > social > non-grocery > grocery shopping activities] for Segment Group 3, respectively.
A sharp contrast is that Segment Group 2’s α of social activity is very big while Segment
Group 3’s α of in-home task is very large. The α of Segment Group 1 show approximately
average trends between Segment Groups 2 and 3 across activities.

The β parameter size is very small for social, in-home task and in-home leisure
activities across segments. The β for non-grocery shopping is also very small in Segment
Groups 1 and 2, while it is rather big in Segment Group 3. The biggest difference in β size
between segments can be found in grocery shopping activity. The β of Segment Group 2 is
very large, whereas Segment Group 3’s is very small that is almost the same as the β of non-
grocery shopping. Segment Group 1 shows again an in-between figure.

The overall level of the γ parameter value is higher in Segment Group 3 than in
Segment Group 2, but one cannot say that there is a significant difference. The lowest γ
value activity is social activity in Segment Group 3, whereas this parameter is lowest for
non-grocery shopping in Segment Groups 1 and 2. The difference between Segment Groups
1 and 3 is bigger than that between Segment Groups 2 and 3 in this parameter.
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βx Ux

Figure 7.4: Segment Group 1 (Segments 1, 5 and 6: 361 activity patterns)
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Figure 7.5: Segment Group 2 (Segments 2 and 4: 450 activity patterns)
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Figure 7.6: Segment Group 3 (Segments 3 and 7: 189 activity patterns)
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Table 7.18: Parameter estimates of Segment Groups

Parameter estimates of Segment Group 1 (SG1)
Activity α β γ αx βx Ux

Dshop 19.02 0.414 0.527 3.697 0.577 1848
nDshop 39.95 0.167 0.105 0.022 8.804 5118
social 154.49 0.038 0.554 0.006 9.771 1348
task 124.79 0.033 0.525 1466
leis 213.98 0.032 0.522 1279

Parameter estimates of Segment Group 2 (SG2)
Activity α β γ αx βx Ux

Dshop 17.32 0.646 0.639 5.861 0.014 1343
nDshop 41.45 0.136 0.345 0.016 0.674 3241
social 228 0.069 0.601 0.008 7.359 9942
task 85.72 0.047 0.483 1486
leis 163.77 0.025 0.563 1368

Parameter estimates of Segment Group 3 (SG3)
Activity α β γ αx βx Ux

Dshop 26.04 0.205 0.570 2.777 0.874 1306
nDshop 49.68 0.210 0.596 0.048 8.341 2297
social 96.47 0.068 0.229 0.006 1.652 4400
task 202.17 0.036 0.582 1303
leis 249.88 0.027 0.687 1241

The αx parameter level shows almost no difference between segments for non-
grocery shopping and social activities, except the grocery shopping activity. Non-grocery
shopping and social activities’ αx values are very close to zero, implying that there is no
increasing marginal utility period for the Umax level in these activities with regard to activity
history. The αx parameter value in Segment Group 2 is about six days while that in Segment
Group 3 is three days. Segment Group 1 again shows an in-between figure.

The βx parameter estimates is extraordinarily high for the social activity in Segment
Group 2 and for non-grocery shopping in Segment Group 3. Moreover, Segment Group 1
has the highest βx estimates for both non-grocery and social activities. The reason for these
extraordinarily high, and unreliable results is partly the limitation of the influence of this
parameter’s size on the activity utility, which requires more observations to identify. At the
same time, if the value of this parameter is bigger than 1, the utility curve is extremely steep
and effectively suggests a constant function determined directly by Ux instead of a function
of activity history. The stable parameter value of grocery shopping activity suggests that the
increase of Umax level is steeper in Segment Group 3 than in Segment Group 2.

The Ux estimates are also less reliable than others, but this is perhaps due to the
bigger range of possible values for estimates. The grocery shopping, in-home task and in-
home leisure activities are almost the same in Ux, having values ranging from 1000 to 2000.
It is difficult to interpret the social activity’s Ux estimates because they are not very stable
and are extraordinarily high. Except this, it can be said that the Ux of non-grocery shopping
is in general rather higher (highest in Segment Group 1) than other activities’, and social
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activity’s Ux is highest in Segment Group 3. Grocery shopping activity’s Ux is highest in
Segment Group 1.

As the final analysis for examining the existence of significant differences in
parameter estimates between the three segments, an ANOVA procedure was taken for each
of six parameters of each of five activities to study the between-segment differences of the
parameter estimates compared to the within-segment differences. Table 7.19 shows that the
difference in the parameter estimates are clear between segments and strongly supports the
relevance of the clustering the segments of more homogeneous activity-patterns in order to
gain more insights from the estimation into activity utility functions.

In sum, the estimation results do differ between classified segments and are
interpretable and consistent with the activity-pattern and socioeconomic/situational profiles
of the segments, except for some activities for which there were not enough observations. In
particular, more observations are required for non-daily shopping and social activities for
more reliable estimates. The parameter estimation results are clearly distinguishing between
labels of each segment of homogeneous activity-travel patterns, and the interpretability is
improved in this segmentwise estimation compared to the overall estimation.

7.5 Conclusions and discussion

The aim of this chapter was to estimate the activity utility functions underlying the A urora

model. To that effect, a total of 303 activity patterns were selected from the A madeus  data
set for overall estimation of the activity utility functions, and a total of 1000 activity patterns
were randomly drawn for a cluster analysis and subsequent segment-level estimation.

Overall, the results of estimating the activity utility functions are stable and
interpretable. The results of the estimations suggest that all the parameter values differ
substantially between segments, providing evidence that the sensitivity of utility to the
marginal change in duration differs between groups, and therefore that schedule adaptation
behavior substantially differs between groups. Some interesting differences can be observed.
The α parameter for social activities for Segment Group 2 (young, work-oriented) is
significantly higher than for the other segments. This suggests that young, work-oriented
individuals tend to be involved in social activities for a longer time to derive a certain utility
value. In contrast, this parameter for this group is smaller for task and leisure activities,
which is highest for Segment Group 3 (elderly and women). As for the β parameters, the
results indicate that Segment Group 2 (young, work-oriented) is more sensitive to changes in
shopping time duration for daily grocery goods compared to the other segments, suggesting
a higher time pressure. An interesting result stemming from the estimated γ parameters is
that the marginal utility for non-grocery shopping relatively quickly diminishes for Segment
Group 1 (others).

As for activity history, the αx parameters level shows almost no difference between
segments for non-grocery shopping and social activities.
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Table 7.19: ANOVA test results of difference in parameter estimates between segments

Parameter Activity
Sum of
Squares

d.f. Mean Square F sig.

