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Abstract 

Relationships between authors based on characteristics of published literature have been studied for 

decades. Author cocitation analysis using mapping techniques has been most frequently used to study 

how closely two authors are thought to be in intellectual space based on how members of the research 

community co-cite their works. Other approaches exist to study author relatedness based more directly on 

the text of their published works. In this study we present static and dynamic word-based approaches 

using vector space modeling, as well as a topic-based approach based on Latent Dirichlet Allocation for 

mapping author research relatedness. Vector space modeling is used to define an author space consisting 

of works by a given author. Outcomes for the two word-based approaches and a topic-based approach for 

50 prolific authors in library and information science are compared with more traditional author cocitation 

analysis using multidimensional scaling and hierarchical cluster analysis. The two word-based approaches 

produced similar outcomes except where two authors were frequent co-authors for the majority of their 

articles. The topic-based approach produced the most distinctive map.    
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Introduction 

The study of scientific production measured through publications has a long history. To better understand 

patterns and relationships in scientific production, various tools have been developed. Science mapping is 

one of the most useful tools to visualize scientific structure.  It helps to identify scientific themes, and 

discover new knowledge. The unit of interest for mapping may include authors, articles, and journals. The 

essence of a science map is the measure of relatedness among the units. To date, five approaches have 

been used to measure the relatedness between authors, where the nature of the relationship studied is 

based on the data used: direct citation, cocitation analysis, co-authorship analysis, bibliographic coupling 

analysis and co-word analysis (discussed below). All have been successfully applied to visualize scientific 

structure and to describe author relatedness.  Recently, more sophisticated hybrid methods (i.e. using 

textual content and citations) have been applied to the mapping of articles (Cao & Gao, 2005; Ahlgren & 

Colliander, 2009; Boyack & Klavans, 2010) and journals (Liu et al., 2010). To the best of our knowledge 

the uses of textual content and, more specifically, a topic model (e.g. Deerwester et al., 1990) to 

determine the relatedness of authors have not been studied yet.   

In this study we propose new textual feature-based approaches based on co-occurring words that apply 

vector space modeling to measure the relatedness of authors’ research. A topic-based approach using 

Latent Dirichlet Allocation (LDA) modeling is also applied to capture the latent topical features from the 

occurrence and the co-occurrence of words within a document and across documents created by authors. 

Two authors will be similar to each other if they write similar content and topics. These new approaches 

can be used as complementary techniques to those currently used to generate author maps. 

More specifically, the purpose of the present research is to: 

1. Propose three new methods, two word-based, one topic-based, to measure author research relatedness 

based on the content of their publications.  
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2. Compare multidimensional scaling (MDS) and hierarchical clustering outcomes of the proposed word-

based models, the topic-based model and the widely used author cocitation analysis (ACA) for a group of 

authors. 

As an initial investigation of these topics, our focus will be on authors whose publications appear in the 

highest impact library and information science journals.  

Related Work 

The literature review section covers two parts. The first section reviews existing techniques used for 

mapping bibliometric units. The second section briefly reviews the relevant models used in the study. It 

includes an introduction to the essential ideas of the vector space model, how it applies to the current 

study, and provides a short introduction to the LDA or topic model.  

Bibliometric Relatedness Measures 

Many bibliometric studies have formulated quantitative measures to map scientific structure at different 

levels of granularity including authors, articles and journals. In reviewing visualization studies for 

knowledge domains, Börner, Chen and Boyack (2005) categorized relatedness measures into two broad 

categories: citation linkages and co-occurrence similarities.  Within the relatedness measures, five basic 

approaches were identified: direct citation, cocitation analysis, co-authorship analysis, bibliographic 

coupling and co-word analysis.  

Direct citation 

Direct citation accounts for the relatedness between a citing work and a cited work based on citing 

behavior. This measure is usually asymmetric. Shibata et al. (2008) explored citation networks for two 

research domains and divided the networks into clusters in order to identify research fronts. Direct 

citation has not attracted wide attention. One possible reason may be its requirement for a very long time 

window to obtain a sufficient linking signal for clustering (Boyack & Klavans, 2010). 
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Bibliographic coupling 

The idea that two articles that share the same references are related, referred to as bibliographic coupling, 

was outlined by Kessler (1963). The more references two articles have in common, the more closely 

related they are thought to be. Note that this list is static over time because references within articles do 

not change. With the interrelation of this link, scientific products can be ordered into groups. Weinberg 

(1974) reviewed the theory and practical applications of bibliographic coupling and granted the 

usefulness of the method. More recently, Zhao and Strotmann (2008) aggregated bibliographic coupling 

at an author’s oeuvre (body of work) level, which they called Author Bibliographic-Coupling Analysis 

(ABCA). They found ABCA can provide an effective picture of current active research in a field.  

Cocitation analysis 

Cocitation analysis, introduced by Small (1973), is probably the most influential approach for assessing 

relatedness measures. If two articles are cited by the same third article, these two articles are co-cited. The 

assumption is that the appearance of two articles in the same reference list indicates a semantic 

association between the articles. Unlike traditional bibliographic coupling, cocitation is a dynamic 

relationship based on the citing authors. New citing authors can change the cocitation relationship. This 

feature is important because science is developing continuously. Relationships among scientific units 

being studied should be able to incorporate this dynamic change.  

White and Griffith (1981) first applied cocitation techniques to authors, called author cocitation analysis 

or ACA. The essential transformation is to consider “Author” as a body of writings by a person (i.e. an 

oeuvre). So the cocitation of authors applies to any work by any author being co-cited with any work by 

another author. Multidimensional scaling and factor analysis have been employed to describe the 

scientific structure of information science authors. Since then, a number of studies have been conducted 

using variations of the ACA method, including normalization (Ahlgren, Jarneving & Rousseau, 2003; 

White, 2003; Leydesdorff & Vaughan, 2006; van Eck & Waltman, 2009), author counts (Zhao & 



5 

 

Strotmann, 2011) and last author ACA (Zhao & Strotmann, 2010). One disadvantage of cocitation 

analysis is the lack of cognitive interpretation of the relatedness of the co-cited units. Without enough 

domain knowledge, one can hardly interpret the cocitation map. Leydesdorff (1987) argued that cocitation 

maps only partially represent the structure of science. One possible solution to this problem is to interpret 

the ACA map with word analysis. Toward this end, Braam et al. (1991) combined cocitation and word 

analysis. Word-profile analysis was used to examine the cognitive relatedness of documents within the 

same cocitation cluster. 

