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COVID-19 presents an urgent global challenge because of its contagious nature, frequently changing characteristics, and the lack of a
vaccine or effective medicines. A model for measuring and preventing the continued spread of COVID-19 is urgently required to
provide smart health care services. ,is requires using advanced intelligent computing such as artificial intelligence, machine learning,
deep learning, cognitive computing, cloud computing, fog computing, and edge computing.,is paper proposes a model for predicting
COVID-19 using the SIR andmachine learning for smart health care and the well-being of the citizens of KSA. Knowing the number of
susceptible, infected, and recovered cases each day is critical for mathematical modeling to be able to identify the behavioral effects of the
pandemic. It forecasts the situation for the upcoming 700 days. ,e proposed system predicts whether COVID-19 will spread in the
population or die out in the long run.Mathematical analysis and simulation results are presented here as ameans to forecast the progress
of the outbreak and its possible end for three types of scenarios: “no actions,” “lockdown,” and “new medicines.” ,e effect of in-
terventions like lockdown and new medicines is compared with the “no actions” scenario. ,e lockdown case delays the peak point by
decreasing the infection and affects the area equality rule of the infected curves. On the other side, new medicines have a significant
impact on infected curve by decreasing the number of infected people about time. Available forecast data on COVID-19 using
simulations predict that the highest level of cases might occur between 15 and 30 November 2020. Simulation data suggest that the virus
might be fully under control only after June 2021. ,e reproductive rate shows that measures such as government lockdowns and
isolation of individuals are not enough to stop the pandemic.,is study recommends that authorities should, as soon as possible, apply a
strict long-term containment strategy to reduce the epidemic size successfully.

1. Introduction

,e rapid growth of COVID-19 has forced scientists to
develop urgent countermeasures to halt the outbreak. Sci-
entists have proposed and implemented various technolo-
gies to reduce the negative consequences of the pandemic
and to accelerate the recovery phase [1]. ,ese technologies
include artificial intelligence (AI), machine learning, deep
learning, cloud-based collaboration tools, fog computing,

the Internet of ,ings (IoT), cognitive computing, and
wireless communication. ,ere is great potential for these
technologies to bring about a revolution in the healthcare
industry [2–4].

AI, and in particular machine learning algorithms, has
increasingly become an integral part of smart healthcare.
,ese technologies are increasingly referred to as the brain of
smart healthcare services [5, 6]. Deep learning, a subset of
machine learning in AI, has networks capable of
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learning—unsupervised—from unstructured or unlabeled
data, and has been intensively used in many applications
including COVID-19 [7–10]. In deep learning, convolu-
tional neural networks (CNN) are a class of deep neural
networks, most commonly applied in the field of computer
vision [11]. ,is method has been applied to many tasks,
including super resolution, image classification, semantic
segmentation, multimedia systems, healthcare, and emotion
recognition. [12–16].

On the other hand, cloud computing can provide the
digital infrastructure needed for smart health care. ,at is,
smart human care services cloud could provide data storage
and data processing for all activities [17–20]. Fog computing
is the latest computing paradigm and employs user or close
user devices, also called the network edge or edge users, to
perform data processing tasks. ,is network architecture
enhances the flexibility of cloud computing as compared to
more ubiquitous networks [21, 22]. ,e Internet of ,ings is
a set of interrelated computing devices with unique iden-
tifiers and enables the network transfer of data without
requiring human-to-human or human-to-computer inter-
action. It includes everything from desktops, laptops, and
smartphones, to coffee makers, washing machines, and
wearable devices [23–28].

Smart healthcare services require formal processes for
measuring, preventing, and managing the spread of COVID-
19. ,e technologies mentioned can be used to reduce this
pandemic’s negative consequences and accelerate the recovery
phase. Various models have been used to study how the virus
spreads across populations: susceptible-infected (SI), suscep-
tible-infected-recovered (SIR), susceptible-infected-susceptible
(SIS), and the susceptible-infected-recovered-susceptible
(SIRS) models [29].,ese models offer two possible outcomes.
,e first possibility is that the disease might, if new infections
are not controlled, end up being an epidemic. ,e second
outcome is that the virus dies off if the necessary measures are
taken to protect susceptible individuals from infection.
COVID-19 follows a similar pattern to that of other infectious
diseases and contact tracing is needed to help reduce new
infections. ,e similarities between COVID-19 and other in-
fectious diseases in terms of contact infections make it possible
to predict its outcomes. Two models are potentially useful in
managing the disease. ,ese are the SIR and SIR-F models, in
which F stands for “fatal with the confirmation.” ,e idea is to
ensure that people who recover are not again susceptible to the
virus.,e challenge, however, is that human behavior does not
follow one set of specific rules but rather tends to change from
one community to another and from one person to another. It
is thus difficult to accurately use these models to determine the
future outcomes of the disease, but the models can help in
developing real-life approaches to the virus.