Between-G 1281.70 2 640.85 6709.32 0.00
Dshop Within-G 8.31 87 0.10

Total 1290.01 89
Between-G 1649.62 2 824.81 507.30 0.00

nDshop Within-G 141.45 87 1.63
Total 1791.07 89
Between-G 260612.12 2 130306.06 12686.35 0.00

α social Within-G 893.61 87 10.27
Total 261505.73 89
Between-G 210706.35 2 105353.17 2616572.8 0.00

task Within-G 3.50 87 0.04
Total 210709.85 89
Between-G 112249.01 2 56124.51 127361.46 0.00

leis Within-G 38.34 87 0.44
Total 112287.35 89
Between-G 2.93 2 1.46 703.53 0.00

Dshop Within-G 0.18 87 0.00
Total 3.11 89
Between-G 0.08 2 0.04 7.64 0.00

nDshop Within-G 0.48 87 0.01
Total 0.57 89
Between-G 0.02 2 0.01 5619.13 0.00

β social Within-G 0.00 87 0.00
Total 0.02 89
Between-G 0.00 2 0.00 9124.30 0.00

task Within-G 0.00 87 0.00
Total 0.00 89
Between-G 0.00 2 0.00 20016.10 0.00

leis Within-G 0.00 87 0.00
Total 0.00 89
Between-G 0.19 2 0.10 68.46 0.00

Dshop Within-G 0.12 87 0.00
Total 0.31 89
Between-G 3.36 2 1.68 2210.08 0.00

nDshop Within-G 0.06 83 0.00
Total 3.42 85
Between-G 2.46 2 1.23 140689.49 0.00

γ social Within-G 0.00 87 0.00
Total 2.46 89
Between-G 0.15 2 0.07 49042.28 0.00

task Within-G 0.00 87 0.00
Total 0.15 89
Between-G 0.44 2 0.22 221174.17 0.00

leis Within-G 0.00 87 0.00
Total 0.44 89

to be continued
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Between-G 150.40 2 75.20 1458.08 0.00
Dshop Within-G 4.49 87 0.05

Total 154.89 89
Between-G 0.02 2 0.01 6.79 0.00

αx nDshop Within-G 0.11 87 0.00
Total 0.13 89
Between-G 0.00 2 0.00 0.25 0.78

social Within-G 0.01 87 0.00
Total 0.01 89
Between-G 11.46 2 5.73 1001776.1 0.00

Dshop Within-G 0.00 87 0.00
Total 11.46 89
Between-G 1250.91 2 625.45 2585.23 0.00

βx nDshop Within-G 21.05 87 0.24
Total 1271.96 89
Between-G 1043.28 2 521.64 582.78 0.00

social Within-G 77.87 87 0.90
Total 1121.15 89
Between-G 5242433.41 2 2621216.71 41.85 0.00

Dshop Within-G 5323844.80 85 62633.47
Total 10566278.21 87
Between-G 118696622.95 2 59348311.47 58.56 0.00

nDshop Within-G 86146351.02 85 1013486.48
Total 204842973.97 87
Between-G 1138653273.9 2 569326636.95 2971.54 0.00

Ux social Within-G 16668599.72 87 191593.10
Total 1155321873.6 89
Between-G 608133.15 2 304066.57 12871.76 0.00

task Within-G 2055.18 87 23.62
Total 610188.33 89
Between-G 254885.54 2 127442.77 6140.39 0.00

leis Within-G 1805.67 87 20.75
Total 256691.21 89

The parameter is however highest for Segment Group 2 (young, work-oriented) for grocery
shopping, suggesting that people in this group have longer interval between shopping events
(or lower frequency of shopping activities). The βx parameter estimates are extraordinarily
high for non-grocery shopping in Segment Group 2 (young, work-oriented) and for social
activities in Segment Group 3 (elderly and women). The estimates suggest that young, work-
oriented people have a strong preference for the (long) non-grocery shopping interval,
whereas elderly and women have a strong preference for specific social activities’ interval.
Considering the large size of these values, however, the results may reflect that the system
failed to converge to reliable estimates because of a lack of observations of these activities.
Grocery sopping on the other hand is stable perhaps because it has more observations than
the others. The Ux of social activities is relatively low for Segment Group 1 (others)
suggesting that the maximum utility level for this segment does not build up because they
conduct social activities more frequently. In contrast, Segment Group 2 (young, work-
oriented) has a very high value of Ux for social activities probably because they conduct
social activities relatively rarely. Overall, the analysis results prove the face validity of the
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estimated parameter values and indicate that segment-wise estimation of the activity utility
functions is needed.

The results suggest that the estimation method is suitable to estimate utility functions
from activity duration data. The resulting estimated utility functions could be used to
simulate and predict schedule adaptation of individuals, faced with time pressure. With some
exceptions, especially some activities that do not have enough observations, the results can
be interpreted well.

Ultimately, the application of the A urora model requires the implementation of the
other part of the model, the search tree, as well. That part of the model simulates the decision
processes given estimated activity utility functions. Only at the level of the complete
schedule model, the implications of the parameter estimates for the adaptive behavior of the
model can be tested. The method proposed relies on the assumption that the marginal
utilities of activities in the same schedule are equal. A concern is that the observed duration
may not always be stable in terms of the marginal utility because of imperfect information,
fatigue and discontinuous constraints such as opening hours, which may result in prediction
error. It should be tested whether the search tree component is able to reproduce observed
activity patterns and plausible adaptation processes given the estimated parameters.



8 Conclusions and discussion

The aim of this research project has been to explore the possibilities of developing a model
of activity rescheduling behavior. The model that was developed was given the acronym
A urora (Agent for Utility-driven Rescheduling of Routinized Activities). Similar to the
utility-maximizing models of transport demand, the model is based on the concept of utility,
but it differs in a number of important respects from these models. First, the A urora model
assumes that utility is a continuous function of the duration of activities. Unlike existing
time-allocation models, the utility function is assumed to be asymmetric S-shaped. This has
the theoretical advantage that one can differentiate between a “warming up” period, which
will typically differ between activities, and the remaining duration. The (asymptotic)
maximum utility is assumed to be a function of history, state, time of day, etc, allowing the
model to simulate context-dependent behavior. This is a second major difference between
A urora and the existing utility-maximizing models of transport demand. Thirdly, although
individuals are assumed to try and increase their utility, concepts such as resistance to
change and limited mental effort are incorporated in the modeling process. Decision
heuristics as opposed to optimization are used. In addition, A urora allows for different
decision styles in the sense that some travelers may be taking risk, when faced with time
pressure and delays in the implementation of their activity schedule, while others may be
risk-avoiders. For these reasons, the model is likely more in tune with the process of activity
rescheduling behavior compared with the existing utility-maximizing models, which tend to
focus on the output patterns.

The development of the model involved several operational problems that needed to
be solved. First, the sequence of activities is of central concern of any model of activity
rescheduling behavior. This implies that the similarity measure used to classify activity-
travel patterns should be sensitive to differences in activity sequence between activity-travel
patterns. Because commonly used Euclidean distance measures are not sensitive to such
differences, and signal processing measures have some other disadvantages, a new measure
had to be developed. Exploring some options, it was decided to elaborate and extent
sequence alignment methods. In particular, the uni-dimensional sequence alignment method
was generalized to a multidimensional sequence alignment method. The advantage of this
multidimensional measure is that it captures the interdependencies in the various facets of
activity rescheduling decisions. To reflect and emphasize the wider application of the
developed measures, it was decided to organize the thesis in two parts, the first part devoted
to the measurement of activity-travel patterns. The alternative would have been just to
devote a single, condensed chapter on the new multidimensional sequence alignment
measure. This part now discusses in more detail the original measure, the generalizations
that were formulated and some examples using empirical data to show the potential of the
newly suggested measures, doing more justice to these contributions to the literature and the
substantially improved possibilities for descriptive analysis of activity-travel patterns.

