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Abstract 

Bandwidth, a key parameter in geographically weighted regression models, is closely related to the spatial 

scale at which the underlying spatially heterogeneous processes being examined take place. Generally, a 

single optimal bandwidth (geographically weighted regression) or a set of covariate-specific optimal 

bandwidths (multiscale geographically weighted regression) is chosen based on some criterion such as the 

Akaike Information Criterion (AIC) and then parameter estimation and inference are conditional on the 

choice of this bandwidth. In this paper, we find that bandwidth selection is subject to uncertainty in both 

single-scale and multi-scale geographically weighted regression models and demonstrate that this 

uncertainty can be measured and accounted for. Based on simulation studies and an empirical example of 

obesity rates in Phoenix, we show that bandwidth uncertainties can be quantitatively measured by Akaike 

weights, and confidence intervals for bandwidths can be obtained. Understanding bandwidth uncertainty 

offers important insights about the scales over which different processes operate, especially when 

comparing covariate-specific bandwidths. Additionally, unconditional parameter estimates can be 

computed based on Akaike weights accounts for bandwidth selection uncertainty. 

 

Keyword: multiscale geographically weighted regression, bandwidth, spatial processes scale, Akaike 

weight, model selection uncertainty 
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1. Introduction 

 

Investigating spatial processes through associations between a response variable and a set of explanatory 

variables has been one of the most important and fertile research areas in geography and related fields. 

Spatial processes, however, have the intrinsic properties of potentially being both heterogeneous and 

operating over different spatial scales. Classic global models ignore both these properties and return only 

stationary (single) parameter estimates and provide no information on spatial scale. Local models such as 

geographically weighted regression (GWR) can capture the heterogeneity of process but inadequately 

incorporate multi-scale properties of processes into the modeling. Their major limitation is the use of only 

a single kernel bandwidth across the set of covariates, which is the equivalent of assuming that the different 

processes being modeled all operate at the same scale (Fotheringham et al., 2017; Murakami et al., 2019). 

Such an assumption seems unrealistic in the real world. For example, the measured ambient temperature of 

a location is affected by the local built environment, regional weather patterns and trends in global warming, 

all of which operate at different scales. A recent advancement to GWR termed Multi-scale GWR (MGWR) 

removes the single bandwidth assumption and allows the bandwidths for each covariate to vary 

(Fotheringham et al., 2017). This results in each parameter surface being allowed to have a different degree 

of spatial variation, reflecting variation across covariate-specific processes.  

 

Comparisons of MGWR with other single-scale and multi-scale spatially varying coefficients (SVC) 

models are available, such as the comparison with classic GWR (Fotheringham et al., 2017; Harris, 2019; 

Murakami et al., 2019), with Bayesian SVC (Wolf et al., 2017), with eigenvector spatial filtering (ESF) 

(Oshan et al., 2018), and with random-effects eigenvector spatial filtering (RE-ESF) (Murakami et al., 

2019). All comparisons agree that in terms of parameter estimation accuracies, MGWR is superior to the 

classic GWR and comparable to much more complicated models such as Bayesian SVC and RE-ESF. 

Additionally, an analytical inferential framework (Yu et al., 2019), computational improvements by 

parallelization (Li et al., 2019; Li and Fotheringham, 2019), and accessible software (Oshan et al., 2019a) 

have been developed for MGWR, all of which greatly enhances the utility of MGWR in modeling multi-

scale spatially heterogeneous processes.  

 

Bandwidth is a key parameter in the geographically weighted regression framework. The major advance of 

MGWR over GWR is that covariate-specific bandwidths are obtained rather than a single “average” 

bandwidth. Consequently, GWR can be considered as a special case of MGWR when all bandwidths are 

the same. Often the optimal bandwidth selection is data-driven based on model selection statistics such as 

an Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), generalized cross-validation, 
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or some other panelized fit score. The fundamental goal of choosing the optimal bandwidth is to find the 

best tradeoff between bias and variance for parameter estimates. A large bandwidth produces local 

parameter estimates with low variance at the cost of high bias (under-fitting), whereas a small bandwidth 

yields parameter estimates with low bias but high variance (over-fitting). Once the optimal bandwidth is 

determined, it can be interpreted in terms of the spatial scale of the underlying data generating process. In 

other words, a larger bandwidth determined by the data indicates a spatially smoothed process which has 

regional to global trend, whereas a smaller bandwidth reveals spatially localized relationships. Therefore, 

covariate-specific optimal bandwidths obtained in MGWR can be used as explicit indicators of the scale at 

which various processes operate (Fotheringham et al., 2017). The bandwidth also has an interpretable real-

world meaning. There are two popular definitions of bandwidth that are used in the GWR framework: (i) a 

distance-based measure and (ii) the number of nearest neighbors used in each local regression. The 

interpretation of say a 50-km bandwidth (or 300-nearest neighbors) is that the process being estimated at 

the current location is affected by other neighboring locations in a spatially discounted manner up to a 

radius of 50 km (or 300-nearest neighbors).  In either case, this means that the data at the focal point of the 

local regression (if they exist) have a weight of 1 and all other data used in the local calibration have a 

weight less than 1, depending on how far they are from the regression point.   