Machine learning (ML) algorithms for time-series
forecasting are statistics and computer science, where
calculations are derived from the data. Scikit-Learn is a
machine-learning library for Python. It is also a commu-
nity-driven project with powerful regression tools for fit-
ting curves to the table of suspected and recovered cases.
ML can assist in establishing overarching information on
the pandemic and in forecasting the advancement of

infections. ,e various epidemic models can be evaluated
with COVID-19 data using the model parameter estima-
tion package CovsirPhy. SIR-F is a customized SIR-derived
ODE model [30].

A discrete-time stochastic compartment model was
used in [31] to study the dynamics of the COVID-19 ep-
idemic. ,is model forecasts the spread of the disease in the
next period based on parameter estimates and numerical
simulation. In [32], mathematical and numerical analyses
were carried out using a time-based SIR model for COVID-
19 with asymptomatic individuals. In another study, AI
predictions and a modified SEIR (Susceptible-Exposed-
Infectious-Recovered-Susceptible) model were used to
study the COVID-19 epidemic trends in China. ,is is
helpful in understanding the public health interventions
applied [33].,e SEIRmodel was effective in predicting the
COVID-19 trends and the infection rates. ,e AI-based
model was developed based on a SARS dataset that suggests
that there is hope for managing the pandemic. To validate
the data, an advanced SIR prediction model was applied to
the epidemic data from Italy and compared against the
results from China [34].Extended SIR forecast of the
COVID-19 epidemic trend in Italy is studied in [35],
whereas introduction of population migration with an
effective intervention approach for COVID-19 is intro-
duced in [36]. ,e SIR model incorporating time-based
parameters and AI algorithms was also used to study the
spread of COVID-19 in South Korea [37]. However, we
have not found related research for smart healthcare.

,is study presents a more accurate prediction model for
smart healthcare services using a machine learning approach
with the SIR model. ,e proposed model works with a
stochastic model for analyzing the COVID-19 pandemic,
and we then investigate time-series forecasting of COVID-
19 for the next 700 days. We began with an exploratory data
analysis of COVID-19 datasets belonging to John Hopkins
University. ,ese datasets include all countries although for
some there is no detailed information about the number of
patients hospitalized, or of interventions of the government
to lockdown institutions, schools, and markets. In this study,
we considered modeling data for the Kingdom of Saudi
Arabia (KSA) only and including other countries as would
be the case in a global model so as to evaluate the effec-
tiveness of the intervention in curbing the spread of COVID-
19 [38].

2. Data Analysis

Most countries have a COVID-19 dataset. Mortality, re-
covery, and infection rates are essential for the SIR model.
,e datasets present social behavior data but not for all
countries. ,e population data are the starting point of our
analysis.

2.1. Population. In the global model, we used population
numbers for all countries. For each of the simple models, we
made use of a general population pyramid across different
age groups employing the real population pyramid of
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Table 1. In Table 1, people are categorized into 5 age groups,
separated by the total number of males and females.

Individuals in the various age groups spend their time in
different places: children are at school, people of working age
are mostly in offices or other workspaces, and retired per-
sons are at home. ,e number of hours that the people are
awake on a daily basis is given in Table 2.

2.2. Johns Hopkins Dataset. ,e Johns Hopkins University
(JHU) datasets are arguably the most popular COVID-19
data sources available. Data for about 181 countries are
updated regularly. ,e number of confirmed, infected, fatal,
and recovered cases for KSA as of 12 June 2020 and obtained
from the JHU is shown in Table 3 [38].

,e exploratory data analysis (EDA) of COVID-19 for
KSA is summarized in Table 4 and Figure 1. For purposes of
comparison, the total number of cases globally can be seen in
Figure 2.