Secondly, sequence alignment measures equate similarity to the amount of effort
required to make two sequences of information identical and, therefore, any exact algorithm
used to calculate the similarity in a multi-dimensional space encounters the problem of
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combinatorial explosion in the number of alternative trajectories. Computing times will then
become prohibitive for real-sized samples. If the aim of the study is to classify activity-travel
patterns, this may mean that one can only use a (small) sub-sample for classification. We
therefore developed and tested several heuristic algorithms and ultimately decided that a
combination of a dynamic programming algorithm and a dedicated genetic algorithm
produced the best results. It reduced the computing time for 1540 comparisons of 56 three-
dimensional patterns from 76 minutes and 54 seconds to 27 seconds, without affecting the
performance of the solution too much (83.8 percent correct solutions). Overall then, the
numerical and empirical evidence suggest that the newly developed generalizations of the
uni-dimensional sequence alignment method, together with the specific algorithms that were
developed potentially offer a valuable way of measuring similarity between activity-travel
patterns.

Future research using other datasets should learn whether the results that we obtained
are typical for the datasets that we used or are generalizable results across time, space and
culture. The specific way of addressing the problem may also be used in other types of data
analysis. In terms of segmentation, the focus of the present analysis was similar to cluster
analysis. The aim is to classify activity-travel patterns. Another line of interesting descriptive
analysis, more akin to techniques such as factor analysis, would be to identify the common
elements in activity-travel patterns. Algorithms for uni-dimensional sequences already exist,
but it would be interesting to extend these in future research to multi-dimensional, multi-
faceted activity profiles.
 A third operational problem that was encountered concerns the estimation of the
asymmetric S-shaped utility function of the A urora model. Although we feel this
specification has some theoretical appeal, it implies that the parameters of the utility function
are difficult to estimate: an algebraic solution is not available, the underlying schedule
decisions are non-linear and state-dependent, and the model should meet several
discontinuous constraints. It was decided to explore the potential of an intelligent, theory-
driven approach. This newly developed estimation method is based on the critical
assumption that observed activity-travel patterns exhibit a state of equilibrium of equal
marginal utility across activities embedded in the activity-travel pattern. A tailored genetic
algorithm was then developed to search the solution space. Because it turned out that the
various parameters representing the utility functions are highly correlated, it is desirable to
adopt a sequential estimation approach, which produced convincingly the best results. The
method was specially developed for the case where duration and activity history data at the
daily schedule level are available. The results of an exploration of the performance of this
sequential approach suggest that it is a potentially powerful approach for estimating the
utility functions underlying the A urora model.

It has to be acknowledged however that the estimation problem that was addressed in
this study only partially solves the estimation problem. In the present study, the maximum
utility was related to history only; other facets of activity schedules were not addressed.
Moreover, the reliability of some of the history data may be an issue in the sense that the
data that were used were not collected specifically with A urora in mind. Better history data
might have produced even more convincing results. Future research should address this issue
and also explore the generalizability of the newly developed method to the problem of multi-
faceted utility functions. Another issue that deserves further attention is the assumption of
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the linear function that is used to reflect time pressure. It may be that nonlinear, bi-modal
functions are more flexible allowing the algorithm to find better parameter estimates. Future
research should shed a better light on this issue.

The decision to develop first a method based on cross-sectional (outcome) activity-
travel data also has some important ramifications for a future research agenda and the current
status of the A urora model. First, the assumption of equal marginal utility does not only
apply to rescheduling decisions, but can also be used in models of activity scheduling
behavior. This means that A urora can also be viewed as a model of activity scheduling
behavior, starting with an empty agenda. It is also the reason why at certain places we did
not differentiate between scheduling and rescheduling behavior. Secondly, critics may argue
that the evidence that was provided cannot be viewed as evidence of rescheduling behavior
and also that the suggested estimation method does not involve any rescheduling data. Such
criticism would be fair and indeed it is desirable to collect rescheduling data and examine
whether the positive results that were obtained in this study generalize to such data. The
structure of the data however would remain the same and there is no reason to believe that
the guiding principle of equal marginal utility would not equally apply to rescheduling data.

Regardless of one’s view about the current evidence on the face and predictive
validity of A urora, the use of empirical rescheduling data and the use of the model in a
simulation context, implies the need to develop an operationalization of concepts such as
mental effort, resistance to change etc. One approach again would be a more or less
straightforward approach in which one derives values for the operators in the search tree that
drive this process, and that potentially make the rescheduling process differentiate from an
equilibrium state. Alternatively, the multidimensional sequence alignment method that was
developed in this study can also be viewed as the effort that is involved in changing the
current activity-travel patterns into another pattern, a lower distance representing less effort.
Hence, the measure that was suggested may also be used as an operationalization of the
concept of resistance to change.

A full-fledged implementation of the model also implies that one would have to
simulate activity (re)scheduling decisions of a whole population of at least a larger sample if
one would be satisfied with a general set of correction factors. Despite the tremendous
improvement in the computing times of the various algorithms that were developed, the
current test of the model was based on a sub-sample of 303 multidimensional activity-travel
patterns only instead of the entire sample of 6950 activity-travel patterns. It seems that
parameter estimation based on a substantially larger sample is impossible at the current level
of knowledge and technology, and hence alternatives should be explored. In particular, in
future research, it may be interesting to explore the possibility of developing a learning
algorithm, starting with a relatively small, but representative sub-sample and then
sequentially adding cases according to some criteria until a stable set of parameters is
obtained. Even better would be an approach in which such a learning algorithm would
simultaneously identify homogeneous, but distinctive segments. Additional cases could then
be added to the clusters using profiling.

These reflections on the limitations of the current project and interesting future
research issues indicate that the work on developing A urora certainly is not yet completed.
The project has made several contributions to the literature, but additional work is required
before the model can be used in a micro-simulation of dynamic activity-travel choice. The
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conceptual framework includes several new concepts and represents a view of linking
traditional utility theory to a more process-oriented view of complex decision-making. The
estimation method that was developed can also be used in other contexts to estimate
asymmetric, S-shaped utility functions. The experiences with alternative specifications and
alternative genetic algorithms may be relevant to other applications as well. Certainly, any
genetic algorithm should be tailored, and one should be very cautious about any
straightforward, brute force genetic algorithm. The newly developed generalizations of uni-
dimensional sequence alignment methods have opened up new possibilities for analysis.
Hopefully, the research community in activity-based analysis will find these elements useful
in their research endeavors.