Co-authorship analysis 

A co-authorship relationship is established when authors co-publish a paper. Glänzel (2001) studied 

international co-authorship links to reveal the structures in international collaborations. Liu et al. (2005) 

constructed a network with co-authorship relations in the field of digital libraries. Ding (2011b) studied 

scientific collaborations and citation patterns of researchers and combined the results with a topic model 

approach to examine collaborations among researchers who share similar and different research interests.  

Although co-authorship has been considered one measure of author relatedness, it reflects a stronger 

social tie among the collaborating authors than any other relatedness measure. It is this feature of co-

authorship that makes co-authorship analysis more revealing of a social network rather than a scientific 

structure. 

Co-word analysis 

Co-word analysis collects evidence of relatedness from co-occurring keywords from different articles.  

Compared with the approaches introduced earlier, co-word analysis directly uses actual contents to 

measure relatedness whereas the others find indirect evidence through citation and co-author relations. An 

obvious advantage of co-word analysis is that relatedness can be interpreted directly according to 

document contents.  
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Coulter et al. (1998) mapped the discipline of software engineering with co-word analysis. Indexing terms 

from the ACM computing Classification System were used as the unit of analysis. Ding et al. (2001) 

conducted a co-word analysis on a sample of 2,012 articles from the Web of Science (WoS) to reveal 

themes of information retrieval research. Both professionally assigned keywords and keywords from titles 

and abstracts were extracted. Standardization was applied to map the keywords to a controlled vocabulary. 

The study demonstrated the feasibility of co-word analysis as a method to extract patterns from a text 

corpus. In these co-word analysis works, the co-occurrences of keywords in articles were used as an 

indication of their association strengths to map the relatedness of the keywords. In the present study, 

words will be used to determine higher level relatedness: the relatedness of authors. Two authors are 

similar to each other if they have written similar content.   

Like other approaches, co-word analysis has its own weaknesses. Leydesdorff (1997) noted that the 

meaning of words change from position to position and from one text to another. He also suggested this 

change will destabilize the science map produced by co-word analysis. Another disadvantage of using 

indexer assigned keywords as the source for co-word analysis is the “indexer effect” (Law & Whittaker, 

1992), which creates bias through factors such as the artificiality of an indexing language, delays in 

changes to the indexing language to reflect the current state of a discipline, and subjectivity in the 

assignment of index terms. 

Background Information on Relevant Models to be Used  

In the current study, the vector space model, applied widely in information retrieval research, serves as 

the framework to determine author relatedness for two word-based approaches. LDA topic modeling is 

used to determine author relatedness for the topic-based approach. The following sections provide a brief 

review of the relevant models.  
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Vector Space Modeling  

The vector space model is one of the most influential models in information retrieval (Salton and McGill, 

1983). In this model, each document is represented as a vector and the elements of the vector consist of 

words appearing in the collection. The document vectors in a collection constitute a document term 

matrix. The value of each element represents the term significance in the document.  By virtue of the 

vector space model, documents are transformed into vectors. Traditional measures like angle (e.g. based 

on a cosine measure) and distance (e.g. Euclidean distance) can be used to measure the similarity between 

documents. In the vector space, a number of documents constitute a document space. The centroid of the 

document space is a summarization of the characteristics of the space. It represents the average vector for 

a group of documents.  

In the current study, all of the articles in our data collection will constitute a collection space. Each author 

will be viewed as a document space consisting of the articles he/she has written. This space is a subspace 

of the collection space, named the author space. The centroid of the author space will be used to represent 

the author. The relatedness between authors will be measured through the similarity between the centroids 

of their author spaces. 

Topic Model- Latent Dirichlet Allocation 

The vector space model assumes independence among the words in the documents. However, in the real 

world, this assumption is rarely valid because the terms are associated with each other due to their 

semantics. The topic model is an improvement over the basic vector space model in terms of relieving the 

independence assumption and capturing the term associations. Instead of assuming independence among 

terms, the topic model assumes exchangeability among terms in documents, which is a much looser 

assumption. Early works on the topic model include Latent Semantic Indexing (LSI) by Deerwester et al. 

(1990) and the probabilistic LSI (pLSI) by Hofmann (1999). LDA is a more recent technique proposed by 
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Blei et al. (2003). It has an advantage over LSI in explicitly modeling the latent topics, and over pLSI in 

solving the over-fitting problem (i.e. a model with too many parameters). 

The LDA model treats a document as a mixture of topics and a topic as a mixture of terms. Each 

document (i.e. a mixture of topics θ) is generated from a latent Dirichlet distribution with a prior of α, and 

each topic (i.e. a mixture of terms φk) is generated from a Dirichlet distribution with a prior of β. The 

generation process entails first, sampling a document θd from Dir(α). At each position of a word in a 

document, a topic z is selected according to θd, and a word w is selected according to z and φk. Figure 1 

plots the plate notation of the generating process: 

FIG. 1. Graphic model representation of LDA. 

In the above figure, white circles indicate latent variables and gray circles indicate observed variables. 

Arrows indicate conditional dependencies between variables. Plates indicate repeated sampling and the 

number in the lower right of the plate indicates the number of repetitions. So k is the number of topics, Nd 

is the length of a document, and M is the number of documents in the collection. In the model, α and β are 

hyperparameters that define the nature of the priors on θ and φ.  