2.3.Evaluationof theSIRModel. In this section, we construct
a mathematical model derived from an SIR model. An SIR
model is a basic statistical tool for analyzing infectious
disease outbreaks. We will evaluate this in the upcoming
sections. Unmonitored symptomatic cases that are a source
of infection in the population are not considered. ,ere is
also a chance of being infected through touching objects that
are infected. ,ere are numerous random factors relevant to
disease transmission. Among the many possibilities, we
propose the stochastic SIR model detailed below. At the end
of the initial modeling, we produced the SIR-F model, a
custom ODE SIR-derived model. A parameter estimate for
SIR-F will be applied to subsets of time-series data in each
country to determine the impact of interventions.

2.4. Basic SIR Model. In this basic model, the total pop-
ulation is divided into three subsets: susceptible, infected,
and recovered. ,ere are transitions between these parts.
Susceptible persons are derived by subtracting persons who
are confirmed to be virus carriers via testing in hospitals
from the total population. Moving from the susceptible to
the infected cases, the contact rate, β, determines the disease
velocity in the population. In detail, the transition from S-
state to I-state is not deterministic, but is always stochastic.
Hence, β includes multiplication of rate, probability, and
population number. ,e basic model can be defined as

S⟶β I I⟶c R, (1)

where S: susceptible� all − confirmed; I: infected�
confirmed − recovered − deaths; R: recovered or fatal�
recovered + deaths; β: effective contact rate (1/min); and c:
recovery (+mortality) rate (1/min).

,e number of infected persons decreases with recov-
eries and deaths. Recovered individuals can also no longer
change to the susceptible state.

Ordinary Differential Equations (ODE) of the basic SIR
model are given below [39]:

dS

dT
� − N

− 1
,

dI

dT
� N

− 1βSI − cI,

dR

dT
� cI,

(2)

where N � S+ I+R is the total population, T is the elapsed
time from the start date. ODE is used for the simulation to
compute the variables after a short period of time. At any
point in time, the ODE shows the rate of change for every
variable. We can forecast the future by bringing together
little changes over time.,us, the SIRmodel is used for three
main differential equations.

To implement the ODE functions mentioned, we sim-
plify them as follows:

dx

dt
� − ρxy,

dy

dt
� pxy − σy,

dz

dt
� σy.

(3)

R0 � ρσ − 1 � βc− 1, (4)

where R0 is the new term signifying the reproductive rate
(contact rate), which means that one infection will cause
several new infections. ,e infections should be increased
for this case, i.e.,.

dI

dT
> 0,

orN− 1βSI − cI> 0.
(5)

Let us assume S� 1 in the beginning, then

ρ

σ
� R0 > 1. (6)

If R0 is more than 1, it is highly probable that an
outbreak will occur in the future. On the other hand, R0 can
be defined as a product of the contact rate β and infection
time. R0 is the most effective parameter for choosing in-
terventions. ,ese three parameters can be decreased in-
dividually by vaccines, isolation, and antibiotics. R0 also
provides five indications concerning an outbreak: whether
or not it will turn out to be a pandemic; the initial increase

Table 1: Population pyramid of KSA [38].

Sl. No Age F M Year

0 0–4 1473864 1522376 2019
1 5–9 1446736 1494308 2019
2 10–14 1269502 1312481 2019
3 15–19 1092687 1142802 2019
4 20–24 1144722 1278548 2019
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rate of the epidemic; the final fraction size of the susceptible
population that will get infected; the equilibrium fraction of
susceptible individuals in a population; and the critical
vaccination threshold.

2.5. Hyperparameter Optimization of the SIR Model. To
achieve an optimized contact rate (β) and recover-
y +mortality rate (c), we referred to the Table 3 data and
used the Optuna package with Python, hyperparameter
optimization package. ,e resulting optimization parame-
ters can be seen in Table 5. ,e root mean squared loga-
rithmic error (RMSLE) score gives us the precise observed
and estimated values of the optimization parameters. If the
RMSLE value is high, the estimation is highly accurate. In
this type of model, the main challenge is to estimate the best
parameters to fit in the model. And if the model is based on
time, the differential equations are necessary for modeling
the real behaviors. Many parameter estimation methods are
used in computational biology.,emost common are Gauss
Newton, Simulated annealing, Genetic algorithms, and so
on. ,e main aim is to fit the model with the low costs and
errors.

Table 2: Weekly time spending by people of various age groups.