Before a full operational A urora model will be available, however, some additional
problems need to be addressed in future research projects. The most important of these are
testing the behavior of the model in scheduling activities, estimating the parameters
characterizing the search tree and incorporating the model in an agent-based simulation of
dynamic activity-travel choice behavior. The results obtained thus far suggest that
addressing these issues is worthwhile.
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English Summary

Transportation policy is mostly concerned with the physical planning of the transportation
network and land use, and transportation demand management. Among these, transportation
demand management becomes increasingly more important as it focuses on the optimal use
of the existing infrastructure. Recently, substantial progress has been made in developing so-
called activity-based models of transport demand. These models focus on the complex
interdependencies in the various facets of activity-travel patterns and hence offer a valuable
alternative to the traditional four-step approach to transport demand forecasting. Despite the
rapid and continuing progress, most of these activity-based models, however, are based on
correlations between facets of activity-travel patterns and a set of “explanatory” variables.
They are concerned with structure and outcome, not with the process. Models that generate
an activity schedule or adjust an existing schedule as a function of sudden changes in the
environment or the transportation system or unexpected events in the implementation of a
planned schedule are still rare. However, especially these types of models are required to
predict the impact of transportation demand management on (the dynamics of) daily activity-
travel patterns.

The importance of this field of research becomes obvious if it is realized that
transportation systems and urban environments are highly dynamic, non-stationary and
uncertain. Individuals need to schedule and reschedule their activities in ever changing
decision contexts associated with changes of transportation environment. In doing so, they
potentially can change multiple facets of their activity schedule. Existing models however
typically focus on a particular choice facet isolated from others or do not deal with daily
dynamics.

To contribute to this rapidly evolving field of research, the aim of this Ph.D. research
project is to explore the possibilities of developing a comprehensive model of dynamic
activity (re)scheduling behavior. The aim of the model is to predict activity schedule
adaptations in response to changes in the transportation environment. When faced with a
changing transportation environment, time pressure or unexpected events, individuals may
decide to adjust any facet of their activity-travel schedule (timing, duration, sequence,
destination, mode, etc) or any combination of these facets. The envisioned model should
allow the prediction of adaptation in any combination of these choice facets. Especially, the
model should be sensitive to the sequencing of activities.

To account for heterogeneity, the estimated model is based on a classification of
activity-travel patterns. Because such a classification requires an adequate, sequence-
sensitive and multidimensional similarity measure, which appeared not to be available, a
sub-goal of the project was to develop a measure that can capture sequential differences
between activity-travel patterns and that can be used to classify activity-travel patterns. To
this effect, the thesis is organized in two main parts and a series of chapters. The first part is
concerned with the measurement of the similarity, while the second part is concerned with
the model of activity (re)scheduling behavior. To position the research project, first, in
Chapter 2, a brief summary of the state-of-art in activity-based modeling is given. In
particular, this chapter concentrates on previous research on measuring and classifying
activity-travel patterns and on cross-sectional and dynamic models of activity-travel patterns.
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Based on this literature review, the first part of the study began with Chapter 3 that
introduced a sequence alignment method to measure similarity between activity sequences.
First, the original method was applied to capture the sequential information embedded in
activity data. An empirical analysis using the original sequence alignment in the context of
shopping history sequence data illustrated that the segmentation does involve not only
information about activity composition but also information of sequential relationships
between activities. The latter type of information is not captured by traditional Euclidean
similarity measures. Then, the original sequence alignment measure was extended in various
ways. First, a position-sensitive method was developed. A subsequent analysis of activity
diary data showed that the extended position-sensitive alignment method could further
distinguish activity sequences with regard to the number of positions by which activities are
to be reordered in order to make two sequences equal.

Secondly, and most importantly for the present study, a multidimensional sequence
alignment method was proposed. This multidimensional method is of great importance
because it reflects the fact that activity-scheduling decisions are interrelated in the sense that
decisions are often made on multiple choice-facets. This multidimensional extension of the
uni-dimensional alignment method is developed in Chapter 4. The quintessence of the
method is that it captures the interdependencies among the multiple facets of a particular
activity, while maintaining the fundamental property of sequence alignment methods of
capturing both the sequential and compositional information embedded in a string of
information: an activity-travel pattern in our case. The proposed method was tested using
empirical activity diary data. The results suggest that the proposed method indeed can
capture these relationships and produces a segmentation that is distinctive from the results of
conventional Euclidean measures and simple sums of uni-dimensional alignment methods.

When developing this method, the combinatorial explosion of alternative candidate
solutions implied very high computing times. These times would be prohibitive for using the
suggested measure as a measure of goodness-of-fit in parameter estimation. Hence, several
heuristic algorithms were explored and compared in terms of their performance. The results
reported in Chapter 4 indicate that a hybrid method, combining a dynamic programming
technique, used to find an initial solution, and a genetic algorithm-based method performed
best.

The results of a comparative analysis of the proposed method involving a Euclidean
distance measure, previously often used in activity analysis, a signal processing theoretical
method, and the simple sum of uni-dimensional sequence alignment methods, are also
reported in Chapter 4. The analysis showed that the similarity measures of the proposed
method differ from those of the other measures, implying that the choice of method will
have an impact on the cluster solutions/segmentation. It turned out that, at least for the data
that were used, the segmentation generated by the proposed method better distinguished
activity-pattern characteristics compared to all other measures. Moreover, similar to the
results of the signal processing theoretic method, there was a stronger relationship with
socio-economic characteristics compared to Euclidean and the simple sum of uni-
dimensional alignment measures. These results provide evidence that the proposed method is
potentially valuable in measuring the similarity between activity-travel patterns and
measuring the goodness-of-fit of a model’s predictions against observed activity-travel
patterns.
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The second part of the study describes the findings of the modeling work. In Chapter
5, the conceptual framework, mathematical specification and operational definitions of the
model, titled A urora (Agent for Utility-driven Rescheduling Of Routinized Activities), are
developed. The proposed model assumes that when scheduling or rescheduling activities,
individuals attempt to maximize their utility by an iterative heuristic decision-making
process, subject to a set of constraints and costing mental effort. The theoretical
underpinnings of the model differs from utility-maximizing approaches in that it is assumed
that individuals’ cognitive capacity is limited, and hence, they use heuristics to find an
acceptable alternative within a reasonable amount of time for search and adaptation effort. A
set of illustrations using simulated schedule data provided evidence of face validity of the
proposed model.

The model developed in Chapter 5 involves a rather complex and unconventional
activity utility function incorporating a variety of choice facets and decision-making
heuristics operationalized in terms of various scheduling operators for near-best schedule
adjustments. These theoretically valuable properties of the utility function, however, make
the parameter estimation anything but straightforward: an algebraic solution is not available,
the underlying schedule decisions are non-linear and state-dependent, and the model should
meet several discontinuous constraints. In Chapter 6, therefore a new method to estimate the
activity utility function is suggested. The suggested estimation method is based on the
critical assumption that observed activity-travel patterns exhibit an equilibrium state of equal
marginal utility across activities for each activity-travel pattern. A tailored genetic algorithm
was then developed to search the solution space. The method was specially developed for the
case where duration data are available. Before applying the proposed method to real
empirical data, the performance of the estimation method was assessed using simulated
duration data. The results of estimation on simulated data indicate that the proposed method
performs well on exact data and reasonably well on noisy data.

