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Abstract

1.	 Biodiversity	includes	multiscalar	and	multitemporal	structures	and	processes,	with	
different	levels	of	functional	organization,	from	genetic	to	ecosystemic	levels.	One	
of	the	mostly	used	methods	to	infer	biodiversity	is	based	on	taxonomic	approaches	
and	community	ecology	theories.	However,	gathering	extensive	data	in	the	field	is	
difficult	due	to	logistic	problems,	especially	when	aiming	at	modelling	biodiversity	
changes	in	space	and	time,	which	assumes	statistically	sound	sampling	schemes.	In	
this	context,	airborne	or	satellite	remote	sensing	allows	information	to	be	gathered	
over	wide	areas	in	a	reasonable	time.

2.	 Most	of	the	biodiversity	maps	obtained	from	remote	sensing	have	been	based	on	
the	inference	of	species	richness	by	regression	analysis.	On	the	contrary,	estimating	
compositional	turnover	(β-diversity)	might	add	crucial	 information	related	to	rela-
tive	abundance	of	different	species	instead	of	just	richness.	Presently,	few	studies	
have	addressed	the	measurement	of	species	compositional	turnover	from	space.

3.	 Extending	on	previous	work,	 in	this	manuscript,	we	propose	novel	techniques	to	
measure	 β-diversity	 from	 airborne	 or	 satellite	 remote	 sensing,	mainly	 based	 on:	 
(1)	multivariate	statistical	analysis,	(2)	the	spectral	species	concept,	(3)	self-organizing	
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1  | INTRODUCTION

Biodiversity	cannot	be	fully	investigated	without	considering	the	spa-
tial	component	of	its	variation.	In	fact,	it	is	known	that	the	dispersal	of	
species	over	wide	areas	is	driven	by	spatial	constraints	directly	related	
to	the	distance	among	sites.	A	negative	exponential	dispersal	kernel	
is	usually	adopted	to	mathematically	describe	the	occupancy	of	new	
sites	by	species,	as	follows:

where	d
ik
	=	distance	between	two	locations	i and k and a	is	a	param-

eter	regulating	the	dispersal	from	localized	areas	(low	values	of	a)	to	
widespread	ones	 (high	values	of	a;	Meentemeyer,	Anacker,	Mark,	&	
Rizzo,	2008).

In	this	sense,	distance	acquires	a	significant	role	in	ecology	to	esti-
mate	biodiversity	change.	Hence,	spatially	explicit	methods	have	been	
acknowledged	 in	ecology	for	providing	robust	estimates	of	diversity	
at	different	hierarchical	 levels:	from	individuals	 (Tyre,	Possingham,	&	
Lindenmayer,	2001),	to	populations	(Vernesi	et	al.,	2012),	to	commu-

nities	(Rocchini,	Andreini	Butini,	&	Chiarucci,	2005).
When	dealing	with	spatial	explicit	methods,	remote	sensing	images	

represent	 a	 powerful	 tool	 (Rocchini	 et	 al.,	 2017),	 particularly	when	
coupling	 information	 on	 compositional	 properties	 of	 the	 landscape	
with	its	structure	(Figure	1).	Remote	sensing	has	widely	been	used	for	
conservation	practices	including	very	different	types	of	data	such	as	
night	lights	data	(Mazor	et	al.,	2013),	Land	Surface	Temperature	esti-
mated	from	MODIS	data	 (Metz,	Rocchini,	&	Neteler,	2014),	spectral	
indices	(Gillespie,	2005).

Most	of	the	remote	sensing	applications	for	biodiversity	estima-
tion	have	 relied	on	 the	estimate	of	 local	diversity	hotspots,	 consid-

ering	land	use	diversity	(Wegmann	et	al.,	2017)	or	continuous	spatial	
variability	of	the	spectral	signal	(Rocchini	et	al.,	2010).	This	is	mainly	
grounded	 in	 the	 assumption	 that	 a	 higher	 landscape	 heterogeneity	
is	 strictly	 related	 to	 a	 higher	 amount	 of	 species	 occupying	 differ-
ent	 niches	 (Scmheller	 et	 al.,	 in	 press).	 However,	 given	 two	 sites	 s

1
 

and s
2
,	 the	 final	diversity	 is	not	only	 related	to	 the	species/spectral	

richness	of	 s
1
 and s

2
,	 but	 overall	 to	 the	 amount	of	 shared	 species/

spectral	values.	In	other	words,	the	lower	the	their	intersection	s
1
∩s

2
,	

the	 higher	will	 be	 the	 total	 diversity,	 while	 the	 lowest	 total	 diver-
sity	will	 be	 reached	when	 s

1
∩s

2
 = s

1
∪s

2
.	 Such	 intersection	has	been	

widely	studied	in	ecology,	after	the	development	of	β-diversity	theory	
(Whittaker,	1960).

Tuomisto	 et	al.	 (2003)	 demonstrated	 the	 power	 of	 substituting	
distance	 in	 Equation	 1	 by	 spectral	 distance	 to	 directly	 account	 for	
the	 distance	 between	 sites	 in	 an	 environmental	 space,	 instead	 of	 a	
merely	spatial	one.	However,	while	 spectral	distance	examples	exist	
when	measuring	 the	β-diversity	 among	pairs	 of	 sites	 (e.g.,	 Rocchini,	
Hernández	Stefanoni,	&	He,	2015),	few	studies	have	tested	the	possi-
bility	of	measuring	β-diversity	over	wide	areas	considering	several	sites	
at	the	same	time	(however	see	Alahuhta	et	al.,	2017;	Harris,	Charnock,	
&	Lucas,	2015).	This	is	especially	true	when	considering	the	develop-

ment	of	remote	sensing	tools	(Rocchini	&	Neteler,	2012)	for	diversity	
estimate	in	which	the	concept	of	β-diversity	is	still	pioneering.

