
Measuring and Visualizing Code Stability - A

Case Study at Three Companies

Miroslaw Staron, Jörgen Hansson, Robert Feldt
Software Centre/Computer Science and Engineering

Chalmers | University of Gothenburg

miroslaw.staron@gu.se,

jorgen.hansson/robert.feldt@chalmers.se

Anders Henriksson
Software Centre/AB Volvo

anders.j.henriksson@volvo.com

Wilhelm Meding
Software Centre/Ericsson

Ericsson AB

wilhelm.meding@ericsson.com

Sven Nilsson, Christoffer Höglund
Software Centre/Saab AB Electronic Defence Systems

Saab AB

sven.sn.nilsson/christoffer.hoglund@saabgroup.com

Abstract— Monitoring performance of software development

organizations can be achieved from a number of perspectives – e.g.

using such tools as Balanced Scorecards or corporate dashboards.

In this paper we present results from a study on using code

stability indicators as a tool for product stability and

organizational performance, conducted at three different software

development companies – Ericsson AB, Saab AB Electronic

Defense Systems (Saab) and Volvo Group Trucks Technology

(Volvo Group). The results show that visualizing the source code

changes using heatmaps and linking these visualizations to defect

inflow profiles provide indicators of how stable the product under

development is and whether quality assurance efforts should be

directed to specific parts of the product. Observing the indicator

and making decisions based on its visualization leads to shorter

feedback loops between development and test, thus resulting in

lower development costs, shorter lead time and increased quality.

The industrial case study in the paper shows that the indicator and

its visualization can show whether the modifications of software

products are focused on parts of the code base or are spread widely

throughout the product.

Index Terms—Quality, metrics, code churns.

I. INTRODUCTION

The ability to quickly deliver products has been on the radar

of software development for decades. Using processes which

realize principles of Lean and/or Agile software development

shows that it is possible to deliver software product in an

iterative manner with good quality [1]. When applied to medium

or large software development projects these principles usually

entail parallel development by multiple development teams [2],

continuous integration, and focusing on end-user feature

development. When increasing the focus on continuous deliver

of new features and introducing multiple self-organized software

development teams there is a risk of introducing instability to

product development. The multiple teams deliver “their”

features at a high pace, and the features might require

modifications or development of code which affects other

features. The dependencies in the code base can make the

integration effort-intensive or introduce defects which need to be

fixed before release. The difficult integration and defects require

extra effort and often results in quick changes in the code base

thus making the code base unstable.

This paper addresses the following research question: How

to monitor the stability of software products by monitoring

changes in source code? We address this question by using

heatmaps to visualize changes in source code [3]. By monitoring

and visualizing the changes we are able to understand the

magnitude, pace and spread of changes and thus assess the

stability of the code base (aka the product). We distinguish

between controlled and uncontrolled changes and define the

term code stability. The source code is stable when changes to it

are delimited to interrelated parts of the source code base (e.g.

architecturally related components) and it is unstable when

changes occur at unrelated parts of the source code.

To evaluate the code stability measure and its visualization

with heatmaps in a realistic setting we focused on self-organized

teams from large organizations working with large software

products. We chose three companies in three different domains

– Ericsson AB, Saab Electronic Defense Systems and Volvo

Group Truck Technology. The method presented in this paper

was applied and evaluated at these companies, where the

evaluation showed that this type of visualization can effectively

trigger discussions about development patterns and lead to

improvements. It also showed that there is a correlation between

certain trends in changes and quality problems. The visualization

of software metrics using heatmaps had been developed during

a case study with another software company (RUAG Space) [4].

The original use of heatmaps included visualizations of test

progress, and was expanded to visualize revision histories of

source code. Initial results at RUAG indicated a positive effect

in project discussions. Here we expand on these results in

mailto:miroslaw.staron@gu.se
mailto:anders.j.henriksson@volvo.com
mailto:wilhelm.meding@ericsson.com
mailto:sven.sn.nilsson/christoffer.hoglund@saabgroup.com

relation to source code changes and investigate use of the

technique at more and larger companies.

The remaining of the paper is structured as follows. Section

2 presents the theoretical background of this study, which is

followed by the research design presented in section 3. Section

4 presents the evaluation of the resulting method and its impact.

Section 5 summarizes the most related work in the area. Section

6 summarizes the main conclusions from this work.

II. TOWARDS CONTINUOUS SOFTWARE

DEPLOYMENT

Modern software engineering often focuses on customer

needs, providing software products frequently and being agile in

addressing market demands. These needs form the context of our

work in terms of continuous deployment and the method used to

visualize source code stability – heatmaps [3]. In the paper we

show how an unstable source code base (i.e. source code where

changes occur to multiple, unrelated components) evolves into a

stable source code base (i.e. where changes occur to delimited,

related source code components).