Finally, in Chapter 7, the proposed estimation method was applied to real empirical
data collected in the Amsterdam-Utrecht corridor in the year of 2000, involving a total of
6950 activity-travel patterns of 3575 individuals from 1966 households. The estimation was
conducted in two phases. First, activity utility functions, involving six parameters for each of
eight flexible activities, were estimated for a sub-sample of activity patterns representing the
entire data. Secondly, activity utility functions were estimated for three segments, which
were derived on the basis of the multidimensional sequence alignment measure, developed
in the context of this thesis. While the aggregate estimation focused on overall
characteristics of the utility functions of each activity, this segment-based estimation
highlighted particular segment-specific sets of activity utility functions. The estimation
involves a sub-sample of activity-travel patterns. The results obtained suggest that the
A urora model presents a potentially valuable approach to modeling activity scheduling and
rescheduling behavior. The current version of the model suffices to estimate utility functions
and characterize the (re)scheduling behavior of individuals. When the goal, however is, to
have a full-fledged predictive model of rescheduling decisions, the estimated utility
functions should be linked to a dedicated sub-model of recursive decision-making heuristics
in a simulation environment.



228                                                                                                                  English Summary



Samenvatting

Traditioneel is verkeersbeleid sterk gericht op grondgebruik en infrastructuur. Voor de
bepaling van de effecten van dat beleid, zijn in de loop der tijd verschillende modellen
geformuleerd. Met name het zogenaamde 4-fasen model wordt in de praktijk veelvuldig
toegepast. Dit model voorspelt het aantal verplaatsingen per gebied, de verdeling van de
vervoerwijze, bestemmingskeuze en routekeuze. Gedurende het laatste decennium is dit
model steeds meer vervangen door zogenaamde activiteitengebaseerde modellen. Deze
modellen hebben als uitgangspunt de gedachte dat verkeersstromen ontstaan doordat mensen
activiteiten verrichten. Activiteitengebaseerde modellen voorspellen welke activiteiten waar
worden verricht, hun begin- en eindtijd, soms met wie, routekeuzen en de vervoerwijzen die
daarbij worden gebruikt. De complexiteit en de onderlinge afhankelijkheden in
activiteitenreispatronen kunnen beter worden afgebeeld en deze modellen hebben daardoor
potentieel meer waarde voor verkeersplanning, met name voor die aspecten die zich richten
op de structurele relaties tussen verdeling van grondgebruik, infrastructuur en
activiteitenreispatronen.

In de praktijk valt de laatste tijd veel meer aandacht te constateren voor
verkeersmanagement teneinde de bestaande infrastructuur optimaal te benutten. Dergelijk
beleid vereist een ander modeltype. Weliswaar zijn de laatste tijd verschillende modellen
voor vertrektijdkeuze en dynamisch routekeuzegedrag ontwikkeld, maar het nadeel van deze
modellen is dat ze doorgaans slechts een specifiek aspect van het proces betreffen, zelden
worden de effecten van integrale activiteitenpatronen gesimuleerd.  Indien individuen echter
hun activiteitenagenda moeten aanpassen in verband met onverwachte gebeurtenissen of
signalen van intelligente vervoerssystemen, dan kan men dat doen door meerdere facetten
van hun activiteitenpatroon aan te passen. Bovendien kan een verandering van een activiteit
aan het begin van de keten gevolgen hebben en aanpassingen noodzakelijk maken voor
activiteiten later op die dag.

In een poging een bijdrage te leveren aan dit snel ontwikkelend terrein van onderzoek,
is het doel van dit promotieonderzoek de mogelijkheden te verkennen van de ontwikkeling
van een alomvattend model dat voorspelt hoe individuen hun activiteitenagenda aanpassen in
reactie op veranderingen in de verkeersomgeving, tijdsdruk of onverwachte gebeurtenissen.
Onder dergelijke omstandigheden kunnen individuen beslissen een of meerdere facetten van
hun activiteitenpatroon aan te passen (begin of eindtijd, duur, volgorde van activiteiten,
bestemming, vervoerwijze, etc.). Het model moet in staat zijn aanpassingen in een
willekeurige combinatie van deze facetten te voorspellen.  In het bijzonder dient het model
gevoelig te zijn voor aanpassingen in de volgorde van de activiteiten.

De schatting van het model is gebaseerd op een classificatie van activiteitenpatronen.
Deze classificatie dient idealiter gebaseerd te zijn op een similariteitsmaat, die gevoelig is
voor de volgorde van activiteiten in een activiteitenreispatroon. Omdat een dergelijke maat
niet bestaat, is een subdoel van dit promotieonderzoek een maat te ontwikkelen, die
verschillen in volgorde tussen activiteitenreispatronen detecteert. Een dergelijke maat kan
worden gehanteerd voor het segmenteren van patronen of als maat, die aangeeft hoe goed
een model de waarnemingen representeert.

Conform deze doelstellingen is het proefschrift opgebouwd in twee delen. Het eerste
deel handelt over het meten van similariteit, terwijl het tweede deel gaat over
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modelontwikkeling. Teneinde het project te positioneren in de bestaande literatuur, wordt
echter eerst, in Hoofdstuk 2, een korte samenvatting gegeven van de bestaande literatuur op
het gebied van activiteitenanalyse. In het bijzonder wordt hier ingegaan op onderzoek over
de meting en classificatie van activiteitenpatronen en op modellen over
activiteitenreispatronen.

Gebaseerd op deze samenvatting van de bestaande literatuur, wordt in Hoofdstuk 3
het zogenaamde “sequence alignment methode” geïntroduceerd, die kan worden gebruikt
voor het meten van de similariteit van activiteitenpatronen en gevoelig is voor de volgorde
van de activiteiten. De oorspronkelijke methode wordt toegepast op panelgegevens over
winkelgedrag om te illustreren dat deze methode zowel rekening houdt met de samenstelling
van de (winkel)activiteiten als met de volgorde informatie in de paneldata. Traditionele
maten, gebaseerd op Euclidische afstanden, houden geen rekening met volgorde-informatie.
Vervolgens wordt de oorspronkelijke sequence alignment op verschillende wijze uitgebreid.
Allereerst wordt een positiegevoelige maat ontwikkeld. Een analyse op gegevens uit
activiteitendagboekjes toonde aan dat deze nieuwe maat beter in staat is onderscheid te
maken tussen activiteitenpatronen met betrekking tot het aantal positiewisselingen c.q.
herschikkingen van activiteiten die nodig zijn om twee sequenties identiek te maken.

Daarnaast is een meerdimensionale maat ontwikkeld. Het belang van deze maat is dat
aanpassing van een activiteitenreispatroon meerdere facetten in hun onderlinge samenhang
kunnen betreffen. In hoofdstuk 4 wordt deze uitbreiding besproken, en wederom getest op
grond van activiteitendagboekjes. De resultaten van deze analyses tonen aan dat de
voorgestelde methode goed in staat is de onderling relaties en afhankelijkheden in
activiteitenpatronen te meten en resulteert in een segmentatie die duidelijk verschilt van
segmentatie op grond van conventionele Euclidische afstandsmaten en de sommering van
uni-dimensionele alignment methoden.