 

The use of multiple bandwidths gives MGWR the capability to potentially differentiate local, regional and 

global processes by comparing the optimal bandwidths for different covariates. However, if the analyst 

wants to make an inference about bandwidths as indicators of the relative spatial scales of different 

processes, it is naïve to simply compare the covariate-specific bandwidths which are obtained based on the 

single observed dataset (i.e. deterministic) and draw a conclusion that one process is more local or global 

than another. It is quite possible that the covariate-specific bandwidths are different by chance and subject 

to the sampling variation of the uncaptured noise (i.e. stochastic). Understanding the covariate-specific 

bandwidth uncertainty is thus crucial to being able to make inferences about the different spatial scales over 

which processes operate.  Smoothing parameter (e.g. bandwidth, in the context of GWR) uncertainties have 

been recognized in the statistical literature for spline-based generalized additive models (Hastie et al., 2009; 

Wood et al., 2016). Additionally, previous studies show that GWR and MGWR bandwidths are not fixed 

from the evidence of Monte Carlo simulations and sub-sampling results (Fotheringham et al., 2017; Wolf 

et al., 2018; Oshan et al., 2019b). Nevertheless, there are no methods in the context of GWR framework to 

quantitatively measure such bandwidth uncertainties. Another issue of neglecting bandwidth uncertainty is 

that parameter estimation and inference are conditional on the optimal bandwidths and therefore 

incorporation of bandwidth uncertainty into parameter uncertainty is important (Wolf et al., 2018). By doing 

so, parameter estimates would be unconditional of the chosen bandwidth thus making inference more robust. 
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Ignoring the uncertainties from bandwidth selection will lead to underestimates of the variances for local 

parameter estimates because the variance of the component stemming from bandwidth selection uncertainty 

is missing and, consequently, this will make it easier to declare local results as ‘interesting’ or ‘significant’. 

 

2. Overview of the procedure for measuring bandwidth uncertainty 

 

Burnham and Anderson (2002) discuss extensively the uncertainty regarding model selection and propose 

using the Akaike weight, an information-theory based statistic, to measure model selection uncertainties. 

This method has drawn great attention and is widely used in applied statistics (Posada and Buckley, 2004; 

Johnson and Omland, 2004; Koh, 2008; Pinsky et al., 2013). Akaike weights are computed based on AIC 

and can be interpreted as the relative likelihood of a certain model being selected given the data. For 

instance, a model with an Akaike weight of 0.6 indicates that given the data at hand, it has a 60% chance 

of being selected as the optimal model among other candidate models. In the context of GWR, bandwidth 

selection is a type of model selection. Candidate bandwidths are evaluated based on AIC (or an equivalent 

measure) and the bandwidth with minimum AIC is selected as the optimal one. It is a natural extension 

therefore to use the Akaike weights to measure the relative likelihood of a bandwidth being selected as 

optimal and to quantify the bandwidth selection uncertainty. Moreover, Akaike weights can be used to 

average parameter estimates and variances following a multi-model inference framework with the 

advantage that the resulting parameters are unconditional of the selected model. This approach has been 

shown to be useful in the statistical literature and in applied studies (Burnham and Anderson, 2002; 

Wagenmakers and Farrell, 2004; Symonds and Moussalli, 2011; Burnham and Anderson, 2011). 

 

In this paper, we demonstrate that bandwidth has intrinsic uncertainty from the evidence of bootstrapping 

and from Akaike weights, which can both be used to obtain confidence intervals (CI) for bandwidths in 

MGWR. We also examine the use of Akaike weights to compute unconditional parameter estimates and 

variances and compare them with their conditional equivalents. The paper proceeds as follows. In Section 

3, the background of MGWR is reviewed. In Section 4 bandwidth uncertainties are examined with a 

simulation dataset using bootstrapping and Akaike weights. In Section 5, an empirical example of obesity 

rate modeling for the city of Phoenix is presented. The paper concludes with remarks in Section 6. 
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3. Background of MGWR related to Akaike weights 

 
Multiscale geographically weighted regression (MGWR) was developed under the generalized additive 

model framework of Hastie and Tibshirani (1990) by Fotheringham et al. (2017). MGWR is formulated as  

𝒚 = 𝒇𝟏(𝒙𝟏) + 𝒇𝟐(𝒙𝟐) + ⋯+ 𝒇𝒌(𝒙𝒌) + 𝜺 (1) 

where 𝒚 is a column vector of response variables, 𝒇𝟏(𝒙𝟏),⋯ 𝒇𝒌(𝒙𝒌) are additive components which are 

smooth functions of covariates, and 𝜺 is a column vector of i.i.d. error terms. The response variable 𝒚 is the 

data observed over a spatial surface and 𝒇𝟏, ⋯ 𝒇𝒌 are spatial additive components estimated with covariate-

specific bandwidths, so MGWR can be formulated as 

 

𝒚 = 𝒇𝒃𝒘𝟏(𝒙𝟏) + 𝒇𝒃𝒘𝟐(𝒙𝟐) + ⋯+ 𝒇𝒃𝒘𝒌(𝒙𝒌) + 𝜺 (2) 

 

where each additive component 𝒇𝒃𝒘𝒋(𝒙𝒋)	 is a product of element-wise multiplication (⨂ ) of local 

parameters 𝜷𝒋 and covariate 𝒙𝒋 

 

𝒇𝒃𝒘𝒋(𝒙𝒋) = 𝜷𝒋⨂𝒙𝒋 =

𝛽56𝑥56 	

𝛽86𝑥86 	

⋮

𝛽:6𝑥:6

 (3) 

 

The calibration of each smooth function 𝒇𝒃𝒘𝒋 in MGWR model uses the back-fitting algorithm developed 

by Buja et al. (1989). The estimation procedure can be initialized in various ways (e.g. using GWR estimates, 

Fotheringham et al. 2017) and then parameters are estimated and updated by calibrating univariate GWR 

models that regress the current estimated additive component plus partial residual on each covariate (𝒇𝒋 +

𝜺	~	𝒙𝒋) successively. The back-fitting converge when parameter estimates are unchanging within a pre-

defined threshold. A detailed description and implementation of the back-fitting algorithm can be found in 

Fotheringham et al. (2017) and Oshan et al. (2019a). Covariate-specific optimal bandwidths are estimated 

within univariate GWRs by minimizing the corrected AIC (AICc), which is formulated as  

𝐴𝐼𝐶? = −2log ℒ + 2𝑛
𝑡𝑟 𝑺 + 1

𝑛 − 𝑡𝑟(𝑺) − 2
 (4) 

where ℒ is the model likelihood given the data and 𝑡𝑟 𝑺  is the trace of the hat matrix. AICc is a small 

sample bias adjustment to the classic AIC and should be used when the ratio of data points and number of 
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parameters is below 40, which is often seen in GWR when processes have high-heterogeneity. When the 

ratio is greater than 40, the AICc rapidly approaches the classic AIC (Hurvich and Tsai, 1989; Burnham 

and Anderson, 2002). Therefore, in general, this corrected version of AIC is often suggested in GWR for 

bandwidth selection (Fotheringham et al., 2002). The use of AIC or its variant AICc for model selection is 

based on the information-theory that there is a relationship between expected Kullback-Leibler distance 

(information lost) and the maximized log-likelihood. The best model represents the process that generated 

the data with minimum information lost.  