The	 aim	 of	 this	 paper	 is	 to	 present	 the	most	 novel	methods	 to	
measure	β-diversity	from	remotely	sensed	imagery	based	on	the	most	
recently	published	ecological	models.	In	particular,	we	will	deal	with:	
(1)	multivariate	statistical	techniques,	(2)	the	applicability	of	the	spec-
tral	species	concept,	(3)	multidimensional	distance	matrices,	(4)	met-
rics	coupling	abundance	and	distance-based	measures.

This	manuscript	is	the	first	methodological	example	encompassing	
(and	 enhancing)	most	 of	 the	 available	methods	 for	 estimating	 β-di-

versity	from	remotely	sensed	imagery	and	potentially	relate	them	to	
	species	diversity	in	the	field.

2  | MULTIVARIATE STATISTICAL ANALYSIS 
FOR SPECIES DIVERSITY ESTIMATE FROM 
REMOTE SENSING

Univariate	statistics	have	been	used	to	directly	find	relations	between	
spectral	and	species	diversity.	However,	the	amount	of	variability	ex-
plained	by	single	bands/vegetation	indices	versus	species	diversity	is	
generally	relatively	low,	due	to	the	fact	that	different	aspects	related	
to	the	complexity	of	habitats	might	act	in	shaping	diversity,	from	dis-
turbance	and	land	use	at	local	scales	to	climate	and	element	fluxes	at	
global	scales.

Ordination	 techniques	 are	 designed	 to	 quantitatively	 describe	
multivariate	gradual	transitions	in	the	species	composition	of	sampled	
sites.	Measuring	the	distance	between	two	sampling	sites	in	the	multi-
dimensional	ordination	space	is	a	good	proxy	of	the	change	in	species	
composition.	When	this	measure	is	related	to	the	geographical	distance	

(1)F=

N
∑

K=1

e
−dik

a

feature	maps,	(4)	multidimensional	distance	matrices,	and	the	(5)	Rao's	Q	diversity.	
Each	of	these	measures	addresses	one	or	several	issues	related	to	turnover	meas-
urement.	This	manuscript	 is	 the	first	methodological	example	encompassing	 (and	
enhancing)	most	of	the	available	methods	for	estimating	β-diversity	from	remotely	
sensed	imagery	and	potentially	relating	them	to	species	diversity	in	the	field.

K E Y W O R D S

β-diversity,	Kohonen	self-organizing	feature	maps,	Rao's	Q	diversity	index,	remote	sensing,	
satellite	imagery,	sparse	generalized	dissimilarity	model,	spectral	species	concept
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between	the	considered	sites,	the	beta	diversity	at	this		particular	scale	
can	be	assessed.

Of	 the	various	available	ordination	 techniques,	detrended	corre-

spondence	analysis	(DCA;	Hill	&	Gauch,	1980)	is	particularly	suitable	
for	 such	 analyses.	 The	 axes	 (i.e.,	 gradients)	 of	 the	 DCA	 ordination	
space	are	scaled	in	SD	units,	where	a	distance	of	4	SD	is	related	to	a	full	
species	 turnover.	This	enables	a	versatile	analysis	 that	easily	 reveals	
whether	two	sampled	sites	still	have	species	in	common.

Several	 studies	have	mapped	 the	ordination	space	using	 remote	
sensing	 data	 (e.g.,	 Feilhauer	 &	 Schmidtlein,	 2009;	 Feilhauer,	 Faude,	
&	Schmidtlein,	2011;	Feilhauer	et	al.,	2014;	Gu,	Singh,	&	Townsend,	
2015;	Harris	 et	al.,	 2015;	 Leitão	et	al.,	 2015;	Neumann	et	al.,	 2015;	
Schmidtlein	&	Sassin,	2004;	Schmidtlein,	Zimmermann,	Schüpferling,	
&	Weiss,	2007).	For	this	purpose,	the	axes	scores	of	the	sampled	sites	
are	 regressed	 against	 the	 corresponding	 canopy	 reflectance	 values	

extracted	from	air-	or	spaceborne	image	data.	The	resulting	multivar-
iate	regression	models,	one	per	ordination	axis	and	most	often	gener-
ated	with	machine	 learning	 regression	 techniques,	 are	 subsequently	
applied	on	the	image	data	for	a	spatial	prediction	of	ordination	scores.	
Each	pixel	of	the	image	data	is	assigned	to	a	specific	position	in	the	
ordination	space	that	indicates	its	species	composition.	The	resulting	
gradient	maps	are	a	powerful	tool	for	analyses	of	beta	diversity	across	
different	 spatial	 scales	 (Feilhauer	 &	 Schmidtlein,	 2009;	 Hernandez-
Stefanoni	et	al.,	2012).

A	simple	analysis	of	the	variability	of	the	DCA	scores	in	a	defined	
pixel	neighbourhood	(i.e.,	a	moving	window)	results	in	a	efficient	beta	
diversity	assessment.	The	spatial	scale	of	this	assessment	can	be	varied	
either	by	resampling	the	gradient	map	to	a	coarser	spatial	resolution	
(i.e.,	pixel	size)	or	by	changing	the	kernel	size	of	the	considered	pixel	
neighbourhood.	 Such	 techniques	 have	 been	 further	 developed	 e.g.	
for	 spatial	 conservation	prioritization	programmes	 such	 as	Zonation	
(Moilanen	et	al.,	2005;	Moilanen,	Kujala,	&	Leathwick,	2009).