# Age first Age last Period of life School days Office days Other days Global Philippines KSA Sweden

0 0 2 Nursery 3 0 0 0.052210 0.059807 0.052465 0.035809
1 3 5 Nursery school 4 0 1 0.051864 0.060893 0.052143 0.035727
2 6 10 Elementary school 5 0 1 0.084689 0.104088 0.083736 0.058956
3 11 13 Middle school 5 0 1 0.049386 0.060010 0.045212 0.034614
4 14 18 High school 6 0 1 0.079324 0.097064 0.067263 0.053759
5 19 25 University/work 3 3 1 0.107659 0.129404 0.101481 0.081871
6 26 35 Work 0 6 1 0.152774 0.156425 0.189787 0.138543
7 36 45 Work 0 5 1 0.131630 0.122671 0.199444 0.123699
8 46 55 Work 0 5 1 0.116396 0.095804 0.122208 0.132422
9 56 65 Work 0 5 1 0.088096 0.065197 0.055298 0.115113
10 66 75 Retired 0 0 4 0.055083 0.033720 0.021573 0.107004
11 76 85 Retired 0 0 3 0.024309 0.012498 0.007854 0.061383
12 86 95 Retired 0 0 2 0.006579 0.002420 0.001536 0.021099

Table 3: Number of cases.

Date Confirmed Infected Fatal Recovered

2020-06-06 98869 26402 676 71791
2020-06-07 101914 28385 712 72817
2020-06-08 105283 30013 746 74524
2020-06-09 108571 31449 783 76339
2020-06-10 112288 33515 819 77954

Table 4: Statistical summary of EDA.

Confirmed Infected Fatal Recovered

Count 93 93 93 93
Mean 31373.5 14129.3 202.1 17042.2
Std 34579.8 11834.1 214.5 24913.9
Min 20 19 0 1
25% 1885 1536 21 328
50% 16299 13948 136 2215
75% 57345 26402 320 28748
Max 112288 33515 819 77954
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Figure 1: Number of cases.
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2.6. S-R Trend Analysis. We can get some idea of the ending
time of the epidemic using susceptible (S)–recovered (R)
analysis. An epidemic is said to stop not only when everyone
has been infected but also when nobody is freshly infected.
R-S phase planes prove that a decrease in the number of
susceptible persons is exponentially related to recoveries.
,is means some groups of the population will always avoid
infection [40]. In Figure 3, the regression analysis is fitted to
real data.

2.7. SIR-F Model. If we consider some cases of those who
died before going to the hospital (confirmed), then the
model is expanded:

Confirmed � I + R + F, (7)

where R� recovered and F� deaths.
,erefore, the model can be written as

S⟶β I S
∗⟶α1 F, S

∗⟶
1− α1

I⟶c R, I⟶α2 F, (8)

Feb
2020

May Jun

Infected

Fatal

Recovered

Mar Apr
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
as
es

×106

Figure 2: Total number of cases in the world.

Table 5: Hyperparameter estimation of the basic SIR model.

Start End Population ODE Rho Sigma tau min R0 1/beta (day) 1/gamma (day) RMSLE Trials

1st 10 May 2020 18 May 2020 32,94 M SIR 0.07831 0.07383 1440 1.06 12 13 0.02243 85
2nd 19 May 2020 25 May 2020 32,94 M SIR 0.08977 0.08436 1440 1.06 11 11 0.00902 84
3rd 26 May 2020 02 Jun 2020 32,94 M SIR 0.06981 0.10682 1440 0.65 14 9 0.01957 85
4th 03 Jun 2020 10 Jun 2020 32,94 M SIR 0.10942 0.05181 1440 2.11 9 19 0.00816 85
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Figure 3: S-R trend analysis.
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where S∗ is confirmed and uncategorized; α1 is the mortality
rate of S∗ cases; α2 is the mortality rate of I cases (1/min); β is
the effective contact rate (1/min); and c is the recovery rate
(1/min).

2.7.1. Ordinary Differential Equations.

dS

dT
� − N

− 1βS,

dI

dT
� − N

− 1 1 − α1( )βSI − c + α2( )I,

dR

dT
� cI,

dF

dT
� N

− 1α1βSI + α2I,

(9)

where N � S+ I+R+ F is the total population and T is the
elapsed time from the start date.

dx

dt
� − ρxy,

dy

dt
� ρ(1 − θ)xy − (σ + κ)y,

dz

dt
� σy,

dw

dt
� ρθxy + κy,

R0 � ρ(1 − θ)(σ + κ)− 1 � β 1 − α1( ) c + α2( )− 1.