A. Continuous deployment

Growing competitiveness in market-driven software

development requires companies to release products to the

market at high frequency and provide their customers with the

possibility of continuous updates [5]. The trend which is

observed in the market-driven software development in large

scale systems is a shift from product-line based systems towards

software ecosystems where new features are developed

incrementally with multiple releases by the company itself, its

partners or even users [6].

This trend towards adding new functionality post-release is

growing and it poses new requirements on measuring

organizational performance. In the context of continuous

deployment the organizational performance can then be defined

as the time between releases of new features of a product. Given

this definition we can also develop an indicator (according to

ISO/IEC 15939 [7, 8]) which supports monitoring continuous

deployment. Thus the indicator related to that is the number of

releases per given time frame. This indicator helps to monitor

long-term trends at the management level [9]. This indicator,

however, cannot really be used to steer the development since it

does not enable immediate actions at the level of software teams.

Therefore another type of indicator is needed – operational

indicator – an indicator which can help organizations to move

towards the continuous deployment. Based on the case study

presented in the next section, we argue that this indicator is code

stability – i.e. number of code churns per week or per month [10,

11].

B. Source code stability metrics

The starting point for identification of relevant software

metrics in our research was the set of studies on MS Windows

conducted at Microsoft Research [10, 11]. Bell et al. defined the

concepts of code churn and change bursts as important in

1 The original research conducted at Microsoft assumed a threshold for

the values of code churns. However, since we did not want to neglect

predicting risky areas in source code. Their research showed that

3 or more consecutive changes to the same source code

component within a period of 5 days indicated that the changed

module would cause problems with post-release quality.

In this research we used the same approach – we monitored

how many changes each software module had during a particular

time frame. By visualizing these changes we identified which

modules were more prone to changes and how the change

patterns looked like – all in order to focus the attention of

stakeholders who prioritized testing efforts or other quality

assurance tasks if needed. We used heatmaps for the purpose of

visualizations, exemplified in Figure 1.

201
2-0

1-
01

201
2-0

1-
08

201
2-0

1-
15

201
2-0

1-
22

201
2-0

1-
29

201
2-0

2-
05

Component A 1 0 0 0 0 0

Component B 0 1 0 2 0 2

Component C 0 0 3 0 3 3

Component D 1 0 0 0 4 4

Figure 1. Example heatmap for source code changes

The heatmap visualized the source code change history as

shown by the numbers in the figure – the larger the number, the

more intensive the color in a cell. The number in the cell shows

the sum of added, deleted and changed lines of code in the

component during a period of one week [11]. Naturally, the

software products explored in this case study were significantly

larger and were developed significantly longer than the period

of 6 weeks. Therefore, the numbers in the heatmaps were on

larger scales, which required a transformation to the logarithmic

scale, a transformation which exposed small changes and did not

let the “large” numbers for large components to dominate in the

heatmap1.

III. RESEARCH DESIGN

This section describes the context of our study, which is a

part of an action research [12] project conducted with the three

companies involved. We elaborate on the choice of companies,

the set-up at the companies and the data collection/analysis

methods. This study was preceded with a pilot study on using

different visualizations to monitor effort of software

development in an organization with moderate code base [4].

This reduced the risk in applying the methodology at these larger

companies.

A. Selection of companies

The sample of companies in this study was based on

convenience sampling given certain criteria. Since the study was

designed to be quantitative there was a need for large quantities

of data, which dictated working with large companies

developing large products. In this study we had the unique

opportunity to work with 3 large companies – Ericsson AB

(development of telecom network equipment), Saab AB

(development of software for defense systems) and AB Volvo

small changes in small modules, the logarithmic scale was more

appropriate.

(development of software for trucks). The criteria for choosing

the projects within these companies to investigate were:

 Use of source code for product development – although

almost all companies execute projects in model-driven

manner, we chose the projects where source code was the

main artifacts, i.e. designers used programming languages

like Java or Erlang for development. This choice was

motivated by the fact that frequent code (re-) generations

from models make it difficult to automatically filter out the

relevant code changes in the code base from the non-

relevant changes caused solely by re-generation of

previously existing code.

 Initiated changes towards continuous deployment – the

projects started changing their ways-of-working towards

continuously deploying functionality to their customers.

This choice was made due to the fact that we wanted to

observe whether the frequent deliveries of high-quality

code have impact on the stability of the code base

compared to non-frequent releases with similar quality

requirements.

 Size of the product – the products developed should be of

significant size (more than 100.000 LOC) and should be

developed during a period of time longer than 1 year (with

multiple releases since the beginning of the product

lifecycle). This was dictated by the fact that we intended to

study contexts where the coding practices of individual

developers do not confound the study. In larger projects the

number of designers is usually bigger which means that

there is wider spectrum of how designers work – e.g. how

often they check-in their code or how frequently they

integrate modules.