Rosen-Zvi et al. (2010) extended the original LDA model to include authors and proposed the author-

topic model (Figure 2).  
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FIG. 2. Graphic model representation of author-topic model. 

This model includes authorship information in the generative process. Each document has a number of 

authors ad . Each author is considered as a distribution of topics drawn from a Dirichlet distribution with a 

prior of α. For each word in a document, an author x is randomly drawn from ad and the topic distribution 

associated with this author is θx. Then a topic z is selected the same way as in a LDA model to generate 

the observed word w. The advantage of this author-topic model is that it adds authorship information to 

the model, so that the topics are learned and assigned to documents accordingly. In the output of this 

model, each author is a distribution of different topics; each topic is a distribution of terms. As the 

purpose of the current study is to measure the relatedness of authors, the author-topic model will be 

appropriate to produce author similarities based on their topics. Gibbs sampling (Griffiths & Steyvers, 

2004) is used to estimate the parameters in the model. 



10 

 

Method 

Data Collection 

Journals with the highest impact factor in the category of “information science & library science” (LIS) 

appearing in the Journal Citation Report 2009 Social Sciences Edition were identified. Journals 

associated with allied subject areas such as Management Information Systems and Medical Informatics, 

were excluded. Table 1 lists the eight journals selected for inclusion in the study. Although ARIST 

(Annual Review of Information Science and Technology) publishes reviews and not research articles, 

these publications still represent topical areas of expertise of the authors. Bibliographic records for 

documents published in these journals between 2000 and 2010 were downloaded. Records downloaded 

were further limited to three document types: articles, proceedings papers and reviews.  The other 

document types were less likely to represent research contributions by the authors.  

TABLE 1. Selected journals. 

Journal Title Impact 
Factor 

# of records retrieved 
before refinement 

document types 

# of records 
downloaded 

Journal of Informetrics 3.379 172 162 

Annual Review of Information Science and 

Technology 

2.929 135 118 

Journal of the American Society for Information 

Science and Technology (covering the years 2001-
2010) 

2.3 1897 1451 

Scientometrics 2.167 1485 1390 

Information Processing & Management 1.783 881 749 

Journal of Information Science 1.706 548 495 

Online Information Review 1.423 1053 482 

Journal of Documentation 1.405 844 380 

Total  7015 5227 

 

In total, 5,227 records were downloaded from WoS. The raw WoS records were processed, and only three 

fields were kept: the article title (i.e. “TI” field), the Keywords Plus (i.e. “ID” field), and the abstract (i.e. 
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“AB” field). The records then were indexed with the widely used Lemur information retrieval toolkit 

(http://www.lemurproject.org/). Stop words were removed and stemming was applied. 

Author Selection 

From the 5,227 records downloaded, we were able to identify 6,282 different author names using string 

matching. Because it is impractical to map all of the authors in our collection, we selected the 50 most 

prolific authors according to the WoS “analyze results” function. A larger number of authors could be 

selected, but would result in a more densely populated map that would be more difficult to interpret when 

all of the names are superimposed. We selected the most prolific authors because the more an author 

writes, the better the algorithm used “understands” her/his interests, and thus the more accurate our 

assessment will be.  

Author Space 

With the 5,227 records, we identified the authorship relation between each of the top authors using the 

articles they wrote. For each author in our author list we then generated an author space which consists of 

all the articles he/she wrote. TF*IDF term weighting was employed to assign term significance in the 

space. Terms that were single characters or only consisted of digits (e.g. “2001”) were filtered out. We 

believe that these terms add noise into the space rather than meaning. The relatedness between authors is 

measured through the cosine between the centroids of the author spaces.   

Static author space vs. dynamic author space 

Using the content of publications to determine the strength of the relationship between authors introduces 

a potentially confounding factor. The similarity between co-authors may be high because the text of the 

publications they have co-written will be used to determine the strength of their relationships. One could 

argue that this creates a biased assessment of the strength of the relationship because there is an exact 

match for the text of the co-authored publications that creates a stronger bond than for two authors who 

have published in a common area but did not collaborate. On the other hand, the simple fact that the 
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collaboration has resulted in one or more co-authored documents should be acknowledged as a strong tie 

between the authors. The strength of the relationship can be assessed both ways, where the common 

publications are included or excluded. Accordingly, we propose a static author space and dynamic author 

space to fulfill this goal. In a static space, each author has her/his own space which consists of her/his 

articles. This space does not change when measuring author relatedness. In the static author space, the co-

authorship is not controlled. The relatedness of authors will include the similarity arising from the 

strength of the co-authorships. Conversely, in the dynamic author space, the author spaces depend on a 

pair of authors. Co-authored articles by the pair of authors are excluded.  In this case, each author may 

have a different author space when measured with different authors. Within the dynamic space the co-

authorship similarity is controlled because the co-authored articles are filtered out before the similarity is 

calculated. It is of interest to understand how two authors are related with or without their collaborative 

works. 

Measure of Relatedness 

The vector space model provides a number of readily available measures of relatedness. The most popular 

is the cosine measure, which measures the cosine of the angle formed by two vectors in the space. It 

basically measures the term weight distribution between two vectors. The more similar the distribution is, 

the higher the cosine value is expected to be. Therefore, the cosine similarity measure is adopted in our 

study to measure the relatedness between the centroids of two author spaces. 

Topic Model Training 

Gibbs sampling (Griffiths & Steyvers, 2004) was used to estimate the parameters in the author-topic 

model. We set the number of iterations to 1,000. The hyperparameter α was set to 50/K where K is the 

number of topics and hyper β is set to 0.01.  We tested different K, or numbers of topic, values and 

decided to report the results from K=20 because it produced the most reasonable outcome by our 

judgment. Too few topics do not allow authors to be distinguished, whereas too many may cause 
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relationships to be weaker. Perplexity analysis could have been applied to decide the number of topics 

(Blei, Ng & Jordan, 2003).  However, perplexity measures the generalization ability of a trained model 

which does not have much meaningful interpretation in our study because we are interested in identifying 

author relatedness based on our data. The topic model toolbox was employed to perform the learning 

process (http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm). The result from the topic model 

training is provided in the appendix. The table includes the top words and authors for each topic as well as 

their probabilities. 