Figure	2	shows	an	example	of	a	DCA-based	assessment	of	beta	
diversity	on	a	very	local	scale	(10	m)	following	the	approach	described	
in	Feilhauer	and	Schmidtlein	(2009).	The	analysed	landscape	is	a	mo-

saic	of	raised	bogs,	fens,	transition	mires	and	Molinia	meadows.	For	a	
detailed	description	of	the	data	and	site	please	refer	to	Feilhauer	et	al.	
(2014)	and	Feilhauer,	Doktor,	Schmidtlein,	and	Skidmore	(2016).

Analyses	 like	 this	 require	 two	 different	 datasets:	 (1)	 a	 sample	
of	field	data	that	is	representative	for	the	vegetation	in	the	studied	
area	 and	 is	 used	 to	 generate	 the	ordination	 space;	 (2)	 image	data	
with	a	sufficient	spectral	 resolution	to	discriminate	the	vegetation	
types	within	the	ordination	space	and	with	a	spatial	resolution	that	
is	in	line	with	the	sampling	design	of	the	field	data	(Feilhauer	et	al.,	
2013).

F I G U R E  1   	An	example	of	how	to	couple	information	on	
compositional	properties	of	the	landscape	by	optical	data	together	
with	structural	(3D)	properties	by	laser	scanning	LiDAR	data

F I G U R E  2    β-diversity	assessment	with	a	combination	of	ordination	techniques	and	remote	sensing.	(a)	Three-dimensional	detrended	
correspondence	analysis	(DCA)	ordination	space	of	n	=	100	vegetation	plots	sampled	in	raised	bogs,	fens,	transition	mires	and	Molinia	meadows	
in	the	alpine	foothills	of	Southern	Germany.	An	inter-plot	distance	of	4	SD	corresponds	to	a	full	species	turnover.	(b)	Maps	of	the	ordination	axes	
resulting	from	a	spatial	prediction	based	on	canopy	reflectance.	Each	pixel	has	a	predicted	position	in	the	ordination	space	that	is	indicated	by	its	
colour.	The	colour	scheme	corresponds	to	(a).	The	map	has	a	spatial	resolution	of	2	×	2	m2,	which	is	in	line	with	the	sampled	plot	size.	 
(c)	Cumulative	change	rates	along	the	three	DCA	axes	in	a	5	×	5	pixel	neighbourhood.	A	high	change	rate	indicates	a	high	beta	diversity
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Using	 these	 data,	 the	 continuous	 spatial	 variability	 of	 the	 spec-
tral	signal	in	the	image	pixels	is	translated	into	a	spatially	continuous	
measure	of	species	composition.	The	advantages	of	this	approach	are	
obvious:	since	the	diversity	analyses	are	conducted	in	the	floristic	gra-
dient	space,	the	resulting	measures	resemble	field	studies	and	are	thus	
easier	to	interpret	than	spectral	proxies	and	closer	to	the	point	of	view	
of	many	end-users.	Furthermore,	the	analysis	of	ordination	scores	in	
defined	pixel	neighbourhoods	is	not	restricted	to	a	single	spatial	scale	
but	offers	the	opportunity	to	implement	assessments	of	beta	diversity	
on	multiple	scales.

3  | THE SPECTRAL SPECIES CONCEPT

The	spectral	species	concept	has	been	proposed	by	Féret	and	Asner	
(2014a)	 to	map	 both	α and β	 component	 of	 the	 biodiversity	 using	
a	 unique	 framework.	 It	 is	 rooted	 in	 the	 convergence	 between	 two	
other	concepts,	the	spectral	variation	hypothesis	(SVH)	proposed	by	
Palmer,	 Earls,	 Hoagland,	 White,	 and	Wohlgemuth	 (2002),	 and	 the	
plant	optical	types	proposed	by	Ustin	and	Gamon	(2010),	sustained	
by	the	technological	advances	 in	 the	domain	of	high	spatial	 resolu-

tion	imaging	spectroscopy.	The	SVH	states	that	the	spatial	variability	
in	 the	 remotely	 sensed	 signal,	 that	 is	 the	 spectral	 heterogeneity,	 is	
related	to	environmental	heterogeneity	and	could	therefore	be	used	
as	a	powerful	proxy	of	species	diversity.	SVH	has	been	tested	in	dif-
ferent	situations	(Rocchini	et	al.,	2010)	and	conclusions	show	that	the	
performance	of	this	approach	 is	very	dependent	on	several	factors,	
including	the	instrument	characteristics	(spectral,	spatial	and	tempo-

ral	 resolution),	 the	 type	of	vegetation	 investigated,	and	 the	metrics	
derived	from	remotely	sensed	information	to	estimate	spectral	heter-
ogeneity.	Plant	optical	types	refer	to	the	capacity	of	sensors	to	meas-
ure	 signals	 that	 aggregate	 information	 about	 vegetation	 structure,	
phenology,	 biochemistry	 and	physiology.	 Therefore,	 this	 concept	 is	
also	tightly	 linked	to	the	performances	of	the	sensor	and	finds	par-
ticular	echo	with	the	increasing	use	of	high	spatial	resolution	imaging	
spectroscopy	for	the	estimation	and	identification	of	multiple	vegeta-
tion	properties.