 

To obtain Akaike weights, we first need to define the “comparison set” of models. In the context of MGWR, 

of interest is the set of covariate-specific bandwidths that best approximate the underlying spatial processes. 

During the bandwidth selection of each univariate GWR within the back-fitting of MGWR, the optimal 

bandwidth is selected based on the minimum AICc. For simplicity, we will use AIC here (rather than AICc) 

as a generic term for all AIC variants. A candidate set of R bandwidths can be defined as 

{𝑏𝑤5, 𝑏𝑤8, 𝑏𝑤N… , 𝑏𝑤P} beforehand or within the bandwidth search routine. In either case, we consider a 

set of candidate bandwidths to evaluate AIC and the minimum AIC obtained within the R bandwidths is 

denoted as 𝐴𝐼𝐶RS:. For bandwidth k within the candidate set R, AIC differences can be computed as ∆U=

𝐴𝐼𝐶U − 𝐴𝐼𝐶RS:. Then, the Akaike weight of a candidate bandwidth 𝑘 ∈ 1…𝑅 can be obtained by  

 

𝑤U =
exp	(−

1
2
∆U)

exp	(−
1
2
∆\)

P
\]5

 (5) 

 

The numerator exp	(−
5

8
∆U)  denotes the likelihood of the bandwidth given the maximum likelihood 

estimators based on the same data, which also measure the relative strength of evidence for each bandwidth 

(Akaike, 1983; Burnham and Anderson, 2002). The denominator is used to normalize the Akaike weights 

so that all values lie between 0 and 1 with the sum being 1 ( 𝑤U
P
5 = 1) (Burnham and Anderson, 2002). 

The resulting Akaike weight is the likelihood of a given bandwidth being the optimal one. For instance, an 

Akaike weight of 0.75 for a bandwidth indicates that this bandwidth has a 75% chance of being the 

bandwidth that best approximates the corresponding underlying process. Following this approach, the 

Akaike weight curve can be plotted against a set of candidate bandwidths for each covariate in the MGWR 

model and the bandwidth probability distribution can be obtained. In the following section, we will examine 

the use of Akaike weights for measuring bandwidth uncertainty based on a simulated dataset. 
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4. Investigating bandwidth uncertainty in a controlled experiment 

 

4.1 Construction of a simulated dataset with two different spatially heterogeneous processes 

 

We simulate a study area with 1000 locations that are randomly distributed in a circular coordinate space. 

A circular coordinate space is used because in a later section we rotate the coordinate space to see if the 

optimal bandwidth is sensitive to the orientation of the heterogeneity in the processes. The 𝑥  and 𝑦 

coordinates of location 𝑖 are denoted as 𝑢S and 𝑣S and are constructed with the following formulas (6) and 

(7) 

 

𝑢5S = 12.5 + 12.5 𝑟 cos 𝜃 (6) 

𝑣5S = 12.5 + 12.5 𝑟 sin 𝜃 (7) 

 

where a radius 𝑟 and angle 𝜃 are randomly selected from uniform distributions. Then we synthesize two 

spatial processes using formulas (8) and (9), and these true parameter surfaces, 𝒃𝟏 and 𝒃𝟐, are shown in 

Figure 1. 

 

𝑏5S = 1	 + 	(36 − (6 − 𝑢S/2)
8(36 − (6 − 𝑣S/2)

8/324 (8) 

𝑏8S = 2 + 1/24 ∗ (𝑢S + 𝑣S) (9) 

 

[Figure 1 about here] 

 

 

Figure 1. Generated spatial processes with low- and high- heterogeneity. 
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where 𝑏5S  and 𝑏8S  are the parameters of location 𝑖 (𝑖 = 1… . 𝑛); 𝑢S  and 𝑣S  are the 𝑥 and 𝑦 coordinates of 

location 𝑖. The resulting process 𝒃𝟏 has high spatial heterogeneity, with high values in the center of the map 

and low values at the periphery. The parameters range between 0 to 5. The process 𝒃𝟐 has relative low 

heterogeneity, with a positive trend from southeast to northwest ranging from 2.4 to 3.7. A similar data 

generating process can be seen in Fotheringham et al. (2017). 

 

Covariate vectors 𝒙𝟏 and 𝒙𝟐 are randomly drawn from a normal distribution with mean of 0 and variance 

of 1. A spatially random noise vector 𝜺 is added to the surface with mean of 0 and variance of 1. Those two 

processes, 𝒃𝟏and 𝒃𝟐, along with two covariates, 𝒙𝟏and 𝒙𝟐, and a random noise are used to generate the 

synthetic response variable 𝒚 in the following manner: 

𝒚 = 𝒃𝟏𝒙𝟏 + 𝒃𝟐𝒙𝟐 + 𝜺 (10) 

An MGWR model is calibrated on this synthetic dataset using the mgwr python package (Oshan et al., 

2019a). For consistency, in the following simulation and empirical studies we use an adaptive bi-square 

kernel (Fotheringham et al., 2002) where the bandwidth is interpreted as the number of nearest neighbors 

and the largest possible bandwidth is the total number of locations in the dataset. For this model, the two 

covariate-specific optimal bandwidths are 70 and 300 for the local process 𝒃𝟏 and the regional process 𝒃𝟐 

respectively. Recovered parameter estimate surfaces for this synthetic dataset are shown in Figure 2. 