Mapping and Comparison with Cocitation Outcome 

An author-topic LDA model (Rosen-Zvi et al., 2010) was trained on our collection and a pair-wise cosine 

similarity measure comparison of the 50 authors was conducted, resulting in a symmetric matrix of 

similarity values based on the LDA modeling. Similarity matrices were also calculated for both the static 

and dynamic author spaces. Multidimensional scaling was used to visualize the relationships among the 

authors. A more traditional cocitation matrix for the 50 authors was also generated to permit a subjective 

comparison between the static and dynamic word-based, LDA, and author cocitation outcomes. The 

cocitation counts were extracted from the cited reference (i.e. “CR” field) of our data, so only the first 

author cocitation was tallied. Because the data represent a type of similarity measure, SPSS PROXSCAL 

was used to construct the map, as recommended by Leydesdorff and Vaughan (2006). To provide 

additional insights into the grouping of the authors, hierarchical cluster analysis (complete linkage method) 

was used in SPSS to superimpose groups of authors on the MDS maps to provide an additional means to 

assess the coherence in the resulting proximities between authors. MDS map outcomes could also be 

interpreted without these generated clusters.   
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Results 

Basic Collection Statistics 

Table 2 includes some basic statistics for the collection we used to generate the author maps. After 

tokenization of the field contents 916,383 tokens, or individual words, were identified; the number of 

unique tokens, or distinct words, was 12,537. The average document length was 175.32 tokens.    

TABLE 2. Basic collection statistics. 

# of authors # of documents # of tokens # of unique tokens Avg. doc length 

6228 5227 916,383 12,537 175.32 

 

Author Similarities 

An obvious advantage of the text-based similarity is that the link between authors is interpretable. When 

we computed pair-wise similarities for the authors, we also calculated the top contributing terms (or 

topics for the LDA) so that we could better understand the reason why two authors are similar. To provide 

a sense of how these top terms help us to understand the links, we list a number of author similarities 

from the static author map in Table 3. The outcome for the dynamic map has the same format. For the 

LDA map, the terms are replaced with topics.  

According to Table 3 “Thelwall, M” and “Glanzel, W” have a similarity of 0.39 in the static map, in 

which “citation” contributes the 12% of the similarity, “link” 6%, followed by “impact” 4%, “science” 

3% and “subject” 2%. With the information provided by the top terms, one can see how the two authors 

are related. To help read the similarity values, basic descriptive statistics of the values of the pair-wise 

similarity for static author map, dynamic author map and LDA map are provided in Table 4. For the top 

50 authors, there are 1,225 pairs of similarity values in total for each map. 
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TABLE 3. A demonstration of author similarities and the top contributing terms. 

Author 1 Author 2 Similarity Top contributing terms 

THELWALL_M GLANZEL_W 0.39 citat:12% link:6% impact:4% scienc:3% 
subject:2% 

SPINK_A JANSEN_BJ 0.83 search:26% queri:11% web:10% engin:9% 
session:5% 

BAR-ILAN_J WOLFRAM_D 0.40 page:14% search:11% web:8% tag:5% engin:4% 

EGGHE_L BURRELL_QL 0.47 informetr:12% distribut:7% index:7% curv:5% 

concentr:4% 

CHEN_HC YANG_CC 0.39 chines:8% web:6% search:6% english:5% 
user:4% 

NICHOLAS_D HUNTINGTON_P 0.99 log:14% kiosk:5% behaviour:5% site:4% 
health:4% 

BORNMANN_L DANIEL_HD 0.97 fellowship:8% manuscript:7% review:7% 

reject:5% peer:5% 

JANSEN_BJ BURRELL_QL 0.08 model:5% time:4% process:3% investig:3% 

approxim:3% 

WOLFRAM_D VAKKARI_P 0.29 search:17% queri:7% term:6% session:5% ir:3% 

GLANZEL_W MOED_HF 0.55 citat:15% journal:12% impact:6% bibliometr:5% 
indic:3% 

 

  TABLE 4. Descriptive statistics of similarity values in three maps (N=1225). 

 Mean Median Std. Deviation Minimum Maximum 

Static author map 0.2352 0.2100 0.1122 0.05 0.99 

Dynamic author map 0.2276 0.2100 0.0949 0.00 0.65 

LDA map 0.4106 0.3500 0.2430 0.03 0.97 
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The average similarity value for the LDA map is much higher than the two word-based maps. This may 

be due to the effect of the topic model. As a topic consists of a mixture of terms, to measure topical 

similarity it is possible that two different terms (e.g. “car” and “vehicle”) will be considered topically 

similar and will then contribute to the similarity. This is helpful for identifying relatedness arising from 

mismatched terminology.  

Map Comparison 

Four author similarity maps were generated: a static author map, a dynamic author map, a LDA author map, and an 

author cocitation map. The static author map and dynamic author map were constructed from the similarities 

between the author spaces. The difference is that the former map includes the similarities for co-authored works, 

whereas the latter excludes these similarities when calculating the pair-wise similarity. The LDA map is built on 

topical similarity. The cocitation map serves as a comparison here. An examination of the pair-wise correlation of 

these author relatedness measures reveals significant and moderate level correlations between the word-based, topic-

based and author cocitation measures (Table 5). It is not surprising that the static author map has a high correlation 

with the dynamic author map (Kendall’s tau b=0.971). Similarly, the correlations among the three content-based 

approaches are generally higher than their correlations with the cocitation approach.  This provides preliminary 

evidence that they measure different types of relationships. 

Outcomes from the hierarchical cluster analysis were superimposed on the maps. Labels for the author 

groups were assigned by us according to the themes inherent in the top-weighted terms in each cluster. 