Een probleem dat zich voordeed bij de toepassing van deze maat is die van een
combinatorische explosie van paden, die doorlopen moeten worden om de similariteit te
meten, hetgeen resulteert in lange rekentijden. Lange rekentijden zou betekenen dat de maat
niet gebruikt kan worden als een goodness-of-fit maat bij de parameterschatting. Derhalve
werden verschillende heuristieken ontwikkeld en met elkaar vergeleken in termen van hun
prestatie en rekentijd. De resultaten hiervan worden besproken in Hoofdstuk 4. Het beste
resultaat werd verkregen door een hybride methode, waarbij een dynamisch programmerings
algoritme werd gebruikt voor het vinden van een initiële oplossing, en vervolgens een
genetisch algoritme werd gebruikt voor de verbetering van oplossing.

In Hoofdstuk 4 worden vervolgens de resultaten van een vergelijking van deze
methode, een Euclidische afstandsmaat, een methode gebaseerd op signaalverwerking en de
som van uni-dimensionele sequence alignment methoden, besproken. De resultaten van deze
analyse suggereren dat de similariteitsmaat andere resultaten levert, die beter
interpreteerbaar zijn dan de resultaten die de alternatieve methoden genereren. Bovendien
vertoonde de segmentatie, net als bij de methode gebaseerd op signaalverwerking, een
sterker verband met sociaal-economische kenmerken. Op grond van dit empirisch bewijs,
werd besloten deze multidimensionele maat te gebruiken bij de ontwikkeling van het model.

Het tweede deel van deze studie rapporteert over de ontwikkeling van het model, dat
het acroniem A urora (Agent for Utility-driven Rescheduling Of Routinized Activities)
kreeg. Het model is gebaseerd op de veronderstelling dat bij het organiseren van activiteiten
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in tijd en ruimte individuen proberen hun nut te maximaliseren op grond van een iteratief,
heuristisch beslissingsproces, rekening houdend met een serie beperkingen, waaronder hun
mentale inspanning. Deze theoretische grondslag verschilt van de nuts-maximimalisatie
benaderingen in de veronderstelling dat de cognitieve capaciteit van individuen beperkt is,
en dat men daarom heuristieken gebruikt om binnen een bepaalde tijd en inspanning tot een
oplossing te komen.  De validiteit van het model wordt verkend door het model toe te passen
op gesimuleerde data in een aantal typische illustraties.

Het model kent een onconventionele nutsfunctie en heuristieken, die
geoperationaliseerd zijn in termen van diverse operatoren. De theoretisch waardevolle
aspecten van de nutsfunctie zorgen er echter voor dat de parameterschatting van het model
problematisch is: er is geen algebraïsche oplossing, de beslissingen zijn non-linear en
toestand-afhankelijk, en het model moet voldoen aan allerlei discontinue beperkingen. In
Hoofdstuk 6 wordt daarom een nieuwe methode voor het schatten van de parameters van de
nutsfunctie geïntroduceerd. Deze schattingsmethode is gebaseerd op de kritieke
veronderstelling dat waargenomen activiteitenreispatronen een evenwicht vertonen, waarbij
het marginaal nut van de activiteiten in het activiteitenpatroon gelijk is. Onder deze
veronderstelling wordt een specifiek genetisch algoritme ontwikkeld. De methode is met
name geschikt voor gegevens over de tijdsduur van de activiteiten. Teneinde de
eigenschappen van deze methode te verkennen, is een simulatiestudie met perfecte en
imperfecte data uitgevoerd.

In Hoofdstuk 7 tenslotte worden de resultaten van een toepassing van het model en
de ontwikkelde schattingsmethode op empirische gegevens besproken. Deze gegevens
werden verzameld in de corridor Amsterdam-Utrecht in het jaar 2000, en omvatten 6950
activiteitspatronen van 3575 individuen uit 1966 huishoudens. Allereerst werd het model
toegepast op een steekproef van 303 activiteitenpatronen. Vervolgens werd het model
toegepast op segmentniveau. Hiertoe werden 1000 activiteitenpatronen gesegmenteerd op
grond van de multidimensionale sequence alignment methode, die in het kader van dit
proefschrift is ontwikkeld. De resultaten van deze analyses geven aan dat het A urora model,
samen met de specifiek ontwikkelde goodness-of-fit maten en algoritmen, een potentieel
waardevolle benadering vormen voor het modelleren van het aanpassingsgedrag van
individuen in de context van activiteitenreispatronen. De huidige versie van het model is
geschikt voor het schatten van de nutsfunctie en het karakteriseren van het
aanpassingsgedrag van individuen. Teneinde een voorspellend model te krijgen is het nodig
dat de geschatte nutsfuncties gekoppeld worden aan recursieve beslissingsheuristieken in een
simulatieomgeving.
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한글한글한글한글 요약요약요약요약

일반적으로, 교통망 하부구조 건설과 토지이용, 교통수요관리 등은 교통정책의

골간을 이룬다. 이 중, 기존 교통하부구조의 최적 이용에 중점을 두는 교통수요관리

정책은 갈수록 그 중요성을 더해가고 있다. 보다 나은 교통수요관리 정책을 지향하는

많은 연구들 중, 통행행태 분석을 위한 활동기반 접근법 (activity-based approach to

travel behavior analysis) 이라 명명되는 한 연구 분야가 최근 급격한 발전으로 많은

주목을 끌고 있다. 이 분야로 분류되는 모델들은, 관측되는 통행 패턴을 결과해 내는

다양한 활동 결정 요소들간의 복잡한 상호의존 관계들에 연구의 초점을 두고 있으며,

따라서 교통수요 예측을 위한 기존의 전통적인 4단계 접근법을 대체하는 대안을

제시하고 있다.

그러나, 급격하고 지속적인 발전에도 불구하고, 대부분의 활동기반 교통수요

모델들은 아직도 활동-통행 패턴의 다양한 결정 요소들과 일단의 설명 변수들간의

정태적 상관관계를 연구하는 데 그치고 있다. 다시 말해, 주어진 ‘구조’와 그

‘결과’에만 관심을 집중하는 반면, 그 ‘과정’에는 관심이 적다. 일일 활동 패턴이

조직되는 과정을 기술하는 모델이나, 주변 환경과 교통 시스템의 갑작스러운 변화나

계획된 활동들의 수행 중 일어나는 예기치 못한 일들로 현재의 계획을 수정하는

모델들에 관한 연구는 아직도 드물다. 그러나, 이러한 모델들이야말로, 일일 활동-

통행 패턴의 변화에 대한 교통수요관리 정책 수단의 영향을 예측하는데 매우

필요하다.