The ability to work with three different companies provided

us with an opportunity to check whether our method is company

specific or bound to a specific software development process.

1) Ericsson AB

The organization and the project within Ericsson, which we

worked closely with, developed large products for the mobile

telephony network. The size of the organization was several

hundred engineers and the size of each project was up to a few

hundreds designers2. Projects were increasingly often executed

according to the principles of Agile software development and

Lean production system referred to as Streamline development

(SD) within Ericsson [13]. In this environment various

disciplines were responsible for larger parts of the process

compared to traditional processes: design teams (cross-

functional teams responsible for complete analysis, design,

implementation, and testing of particular features of the

product), network verification and integration testing, etc.

At the studied unit of Ericsson the Agile and Lean principles

have been successfully applied and lead to shortening

development cycles from years to months or weeks [13, 14].

Using processes like Ericsson’s Streamline Development

2 The exact size of the unit and projects cannot be provided due to

confidentiality reasons.

increases the development speed and makes the product “grow”

in a constant pace of the market by distributed development, e.g.

by self-organized software development teams [15]. The teams

usually focus on features visible for the customers (aka customer

value) rather than subsystems or components of the software

product. This means, in practice, that multiple teams might work

on the same code base of the same component from multiple

perspectives and integrating them continuously as efficiently as

possible [16]. The self-directed software development teams

working simultaneously on a single code base to deliver

individual features usually require automated tools to monitor

the holistic product perspective. Ericsson’s case of adopting

Streamline Development addressed mainly the need to increase

speed of delivery of new functionality to customers [17] and

required novel methods for visualizing and monitoring how

multiple self-organized teams contribute to the development of

the entire code base of the product. We addressed this need by

using measures of code stability and visualizing the measures

using heatmaps.

The organization used a number of measurement systems for

controlling the software development project (per project)

described above, a number of measurement systems to control

the quality of products in field (per product) and a measurement

system for monitoring the status of the organization at the top

level. All measurement systems were developed using the in-

house methods described in [7, 18], with the particular emphasis

on models for design and deployment of measurement systems

presented in [19, 20].

The needs of the organization had evolved from metric

calculations and presentations (ca. 5 years before the writing of

this paper) to using predictions, simulations, early warning

systems and handling of vast quantities of data to steer

organizations at different levels and providing information from

teams to management. These needs were addressed by action

research projects conducted in the organization since 2006.

2) Saab AB

The organizational unit within Saab AB that we worked with

develop embedded software and graphical user interfaces for

ground based radar systems. The specific product we worked on

was part of a larger product developed by several hundred

developers, designers, testers, analysts etc. The historic project

developing the product was driven in increments and did not

utilize cross functional teams. The project management did some

manual metrics on trouble reports.

The organization has since this project evolved into using

more agile processes and cross functional teams. A lot of

improvements and optimizations have also been done regarding

software build and delivery times.

Also to improve customer value, market competitiveness and

profit, the studied organization at Saab AB Electronic Defence

Systems in Gothenburg is going through a Lean transformation.

3) AB Volvo

The organization which we worked with at Volvo Group

developed software for embedded software for trucks for such

brands like Volvo, Renault, UD Trucks and Mack. The

collaborating unit developed software for two ECUs (Electronic

Control Units) and consisted of over 40 designers, business

analysts and testers at different levels. The process was iterative,

agile and involved cross functional teams.

The company used measurements to control the progress of

its projects, to monitor quality of the products and to collect data

semi-automatically, i.e. automatically gathering of data from

tools but with manual analysis of the data. The metrics collected

at the studied unit fall into the categories of contract

management, quality monitoring and control, predictions and

project planning. The intention of the unit was to build a

dashboard to provide stakeholders (like project leaders, product

and line managers or the team) with the information about the

current and predicted status of their products.

B. Data collection and analysis

The process of collecting the data consisted of four steps:

1. Joint workshop with all representatives where the

desired patterns for source code stability were identified

and discussed.

2. Mining source code repositories and visualizing the

patterns at each company.

3. Validation of the interpretation of collected data through

individual interviews at each company.

4. In-depth analyses of the impact of changes on software

quality.

In the first step we expected the company representatives to

actively engage in defining how a well-functioning organization

would work with their products in order to achieve continuous

deployment. After a short training session about heatmaps and

how to read them, all company representatives were asked to

draw a heatmap with source code changes that would show a

pattern corresponding to source code changes in a continuous

deployment project/organization. They were organized in six

teams with representatives from all companies in each team -

architects, process experts, lead designers, integration

responsible, research coordinators, and managers.. Although the

primary goal was to collect data on patterns, it was important to

capture which aspects are important for company representatives

when discussing continuous deployment. Examples of these

aspects are test processes, development processes, or project

management.