 

[Figure 2 about here] 
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Figure 2. Recovered parameter surfaces using MGWR with optimal bandwidths 70 and 300 for the high- 

and low- heterogeneity processes, respectively. 

 
 

 

 

4.2 Bandwidth selection uncertainty: evidence from bootstrapping 

 

Bootstrapping is a variant of Monte Carlo estimation for confidence intervals based on random sampling 

with replacement (Efron and Tibshirani, 1993). The technique is popularly used for deriving empirical 

confidence intervals of a statistic when the analytical solution is unavailable. In this paper, we are interested 

in assessing how the selected optimal bandwidths vary across each bootstrap sample and from this the 

empirical distribution of optimal bandwidths can be obtained. We use a non-parametric residual-based 

bootstrap method by randomly resampling residuals which are added to the fitted values. This specific type 

of bootstrap method has been widely used in regression problems and can also be found in the GWR 

literature (Mei et al., 2016; Harris et al., 2017).  

 

In the context presented here we first calibrate an MGWR model with the original response vector 𝒚 and 

two covariates 𝒙𝟏, 𝒙𝟐 and save the fitted values 𝒚 and residuals 𝜺. Then we generate B (B=1,000) bootstrap 

samples with each sample containing a new response vector 𝒚∗ = 𝒚 + 𝜺𝒓𝒂𝒏𝒅  where 𝜺𝒓𝒂𝒏𝒅  is a residual 

vector randomly drawn with replacement from 𝜺. For each bootstrap sample, we regress 𝒚∗ onto 𝑿 using 

MGWR and save the optimal covariate-specific bandwidths from MGWR. Finally, the estimated bootstrap 

optimal bandwidth distribution can be acquired from these B bootstrap samples, and these bandwidth 

selection frequencies represent the uncertainty of a certain bandwidth j being selected as the optimal 

bandwidth. A 95% empirical confidence interval can be obtained by using the 2.5% and 97.5% percentiles 

of the bandwidths from the bootstrap samples (Efron and Tibshirani, 1993). This bootstrap method is 

applied to GWR for comparison with MGWR. The bootstrap results are presented in Figure 3 and Table 1.  

 

[Figure 3 about here] 
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Figure 3. Optimal bandwidth distributions of two processes in Figure 1 under bootstrapping. 

 

 

[Table 1 about here] 

 

Table 1. Summary statistics for the optimal bandwidths obtained from the bootstrap samples. 

 

 OPTIMAL MEAN STD 

95% 

CONFIDENCE 

INTERVAL 

WIDTH 

GWR BW 90 93.6 10.1 [80, 110] 30 

MGWR 𝒃𝟏 BW 70 73.5 8.4 [60, 90] 30 

𝒃𝟐 BW 300 300.5 80.1 [130, 440] 310 

 

 

 

Figure 3 shows the distribution of the optimal bandwidths from the bootstrap samples for GWR (in green) 

and MGWR (in blue and orange). The optimal bandwidth selected for the original dataset is 90 (number of 

nearest neighbors) for GWR and the optimal covariate-specific bandwidths are 70 and 300 for MGWR. It 

is clear that the MGWR covariate-specific bandwidths describe adequately the relative amounts of 

heterogeneity in the underlying data generating processes 𝒃𝟏  and 𝒃𝟐 . In contrast, the single optimal 

bandwidth in GWR lies between the two covariate-specific bandwidths in MGWR and does not 

differentiate between the two processes or represent either particularly accurately. Bandwidth statistics are 
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summarized in Table 1. For GWR, the single optimal bandwidths have a mean of 93.6 and standard 

deviation of 10.1 across the 1000 bootstrap samples. The empirical 95% confidence interval is [80, 110]. 

For MGWR, the optimal bandwidth for the high-heterogeneity process 𝒃𝟏 has a mean of 73.5, standard 

deviation of 8.4, and the empirical 95% confidence interval is [60, 90]. The optimal bandwidth for the low-

heterogeneity process 𝒃𝟐 has a mean of 300.5, standard deviation of 80.1 and an empirical confidence 

interval of [130, 440]. By comparing the two covariate-specific bandwidths in MGWR, we can see that the 

selection of the bandwidth for the low heterogeneity process 𝒃𝟐 tends to be more uncertain than that of the 

high heterogeneity process 𝒃𝟏 and has a much wider confidence interval (310 vs. 30).  

 

Given the evidence from bootstrapping, it is clear that bandwidth selection in both GWR and MGWR is 

subject to the sampling variation of the random noise contained in the data. Bootstrapping provides a useful 

way for quantifying this bandwidth selection uncertainty and for deriving empirical confidence intervals 

for bandwidths. The mutually exclusive confidence intervals for the bandwidths associated with processes 

𝒃𝟏  and 𝒃𝟐  imply that the two processes have significantly different optimal bandwidths at the 95% 

confidence level and we can thus claim that process 𝒃𝟏 operates at a relatively more local scale than process 

𝒃𝟐.  

 

Following the same bootstrapping method described above, another simple simulation is conducted to 

explore how the optimal bandwidths and associated uncertainties respond to variations in the orientation of 

the process holding the level of heterogeneity constant. To do this, we rotate the spatial process 𝒃𝟐 (in 

Figure 2) to reproduce four spatial processes with different orientations but each having the same degree of 

heterogeneity, as illustrated in Figure 4.  

 

[Figure 4 about here] 

 
Figure 4. Four generated spatial processes with the same degree of heterogeneity. 
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Figure 5 shows the optimal bandwidth distributions for these four processes obtained from 1000 bootstrap 

samples and it is clear that the bandwidth distributions for each of the four processes are roughly the same.  