(10)

2.8. Hyperparameter Optimization of the SIR-F Model.
Table 6 shows the hyperparameter optimization of the SIR-F
Model.

2.9. Predicting theFuturewith SIR-F. Prediction of the future
with the final parameters of the SIR-F model is also possible
with the CovsirPhy: COVID-19 data with SIR model Python
package in that it also considers S-R trend analysis.

2.9.1. Worst-Case Scenario. In the worst-case scenario, it is
assumed that there is no lockdown, medicines, or vaccine for
the population. ,is fundamental case is taken under
consideration for the sake of comparison with the lockdown,
medicine, and vaccine cases. As a result, the total number of
infected people will be the highest in this case. So, if none of
the interventions is invalid, the pure SIR-F model can
predict the future within 30 days. ,is condition can accept
the natural spread of the pandemic without any retarding
effect on it. ,e prediction results are set out in Figure 4,
from 22 June to display the infected, fatal, and recovered
cases. Apparently, the spread will speed up in the near future
such that both the infected and the recovered numbers will
go up fast, but the fatality rate will continue to still remain

less. Similarly, the prediction results are presented for 700
days in Figure 5, which shows that the epidemic will stop in
the mid of October 2021.

,e daily amount of fatal, infected, recovered, and
susceptible numbers is listed in Table 7 where about 5M
people are infected with COVID-19, 25M people have re-
covered, and there are 700 fatalities. Besides that, the
pandemic seems to lose its effect completely after July 2021.
Rho, sigma, and Rt (R0) parameters are shown in Figure 6 for
the worst-case scenario using the SIR-F model. Rt (R0)
parameter is explained in equations (4) and (5). ,e rho
parameter shows that transitions to the infected state de-
creases after the 3rd stage and the reproductive rate increases
at the 4th stage.,e 5th stage is for forecasting the epidemic.

2.9.2. Adding Interventions to the Models. In light of the
rising numbers of cases and deaths, most governments have
introduced interventions to reduce the spread of the virus
causing COVID-19. In Europe and elsewhere, they have or
are implementing measures to control the pandemic. ,ese
nonpharmaceutical interventions differ but generally in-
corporate social distancing (e.g., prohibiting large-scale
gatherings and encouraging people not to associate outside
their family units), fringe terminations, school terminations,
and measures to seclude indicative people and their contacts
[41].

2.10. Improved SIR-F Model with Closures and Lockdown.
Some control factors should be added to the SIR-F model to
investigate the effects of interventions such as school or
market closures and lockdowns. In the case of lockdowns,
the gs parameter defines the number of days that susceptible
persons go out. Each age group in a population will go out
for a different number of days. In Table 1, the population
pyramid is defined for KSA, and we will estimate the average
number of days that each the age group goes out. To pre-
cisely estimate the gs value, we will use the data listed in
Table 2.

It is assumed that all schools and offices are closed, and
that fifty per cent of people work remotely, and people are
going out only on one day per week. Before the lockdown,
the gs value was 6.07. After the start of the lockdown, the
spending day’s data have changed, as shown in Table 8. In
Table 8, ten types of people with different age groups are
listed with regard to who are going out during the pandemic.
Ultimately, the new value of gs is 3.66.,e number of people
going out before the lockdown was necessary to estimate gs
after the lockdown. We updated the population pyramid in
Table 8 by updating the school, office, and other columns
with the new gs value.

,e new gs value is applied to the go-out table. We also
assumed that workers go to their office one day a week, but
they also go out for shopping and other emergency activities.
,is number is considered as 1 or zero due to inculturation
of a more rule-based life here. ,e updated data are pre-
sented in Table 9, which will be used to implement the SIR-F
model.
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Table 6: Hyperparameter estimation of SIR-F model.

Sl.
No

Start End ODE Rho Sigma Rt
1/beta
(day)

1/gamma
(day)

RMSLE Trials ,eta Kappa Alpha1
1/alpha2
(day)

1st
06 May
2020

12 May
2020

SIR-
F

0.06916 0.04864 1.41 14 20 0.02435 234 0.00089 0.00036 0.001 2748

2nd
13 May
2020

23 May
2020

SIR-
F

0.08907 0.06946 1.28 11 14 0.06279 164 0.00186 0.00018 0.002 5444

3rd
24 May
2020

30 May
2020

SIR-
F

0.06831 0.10052 0.67 14 9 0.03131 158 0.00113 0.00065 0.001 1529

4th
31 May
2020

10 Jun
2020

SIR-
F

0.09483 0.05649 1.65 10 17 0.08880 162 0.01801 0.00002 0.018 47464
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Figure 5: Predicted number of cases for the worst-case scenario using the SIR-F model for 700 days.
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Figure 4: Predicted number of cases for the worst-case scenario using the SIR-F model for 30 days.