During the second step we conducted three field studies –

one at each company. In each field study we worked closely with

dedicated contact persons who were experienced designers,

managers or people responsible for software quality. The contact

persons provided us with access to one source code repository

per company and explained the structure of the source code

required for the study. The repositories were mined using Perl or

Ruby scripts, which collected data on the differences between all

available source code revisions. In short the algorithm was as

follow:

1. Create full revision history (check-ins) of all source code

files.

3 www.r-project.org

2. Find the added, removed, or modified lines of source code

for each file.

3. Group the changes at the component level per week.

Transform the results to the logarithmic scale.

4. Use the statistical tool R3 to create the heatmap.

In the third step we verified that the heatmaps are correct

through interviews with experienced designers at each company.

We also discussed the results during a joint workshop with all

three companies. In particular in step 4, we asked a priori the

experienced designers to provide us with the name of two

components, one which they considered to change often and one

considered to change seldom.

IV. RESULTS AND IMPACT

In this section we present the results from each step of our

action research project. We also describe what impact these

results had on the organization in terms of changed ways-of-

working.

A. Expectations from industrial experts

During the workshop each team was provided with a table

similar to the one in Figure 1, with 30 rows and 26 columns (6

months period divided into 26 weeks) which resulted in 6

different heatmaps. The patterns in the heatmaps showed three

different ways of reasoning (out of seven heatmaps produced

during the exercise). The first reasoning was that all components

should have the same pace of change in order to minimize the

risk of “large” deliveries to testing and integration. This kind of

pattern is presented in Figure 2.

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0

w
1

1

w
1

2

w
1

3

w
1

4

w
1

5

w
1

6

w
1

7

w
1

8

w
1

9

w
2

0

w
2

1

w
2

2

w
2

3

w
2

4

w
2

5

w
2

6

Comp 1

Comp 2

Comp 3

Comp 4

Comp 5

Comp 6

Comp 7

Comp 8

Comp 9

Comp 10

Comp 11

Comp 12

Comp 13

Comp 14

Comp 15

Comp 16

Comp 17

Comp 18

Comp 19

Comp 20

Comp 21

Comp 22

Comp 23

Comp 24

Comp 25

Comp 26

Comp 27

Comp 28

Comp 29

Comp 30

Figure 2. Heatmap representing code change patterns for continuous

integration – all components change at the same pace, thus the same

intensity of the color.

The reasoning behind this pattern was that in order to achieve

continuous deployment the product needs to be continuously

developed in the same pace. Uneven deltas of changed code

would require uneven testing effort and thus neither flexibility

in resource allocation (availability of extra resources on demand)

nor uneven release cycles (depending on the test progress).

One group explicitly recognized the fact that different

components might be prone to changes to a different extent,

although at the constant rate. This meant that the change pattern

would be constant for each component but the changes would be

of different sizes and therefore this group’s heatmap contained

horizontal lines.

Another group recognized the fact that there are two periods

in product lifecycle that expose different patterns of code

change. This pattern is shown in Figure 3 – starting product

development phase (weeks 1-11) and controlled functional

growth phase (weeks 12-25).

http://www.r-project.org/

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0

w
1

1

w
1

2

w
1

3

w
1

4

w
1

5

w
1

6

w
1

7

w
1

8

w
1

9

w
2

0

w
2

1

w
2

2

w
2

3

w
2

4

w
2

5

w
2

6

Comp 1

Comp 2

Comp 3

Comp 4

Figure 3. Heatmap representing code change patterns for continuous

integration – two different periods in product lifecycle.

The reasoning of this group was similar to the second group

except that the initial product development was expected to be a

bit “chaotic” in the heatmap. This could be caused by the fact

that architecture needs to be stabilized, and after the product

become mature adding new features to it gets more controlled

and the change patterns are more stable. This group stressed the

fact that in mature products the changes seldom require altering

all components at the same time and can be more focused to

certain components, although there can exist components which

change more often than others. The remaining four teams

presented patterns similar to those two.

The discussions during the workshop led to the conclusion

that the pattern similar to the heatmap in Figure 3 was the most

probable one to be experienced in the mature product where

continuous integration and deployment are practiced.

B. Heatmaps showing stable/unstable periods

After the workshop we collected the data from source code

repositories to visually map the patterns at example

systems/subsystems at each company with the patterns discussed

at the workshop. The heatmaps presented in this section depict

the existing products and therefore due to the confidentiality

agreements no component names or time scales can be provided

explicitly.

Figure 44 shows a heatmap with changes per software

component of a software product (software for an ECU –

Electronic Control Unit at Volvo Group). Each point shows the

number of changed LOC per component per week on a

logarithmic scale. The rows were organized by grouping

architecturally dependent components together.