The number of clusters selected was based on the joining distance at which clusters were combined in the 

cluster dendrogram. A large distance between clusters before being joined provides an indication of the 

distinctiveness of the clusters. Two to four clusters are displayed on each map based on a large clustering 

distance.  The same number of clusters could have been selected for all the maps, but the linking distances 

between some agglomerations was so small that the groups would not have been as distinctive. In all 

cases, the largest singular group consists of authors who work with different aspects of metrics-based 
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studies, which is labeled as “Informetrics” in general in the two word-based maps and “Scientific impact 

evaluation” in the other two maps. This labeling indicates that the metrics-related topics have been a 

frequently investigated theme by the prolific authors in the selected journals during the first decade of 

twenty-first century. It is also noteworthy that the topic groupings of each of the maps largely aligns along 

the horizontal or vertical axis, with one side representing information retrieval (system and behavior) and 

web studies, with the other side corresponding to metrics-based or scientific evaluation studies.      

  TABLE 5. Correlations between Different Measures (N=1225). 

 Static Author Map Dynamic Author Map LDA Author Cocitation 

Map 

Static Author Map 1.00 0.971** 0.487** 0.433** 

Dynamic Author Map 0.971** 1.00 0.476** 0.432** 

LDA 0.487** 0.476** 1.00 0.401** 

Author Cocitation 

Map 

0.433** 0.432** 0.401** 1.00 

(Values in cells are Kendall’s tau-b correlation, ** indicates significant at the 0.01 level with 2-tailed test) 

Static author map and dynamic author map comparison 

As is shown from the maps, the static map (Figure 3) and dynamic map (Figure 4) are generally 

consistent in terms of the location of the authors which indicates that the exclusion of similarities 

resulting from collaborations does not affect the overall layout. However, drastic changes may happen to 

individuals who have collaborated frequently with another author. One notable change is for 

“Bornmann_L” and “Daniel_HD” who were co-authors in a large portion of their works included in this 

study. They have a similarity of 0.97 in the static map. After removing the collaborative works their 

similarity becomes 0.12 which indicates that their non-collaborative works are not as similar. In the case 

of “Jansen_BJ” and “Spink_A”, who have collaborated frequently with each other and have each written 

in similar areas separately, they are close to each other in both maps. This indicates that they are similar 
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to each other irrespective of whether collaborative works are included or not. In an extreme case where 

“Huntington_P” co-authored with “Nicholas_D” on every article in our data collection, we treated their 

similarity as a missing value in the dynamic map. Both the static map and dynamic map have the most 

distinctive cluster separations when the hierarchical clustering is viewed from the two cluster level. In 

both maps, the left half consists of researchers from information retrieval and the right half represents the 

authors who contributed to the informetrics area. Several authors are close to the cluster boundary and 

one switches between the two clusters (“Ding_Y”), indicating that their research interests could overlap 

both areas. Given the high correlation between the static and dynamic author maps, it is expected that the 

overall layouts will be very similar in both maps. This observation may not be generalized to other data 

collections. Which map to explore depends on whether one wishes to have the co-authorship relation 

embedded or not. However, it should be noted that the static author map is more computationally efficient 

than the dynamic author map because less processing is needed. 

 

FIG. 3. Map for static author space (Normalized raw stress 0.03839). 
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FIG. 4. Map for dynamic author space (Normalized raw stress value 0.04232). 

Cocitation map and LDA author map comparison 

Three distinct clusters emerge from the hierarchical cluster analysis based on cocitations (Figure 5). It can 

be seen from Figure 5 that the overall layout of the clusters is not as distinctive as the other content-based 

maps. One cluster (containing “Ho_YS”, “Thelwall_M” and “Ding_Y”), dealing primarily with 

bibliometrics and webometrics, is situated roughly between the clusters for scientific impact evaluation 

and information retrieval. The clustering outcome does not provide a very coherent map of authors based 

on their proximities. For example, “Wilson_CS” and “Kretschmer_H” are included in the “Webometrics” 

group. Based on their publications used in the study they would be more appropriately categorized with 

the “Scientific impact evaluation” group. The lower right cluster, which contains authors who deal with 

the topic of information retrieval and search engine log analysis, is well defined. Some authors are 

positioned near the edge of the cocitation map (“Jamali_HR”, “Foo_S”, “Thijs_B”) because they have 
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received fewer citations. Their locations do not necessarily reflect their topical relatedness with the other 

authors in this case. The overall layout of the MDS map seems to be more central-peripheral rather than 

having distinctive regions. Much of the space on lower left and upper right is empty. For an exploratory 

purpose, one may not obtain as much information as from content-based maps. A notably low normalized 

raw stress value (0.0228) of the cocitation map, however, indicates that the map reflects a good fit with 

the cocitation relationship.  

 

FIG. 5. Cocitation map (Normalized raw stress 0.02280). 

At the four-cluster agglomeration, the LDA map (Figure 6) provides the most coherent representation of 

the author map in relation to the generated clusters. At the two-cluster agglomeration, the clusters are 

neatly divided along the vertical axis, with metrics-related research represented on the left, and Web and 

information retrieval-related themes on the right. Although the group membership of some individuals is 
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still debatable, such as “Ingwersen_P” in the “Scientific impact evaluation” group given that he has also 

published in information retrieval and webometrics, the overall layout of the LDA map does provide 

semantically meaningful relationships.   

 

FIG. 6. Map for LDA 20 topics (Normalized raw stress 0.02856). 