Consequently, process orientation has no effect on the optimal bandwidths obtained from MGWR; 

bandwidth variation is a function solely of the scale over which the processes operate. 

 

[Figure 5 about here] 

 

 
 

Figure 5. Optimal bandwidth distributions of four same heterogeneity processes in Figure 4 under 

bootstrapping. 
 

 

4.3 Using Akaike weights for measuring bandwidth selection uncertainty 
 

Following equation (5) in Section 3, we compute Akaike weights for the simulation dataset described in 

Section 4.1 which involves two processes with different degrees of spatial heterogeneity. For each covariate, 

we evaluate candidate bandwidths from 50 to 1000 nearest neighbors with a 10-neighbor interval
1
. Each 

candidate bandwidth has a corresponding Akaike weight representing the probability of it being the optimal 

bandwidth (Figure 6). These Akaike weights can be compared with the bootstrap relative frequencies 

described in the previous section. There is a clear similarity between the two approaches for the processes 

shown in Figure 6. Following Burnham and Anderson (2002) and Symonds and Moussalli (2011), a 95% 

confidence interval (CI) of bandwidths can be obtained by ranking the Akaike weights in descending order 

and including bandwidths into the CI until the cumulative Akaike weight equals to 0.95. In some cases, 

where a coarse searching interval is used, the cumulative Akaike weight might not be exactly 0.95; therefore, 

                                                
1
 Using a smaller step-size rather than 10 will produce more detailed Akaike weight curve but with additional 

computation. 
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the inclusion to the bandwidth CI should stop when the cumulative Akaike weight is just above 0.95. Table 

2 shows how this procedure operates for process 𝒃𝟏. The optimal bandwidth of 70 has an Akaike weight of 

0.42. Bandwidths of 60, 80, and 90 have descending Akaike weights of 0.25, 0.23, and 0.05, respectively. 

Inclusion into the 95% CI stops after adding the bandwidth 90 because at this point the cumulative Akaike 

weight equals 0.95. Consequently, we can conclude that the 95% CI of bandwidths for process 𝒃𝟏 is [60, 

90]. The bandwidth CI is not necessarily symmetrical, and if bandwidth 50 is included this would create a 

99% CI.  

 

 [Table 2 about here] 

 

Table 2. An example of obtaining the 95% confidence set of bandwidth for process 𝒃𝟏 using Akaike 

weights. 

BANDWIDTH AICC AKAIKE WEIGHT 
CUM. AKAIKE 

WEIGHT 

70 2907.87 0.42 0.42 

60 2908.94 0.25 0.67 

80 2909.13 0.23 0.90 

90 2911.98 0.05 0.95 

50 2912.69 0.04 0.99 

… … … … 

  

[Figure 6 about here] 

 

 
Figure 6. Akaike weights and bootstrap frequencies for different bandwidths. 
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The Akaike weight-based 95% bandwidth CIs can be compared with the 95% CIs obtained from 

bootstrapping (Table 3). The 95% CI computed based on Akaike weights is [60, 90] for process 𝒃𝟏, which 

is exactly the same as the 95% confidence interval obtained from bootstrapping. For process 𝒃𝟐, the Akaike 

weights-based 95% CI is [160, 500] which is similar to the 95% confidence interval obtained from 

bootstrapping [130, 440]. Based on the Akaike weights-based bandwidth confidence interval, we also arrive 

at the same conclusion that processes 𝒃𝟏 and 𝒃𝟐 have significantly different optimal bandwidths at the 95% 

confidence level. This result is particularly robust, since Akaike weights and bootstrapping embed two 

distinct concepts of measuring model selection uncertainty. The former uses a data-based weight-of-

evidence while the latter models the sampling distribution of the bandwidth parameter when each 

bandwidth is still estimated without uncertainty. Using the Akaike weights is preferred because not only is 

it much less computer-intensive but it also employs the statistically grounded concept of model likelihood 

given a set of candidate models and data (Burnham and Anderson, 2002). 

 

[Table 3 about here] 

 
Table 3. 95% confidence interval of bandwidth based on Akaike weight and bootstrapping. 

 

PROCESS 
OPTIMAL 

BANDWIDTH 

95% AKAIKE 

WEIGHT 

CI 

95% 

BOOTSTRAP 

CI 

𝒃𝟏 70 [60, 90] [60, 90] 

𝒃𝟐 300 [160, 500] [130, 440] 

 

 

4.4 Unconditional inference: accounting for bandwidth selection uncertainty in local parameter 

estimation  

 

Following the multi-model inference approach of Burnham and Anderson (2002), averaging models based 

on a spectrum of bandwidths can give parameters that are unconditional on the choice of the bandwidths. 

In this section, we compare the unconditional inference with MGWR inference. For each set of local 

parameters for the j
th

 covariate, 𝜷𝒋 , unconditional parameter estimates, 𝜷
6
 can be computed based on 

Akaike weights: 
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𝜷
6
= 𝑤\6𝜷𝒓𝒋

P

\]5
 (11) 

 

where there are R candidate bandwidths being evaluated during the bandwidth selection; 𝑤\6 is the Akaike 

weight for bandwidth r and  𝜷𝒓𝒋 is the set of local parameter estimates obtained when using bandwidth r. 