The	details	provided	by	high	spatial	resolution	imaging	spectros-
copy	are	 sufficient	 to	perform	analyses	of	plant	optical	 traits	at	 the	
individual	 tree	scale	 in	order	 to	differentiate	 tree	species,	obtain	 in-

formation	about	leaf	chemical	traits	and	estimate	the	α	component	of	
biodiversity	(Asner	&	Martin,	2008;	Asner,	Martin,	Anderson,	&	Knapp,	
2015;	Chadwick	&	Asner,	2016;	Clark	&	Roberts,	2012;	Clark,	Roberts,	
&	Clark,	2005;	Féret	&	Asner,	2013;	Vaglio	Laurin	et	al.,	2014).	These	
results	illustrate	that	spectral	information	can	be	related	to	taxonomic	
or	functional	information	of	the	vegetation,	which	supports	the	SVH	
under	the	hypothesis	that	the	metrics	used	to	compute	spectral	het-
erogeneity	and	a	given	component	of	vegetation	diversity	are	prop-

erly	defined.	However	these	applications	are	currently	limited	by	the	
important	amount	of	field	data	required	to	train	regression	or	classi-
fication	models,	which	 is	also	directly	 linked	to	their	 low	generaliza-
tion	ability	in	time	and	space.	Unsupervised	approaches	then	appear	
as	valuable	alternatives	 for	 the	analysis	of	ecosystem	heterogeneity	

(Baldeck	 &	 Asner,	 2013;	 Baldeck	 et	al.,	 2014;	 Feilhauer,	 Faude,	 &	
Schmidtlein,	2011;	Féret	&	Asner,	2014b),	as	ecological	indicators	of	α 

and β	diversity	at	landscape	scale	usually	require	one	or	several	levels	
of	abstraction	beyond	the	correct	taxonomic	identification	(Tuomisto	
&	Ruokolainen,	2006).

Clustering	(properly	pre-processed)	spectral	information	should	re-

sult	in	pixels	from	the	same	species	naturally	grouping	together	rather	
than	distributing	 randomly	among	clusters,	Féret	and	Asner	 (2014a)	
proposed	a	grouping	method	aiming	at	assigning	labels	to	pixels	based	
on	 multiple	 clustering	 of	 spectroscopic	 data	 acquired	 at	 landscape	
scale.	These	pixels,	labelled	with	a	set	of	the	so-called	spectral	species,	
can	 then	be	used	 straightforwardly	 in	 order	 to	 compute	various	 di-
versity	metrics	such	as	Shannon	index	for	α	diversity,	and	Bray-Curtis	
dissimilarity	 for	β	 diversity.	The	pre-processing	 stage	 is	 divided	 into	
several	stages.	After	masking	all	non-vegetated	pixels,	a	normalization	
based	 on	 continuous	 removal	 is	 applied	 to	 each	 pixel	 and	 over	 the	
full	spectral	domain,	then	a	principal	component	analysis	is	performed	
on	the	continuously	removed	spectral	data.	The	normalization	reduces	
effects	due	to	changes	in	illumination,	canopy	geometry	and	other	fac-
tors	unrelated	to	vegetation,	while	enhancing	the	signal	corresponding	
to	vegetation.	The	components	including	individual-specific	informa-
tion	are	the	components	of	 interest.	They	can	be	 identified	after	vi-
sual	 inspection	or	automated	 routines,	 if	 initial	data	 show	sufficient	
signal	to	noise	ratio.	Once	a	limited	number	of	components	have	been	
selected,	k-means	 clustering	 is	 then	 applied	 to	 a	 certain	 number	 of	
subsets,	and	for	each	of	 these	subsets,	centroids	are	computed	and	
each	pixel	in	the	image	is	labelled	based	on	the	closest	centroid.	The	
repetition	of	clustering	based	on	various	subsets	of	the	image	tends	to	
minimize	the	risk	of	assigning	centroids	to	irrelevant	groups	of	pixels.	
Experimental	 results	 showed	 that	 the	 averaging	 of	 diversity	 indices	
computed	from	multiple	centroid	maps	can	be	seen	as	an	analogous	
to	signal	averaging,	which	consists	 in	 increasing	signal	to	noise	ratio	
by	replicating	measurements.	For	each	repetition,	the	closest	centroid	
corresponds	to	the	spectral	species,	and	for	each	spatial	unit	of	a	given	
size,	the	spectral	species	distribution	 is	derived	in	order	to	compute	
any	diversity	metric	requiring	either	information	at	the	local	scale,	or	
comparison	of	information	across	spatially	distant	plots.

The	concepts	of	spectral	species	and	spectral	species	distribution	
have	been	tested	successfully	on	a	 limited	number	of	situations	and	
types	of	ecosystems	(see	Rocchini	et	al.,	2016	for	a	review,	and	Lausch	
et	al.,	 2016	 for	 an	 application	 to	 similar	 concepts).	 As	 an	 example,	
Féret	and	Asner	(2014a)	showed	ability	to	properly	estimate	landscape	
heterogeneity	at	moderate	spatial	scale,	up	to	few	dozen	square	kilo-

meters	over	tropical	forests,	based	on	high	spatial	resolution	imaging	
spectroscopy	 (Figure	 3).	 A	 generic	 parameterization	 of	 the	 method	
showed	 robust	 performances	 for	 α	 diversity	 mapping	 across	 space	
and	time,	but	mapping	β	diversity	across	large	spatial	scales	using	im-

ages	acquired	during	different	airborne	campaign	remains	challenging,	
which	leads	to	an	unsolved	problem	when	considering	operational	re-

gional	mapping.	In	the	perspective	of	global	monitoring	of	biodiversity,	
and	given	the	unprecedented	remote	sensing	capacity	allowed	by	the	
Copernicus	program,	including	the	Sentinel-2	multispectral	satellites,	
several	other	challenges	are	foreseen	and	currently	investigated.	The	
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influence	of	decreased	spatial	and	spectral	resolution	on	the	ability	to	
properly	differentiate	ecologically	meaningful	spectral	species	across	
landscapes	and	over	regions	will	need	to	be	investigated.	The	applica-
tion	of	this	concept	beyond	tropical	forests	and	savanna	ecosystems	
should	also	be	investigated,	as	it	may	not	hold	when	applied	on	moder-
ately	diverse	ecosystems	or	systems	with	individuals	whose	individu-

als	have	dimensions	well	below	the	resolving	power	of	the	instrument.