4 Since the heatmaps show the actual code base we are not able to

provide component names or the time scales for the development

Figure 4. Heatmap for changes in the code (one subsystem)

The diagram shows a positive evolution of a source code

base – from an unstable source code to the stable one. There were

three periods of lifecycle of this product. To the left, the first

phase is the start-up where the code is quite unstable and changes

are introduced at many components simultaneously (denoted V-

1). In the middle there is the second phase where the

development started to stabilize and was release based (the

vertical lines in revisions, V-2). Finally, in the right hand side of

the figure the development becomes more scope-based where

only subset of components is worked on at a time (V-3, which is

similar to the pattern in Figure 3). To the very right of the figure

we could even see the trend of working with selected

components at a time, which shows more evolutionary

development of the product.

Figure 5 shows a heatmap with changes of code for one

subsystem in a telecom node. The pattern is unlike the one in the

Figure 4 since the ways of working were different. In this case,

the company – Ericsson – used a proprietary Agile+Lean

software development process with continuous builds and

integrations (Streamline development).

projects. This is due to the confidentiality agreements with the

companies.

Figure 5. Heatmap of changes in the code (one subsystem)

This heatmap shows that this development was done on a

stable code base since the changes are grouped to a subset of

components at a time – we could see that the dark areas with

large changes occur in periods without the “release” pattern as

in the heatmaps in Figure 4 – for example area E-1. Some

components (e.g. area E-2) change continuously and those were

also identified by designers as the unstable ones.

Figure 6 presents a heatmap for one entire system of one of

the products at Saab AB, which had a code base similar in size

to the products presented in the previous two heatmaps. The

development process in the company was structured around the

V-model for the whole project with multiple teams working

according to Agile principles.

Figure 6. Heatmap of changes in the code (the entire system, one row

represents one component)

The heatmap in Figure 6 shows two distinct phases in the

product development: development phase (S-1) and test phase

(S-2). This was confirmed by discussions with the company

representatives that the development is quite intensive and the

testing is about fixing defects in the product. The development

is spread all over the product and there are a few components

which are developed constantly (the components with virtually

constant changes, for example S-3). Since this company worked

according to the V-model, this pattern corresponds to the main

product development pattern in Figure 3.

In short the three heatmaps show that code changes indicate

the ability of the company to continuously integrate or release

products given their development processes. Unstable code base

with many parallel and distributed changes could make it hard

to continuously assure high quality of the software whereas

stable code base with changes collocated to specific components

were aligned with the desired patterns for continuous

deployment.

C. Follow-up analyses: data validation

The heatmaps presented in section B required deeper

analysis to validate whether the patterns identifying stable and

unstable periods reflect designers’ views on the periods

(empirical metrics validation according to Fenton [21]) as well

as understand whether there are correlations between change

bursts and number of defects (using Pearson’s correlation

coefficient).

1) Interviews

Since this project was conducted according to the principles

of action research [12] where the researcher was a part of

operations of each company, we were able to validate the data

based in ongoing projects. At each company we asked the

practitioners to identify two components – one which changes

very often (considered unstable) and one which changes

relatively seldom which could be considered as a stable

component. We created graphs with change history and number

of changed LOC in the programs, which we discussed with the

designers or architects who worked with these components. We

asked the question whether this change history corresponds to

their understanding of stable/unstable periods.

During the interviews, the respondents identified the need to

link the change patterns to defect inflow profiles to be able to

predict whether large changes lead to quality problems.

2) In-depth change analyses

In order to perform the first analysis of correlations between

the changes and the defect inflow we summed all changes per

week and the sum of all reported defects per week. An example

of this chart is presented in Figure 7 where the data comes from

Volvo Group - the scales are removed due to confidentiality

reasons.

Figure 7. Total changes (solid line) and defect inflow (dotted line)

per week. Each measure is on different scale.

In the figure we observe the time shift between large changes

in the subsystem and the defect inflow in the project. This trend

shows (which was confirmed by the practitioners at the

company) that the testing was done with approximately this time

shift. This shows that even this simple indicator of total number

of changed lines of code can be a good predictor of defects in the

project. The defect inflow and changed lines of code presented

in Figure 7 were not correlated since the changes came from one

subsystem while the defect inflow came from the entire system.

Despite that, the discussions with the designers confirmed the

validity of this time-shift pattern is valid since the amount of

time between the two largest peaks happened at the same period

as handing over the subsystem to system testing.

A similar analysis at Saab AB, where we had the possibility

to filter the defect inflow data per component, the analysis

showed significant Person’s correlations at 0.5 - 0.7 levels for 6

components (pairwise) during a period of 1-7 months. These

time periods corresponded to handing over periods between

system construction and system verification, and the significant

correlations showed that there is a connection between the

amount of change in the components and the number of defect

inflow from these components.