The variance of parameter estimates 𝜷𝒋  can be calculated using the following equation (Burnham and 

Anderson, 2002):  

 

𝑣𝑎𝑟 𝜷
𝒋
= 𝑤\6 𝑣𝑎𝑟 𝜷𝒓𝒋 + 𝜷\6 − 𝜷𝒋

8
8

 (12) 

 

Note that there are two components in 𝑣𝑎𝑟 𝜷
𝒋

: (i) the variance from parameter estimation, 𝑣𝑎𝑟 𝜷𝒓𝒋 , and 

(ii) the variance from bandwidth selection uncertainty,  𝜷\6 − 𝜷𝒋

8

. Therefore, usually the variance of the 

unconditional parameter estimates will be greater than that of the conditional parameter estimates because 

the latter are based purely on a single set of covariate-specific bandwidths (i.e. deterministic) and therefore 

neglects bandwidth selection uncertainty (Symonds and Moussalli, 2010). However, it worth noting that 

this might not always be true in (M)GWR because using a smaller bandwidth will yield larger parameter 

variances than using a larger bandwidth, ceteris paribus. However, weighted parameter variance is expected 

to yield more accurate confidence intervals for the local parameter estimates because bandwidth uncertainty 

is accounted for. Additionally, the averaged parameter estimates have a Bayesian interpretation if the 

Akaike weights are specified as prior probabilities on the bandwidths (Bozdogan, 1987; Akaike, 1989).  

 

 



 16 

 

Figure 7. Comparison of conditional and unconditional standard errors of local parameter estimates for 

processes 𝒃𝟏 and 𝒃𝟐. 

 

In Figure 7 we compare the uncertainties associated with the conditional parameter estimates obtained from 

MGWR with covariate-specific optimal bandwidths with their unconditional equivalents obtained using 

Akaike weights for the two processes 𝒃𝟏 and 𝒃𝟐. For both processes we plot three sets of unconditional 

local parameter standard errors (on the y-axis) against their equivalent conditional standard errors.  These 

are obtained by: (i) using the lower bound of the 95% bandwidth CI (in green); (ii) using the upper bound 

of the 95% bandwidth CI (in orange); and (iii) using the Akaike-weighted standard errors (in blue). For 

process 𝒃𝟏  the upper and lower bounds of the 95% bandwidth confidence interval are 60 and 90 

respectively. Using a bandwidth of 60 (90) for the calibration gives higher (lower) parameter standard errors 

than those obtained using the optimal bandwidth of 70. This is due to the bandwidth’s bias-variance tradeoff 

property: using a smaller bandwidth results in greater parameter uncertainty but reduced bias. Akaike-

weighted parameter standard errors are computed based on bandwidths from 60 to 90 (95% bandwidth CI) 

with weights derived from equation (12) and, as expected, these generally have slightly larger uncertainty 

than the conditional parameter estimates because they include bandwidth uncertainty. For process 𝒃𝟐 the 

results are similar to those for 𝒃𝟏 although the range of both the conditional and unconditional standard 

errors is much lower.  This is because the bandwidth CI lies between 160 and 490 nearest neighbors for 

process 𝒃𝟐  whereas it is between 60 and 90 nearest neighbors for 𝒃𝟏 creating more variability in the results. 

When the optimal bandwidth is large and the level of process heterogeneity is low, the results are relatively 

insensitive to bandwidth variation within the 95% CI.  
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[Figure 7 about here] 

 

This is also seen in Figure 8 where the results of the unconditional and conditional local estimates of 𝒃𝟏 

and 𝒃𝟐 are shown and where the horizontal axis depicts the conditional local parameter estimates from 

MGWR and the vertical axis depicts the unconditional local parameter estimates using the Akaike-weights 

procedure described above. We also represent the Akaike-weighted 95% CI (red) and the upper (green) and 

lower (orange) 95% CI using the bandwidth CI based on the cumulative Akaike weights.  The Akaike 

weighted parameter estimate CI is computed by 𝜷
6
±1.96 𝑣𝑎𝑟 𝜷

𝒋
 . All the local parameter estimates 

using the lower and upper bounds of the bandwidth CI are within the Akaike-weighted parameter CI 

indicating that using any bandwidth within the 95% bandwidth CI will produce parameter estimates within 

the Akaike-weighted parameter CI. This helps in interpreting how bandwidth changes will impact the local 

parameter estimates; that is, we can now determine what degree of bandwidth change will generate 

significantly different local parameter estimates. Our results indicate that using any bandwidth within the 

95% confidence interval of the optimal bandwidth does not have a significant impact on the local parameter 

estimates. 

 

[Figure 8 about here] 

Figure 8: Comparison of conditional and unconditional local parameter estimates for processes b1 and b2 
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To examine whether unconditional local parameters which account for bandwidth uncertainties are more 

accurate than conditional parameters, we conduct a Monte Carlo simulation using the model described in 

Section 4.1 equation (9).  The model was run for 1000 realizations using fixed covariates and randomly 

drawn errors. Within each realization we compute conditional and unconditional parameter estimates and 

confidence intervals and count how many times each type of confidence interval contains the true 

parameters 𝒃𝟏 and 𝒃𝟐. A good 95% confidence interval should contain true parameters 95% of the time. 

Results indicate that the Akaike-weighted parameter estimate confidence intervals have marginally better 

coverage probabilities than the conditional confidence intervals (0.81 vs. 0.80 for 𝒃𝟏) and (0.89 vs. 0.87 for 

𝒃𝟐) although 94.1% and 97.2% of total locations, respectively, have increased confidence interval coverage 

probabilities of more than 1%. Wolf et al. (2018) compare MGWR parameter standard errors with those 

obtained by Bayesian Spatially Varying Coefficients model and find that the MGWR parameter confidence 

intervals are much smaller than the Bayesian counterparts, potentially because of neglecting bandwidth 

uncertainty in MGWR. In this study, however, we show that even after taking bandwidth uncertainty into 

account, parameter confidence interval coverage probability is still less than the nominal 95% level, which 

reveals that there may exist other sources of parameter estimate uncertainty that are neglected. 

 

 

5. An empirical example of obesity modeling in Phoenix  

 

A real-world study is used to illustrate the use of Akaike weights in quantifying bandwidth uncertainty 

through an MGWR analysis of obesity rate determinants. The example uses the percentage of adults (age 

≥ 18) defined as obese
2
 (body mass index (BMI) ≥30.0 kg/m²) by The Centers for Disease Control and 

Prevention (CDC) in each of the 815 census tracts in the Phoenix metropolitan area
3
 as the response variable, 

and the five most influential covariates that determine obesity rates identified by the study of Oshan et al. 