교통 시스템과 도시 환경이 매우 가변적이며, 비선형적이고, 불확실하다는

점에서 활동-통행 패턴 수정에 관한 연구의 중요성은 더욱 강조될 필요가 있다. 교통

환경의 변화로 인해 의사 결정 여건은 항시 변화하며, 사람들은 이에 맞추어 새로운

활동 계획을 세우거나 이미 세워진 활동 계획의 일부를 수정해야 한다. 그 과정에서,

사람들은 종종 활동 계획의 여러 가지 결정 요소들을 한꺼번에 바꾸기도 한다. (예를

들어, 수정된 활동 목적지에 가기 위한 교통 수단 역시 수정 되어야 하는 경우를

생각할 수 있다.) 그러나, 기존의 모델들은 이러한 활동 계획 수정의 모델화에 관심이

없거나, 수정해야 할 결정 요소들의 일부만을 다른 요소들과 고립하여 분석하였다.

빠르게 발전하는 이 분야 연구에 기여하기 위해, 이 박사학위 연구 프로젝트는

활동 계획의 역동적 수정 행태에 관한 심도 있는 모델 개발의 토대를 마련하는 데

목적을 두었다. 모델은, 교통 환경 변화에 대응하는 활동 계획 변화의 예측을 목표로

한다. 변화하는 교통 환경, 시간 제약, 예기치 못한 일들 등을 겪을 때, 활동-통행

계획에서 특정 활동들을 언제 시작하고 얼마 동안 지속하며, 다른 활동들과의 순서는

어때야  하고, 어떤 교통 수단을 타고 어느 곳으로 가서 그 활동들을 수행할 지 등에

관한 결정 각각 혹은 전부 들을 수정하기도 한다. 바람직한 모델은 이러한 결정

요소들을 어떠한 식으로 결합한 활동 계획 수정도 예측할 수 있는 것이어야 한다. 특히,

모델은 활동들의 순서가 어떻게 결정되느냐에 민감하게 반응할 수 있어야 한다.

이러한 모델들을 평가하기 위해서는 예측된 활동-통행 패턴이 관측된 것과

얼마나 차이가 나는가를 판정하는 적합도 측정법이 필요하지만, 기존의 연구에서
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이에 맞는 적절한 방법들을 찾을 수 없었기 때문에, 이 프로젝트의 소 목표로 활동-

통행 패턴간의 정보 배열의 차이점을 측정하는 방법을 개발하기로 하였다. 이 방법은

활동-통행 패턴들을 유사한 수개의 집단으로 구분하거나, 예측된 패턴과 관측된

패턴간 측정된 적합도에 근거하여 통행수요예측 모델의 계수를 추정하는 데 이용할

수 있다.

이 논문은 크게 2부로 나뉘며, 각 부에서 세부의 장과 절들을 갖도록

구성되었다. 1부는 활동-통행 패턴간의 유사성을 측정하는 방법, 그리고 2부는

활동들이 계획 및 수정되는 것을 예측하는 모델을 각각 서술한다. 우선, 활동기반

연구에서 이 논문이 기여코자 하는 바에 대한 설명을 위해, 2장에서는 최근의

활동기반 모델의 연구 동향이 간략히 요약된다. 특히 이 문헌 연구는 활동-통행

패턴의 측정과 집단 구분에 대한 기존 연구, 그리고 활동-통행 패턴의 정태적 (구성적)

모델과 동태적 (상황적) 모델에 대한 연구들을 집중적으로 논의한다.

1부의 시작인 3장에서는 활동 패턴간의 유사도를 측정하는 정보배열

비교법이 소개된다. 첫째로, 분자생물학에서 개발된 그대로의 측정법이 활동 패턴에

내재된 정보배열을 분석하는데 어떻게 응용되는가에 대한 이론이 소개되고, 실제의

자료분석 사례가 제공된다. 보다 구체적으로, 사람들의 실제 쇼핑 활동 정보에 관한

자료를 기존의 정보배열 분석법으로 분석한 사례연구는, 각 활동 패턴들이 어떠한

활동들로 구성되어 있는가의 정보 뿐만 아니라, 그러한 활동들이 서로간에 어떠한

배열로 연쇄관계를 갖고 있는가의 정보 역시 집단구분에 중요한 역할을 한다는 것을

보여주었다. 특히 배열상의 연쇄관계를 분석할 수 있는 것은, 기존의 유클리드적

측정법이 할 수 없었던, 정보배열 측정법이 갖는 장점이다.

이러한 정보배열 비교법은 그 응용 분야의 확장을 위해 여러 가지 방향으로

수정, 개발될 수 있는데, 3장은 그 하나의 예로, 정보 배열 위치 차이에 민감한 변형된

정보배열 비교법을 개발-소개하였다. 이 방법은, 어떤 한 활동이 정보 배열상에

차지하고 있는 위치가 두 활동 패턴간에 같은가 혹은 다른가의 판단 뿐만 아니라,

다르다면 얼마만큼 다른가의 양적 차이까지 계량화하고 있다. 이 방법을 실제 활동

패턴 자료에 응용한  사례연구는, 실제 활동 패턴들이 이 정보에 대해 차이를 갖고

있으며, 따라서 이 정보가 중요한 의미를 갖는 연구 목적에 이 방법이 유용하게 응용될

수 있음을 보여주었다.

둘째, 이 논문에서 가장 중요한 연구 주제의 하나로, 다차원 정보배열을 측정할

수 있는 방법이 제안된다. 이 다차원 측정법이 매우 유용한 이유는, 활동 계획에 관한

다양한 요소들의 의사결정들이 빈번히 하나의 묶음으로 취급되어 결정되기 때문에

서로간에 밀접히 연관되어 있으며, 다차원 측정법이 그러한 연관성을 그 측도에

실현하기 때문이다. 4장은, 3장에서 소개된 단차원 정보배열 비교법을 다차원으로

확장하고 있다. 이 다차원 방법은, 정보 배열을 구성하고 있는 활동들의 목록과 그

활동들간의 연쇄관계를 계량화한 측도를 정보배열 비교법의 기본적 특성으로서

제공한다는 점에서, 3장에서 소개된 단차원 비교법과 동일하다. 그러나 여기에 더해,

다차원 측정법은 특정한 활동의 여러 가지 결정 요소들간의 상호 연관관계를

계량화한 측도까지 제공한다는 점에서 활동-통행 패턴 분석에 중요한 기여를 하고

있다. 활동 패턴 자료 분석을 통한 경험 연구는 제안된 다차원 측정법이 이러한
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연관관계들을 실제로 잘 분석해내며, 이에 기초한 집단 구분은 전통적인 유클리드

측도 혹은 단차원 정보배열 측도의 단순합에 비해 보다 유의미한 집단들을 추출해

냄을 보여주고 있다.

그러나, 예비 최적해의 가능한 조합의 수효가 지나치게 많은 경우가 빈번히

발생하여, 다차원 측정법의 실제 적용이 크게 제약 받는 문제가 생기게 되었다. 컴퓨터

연산에 지나치게 많은 시간이 드는 사실은, 특히 활동 계획 수정 모델의 계수 추정을

위해 예측된 활동-통행 패턴의 적합도를 반복적으로 측정하는 데 제안된 측정법이

현실적으로 쓰이기 어렵다는 것을 의미한다. 이에, 본 연구는 여러 가지의 탐색적

알고리즘들을 개발하고, 그 실행성을 비교하였다. 각각의 알고리즘으로 실제 활동-

통행 패턴을 분석한 결과, 신속한 동적 계획법으로 초기해를 정하고 유전자 진화

알고리즘으로 보다 나은, 최적에 가까운 해를 추적해 내는 합성 알고리즘의 실행성이

가장 좋은 것으로 나타났다.