Finally, Ericsson had a process where the revisions were

tagged with defect numbers, which allowed for a more in-depth

analysis of links between changes and defects. We investigated

whether there is a large difference in terms of number of defects

reported in defect database between the two components – the

stable one and the unstable one. An example change history for

stable and unstable components is presented in Figure 85 and

Figure 9. The components were judged to be the stable/unstable

by experts and by measuring the total number of changes per

component within the latest 1-7 months period.

5 In figures 8-13 the scale is rescaled to 100 to show the magnitude of

changes, but not to reveal the real values.

Figure 8. Changes in unstable component per week. The bars

represent number of revisions (scaled to 100 changes).

Figure 9. Changes in stable component per week. The bars represent

number of revisions.

Both figures are on the same scale, which shows that the

difference between stable and unstable components is

significant. The next step was to analyze differences in quality

between the stable and unstable components. This analysis

showed that there is only 35% difference between the

components in the number of defects when counting the defects

reported in the development project. Counting all defects (i.e.

pre- and post-release defects) the difference was only 17%.

Since the number of defects was obtained from the

bug/defect repository, it was not considered to be absolute (since

it required manual intervention – reporting a defect). However,

the pattern of naming releases (enforced by tools) provided us

with the possibility of obtaining more accurate measure of the

number of found defects. Analysis of this measure of number of

defects showed that a significant amount of revisions in the

unstable components were related to defect removal activities.

When using that as a measure, the difference was 78% - i.e. the

stable component had 78% fewer defects related to it than the

unstable one.

A similar analysis of stable vs. unstable components at Saab

AB is presented in Figure 10. The figure shows that the

development of the component was done continuously and that

the magnitude of changes in the component was quite high

throughout its development.

Figure 10. Unstable component at Saab AB

The corresponding stable component at the same company

and product on the same time scale is presented in Figure 11.

The pattern shows that the magnitude of changes was

considerably lower for that component.

Figure 11. Stable component at Saab AB

The visual analysis of the trends shows that the pattern of

change in stable and unstable components is similar to the

corresponding components at Ericsson. Figure 11 shows that a

stable component has been developed during week w16 and later

on the functionality was added gradually.

Number of changes of LOC in an unstable component at

Volvo Group is shows in Figure 12. The trend is similar to the

trend in unstable components at Saab AB and Ericsson –

considerable amount of changes throughout its lifecycle.

Figure 12. Unstable component at Volvo Group

Figure 13 shows the trend of changes in the stable

component at Volvo Group, which again is similar to the trend

of stable components at Saab AB and Ericsson – distinct periods

of development of component.

Figure 13. Stable component at Volvo Group

The trend shows that there are two periods of development –

the main functionality development in weeks 1-41 and the

growth of functionality in weeks 80-90 and weeks 109-113. As

the trend shows the second and third periods of growth result in

considerable smaller code changes than the main period.

D. Impact – indicators of code stability

The results presented in the previous sections were found

useful by the collaborating companies and led to establishing

indicators of product stability at two of them. The purpose of the

indicators is to notify software development teams about

potential risks of too many/too large changes to code base in

short time frames – which can lead to large number of defects

cumulated in shorter time frames later in the development cycle.

The results presented in previous sections together with

established research show that there is a close relation between

defects in the code and changes of the code (e.g. [11, 22]). What

is more, the analysis of differences between primary defect

measures (release names) and secondary defect measures (defect

reports) showed that the revision names are more reliable as

measures. These results led to establishing of measurement

systems [18] which serve as early warning of quality risks and

improve test analyses. The measurement system consists of

Microsoft Vista gadgets with two information sets: top 5

components affected by changes and top 5 defects affecting the

largest number of components. The heatmaps are used to put this

information in context, the list of components helps to focus test

efforts while the list of defects helps in prioritizing Root Cause

Analysis efforts [23]. The gadget is shown in Figure 14.

Figure 14. MS Vista gadget for teams monitoring code stability

The gadget shows top 5 component names with the number

of revisions related to bug fixing during the last month (greyed

due to confidentiality reasons). The link in the gadget (“Details

& Heat Map”) opens a web page with detailed information about

what was changed and statistics of the number of components

that were affected by each bug fix. The information is used by

the teams to prioritize test efforts and to identify components that

“age” and need rework.

V. RELATED WORK

Ball and Nagappan [11] studied the impact or relative code

churn measures on software quality at Microsoft. Their work,

based on the source code of MS Vista and MS Windows Server

showed that these simple measures can predict defect-prone

modules with high likelihood.

A similar study was conducted by Bell et al. [22] at AT&T

on a product with 18 releases. Bell et al. checked whether there

are other metrics that could improve the results of defect

predictions and came to conclusion that the churn measures were

indeed the strongest predictors.