4  | SELF-ORGANIZING FEATURE MAPS

The	Kohonen	self-organizing	feature	map	(SOFM;	Kohonen,	1982)	is	
a	neural	network	that	may	be	used	to	undertake	unsupervised	cluster-
ing	of	data.	Critically,	the	input	to	a	SOFM	can	be	a	large	multi-variate	
dataset	such	as	may	be	acquired	on	species	from	quadrat-based	field	
surveys.	The	SOFM	summarizes	the	data	 in	a	 low,	typically	two,	di-
mensional	output	(Figure	4).	In	this	output	space,	the	data	for	individ-

ual	quadrats	are	topologically	ordered—with	sites	that	are	similar	close	
together	while	those	of	highly	different	species	composition	are	more	
distant.	Because	 the	data	sites	 in	 the	output	space	are	arranged	by	

F I G U R E  3   	Spectral	species	can	be	identified	in	a	hyper-	or	multispectral	image	by	spatial	clustering	method	and	their	distribution	can	be	
mapped.	Such	maps	can	further	be	used	to	apply	local-based	heterogeneity	measurements	(α-diversity)	as	well	as	iterative	distance-based	
methods	to	build	β-diversity	maps.	Reproduced	from	Féret	and	Asner	(2014a)

F I G U R E  4   	A	self-organizing	feature	map	can	be	built	starting	
from	an	input	layer,	e.g.	the	presence	or	absence	of	a	tree	species	or	
of	a	peculiar	spectral	value)	which	is	connected	to	every	unit	in	the	
output	layer	by	a	weighted	connection.	The	self-organizing	feature	
map	uses	unsupervised	learning	to	map	the	location	of	field	sites	
within	the	output	space	on	the	basis	of	their	relative	similarity	in	
species	or	spectral	composition.	Redrawn	from	Foody	and	Cutler	
(2003)

Output layer

Input units
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relative	similarity	the	output	space	may	also	be	used	to	aggregate	or	
classify	a	dataset.	As	such	the	SOFM	is	attractive	as	a	non-parametric	
clustering	analysis	and	as	a	means	to	undertake	an	ordination	(Chon,	
Park,	Moon,	&	Cha,	1996).

A	SOFM	is,	unlike	some	of	the	approaches	used	commonly	in	com-

munity	ecology,	not	constrained	by	assumptions	relating	the	statistical	
distribution	of	the	data	used.	The	SOFM	uses	unsupervised	learning	
to	produce	a	topologically	ordered	output	space	in	which	the	samples	
are	arranged	spatially	in	relation	to	their	relative	similarity	in	species	
composition.	The	SOFM	thus	performs	a	non-parametric	ordination	
analysis	(Foody,	1999).	The	production	of	a	classification	by	a	SOFM	
comprises	two	main	stages	(Giraudel	&	Lek,	2001).	An	iterative	analy-
sis,	in	which	time-decaying	parameters	that	control	network	learning	
and	the	size	of	local	neighbourhoods	located	around	output	units,	is	
used.	For	this,	the	user	must	specify	a	number	of	key	parameters	such	
as	the	size	and	shape	of	the	network,	number	of	iterations	of	the	al-
gorithm,	the	learning	rate	and	its	rate	of	decline	and	a	neighbourhood	
parameter.	The	need	for	such	parameters	can	add	some	uncertainty	
to	the	analysis.	While	 there	are	no	formal	 rules	 to	 follow	 in	 the	de-

sign	of	a	SOFM	there	are	recommendations	for	the	determination	of	
SOFM	parameter	settings	 (Giraudel	&	Lek,	2001).	A	further	concern	
is	 that	as	an	unsupervised	classifier,	 the	classes	defined	may	not	al-
ways	be	the	most	useful	for	an	investigation.	In	addition,	the	nature	
of	 the	analysis	means	 the	direction	of	 the	gradients	cannot	be	con-

trolled	(Fritzke,	1995)	but	the	analysis	performs	well	in	comparison	to	
popular	ordination	techniques	such	as	PCA	and	DCA	(Foody	&	Cutler,	
2003).	The	SOFM	may	also	use	a	variety	of	different	data	types	such	
as	presence/absence,	abundance	or	importance	values	and	can	solve	
complex		nonlinear	problems	(Giraudel	&	Lek,	2001).

5  | MULTIDIMENSIONAL DISTANCE 
MATRICES:  GDMS AND SGDMS

One	of	the	most	widespread	methods	for	assessing	diversity	is	using	
distance	matrices	 (Legendre,	Borcard,	&	Peres-Neto,	2005).	 Indeed,	
early	work	by	Whittaker	 (1960)	suggested	 that	β-diversity	could	be	
quantified	by	dissimilarity	matrices	among	(pairs	of)	sites.	Furthermore,	
the	Mantel	test	(Mantel	&	Valand,	1970),	designed	to	estimate	the	as-
sociation	between	two	 independent	dissimilarity	matrices,	has	been	
widely	used	to	correlate	a	community	composition	dissimilarity	matrix	
with	an	environment	dissimilarity	one,	thus	providing	useful	insights	
into	 community	 composition	 and	 turnover	 (Legendre	 et	al.,	 2005;	
Tahvanainen,	2011).