Journal of Healthcare Engineering 7



In the SIR-Fmodel, gs is used as a control parameter of β.
So, the β factor should change by the same amount as the
change in gs. ,e effect of closedown begins at the start date
of the third phase. ,e effect of lockdown can be seen by
controlling the rho parameter in Figure 7, which will be
explained in the next section.

2.11. Predict the Future with Lockdown and the Availability of
New Medicines

2.11.1. Lockdown. All the schools and offices have been
closed since 26 July 2020. ,is lockdown precaution to
counter the pandemic will not only decrease the maximum

Table 7: Predicted number of SIR-F without lockdown.

Sl. No. Date Fatal Infected Recovered Susceptible

737 14 May 2022 700004 16 25603793 6636187
738 15 May 2022 700004 16 25603794 6636187
739 16 May 2022 700004 15 25603795 6636187
740 17 May 2022 700004 15 25603795 6636186
741 18 May 2022 700004 15 25603796 6636186
742 19 May 2022 700004 14 25603797 6636186
743 20 May 2022 700004 14 25603797 6636186

0.0
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2.0

2.5

1st 2nd 3rd 4th 5th

Rho
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Sigma

Figure 6: Ratio to the 1st phase parameters for the worst case.

Table 8: Spending days after lockdown.

Sl No Age_first Age_last Period_of_life School Office Others Portion

0 0 2 Nursery 0 0.0 1 0.052465
1 3 5 Nursery school 0 0.0 2 0.052143
2 6 10 Elementary school 0 0.0 2 0.083736
3 11 13 Middle school 0 0.0 2 0.045212
4 14 18 High school 0 0.0 2 0.067263
5 19 25 University/work 0 1.5 2 0.101481
6 26 35 Work 0 3.0 2 0.189787
7 36 45 Work 0 2.5 2 0.199444
8 46 55 Work 0 2.5 2 0.122208
9 56 65 Work 0 2.5 2 0.055298
10 66 75 Retired 0 0.0 4 0.021573
11 76 85 Retired 0 0.0 3 0.007854
12 86 95 Retired 0 0.0 2 0.001536
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value of the effected persons but will also cause a delay of the
infected bell curve to the late dates; ultimately, the pandemic
period will be extended. Figure 7 verifies the prediction by
decreasing and delaying of the infected curve to the April
2021. In Figure 7, the prediction results of three cases are
shown for the next 700 days. Also, the pandemic period ends
in April 2022. In Table 10, three cases have been given for
the lockdown scenario; according to it, the number of
infected persons is less than 1.5M, the total number of
recovered patients is about 14M, and the total fatality rate
decreased about four-hundred thousand people to about
392000. ,e ρ (rho) parameter of the 5th period is also
decreased accordingly. In Figure 8, the transition param-
eter from S to I, which is denoted as ρ (rho), could not
decrease drastically, which means that the infection rate is
still keeping high, and we are far from the end of the
epidemic. ,e most critical outcome of ρ is checking the
interventions of the governments. Also, in Figure 8, the rho

parameters are given for scenario 2, and it is clearly seen
that school closure and lockdowns are not enough for
stopping the epidemic in KSA.

2.11.2. Effect of the Expected New Medicines. New drugs are
essential for patients to recover rapidly from the disease.
Medication repositioning methodology (i.e., finding suc-
cessful competitors from the library of existing medications
for various illnesses) is utilized to build up the medication
possibilities to treat COVID-19.,e new α and c parameters
are as in equation (11). Figure 9 shows the predicted number
of cases with medicine using the SIR-F model for 700 days,
which mainly reduces the number of fatalities to 52000. Rho,
sigma, and Rt (R0) parameters are shown in Figure 10 for the
case with medicine using the SIR-F model, which indicates
that the spread of infection is still very high, but the fatality
rate is reduced due to medicine. ,e predicted number of

Table 9: Spending days updated with the new gs after lockdown.