Buse and Zimmermann [24] reported on a survey conducted

at Microsoft where information needs were collected from 110

Microsoft designers, project managers and architects. Defect-

and code stability related information was among the top

information needs – what the managers would like to know. Not

only were these aspects important for the historical analyses,

they were important for the future insights of the company. The

survey from Microsoft shows that the indicators presented in our

paper fill an important need in software industry.

IBM has also identified metrics related to technical product

development (in line with the code stability indicator) as

important for Agile software development [25]. In the category

of technical progress, the indicators should show that there is a

growth of the product. Our code stability indicators take it one

step further and show how “controlled” this growth is.

Complementary measures to code stability should show the

business aspects of software development, e.g. business value,

which is one of important measures which should be used by

Agile teams and companies [26]. The awareness of how the team

contributes to the value is an important driver for the success of

Agile projects. What the authors of the cited article postulate is

similar to what we intend to achieve – provide key information

without introducing manual work overhead. The focus of the

cited article is on the customer value, whereas the focus of this

article is on quality risk monitoring and predicting delivery time

– both articles complement each other.

Another important measure which is claimed to stimulate

agility in software development teams, and thus complement the

technical aspects of code stability, is the RTF (Running Tested

Features) measure, popular in XP [27]. This measure stimulates

smart continuous deployment strategies and is intended to

capture similar aspects as our release readiness indicator

although in smaller projects.

A set of other metrics useful in the context of continuous

deployment can be found in the work of Fritz [28] in the context

of market driven software development organization. The

metrics presented by Fritz measure such aspects as continuous

integration pace or the pace of delivery of features to the

customers – the metrics complement the indicators presented in

this paper.

Visualization is considered important in agile development

and Cockburn [29] propose the concept of an 'information

radiator' which 'displays information in a place where passersby

can see it'. However, Sharp et al in [30] studied the use that agile

teams made of such visualization and found that it was mostly

used for progress tracking with little to no application-specific

information. Instead Sharp et al focus on the physical artifacts of

story cards and how they are (physically) pinned to a wall to

create a shared view and common understanding of the system

under development. Sharp et al conclude that the social

perspective is critical when developing methods and techniques

to support agile teams.

This view is supported by the study of Whitworth et al [31].

Agile practitioners in that study considered 'information

radiators' to be a source of inspiration, excitement and team

cohesion. However, also in this case the visualization discussed

was basically a burn-up chart, i.e. progress tracking. It seems

possible that the group-based, reflective discussions that our use

of heatmaps created could be of general use in strengthening the

social processes both in agile development, but also in more

plan-driven development approaches. The quality patterns it can

help reveal could complement the progress tracking described in

existing research.

VI. CONCLUSIONS

Focusing on customer value and continuous delivery of

functionality in short cycles has gained significant popularity in

the software development industry. Modern software

development companies address the need for continuous

deployment using diverse means – Agile and Lean software

development principles being prominent examples. With the

focus on end-user features the companies usually need to control

the stability of the product as a whole, in particular to control

risks towards service degradation or faulty new features.

In this paper we presented a method for quantifying and

visualizing code stability using heatmaps. The method was

evaluated through action research projects at three companies

developing embedded software products – Ericsson AB, Volvo

Group, and Saab AB. The results showed that code churn and

change bursts measures (previously used by Microsoft to predict

post-release software quality) can be effectively used to identify

risky components and, in consequence, help prevent degradation

of product quality.

The presented method effectively supports software

development teams and their management in discussing and

reasoning about their development practices. The discussions at

the companies and the introduction of daily monitoring of code

stability at Ericsson showed that this method is indeed useful for

the companies.

In our further work we are focusing on adding multiple

dimensions to these metrics – for example code complexity,

development breadth, or test coverage.

ACKNOWLEDGMENT

This research has been carried out in the Software Centre,

Chalmers, Göteborgs Universitet and Ericsson AB, Saab AB,

AB Volvo.

REFERENCES

[1] X. Wang, K. Conboy, and O. Cawley, "“Leagile” software

development: An experience report analysis of the

application of lean approaches in agile software

development," Journal of Systems and Software, vol. 85, pp.

1287-1299, 2012.

[2] S. Jeff, V. Anton, B. Jack, and P. Nikolai, "Distributed

Scrum: Agile Project Management with Outsourced

Development Teams," in System Sciences, 2007. HICSS

2007. 40th Annual Hawaii International Conference on,

2007, pp. 274a-274a.

[3] L. WILKINSON and M. FRIENDLY, The History of the

Cluster Heat Map vol. 63. Alexandria, VA, ETATS-UNIS:

American Statistical Association, 2009.

[4] T. Alette and V. E. Fritzon, "Introducing Product and Process

Visualizations to Support Software Development," MSc

Master Thesis, Department of Computer Science and

Engineering, Chalmers University of Technology, 2012.

[5] P. Trott, Innovation management and new product

development, 4th ed. Harlow, England ; New York: Financial

Times/Prentice Hall, 2008.