Generalized	 dissimilarity	 modelling	 (GDM;	 Ferrier,	 Manion,	 Elith,	 &	
Richardson,	2007)	can	be	considered	as	an	extension	of	the	Mantel	test,	
which	is	able	to	accommodate	multidimensional	environmental	data,	to	be	
compared	with	the	compositional	data.	GDMs	also	allow	for	the	prediction	
of	compositional	turnover	as	well	as	for,	e.g.	environmental	classification	
constrained	to	the	compositional	dissimilarity	(Ferrier	et	al.,	2007;	Leathwick	
et	al.,	2011).	In	GDM,	the	compositional	dissimilarities	between	all	pairs	of	
samples	are	modelled	as	a	function	of	their	respective	environmental	dis-
tances.	This	is	done	through	a	linear	combination	of	monotonic	I-spline	basis	

functions,	under	the	assumption	that	increasing	environmental	dissimilarity	 
(e.g.,	along	a	gradient)	can	only	result	in	increasing	compositional	dissimilar-
ity.	This	method	is	thus	well	suited	for	measuring	and	mapping	β-diversity,	
and	is	thus	becoming	widely	used	in	conservation	science	and	macroecol-
ogy,	and	recently	been	subject	 to	several	developments	as	we	describe	
below.

One	 such	 development	 is	 the	 phylogenetic	 GDM	 (phylo-GDM;	
Rosauer	 et	al.,	 2014),	 which	 incorporates	 phylogenetic	 dissimilari-
ties	 into	GDM	and	allows	 for	analysing	and	predicting	phylogenetic	
β-diversity,	 thus	 linking	 ecological	 and	 evolutionary	 processes.	 This	
method	 can	 provide	 novel	 insights	 into	 the	mechanisms	 underlying	
current	patterns	of	biological	diversity	(Graham	&	Fine,	2008).	Another	
recent	 development	 of	 GDM	 is	 the	 multi-site	 GDM	 (MS-GDM;	
Latombe,	Hui,	&	McGeoch,	2017),	which	extends	GDMs	from	pairwise	
to	multi-site	dissimilarity	modelling.	In	such	a	paper,	the	authors	tested	
MS-GDM	by	means	of	both	constrained	(monotonical)	additive	mod-

els	and	 I-splines,	although	with	no	conclusive	 results	 relating	 to	 the	
best	method	 overall.	They	 concluded,	 however,	 that	when	 applying	
MS-GDM	to	a	high	number	of	samples,	they	could	better	explain	the	
drivers	of	species	turnover.	Also,	an	important	development	of	GDM	
is	 the	 Bayesian	 bootstrap	GDM	 (BBGDM;	Woolley,	 Foster,	 O’Hara,	
Wintle,	&	Dunstan,	2017)	designed	to	characterize	uncertainty	in	gen-

eralized	dissimilarity	models.	This	approach	allows	better	representing	
the	underlying	uncertainty	 in	the	data,	by	estimating	the	variance	in	
parameters	based	on	the	available	data.

Finally,	an	implementation	of	GDM,	which	was	created	particularly	
for	dealing	with	high-dimensional	 (and	potentially	high-collinear)	 re-

mote	sensing	data	as	input	in	GDM	is	the	sparse	generalized	dissim-

ilarity	model	 (SGDM;	Figure	5;	Leitão	et	al.,	2015).	This	method	 is	a	
two-stage	approach	that	consists	of	initially	reducing	the	environmen-

tal	space	(e.g.,	reflectance	data)	by	means	of	a	sparse	canonical	correla-
tion	analysis	(SCCA;	Figure	5;	Witten,	Tibshirani,	Gross,	&	Narasimhan,	
2013),	and	then	fitting	the	resulting	components	with	a	GDM	model.	
The	SCCA	is	a	form	of	penalized	canonical	correlation	analysis	based	
on	the	L1	(lasso)	penalty	function,	and	is	thus	designed	to	deal	with	
high-dimensional	data.	The	two	algorithms	are	coupled	in	a	way	that	
the	SCCA	penalization	is	selected	through	a	heuristic	grid	search	man-

ner,	 in	 order	 to	minimize	 the	 cross-validate	 root	mean	 square	 error	
in	 the	 dissimilarities	 predicted	 by	 the	 GDM.	 In	 this	 procedure,	 the	
high-dimensional	environmental	data	 (such	as	coming	 from	time	se-

ries	of	multispectral	or	hyperspectral	data)	are	subject	to	a	supervised	
ordination	approach	that	reduces	their	dimension	while	capturing	the	
axes	of	variation	that	most	correlate	to	those	of	the	community	com-

positional	matrix.	SGDM	has	been	successfully	used	for	modelling	and	
mapping	the	compositional	turnover	of	both	animal	and	plant	species,	
using	several	different	sources	of	remote	sensing	(and	auxiliary)	data	
(Leitão	et	al.,	2015;	Leitão,	Schwieder,	&	Senf,	2017).

6  | RAO’S Q DIVERSITY

Most	 of	 the	 previously	 shown	 metrics	 are	 based	 on	 the	 distance	
among	 pixel	 values	 in	 a	 multidimensional	 spectral	 space.	 None	
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of	 them	 considers	 the	 relative	 abundance	 of	 such	 pixel	 values	 in	 a	
neighbourhood.

By	contrast,	abundance-based	metrics	such	as	the	Shannon	entropy	
could	output	similar	results	despite	a	variable	distance	among	pixel	val-
ues.	As	an	example,	consider	a	3	×	3	matrix	of	remotely	sensed	data:

composed	by	the	following	values:

then	consider	a	different	matrix:

From	a	Shannon's	entropy	perspective,	such	matrices	are	equal	in	
terms	of	heterogeneity.	The	Shannon's	entropy	is	indeed	based	on	the	
relative	abundance	(and	richness)	of	a	sample,	and	its	value	is	2.197	
for	both	 the	matrices.	This	value,	 equalling	 the	natural	 logarithm	of	
the	number	of	classes	(pixel	values),	is	also	Shannon's	maximum	theo-

retical	value	given	a	3	×	3	matrix,	due	to	the	lack	of	identical	numbers	
in	the	matrices.	This	example	explicitly	shows	that	accounting	for	the	
distance	among	values	and	their	relative	abundance	is	crucial	to	dis-
criminate	among	areas	in	terms	of	measured	(modelled)	heterogeneity.