4장은 마지막으로, 제안된 다차원 정보배열 측정법의 실행성을 기존의 측정

방법들 즉, 단차원 정보배열 측정의 단순합, 유클리드식 측정법, 그리고 전자파

움직임에 기반한 측정법 등등의 실행성과 비교하였다. 실제 활동-통행 패턴 자료에

대한 응용 결과를 비교 분석한 결과, 첫째로, 이들 측정법들이 계산해 낸 활동-통행

패턴간 유사 정도의 상대적 측도들은 서로 유의하게 달라, 측정법의 선택이 집단

구분의 결과를 달리할 수 있음을 확인시켜 주었다. 또한 최소한 이 연구에 적용된

자료에 한해서는, 제안된 다차원 정보배열 측정법에 근거한 집단 구분이 기존의 다른

측정법에 근거한 집단 구분에 비해 활동-통행 패턴의 특성 자체에 의해 더욱 잘

설명이 되며, 전자파 움직임에 기반한 방법과 함께, 활동-통행 패턴 주체의

사회경제적 특성과 잘 연관되어 있음이 밝혀졌다. 이 비교 연구의 결과는 다차원 정보

배열 비교법이 관측된 활동-통행 패턴간의 유사도 측정과 예측된 활동-통행 패턴의

관측 패턴에 대한 적합도 측정에 보다 나은 방법을 제시함을 보여주고 있다.

2부는 예측 모델 연구의 성과에 대해 기술하고 있다. 5장에서는 A urora (Agent

for Utility-driven Rescheduling Of Routinized Activities) 라고 명명된 모델의 이론 틀과

그것의 수학적 정형화 및 조작적 정의가 상술 된다. 제안된 모델은, 사람들이 활동

계획을 세우거나 수정할 때, 정신적 수고와 불완전한 정보 등등의 제약 하에, 반복적,

탐색적인 의사결정을 통해 그들의 효용을 극대화하려고 노력한다고 가정한다. 모델의

이러한 이론적 기반은, 널리 연구되는 효용 극대화 접근법과  다른데, 이는 우리의

이론이 사람들은 인지 능력에 한계가 있어, 탐색적 방법을 이용해 어느 정도의 시간

내에 적절한 정신적 수고를 들여 타당한 대안을 찾아낸다고 가정하기 때문이다.

5장에서 개발된 모델은 다소 복잡하고  이 응용분야에 잘 알려져 있지 않은

활동 효용 함수를 포함하고 있다. 이 함수는 효용을 창출하는 독립변수로서 다양한

결정 요소를 포함하고 있으며, 준 최적의 활동 계획 수정을 할 수 있도록 다양한 활동

계획 수립 및 수정을 위한 수단을 조작적으로 정의하고 있다. 그러나, 이러한

이론적으로 바람직한 특성은 효용 함수의 추정을 오히려 어렵게 만들었다. 극대화를

위한 대수적 해법이 없고, 관측된 활동-통행 패턴을 이끌어 낸 기저의 의사결정

과정이 비선형이고, 현단계의 의사결정이 전단계의 의사 결정 결과에 영향을 받으며,

모델이 예측한 활동계획은 여러 가지의 불연속적인 제약조건을 만족시켜야 한다.
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6장은 따라서 그러한 특성의 활동 효용 함수를 추정하기 위한 방법을 제안한다. 이

방법은, 관측된 활동-통행 패턴 안의 모든 활동들은 이들 각각이 갖고 있는

활동시간에 대하여 동일한 한계효용을 갖고 있는 것이라는 핵심 가정 하에

개발되었다. 그 해공간의 탐색을 위해 유전자 진화 알고리즘을 문제에 맞게 수정하여

이용하였다. 이 방법은 특히, 활동-통행 패턴 자료에서 활동 시간들의 자료가 주어진

경우를 위해 설계되었다. 제안된 방법을 실제 경험자료에 응용하기 이전에, 그

실행능력이 가상 데이터 분석에 의해 평가되었다. 가상 자료의 추정 결과에 따르면,

제안된 방법은 정확한 자료를 매우 정확히 추정해 내며, 약간의 부정확성이 있는 자료

역시 대체로 잘 추정하였다.

마지막으로, 7장에서는 제안된 방법을 이용하여, 실제 활동-통행 패턴들이

갖는 활동 효용 함수들이 추정되었다. 자료는 2000년 암스텔담-유트레히트 회랑

지역에서 설문 수집한 것으로, 1966 가구의 3575 명이 기록한 6950 활동-통행

패턴들이 이용되었다. 추정은 두 가지 형태로 수행되었다. 첫째, 각기 6개 계수로

구성된 효용 함수를 갖고 있는 8개 활동들이 전체 자료에서 추출한 303개의 패턴들에

기초하여 추정되었다. 둘째, 4장에서 개발된 다차원 정보 배열 비교법을 적용하여

활동-통행 패턴들을 3개의 유사한 패턴 군으로 묶고, 이러한 패턴 집단 각각에 대해 각

활동의 효용함수를 추정하였다. 앞서의 전체 집단 추정이 각 활동들의 일반적 특성에

초점을 두는 반면, 이 집단별 추정은 활동 효용 함수들의 집단간 차이를 부각시킨다.

1000 패턴이 임의 추출되어 집단별 추정에 이용되었다. 추정의 결과는, 적절한 적합도

측도와 실행 알고리즘을 갖춘 Aurora 모델이, 다른 데이터로부터도 유사한 결과를

얻는다면, 활동 계획 및 수정 모델의 연구에 중요한 공헌을 하는 것임을 보여주었다.

현재 단계의 모델은 효용 함수를 추정하고 사람들의 활동 계획 수정 행태를

기술하는 데 성공하고 있다. 하지만, 이 연구의 궁극 목표는 활동 계획 수정의

의사결정의 총체적인 예측모델을 개발하는 것이다. 따라서 다음 단계의 연구에서는,

가상 환경에서의 반복적 의사결정을 조작적으로 정의한 탐색 세부 모델에, 추정된

효용 함수를 연계시켜, 실제 활동-통행 패턴을 예측한 결과를 보고할 것이다.
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♦  

Being a geographer basically means to appreciate that when events are seen located 

together in a block of space-time they inevitably expose relations which cannot be 

traced any more, once we have bunched them into classes and drawn them out of their 

place in the block.  

(Hägerstrand, 1974) 

♦  

Everything is related with everything else, in a compositional way, contextual way, or 

both. 

♦  

Random number generation is too important to believe that it is indeed random.  

(Coveyou) 

♦  

The application or even the structure of activity-based models could be different when 

people usually conduct out-of-home activities 18 or more hours a day.  

♦  

Chance comes to the person who is ready to catch.  

(Pasteur, 1854) 

♦  

Everything depends on your mind.  

(Buddha) 

♦  

I am still hungry.  

(Guus Hiddink, 2002) 
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