Word-based maps and LDA map comparison 

Both word-based maps (i.e. static author map and dynamic author map) and the LDA map collect 

evidence of relatedness from the content of the publications. The difference between them is that the LDA 

map is generated based on topical similarities. When comparing the resulting maps, some notable 

differences can be found. First, the overall layout of the clusters in the LDA map is more distinctive than 

the word-based maps. The four themes are well positioned into the four quadrants of the LDA map while 

for the word-based maps only two themes can be distinctively identified based on the hierarchical 
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clustering distance. In fact, at the two-cluster agglomeration, the two themes in the LDA map align well 

with those in the word-based maps. A lower normalized raw stress value for the LDA map also indicates 

a better fit with the data. Another notable difference is that “Yu_G” is located nearer to “Burrell_QL” 

than “Rousseau_R” in both word-based maps but not in the LDA map.  However, checking their pair-

wise similarity values, “Burrell_QL” and “Rousseau_R” always have a higher similarity (0.43 for both 

word-based maps and 0.95 for the LDA map) than “Burrell_QL” and “Yu_G” (0.17 for both word-based 

maps and 0.21 for the LDA map). It is incorrectly reflected in the word-based maps due to the loss in the 

MDS projection. But the sharp difference of the similarity values between the two pairs in the LDA map 

help to retain the more accurate relationship. A further examination of their topical relatedness shows that 

90% of the topical similarity between “Burrell_QL” and “Rousseau_R” is contributed by topic 5 (see 

appendix) which can be described as “Informetric laws”, and the topical similarity between “Burrell_QL” 

and “Yu_G” mostly comes from topic 3 (56%) which can be described as “Scientific impact evaluation.” 

Our judgment agrees with this outcome after reviewing their profiles on record. Although all three authors 

have conducted research on scientific impact evaluation in areas such as impact factors and the h-index, 

“Rousseau_R” and “Burrell_QL” have more research in common by having investigated general 

informetric laws such as the power law model and the Lorenz/Leimkuhler function.   

Discussion 

Of the five author relatedness methods discussed earlier, only co-authorship provides a direct connection 

between authors. The other methods establish relationships based on derived similarities. These 

similarities are assessed based on proxies for relatedness. Cocitations are contributed by third parties. 

Direct citations reflect an author’s assessment of relatedness to a cited author or work but are still based 

on perception or the subjectivity inherent in citer motivation (Bornmann & Daniel, 2008). This is also the 

case for bibliographic coupling, where the strength of the relationship is assessed by the overlap of 
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references selected by two authors. Co-word or topic-based studies can be argued to be the least 

influenced by citing behavior because they rely solely on the words developed by the authors themselves.   

The use of multidimensional scaling and hierarchical cluster analysis are recognized as exploratory 

methods that may shed light on relationships among objects of interest that could otherwise be missed  in 

a list of numbers. Clearly, the comparative measures used to construct the maps will influence the 

outcomes, so there is no single correct approach. Comparisons based on author cocitation analysis have 

been widely used for decades, but the word-based approaches that use similarity measures more 

commonly used in vector space information retrieval show some promise as well. However, as we have 

noted, how one includes or excludes data, such as collaborations, can affect outcomes for authors who 

frequently collaborate with one another.  

The newly proposed content-based approaches overcome several limitations of the more traditional 

cocitation approach. In addition to avoiding citer subjectivity inherent in citation-based data, the links 

between authors will be more interpretable compared with the cocitation maps. The top terms/topics will 

be identifiable to help interpret the links between authors.  The content-based methods do not require an 

author to be cited in order to be included in the map. As long as the author has some publication record, 

her/his relatedness with other authors can be identified. This provides the opportunity for researchers who 

have not been widely cited to be included in the author map. Furthermore, cocitation analysis outcomes 

may be affected by limited numbers of citations that do not reflect the true strength of the relationship 

between authors. This can be seen when comparing the cocitation outcomes with the topic-based 

outcomes, where several authors with low citation counts, and therefore low cocitation counts, end up at 

the periphery of the map. For the LDA outcome, these authors are more centrally situated among authors 

with similar topic areas. 

The word-based and topic-based methods can be considered to be an extension of co-word analysis, 

where words are used to determine the relatedness of authors. The advantage of introducing the vector 
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space model is that it provides more tools to formalize the relatedness measure for longer texts such as 

abstracts or even the full text of documents. In fact, other information retrieval models, such as language 

modeling (Ponte & Croft, 1998), can be easily substituted here for the vector space model. The 

application of the topic model appears to be helpful in our case. Topical similarity helps to uncover some 

relationship otherwise hidden due to terminology mismatch, and in turn produces more sensible results, at 

least for library and information science. Interestingly, some other applications of topic model to author 

studies, such as ranking the authors (Ding, 2011a), show promise as well.  

Several limitations of the research must be acknowledged. First, words are not precisely designed 

semantic units. Synonyms and polysemy may damage the link built based on words. Second, the LDA 

method does not work well for authors with limited publication records. As is the case in any other 

probabilistic model, an insufficient sample may lead to inferior results. However, the same would be true 

of cocitation analysis. Third, there are no definitive rules for identifying the number of topics to be 

generated in the LDA model. There will be trade-offs between an optimal level of distinctiveness and 

computational overhead.  Next, the cluster names applied to the hierarchical cluster outcomes represent 

convenient labels to identify the groups generated. Although not definitive proof of outcomes, they 

provide evidence of potentially hidden relationships. The maps could also be interpreted without the 

superimposed clusters. The clusters simply provide a basis by which members of the map may be grouped. 

The validity of such maps has been debated for decades. In Healey, Rothman and Hoch (1986), a paradox 

is introduced: if a map represents a field that is already known to experts, then it is useless because it does 

not reveal anything new; if the map deviates from the expectation of the experts, then its outcome is 

questionable. This does not diminish the application of a method for exploratory purposes, particularly if 

topic areas or groups of authors have not been studied, or if a method has been found to be effective for 

known areas. Finally, one could debate whether maps based on author cocitations and content-based 

approaches measure the same types of relationships among authors. If the purpose of an investigation is to 
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compare author relatedness based on the topics they undertake, we would propose that the content-based 

methods presented here provide a closer approximation toward this end.  