One	of	 the	metrics	 accounting	 for	 both	 the	 abundance	 and	 the	
pairwise	spectral	distance	among	pixels	is	the	Rao's	Q	diversity	index,	
as	follows:

where	d
ij
	=	spectral	distance	among	pixels	 i and j and p = proportion 

of	occupied	area.
Hence,	 Rao's	Q	 is	 capable	 of	 discriminating	 among	 the	 ecologi-

cal	diversity	of	matrices	(3)	and	(4),	turning	out	to	be	4.59	and	90.70,	
respectively.	Appendix	 S1	provides	 an	 example	 spreadsheet	 to	 per-
form	the	calculation	while	the	complete	R	code	is	stored	in	the	GitHub	
	repository	https://github.com/mattmar/spectralrao.

We	decided	to	make	use	of	a	case	study	to	highlight	the	 impor-
tance	of	considering	the	distance	among	pixel	values	in	remote	sense	
ecological	application.	The	performance	of	Rao's	Q	index	in	describ-

ing	 landscape	 diversity	was	 tested	 in	 a	 complex	 agro-forestry	 land-

scape	located	in	southern	Portugal.	A	test	site	with	an	area	of	about	
10	×	10	km2	(centroid	located	at	38∘39′10.74′′N;	8∘12′52.30′′W)	was	
selected	to	conduct	the	analysis.	In	this	area,	a	savanna-like	ecosystem	
called	montado	occupies	about	40%	of	the	test	site,	followed	by	tra-
ditional	olive	groves,	pastures,	vineyards,	and	irrigated	monocultures	
(e.g.,	corn	fields).	Montado	is	spatially	characterized	by	the	variability	
of	its	tree	density	(e.g.,	Godinho,	Gil,	Guiomar,	Neves,	&	Pinto-Correia,	
2016),	and	the	gradient	between	low	and	high	tree	density	over	space	
can	lead	to	different	structural	heterogeneity	and	habitat	diversity.

Within	 the	 test	 site,	 polyculture	 under	 the	 small	 farming	 con-

text	 (e.g.,	 vegetable	 gardens,	 orchards,	 and	 cereal	 crops)	 is	 an	 im-

portant	feature	of	this	landscape	by	generating	a	high	compositional	
and	configurational	 spatial	heterogeneity	 (Figure	6).	The	main	goal	
in	using	this	case	study	 is	 to	demonstrate	 the	potential	and	effec-
tiveness	of	the	Rao's	Q	index	in	producing	accurately	remote	sens-
ing-based	 maps	 of	 spatial	 diversity	 over	 such	 complex	 landscape.	
For	 this	 study,	 a	 cloud-free	 Sentinel-2A	 (S2A)	 image	 acquired	 on	
August	 8,	 2016	was	used	 to	 compute	 the	NDVI	 at	 a	 10	m	 spatial	
resolution.	The	S2A	image	download	as	well	as	the	atmospheric	cor-
rection	 (DOS	method)	were	 performed,	 using	 the	 Semi-automatic	
Classification	plugin	(SCP)	implemented	in	the	QGIS	software	(QGIS	
Development	Team,	2016).

The	NDVI	was	used	as	input	data	for	Rao's	Q	index	computation,	
using	a	window	size	of	3	×	3	pixels.	The	performance	of	the	Rao's	Q	
was	compared	to	the	Shannon	Entropy	index	(Shannon's	H),	which	is	
one	of	the	simplest,	and	widely	used,	remote	sensing-based	diversity	
measures	 for	 landscape	 heterogeneity	 assessment	 (Rocchini	 et	al.,	
2016).	To	 investigate	whether	both	diversity	 indices	differ	between	
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F I G U R E  5   	An	example	of	the	sparse	generalized	dissimilarity	
model	approach.	Remote	sensing	data	and	biodiversity	data	in	the	
field	can	be	coupled	by	sparse	canonical	correlation	analysis	(SCCA)	
to	produce	canonical	components	and	a	community	dissimilarity	
matrix,	which	are	then	used	to	build	a	generalized	dissimilarity	model	
(GDM)	to	finally	derive	a	β-diversity	map
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land	 cover	 types,	 one-way	ANOVA	 tests	were	 performed.	This	 ap-

proach	was	 used	 for	 analysing	 the	 degree	 of	 dissimilarity	 between	
Rao's	Q	and	Shannon	H	 index	across	 two	high	complex	 land	cover	
types;	 (1)	 montado,	 and	 (2)	 polyculture.	 To	 do	 so,	 a	 sample	 of	 60	
squares	with	 250	×	250	m2	 size	was	 randomly	 selected	 over	 these	
two	land	cover	types.	Each	square	represents	a	sample	of	625	S2A	
NDVI	 pixels,	 thus	 corresponding	 to	 a	 total	 of	 37,500	pixels	 over	
the	60	 squares.	 For	 the	 comparison	between	both	 indices,	 the	 co-

efficient	 of	 variation	 (CV)	 was	 calculated	 for	 each	 250	×	250	m2. 

Regarding	 the	 Rao's	Q	 performance,	 Figure	 6	 clearly	 points	 to	 the	
significant	 improvements	shown	by	Rao's	Q	 index	compared	to	the	
Shannon	H	 index	 in	describing	 the	 spatial	diversity.	 In	particular,	 it	
can	be	seen	through	the	Figure	6,	 that	Rao's	Q	 index	can	highlight	
different	gradients	of	spatial	diversity	of	montado	areas,	which	pres-
ent	high	tree	density	variability	(Figure	6),	and	thus	high	spatial	het-
erogeneity.	One-way	ANOVA	tests	revealed	that	both	indices	values	
were	significantly	different	between	the	two	land	cover	types	(mon-

tado: F	=	503.3,	p < .001; polyculture: F	=	889.8,	p	<	.001).	Overall,	

the	obtained	results	demonstrate	the	capability	of	Rao's	Q	index	 in	
producing	accurate	landscape	diversity	maps	in	a	complex	landscape	
such	as	the	Mediterranean	agro-forestry	systems.