Sl No Age_first Age_last Period_of_life School Office Others Portion

0 0 2 Nursery 0 0.0 3.0 0.052465
1 3 5 Nursery school 0 0.0 3.0 0.052143
2 6 10 Elementary school 0 0.0 3.0 0.083736
3 11 13 Middle school 0 0.0 3.0 0.045212
4 14 18 High school 0 0.0 3.0 0.067263
5 19 25 University/work 0 1.0 3.0 0.101481
6 26 35 Work 0 1.0 3.0 0.189787
7 36 45 Work 0 1.0 3.0 0.199444
8 46 55 Work 0 1.0 3.0 0.122208
9 56 65 Work 0 1.0 3.0 0.055298
10 66 75 Retired 0 0.0 3.0 0.021573
11 76 85 Retired 0 0.0 3.0 0.007854
12 86 95 Retired 0 0.0 3.0 0.001536
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Figure 7: Predicted number of cases with lockdown using the SIR-F model for 700 days.
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SIR-F with medicine is shown in Table 11. ,is table shows
around 2.5M infected cases, which results in the shortening
of the length of the pandemic bell curve.

cmed �
τ ×(Percentage of discharge)

Total number of minutes with observation
. (11)

3. Conclusions

,e primary aim of this study was to evaluate the models for
providing smart healthcare that are able to predict the onset
of pandemics like COVID-19. ,is study proposes and

Table 10: Predicted number of the SIR-F with lockdown.

Date Confirmed Fatal Infected Recovered

737 14 May 2022 391607 78750 14280299 18189343
738 15 May 2022 391696 77859 14283571 18186873
739 16 May 2022 391784 76978 14286807 18184431
740 17 May 2022 391871 76106 14290005 18182017
741 18 May 2022 391957 75244 14293168 18179631
742 19 May 2022 392042 74391 14296294 18177272
743 20 May 2022 392087 73940 14297949 18176024
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Figure 8: Ratio to 1st phase parameters for the lockdown case.
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Figure 9: Predicted number of cases with medicine using the SIR-F
model for 700 days.
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Figure 10: Ratio to 1st phase parameters for the case of medicine.

Table 11: Predicted number of SIR-F with medicine.

Date Confirmed Fatal Infected Recovered

737 14 May 2022 52082 87 20784310 12103520
738 15 May 2022 52082 85 20784314 12103517
739 16 May 2022 52082 83 20784319 12103515
740 17 May 2022 52082 81 20784324 12103512
741 18 May 2022 52082 80 20784328 12103510
742 19 May 2022 52082 78 20784332 12103507
743 20 May 2022 52082 77 20784335 12103506
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implements SIR and SIR-F models with ML algorithms and
presents both mathematical and numerical analyses and
simulation results. ,e SIR epidemiological model is one of
the oldest and has the most significant consequences of
biological science. It contains the most significant highlights
of the study of the virus disease transmission to be specific
“Susceptible,” “Infected,” and “Recovered” people. ,e SIR
model is applied to predict the data. Based on the SIR model,
the pandemic will most probably be controlled by June 2021.
,e hyperparameters are presented in the various tables, and
RMLSE is the primary accuracy metric to define the pre-
diction error of real data and the SIR models. ,e repro-
ductive rate was the most significant parameter for
forecasting whether there will be a pandemic. Figures 4 and 6
show that despite the reproductive rate being low, the
pandemic will increase, and the trend lines explain that the
interventions by governments or individual isolation are not
enough to stop the pandemic. Our proposed model proved
to be successful in predicting peaks and the sizes of the
COVID-19 outbreaks. Until the end of June 2021, the
strategy of early detection and strict monitoring must
continue to apply. With clear signs of an epidemic, indi-
viduals should be made aware of self-protection measures
including frequent hand washing, either keeping soap on the
hands for at least 20 seconds or using a hand sanitizer
containing 60% alcohol, avoiding direct contact with sick
people, keeping a distance of at least 6 feet from others,
covering nose and mouth with a mask, using (and properly
disposing of) a tissue to cover sneezes or coughs, and
cleaning and sanitizing regularly touched items and surfaces
every day. Although the government in a few places has
slowly withdrawn lockdown restrictions, there is still a high
possibility of outbreaks. ,e number of new cases of in-
fection is increasing, and people should not let down their
guard against this highly contagious disease.
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