Conclusion 

In this paper we have proposed three new methods for identifying author relatedness based on the content 

of their work: two word-based models and one topic-based. This initial investigation, which compares 

prolific authors from LIS, demonstrates: (1) the potential for more topically meaningful outcomes from 

the new methods when compared to more traditional cocitation analysis; (2) the topic-based method using 

LDA for the data used in this study produces more distinctive clusters and reasonable results than the two 

word-based approaches. Based on the existing data, this finding cannot be generalized to other topic areas. 

Additional investigation is required.  Advantages and disadvantages of the methods have been discussed. 

As an exploratory tool, author mapping doesn’t currently have a gold standard evaluation measure. 

Subjective assessments must be made in assessing the validity of outcomes. Different methods have 

different perspectives and properties. The word and topic-based approaches for assessing the relatedness 

of research topics undertaken by authors are not intended to serve as a replacement for more established 

techniques like author cocitation analysis, but as additional tools for this purpose. The findings for prolific 

library and information science authors were particularly encouraging for the topic-based method. Future 

research may examine a broader range of fields. 
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Appendix 

 LDA topics and representative authors 

Topic 1: 0.04661 Topic 2: 0.05690 Topic 3: 0.07078 Topic 4: 0.04752 

WORD PROB WORD PROB WORD PROB WORD PROB 

method 

cluster 

structur 
map 

based 

propos 

similar 

 