7  | CONCLUSION

In	 this	 paper,	 we	 showed	 several	 methods	 based	 on	 ecological	
β-diversity,	which	can	be	investigated	by	remote	sensing	through	the	
calculation	of	ecosystem	heterogeneity,	to	estimate	the	spatial	variabil-
ity	of	biodiversity.	When	there	is	a	wide	range	of	heterogeneity,	for	ex-
ample,	when	the	data	include	homogeneous	and	heterogeneous	zones,	
no	single	measure	might	capture	all	the	different	aspects	of	β-diversity	
(e.g.,	Baselga,	2013).	That	is	why	we	suggested	in	this	manuscript	mul-
tivariate	and	multidimensional	methods	(e.g.,	multivariate	statistics	and	
multidimensional	distance	matrices)	based	on	the	spectral	signal	and	its	
variability	over	space	to	account	for	different	aspects	of	diversity,	also	
including	distance-	and	abundance-based	methods	(e.g.,	the	Rao's	Q).

F I G U R E  6   	Upper	panels:	Sentinel-2A	scene	(August	8,	2016)	and	derived	NDVI	for	the	agro-forestry	systems	test	site	located	in	southern	
Portugal.	Lower	panels:	results	from	Shannon's	H	and	Rao's	Q	indices	computation.	Shannon	index	tends	to	overestimate	the	landscape	diversity	
when	compared	to	the	Rao's	Q	index
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Biodiversity	measured	as	species	richness	is	often	used	for	conser-
vation	purposes,	hence	the	importance	of	avoiding	an	under-	or	over-
estimate	 has	 been	 highlighted	 (Chiarucci	 et	al.,	 2009).	 Furthermore,	
pairwise	distance-based	methods	might	be	profitably	used	to	detect	
not	only	diversity	hotspots	in	an	area	but	also	the	variation	of	biodi-
versity	over	space,	and	potentially	over	time,	once	multitemporal	sets	
of	images	are	used.

In	 this	 paper,	we	 focused	 on	 optimizing	measures	 of	 β-diversity	
based	on	remote	sensing	data.	Such	measures	might	be	used	to	regress	
species	diversity	against	remotely	sensed	heterogeneity,	based	on	new	
regression	techniques	which	maximize	the	possibility	of	predicting	the	
zones	 in	 a	 study	 area,	 or	 at	 larger	 spatial	 scales,	 of	 peculiar	 conser-
vation	value.	As	an	example,	shrinkage	regression,	recently	applied	in	
biodiversity	conservation	(Authier,	Saraux,	&	Peron,	2017)	could	allow	
a	direct	focus	on	habitat	modelling,	which	is	one	of	the	major	strengths	
of	remote	sensing	(Gillespie,	Foody,	Rocchini,	Giorgi,	&	Saatchi,	2008).	
Moreover,	such	analysis	might	be	performed	in	a	Bayesian	framework	
allowing	to	(1)	model	multidimensional	covariates	with	non-stationary	
variation	over	space	(Randell,	Turnbull,	Ewans,	&	Jonathan,	2016),	such	
as	the	bands	of	satellite	images,	and	(2)	model	the	errors	in	the	output	
and	their	variation	over	space	(Rocchini	et	al.,	2017).

As	previously	stated,	the	suggested	methods	for	β-diversity	es-
timation	 from	 remote	 sensing	 are	mainly	 based	 on	 distances,	 but	
they	 could	 be	 effectively	 translated	 to	 relative	 abundance-based	
methods.	As	an	example	Rocchini	et	al.	(2013)	introduced	the	pos-
sibility	 of	 applying	 generalized	 entropy	 theory	 to	 satellite	 images	
with	one	single	formula	representing	a	continuum	of	diversity	mea-
sures	 changing	 one	 parameter.	 One	 of	 the	 best	 examples	 in	 this	
framework	could	be	 the	use	of	Hill	 numbers,	 in	which	diversity	 is	
expressed	as	follows:

where	S	=	number	of	samples/pixels	and	p
i
	=	relative	abundance	of	a	

species/spectral	value.	varying	the	parameter	q,	qD	varies	accordingly	
in	several	diversity	 indices,	e.g.	 for	q = 0 qD	 is	 the	simple	number	of	
species,	for		lim	(q)	=	1	qD	equals	Shannon's	entropy,	etc.	(Hsieh,	Ma,	
&	Chao,	2016).

Furthermore,	 connectivity	 analysis	 might	 also	 be	 taken	 into	 ac-
count	 (Moilanen	 et	al.,	 2005,	 2009).	 For	 instance,	 a	 remote	 sens-
ing-based	 connectivity	 network	 among	 different	 sites,	 based	 on	
β-diversity	measures,	could	be	applied	for	the	estimate	of	 landscape	
connectivity	and	consequent	genetic	flow,	as	demonstrated	by	Vernesi	
et	al.	(2012).	It	has	also	been	shown	that	community	related	biodiver-
sity	indicators	are	often	missing	from	current	monitoring	programmes	
(Vihervaara	et	al.,	2017);	thus	methods	such	as	remote	sensing-based	
Rao's	Q	diversity	applied	for	various	ecosystems	might	improve	other-
wise	challenging	monitoring	of	biological	communities.

With	this	manuscript,	we	hope	to	stimulate	discussion	on	the	avail-
able	methods	for	estimating	β-diversity	from	remotely	sensed	imagery	
by	proposing	innovative	techniques	grounded	on	ecological	theory.
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