[6] J. Bosch, "From software product lines to software

ecosystems," presented at the Proceedings of the 13th

International Software Product Line Conference, San

Francisco, California, 2009.

[7] M. Staron, W. Meding, G. Karlsson, and C. Nilsson,

"Developing measurement systems: an industrial case study,"

Journal of Software Maintenance and Evolution: Research

and Practice, pp. n/a-n/a, 2010.

[8] International Standard Organization and International

Electrotechnical Commission, "ISO/IEC 15939 Software

engineering – Software measurement process," International

Standard Organization / International Electrotechnical

Commission,, Geneva2007.

[9] M. Staron, "Critical role of measures in decision processes:

Managerial and technical measures in the context of large

software development organizations," Information and

Software Technology, 2012.

[10] N. Nagappan, B. Murphy, and V. Basili, "The influence of

organizational structure on software quality," in Software

Engineering, 2008. ICSE '08. ACM/IEEE 30th International

Conference on, 2008, pp. 521-530.

[11] T. Ball and N. Nagappan, "Use of relative code churn

measures to predict system defect density," in 27th

International Conference on Software Engineering, St.

Louis, MO, USA, 2005, pp. 284-292.

[12] G. I. Susman and R. D. Evered, "An Assessment of the

Scientific Merits of Action Research," Administrative

Science Quarterly, vol. 1978, pp. 582-603, 1978.

[13] P. Tomaszewski, P. Berander, and L.-O. Damm, "From

Traditional to Streamline Development - Opportunities and

Challenges," Software Process Improvement and Practice,

vol. 2007, pp. 1-20, 2007.

[14] M. Staron and W. Meding, "Monitoring Bottlenecks in Agile

and Lean Software Development Projects – A Method and Its

Industrial Use," in Product-Focused Software Process

Improvement, Tore Cane, Italy, 2011, pp. 3-16.

[15] N. Dzamashvili Fogelström, T. Gorschek, M. Svahnberg, and

P. Olsson, "The impact of agile principles on market-driven

software product development," Journal of Software

Maintenance and Evolution: Research and Practice, vol. 22,

pp. 53-80, 2010.

[16] P. Duvall, S. Matyas, and A. Glover, Continuous Integration:

Improving Software Quality and Reducing Risk: Addison-

Wesley Professional, 2007.

[17] S. J. Towner, "Four ways to accelerate new product

development," Long Range Planning, vol. 27, pp. 57-65,

1994.

[18] M. Staron, W. Meding, and C. Nilsson, "A Framework for

Developing Measurement Systems and Its Industrial

Evaluation," Information and Software Technology, vol. 51,

pp. 721-737, 2008.

[19] M. Staron and W. Meding, "Using Models to Develop

Measurement Systems: A Method and Its Industrial Use,"

presented at the Software Process and Product Measurement,

Amsterdam, NL, 2009.

[20] W. Meding and M. Staron, "The Role of Design and

Implementation Models in Establishing Mature Measurement

Programs," presented at the Nordic Workshop on Model

Driven Engineering, Tampere, Finland, 2009.

[21] N. E. Fenton and S. L. Pfleeger, Software metrics : a rigorous

and practical approach, 2nd ed. London: International

Thomson Computer Press, 1996.

[22] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, "Does

measuring code change improve fault prediction?," presented

at the Proceedings of the 7th International Conference on

Predictive Models in Software Engineering, Banff, Alberta,

Canada, 2011.

[23] B. Andersen and T. Fagerhaug, Root cause analysis :

simplified tools and techniques. Milwaukee, WI: ASQ

Quality Press, 2000.

[24] R. P. L. Buse and T. Zimmermann, "Information Needs for

Software Development Analytics," presented at the 34th

International Conference on Software Engineering (ICSE

2012 SEIP Track), Zurich, Switzerland, 2012.

[25] N. Ward-Dutton. (2011, Software Econometrics: Challenging

assumptions about software delivery. IBM.com podcast

companion report.

[26] D. Hartmann and R. Dymond, "Appropriate agile

measurement: using metrics and diagnostics to deliver

business value," in Agile Conference, 2006, 2006, pp. 6 pp.-

134.

[27] R. Jeffries. (2004). A Metric Leading to Agility. Available:

http://xprogramming.com/xpmag/jatRtsMetric

[28] T. Fitz. (2009). Continuous Deployment at IMVU: Doing the

impossible fifty times a day. Available: http://goo.gl/qPT6

[29] A. Cockburn, Agile software development: the cooperative

game: Addison-Wesley Professional, 2006.

[30] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson,

"Models of motivation in software engineering," Information

and Software Technology, vol. 51, pp. 219-233, 2009.

[31] E. Whitworth and R. Biddle, "The social nature of agile

teams," presented at the Agile conference (Agile), 2007.

.