0.06436 

0.03788 

0.03422 
0.03409 

0.02608 

0.02596 

0.02445 
 

research         

countri 

patent          
public 

product  

technolog     

collabor 

0.06049 

0.03796 

0.03689 
0.03459 

0.03003 

0.02979 

0.02390 

citat 

journal 

scienc 
impact 

author 

public 

indic 

0.10980 

0.10174 

0.06333 
0.05422 

0.03844 

0.03568 

0.03552 

text 

languag 

classif 
word 

document 

semant 

method 

0.04916 

0.03907 

0.03144 
0.03128 

0.02606 

0.02366 

0.02231 

AUTHOR PROB AUTHOR PROB AUTHOR PROB AUTHOR PROB 

LEYDESDORFF,_L 

AOE,_J 
ZHANG,_J 

JARNEVING,_B 

SCHNEIDER,_JW 
BOYACK,_KW 

FUKETA,_M 

0.00641 

0.00504 
0.00357 

0.00355 

0.00352 
0.00330 

0.00322 

GUAN,_JC 

MEYER,_M 
DEBACKERE,_K 

GLANZEL,_W 

LEYDESDORFF,_L 
POURIS,_A 

INGWERSEN,_P 

0.01137 

0.00986 
0.00670 

0.00653 

0.00633 
0.00622 

0.00582 

LEYDESDORFF,_L 

GLANZEL,_W 
JACSO,_P 

MOED,_HF 

ROUSSEAU,_R 
DANIEL,_HD 

TSAY,_MY 

0.01710 

0.01177 
0.00885 

0.00867 

0.00861 
0.00833 

0.00819 

LI,_KW 

YANG,_CC 
SEO,_J 

THELWALL,_M 

CHOI,_KS 
LIU,_RL 

LEE,_GG 

0.00693 

0.00624 
0.00555 

0.00535 

0.00498 
0.00437 

0.00412 

Topic 5: 0.05416 Topic 6: 0.04352 Topic 7: 0.04825 Topic 8: 0.04774 

WORD PROB WORD PROB WORD PROB WORD PROB 

index 

distribut 

measur 

paper 
number 

function 

law 

0.06295 

0.03617 

0.02721 

0.02080 
0.01737 

0.01499 

0.01390 
 

inform 

make 

need 

health 
human 

medic 

specif 

0.26837 

0.02318 

0.02013 

0.01760 
0.01534 

0.01277 

0.01054 

analysi 

network 

social 

commun 
research 

co 

field 

0.08323 

0.06563 

0.05258 

0.04358 
0.03647 

0.02959 

0.02936 

knowledg 

manag 

concept 

develop 
organ 

practice 

theori 

0.09184 

0.04389 

0.02963 

0.02483 
0.02125 

0.02077 

0.01954 
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AUTHOR PROB AUTHOR PROB AUTHOR PROB AUTHOR PROB 

EGGHE,_L 

ROUSSEAU,_R 
BURRELL,_QL 

GLANZEL,_W 

SCHREIBER,_M 
VAN_RAAN,_AFJ 

LEYDESDORFF,_L 

0.08345 

0.02305 
0.01832 

0.00733 

0.00722 
0.00649 

0.00581 

WARNER,_J 

BATH,_PA  
WESTBROOK,_L 

 SAVOLAINEN,_R 

 WILLIAMS,_P 
   THELWALL,_M   

OPPENHEIM,_C 

0.01063 

0.00596 
0.00502 

0.00422 

0.00365 
0.00359 

0.00289 

LEYDESDORFF,_L 

    THELWALL,_M 
     MCCAIN,_KW 

       CHEN,_CM 

      WHITE,_HD 
     GLANZEL,_W  

KRETSCHMER,_H 

0.01912 

0.01057 
0.00681 

0.00569 

0.00491 
0.00481 

0.00481 

 HJORLAND,_B 

ROWLEY,_J 
DAY,_RE 

 HARA,_N       

CHOU,_SW 
 CHUA,_AYK   

JASHAPARA,_A 

0.00661 

0.00661 
0.00531 

0.00480 

0.00406 
0.00362 

0.00355 

Topic 9: 0.0444 Topic 10: 0.04810 Topic 11: 0.05175 Topic 12: 0.04906 

WORD PROB WORD PROB WORD PROB WORD PROB 

model 

 base 

data 

 process 
propos 

object 

applic 

0.13710 

0.06056 

0.05257 

0.04437 
0.03186 

0.02080 

0.02054 

new 

approach 

relat 

subject 
present 

suggest 

question 

0.04420 

0.03513 

0.02973 

0.02602 
0.02354 

0.02113 

0.02034 

retriev 

document 

queri 

term 
relev 

effect 

reserv 

0.11895 

0.07721 

0.06940 

0.05636 
0.05522 

0.03503 

0.02433 

level 

number 

time 

group 
statist 

found 

 increas 

0.04039 

0.0334 

0.02408 

0.02234 
0.02122 

0.02068 

0.02014 

AUTHOR PROB AUTHOR PROB AUTHOR PROB AUTHOR PROB 

TANIGUCHI,_S 

EGGHE,_L 

FORD,_N 
BURRELL,_QL 

NIEMI,_T 

THELWALL,_M 
ZHANG,_Y 

0.00783 

0.00468 

0.00437 
0.00404 

0.00389 

0.00363 
0.00306 

THELWALL,_M 

GLANZEL,_W 

JACSO,_P 
FORD,_N 

  BURRELL,_QL 

MEYER,_M 
  OPPENHEIM,_C 

0.01515 

0.00524 

0.0048 
0.00453 

0.00394 

0.00358 
0.00326 

JARVELIN,_K 

SAVOY,_J 

 CRESTANI,_F 
 SPINK,_A 

VECHTOMOVA,_O 

ZHANG,_J 
OUNIS,_I 

0.00633 

0.00573 

0.00489 
0.00477 

0.00465 

0.00423 
0.00400 

 THELWALL,_M 

VAN_RAAN,_AFJ 

SZAVAKOVATS,_E 
GLANZEL,_W 

LEYDESDORFF,_L   

WOLFRAM,_D 
EGGHE,_L 

0.01010 

0.00643 

0.00609 
0.00522 

0.00452 

0.00411 
0.00399 

Topic 13: 0.04624 Topic 14: 0.04675 Topic 15: 0.04348 Topic 16: 0.04912 

WORD PROB WORD PROB WORD PROB WORD PROB 

system 

user 
design 

imag 

content 
interfac 

tool 

0.11421 

0.10589 
0.03744 

0.02940 

0.02666 
0.02215 

0.01731 

research 

scienc 
review 

 refer 

articl 
paper 

literatur 

0.07301 

0.04129 
0.03172 

0.02612 

0.02470 
0.02263 

0.01955 

internet 

onlin 
technolog 

studi 

factor 
effect 

busi 

0.04104 

0.03284 
0.03022 

0.02482 

0.02107 
0.01963 

0.01801 

differ 

result 
evalu 

perform 

studi 
compar 

measur 

0.08616 

0.07898 
0.07427 

0.06775 

0.04713 
0.04142 

0.03779 

AUTHOR PROB AUTHOR PROB AUTHOR PROB AUTHOR PROB 
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SHIRI,_A 

JACSO,_P 
CHEN,_HC 

RORISSA,_A 

MARCHIONINI,_G 

FOO,_S 
SHAPIRA,_B 

0.00702 

0.00477 
0.00392 

0.00387 

0.00364 

0.00354 
0.00339 

  BORNMANN,_L 

 DANIEL,_HD 
THELWALL,_M  

OPPENHEIM,_C 

HARTLEY,_J 

SZAVAKOVATS,_E 
JACSO,_P 

0.02017 

0.01517 
0.00583 

0.00496 

0.00396 

0.00386 
0.00344 

SMITH,_AD 

 LEE,_MC 
GANDIA,_JL 

FLAVIAN,_C 

LEE,_MKO 

CASTANEDA,_JA 
CHEN,_HC 

0.01076 

0.00547 
0.00409 

0.00365 

0.00365 

0.00360 
0.00354 

HARTLEY,_J 

LEYDESDORFF,_L 
JACSO,_P 

EGGHE,_L 

THELWALL,_M 

 SAVOY,_J 
GLANZEL,_W 

0.00498 

0.00435 
0.00404 

0.00394 

0.00387 

0.00327 
0.00319 

Topic 17: 0.04594 Topic 18: 0.05422 Topic 19: 0.05005 Topic 20: 0.05544 

WORD PROB WORD PROB WORD PROB WORD PROB 

articl 
databas 

research 

univers 
rank 

qualiti 

assess 

0.06456 
0.05543 

0.04805 

0.02687 
0.02646 

0.02076 

0.01907 

web 
search 

engin 

site 
page 

link 

result 

0.14779 
0.11097 

0.04466 

0.03651 
0.02661 

0.02647 

0.02217 

librari 
digit 

servic 

access 
paper 

resourc 

valu 

0.07206 
0.03815 

0.03065 

0.03001 
0.02985 

0.02978 

0.02849 

inform 
 studi 

 seek 

 behavior 
task 

interact 

search 

0.0903 
0.0458 

0.03793 

0.03632 
0.03424 

0.02251 

0.02032 

AUTHOR PROB AUTHOR PROB AUTHOR PROB AUTHOR PROB 

       JACSO,_P 

    THELWALL,_M 

    BAR-ILAN,_J 

      KOUSHA,_K 
       MOED,_HF 

    KOSTOFF,_RN 

     WILSON,_CS 

0.01888 

0.01875 

0.00868 

0.00712 
0.00589 

0.00521 

0.00511 

    THELWALL,_M 

     JANSEN,_BJ 

    SPINK,_A 

  BAR-ILAN,_J 
HUNTINGTON,_P 

     VAUGHAN,_L 

       JACSO,_P 

0.04176 

0.02041 

0.01962 

0.01814 
0.01217 

0.01095 

0.00866 

JACSO,_P 

OPPENHEIM,_C 

CHOWDHURY,_GG 

HUNTINGTON,_P 
NICHOLAS,_D 

LIEW,_CL 

MORRIS,_A 

0.01023 

0.01014 

0.00425 

0.00394 
0.00382 

0.00382 

0.00378 

       SPINK,_A 

        FORD,_N 

       BILAL,_D 

  SAVOLAINEN,_R 
     VAKKARI,_P 

       ZHANG,_Y 

        COLE,_C 

0.01373 

0.00985 

0.00961 

0.00847 
0.00804 

0.00666 

0.00512 
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