(2019c): percentage of population visiting to doctor for a routine check-up within the past year; median age 

of people living in the census tract; percentage of population of Hispanic origin; percentage of households 

receiving Supplemental Nutrition Assistance Program (SNAP) benefits, and the percentage of people with 

a college degree. The obesity and the annual checkup data are downloaded from the 2014 “500 Cities 

project” from the CDC
4

, and the socio-demographic covariates are retrieved from the American 

Community Survey (ACS) 2015 5-year estimates dataset
5
. The regression model is formulated as follows: 

                                                
2
 https://www.cdc.gov/500cities/definitions/unhealthy-behaviors.htm#OBESITY 

3
 Six sparsely populated tracts are removed in this example. 

4
 https://www.cdc.gov/500cities 

5
 https://data.census.gov 
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𝑃𝑐𝑡_𝑂𝑏𝑒𝑠𝑖𝑡𝑦 = 𝛽{ + 𝛽5𝑃𝑐𝑡_𝐶ℎ𝑒𝑐𝑘𝑢𝑝 + 𝛽8𝑀𝑒𝑑𝑖𝑎𝑛_𝐴𝑔𝑒 + 𝛽N𝑃𝑐𝑡_𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 

	+𝛽�𝑃𝑐𝑡_𝑆𝑁𝐴𝑃 +	𝛽�𝑃𝑐𝑡_𝐶𝑜𝑙𝑙𝑒𝑔𝑒 + 𝜀 
(13) 

 

where obesity percentage (Pct_Obesity) is regressed on percentage of population undergoing yearly check-

ups (Pct_Checkup), median age of people in the census tract (Median_Age), percentage of Hispanic 

population, percentage of SNAP recipients (Pct_SNAP), and percentage of population with college degrees 

(Pct_College). We apply an adaptive bi-square kernel using nearest neighbors to calibrate the MGWR 

model. The largest possible bandwidth in this setting is the total number of census tracts in the study area 

which is 815. Both the covariates and the response variable are standardized as suggested by Fotheringham 

et al. (2017) so that bandwidths and local parameters are comparable and invariant to the scale of the data. 

The overall R
2 
value for this MGWR model is 0.93. 

 

For each of the covariates and the intercept, we determine optimal bandwidths using AICc within a range 

of 40 to 815 nearest neighbors with a step size of 10. Figure 9 shows the bandwidth search history where 

the x-axis is the bandwidth being evaluated and the y-axis is the AICc value. Covariate-specific optimal 

bandwidths with minimum AICc values are 70, 40, 815, 260, 815 and 500 for intercept, Pct_Checkup, 

Median_Age, Pct_Hispanic, Pct_SNAP, and Pct_College, respectively. We can see that for the Intercept 

and Pct_Checkup, with small optimal bandwidths, AICc values increase dramatically with increasing 

bandwidths, which suggests the data generating processes in both cases are very local. For the covariates 

Median_Age, and Pct_SNAP, the AICc value decrease with increasing bandwidths suggesting the data 

generating processes for these relationships are global and for the covariates Pct_Hispanic and Pct_College, 

the optimal bandwidths suggest processes that exhibit some degree of spatial heterogeneity although this is 

not very pronounced. 

 

[Figure 9 about here] 

 



 20 

 

Figure 9. AICc values against bandwidth for each of the five covariates and the intercept. The red line is 

the optimal covariate-specific bandwidth based on the minimum AICc value. 

 

Akaike weights and bandwidth CIs are computed for these five covariates plus the intercept as shown in 

Figure 10. In each case the red line shows the optimal bandwidth and the two green lines show the upper 

and lower bounds of the 95% bandwidth CI. The sum of the area under the Akaike weight curve is equal to 

1 and the sum of the area bounded by green dashed lines is approximately equal to 0.95. The optimal 

bandwidth and confidence intervals are summarized in Table 4. The Intercept has an optimal bandwidth of 

70 with a bandwidth CI from 60 to 100. The optimal bandwidth of the covariate Pct_Checkup is 40 with a 

bandwidth CI from 40 to 50 indicating a very locally heterogeneous relationship with obesity rate. The 

covariates Median_Age and Pct_SNAP both have global bandwidths of 815 with similar bandwidth CIs of 

[440, 815] and [370, 815], respectively. The covariate Pct_Hispanic has an optimal bandwidth of 260 with 

the CI from 160 to 450 indicating that the associated process is heterogeneous over a moderate spatial scale. 

Finally, the covariate Pct_College has an optimal bandwidth of 500 with a CI from 290 to 760, again 

indicating a process that exhibits a low degree of spatial heterogeneity. Consequently, we can conclude that 

the local parameter estimates for the Intercept and Pct_Checkup are significantly more heterogeneous than 

the estimates  of the other covariates; the local parameter estimates for  Median_Age and Pct_SNAP exhibit 

no significant spatial heterogeneity and the relationships between these variables and obesity rates and 

constant across Phoenix; and that the relationships between obesity rates and Pct_Hispanic and Pct_College 

exhibit significant spatial heterogeneity but this heterogeneity is significantly less than for the Intercept and 

Pct_Checkup. 
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[Figure 10 about here] 

 

 

Figure 10. Akaike weights computed for different bandwidths for each set of local parameter estimates. 

The red line is the optimal bandwidth found by MGWR. The green lines depict the lower and upper 

bounds of the 95% confidence interval for each optimal bandwidth 

 

 

[Table 4 about here] 

 

Table 4. 95% confidence interval of bandwidth based on Akaike weight for each covariate. 

 

COVARIATES OPTIMAL 

BANDWIDTH 

95% CONFIDENCE 

INTERVAL 

Intercept 70 [60, 100] 

Pct_Check_up 40 [40, 50] 

Median_Age  815 [440, 815] 

 Pct_Hispanic 260 [160, 450] 

Pct_SNAP 500 [370, 815] 

Pct_College 815 [290, 760] 

 

 

Maps of each of the four sets of local Akaike-weighted parameter estimates are shown in Figure 11. These 

are shown to be very similar to the conditional parameter estimates obtained from MGWR and comparisons 
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between the two sets of parameter estimates and standard errors (unconditional and conditional) can be 

found in Figures 12 and 13. Figure 11 shows the significant Akaike weighted local parameters for each 

covariate using the same color scheme. Insignificant parameters are masked out and shaded in grey, based 

on the critical t-values with multiple hypothesis testing adjustment (da Silva and Fotheringham, 2015; Yu 

et al., 2019). The different degrees of heterogeneity observed from the local parameter maps are closely 

related to the variations in the optimal bandwidths previously discussed. The local parameter estimates for 

the Intercept and Pct_Checkup are visually much more heterogeneous than the local estimates associated 

with the other covariates which have larger bandwidths. The estimates for the local Intercept include both 

significantly positive and significantly negative estimates, both of which are locally clustered.  The cluster 

of significantly positive estimates in central Phoenix indicate that here obesity rates are significantly higher 

than expected given the socio-economic conditions modeled in this part of the city. Conversely, in the 

northwest and southeast of the greater Phoenix region, there are areas where obesity rates are significantly 

lower than expected given the modeled conditions in those areas. In the remaining parts of the city the local 

intercept estimates are not significantly different from zero. The local estimates for Pct_Checkup have the 

greatest spatial variability with a range between -0.61 to 0.35 (including insignificant estimates) and 

significant negative relationships between obesity and having regular check-ups are found across wide parts 

of central Phoenix in a band that stretches from the western to the most eastern parts of the city.  No 

significant relationships are found in the rest of the city. The local parameter estimates for Median_Age are 

significantly positive everywhere – as we age, we have a tendency to become obese – and they vary only 

gradually across the city. Similarly, there are only minor variations in the local estimates for the parameters 

associated with the covariate Pct_Hispanic and these are generally insignificant except in Scottsdale and 

Tempe. The local parameter estimates for Pct_SNAP, and Pct_College are virtually identical everywhere 

indicating again the global nature of these relationships. As expected, obesity rates are higher in areas with 

high percentages of families on SNAP and lower in areas where higher proportions of the population have 

a college degree.  

 

[Figure 11 about here] 
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Figure 11. Maps of Akaike weighted local parameter estimates with insignificant parameters masked out 

and shaded in grey. 
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Figure 12. Comparison of conditional parameter estimates (based on the optimal bandwidths) with 

unconditional parameter estimates (calculated with Akaike weights). 

[Figure 12 about here] 

 

 

Figure 13. Comparison of conditional parameter standard errors (based on the optimal bandwidths) with 

unconditional parameter standard errors (calculated with Akaike weights). 

 

[Figure 13 about here] 
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6. Conclusion and future work 

 

Bandwidths in geographically weighted regression (GWR) are essentially related to the scale over which 

the underlying spatial processes operates. The recent advancement of multi-scale geographically weighted 

regression (MGWR) allows covariate-specific optimal bandwidths to be determined, allowing comparisons 

of the spatial scales over which different processes operate to be made (Fotheringham et al., 2017). However, 

bandwidth selection based on optimizing a goodness-of-fit criterion such as AICc contains an intrinsic 

uncertainty associated with it because bandwidth uncertainty is not accounted for. In this paper, we correct 

this omission and show from the evidence of bootstrapping that the selection of the optimal bandwidth is 

subject to random sampling variation and that it is important to account for this uncertainty when relating 

bandwidths to the scales of spatial processes. 

 

In this paper, we examine the use of Akaike weights, an information-theory statistic, to measure covariate-

specific bandwidth uncertainty and to obtain bandwidth confidence intervals. Akaike weights quantify the 

probability that a given bandwidth is optimal, which is a natural extension from AIC-based model selection 

(Burnham and Anderson, 2002). For example, a bandwidth with an Akaike weight of 0.6 has probability of 

0.6 of being selected as the optimal bandwidth given the data. Based on both simulated data and an empirical 

example of modelling Phoenix obesity rates, we find that Akaike weights-derived bandwidth confidence 

intervals can provide useful insights into the spatial scale over which different processes operate. Akaike 

weights can also be perceived as the prior probability of a model being the true model, and therefore, can 

be used to weight parameter estimates across candidate bandwidths and obtain unconditional local 

parameters that are independent of a single bandwidth. We find that unconditional local parameter estimates 

generally have more accurate confidence intervals although the improvements are marginal in the examples 

used here.  The computation of Akaike weights is implemented in the mgwr python package (Oshan et al., 

2019a) to increase accessibility of the methodology introduced in this paper. 

 

Model selection uncertainty has gained increasing attention in statistical modeling although the majority of 

the literature about model selection relates to variable selection. Within the geographically weighted 

regression framework, bandwidth selection is essentially a model selection problem. In this paper, we 

therefore pay attention to the issue of model uncertainty from the aspect of bandwidth selection to help 

understand how spatial processes operate. An important future task is to investigate variable selection 

uncertainty and bandwidth uncertainty simultaneously in terms of their impact on local parameter estimates. 

It would be useful to investigate how the optimal bandwidth(s) and their associated uncertainties behave 

under the presence of omitted variable bias, which is an often-encountered scenario in real-world 
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applications. It is expected that model parameter estimates will be more robust when simultaneously 

accounting for both bandwidth uncertainty and variable selection uncertainty so that they are not conditional 

on a pre-selected bandwidth nor a set of pre-selected variables. These tasks and the work presented here 

provide great potential to enhance the quantification of process heterogeneity and scale. 
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