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Variables present in an individual, for example, indepen-
dence, pain, balance, fatigue, depression and knowledge,
cannot be measured directly (hence the term “latent”
variables). They are usually assessed by measuring related
behaviours, defined by sets of standardized items. The
homogeneity of the different items, and proportionality of
raw counts to measure, can only be postulated. In 1960
Georg Rasch proposed a statistical model that complied with
the fundamental assumptions made in measurements in
physical sciences. It allowed for the transformation of the
cumulative raw scores (achieved by a subject across items, or
by an item across subjects) into linear continuous measures
of ability (for subjects) and difficulty (for items). These 2
parameters, only, govern the probability that “pass” rather
than “fail” occurs. The discrepancies between model-
expected scores (continuous between 0 and 1) and observed
scores (discrete, either 0 or 1) provide indexes of incon-
sistency of individual subjects, items and classes of subjects.
In subsequent years the same principles were extended to
rating scales, with items graded on more than 2 levels, and to
“many-facet” contexts where, beyond items and subjects,
multiple raters, times of administration, etc. converge in
determining the observed scores. Rasch modelling has
increasing application in rehabilitation medicine. New scales
with unprecedented metric validity (including internal
consistency and reliability) can be built. Existing scales can
be improved or rejected on a sound theoretical basis. In
clinical trials the consistency and the linearity of measures of
either subjects or raters can be validly matched with those of
physical and chemical measures. The stability of the item
difficulties across time, cultures, diagnostic groups and time
of administration can be estimated, thus making it possible
to compare homogeneous measures or foster diagnostic
procedures on the reasons for differential item functioning.
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INTRODUCTION

Rasch analysis is a statistical approach to the measure of human
performance, attitudes and perceptions. It is named after its
inventor, the Danish mathematician Georg Rasch. He published
his theory in 1960 (1) and died in 1980. Rasch analysis was
conceived as a psychometric tool for use in the social sciences.
In the last 10 years it has become increasingly applied to
rehabilitation research. Yet, perhaps due to its originality and
specific terminology, this approach to measurement is still felt to
be quite cryptic and abstruse by the rehabilitation community. In
order to understand the general principles of Rasch analysis,
asking what to measure should precede asking how to measure.
This article is focused accordingly.

MEASUREMENT IS NOT COUNTING, BUT IS AN
ABSTRACT CONTINUUM

In real life we often observe phenomena related to individual
objects or persons. These phenomena appear to us as discrete:
they either happen or they do not. Measurement begins by
counting these discrete observations, but in order to have
“quantity” we need continuous linear measures. These allow
us to understand what is happening and to predict what will
happen (2).

To give an example, we can pick up a series of individual,
discrete oranges from a market stall. We count the oranges, but
we actually aim to achieve an abstract continuous entity, i.e.
“weight”. Weight, not numbers, is a true equal interval measure.
We are confident that the step from 2 to 3 kg means as much
increase in “weight” as the step from 3 to 4 kg (while adding 3
oranges each time does not warrant this uniformity). The curious
thing is that weight does not exist as a tangible entity, whereas
number of oranges does. Weight is a mental “construct”. All
kinds of measures are abstract continuous gradients that can all
be represented by an infinite straight line along which the
“quantity” of the variable grows from “less” to “more”. Albeit
invented, the measure is “objective”. It remains constant (1 kg is
1 kg, 1 metre is 1 metre) across raters, subjects, time, etc., as
long as it can be compared with reference to physical objects
(e.g. the standard platinum metre for length) or events (e.g. the
freezing and boiling points of water at sea level for temperature).
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APPROACHING ABSTRACT CONSTRUCTS:
ASSUMING THEIR RELATIONSHIP WITH

PHYSICAL EVENTS

In human history measuring was first applied to either concrete
or abstract objects (e.g. cattle or Euclidean geometric figures)
placed or imagined outside the person. It was not until the 19th
century (3, 4) that “psychophysics” dared to measure abstract
human sensations. These, however, could still be related to
quantifiable physical external stimuli (e.g. touch pressure, sound
pitch). Anchoring to the external, physical world still warranted
objectivity. Later on, the question became how could objectivity
be achieved for abstract mental variables which cannot simply
be assumed to be the consequence of known external physical
stimuli. Such variables are, for example, intelligence, depres-
sion, suffering, attitudes and knowledge about various topics. A
critical step was the acknowledgement that mental constructs
can indeed be accessible to measurement, if they manifest
themselves through external physical events (e.g. depression can
become manifest through crying). Contrary to psychophysics,
these events are assumed to be the consequences, not the causes,
of their mental counterparts. The latter remain hidden inside the
individual. This perspective gave rise in the early 20th century to
modern “psychometrics” (5): questions replaced stimuli. The
physical event (an observed behaviour, as well as a tick on a
questionnaire) only allows one to infer the existence of these
variables: hence the name “latent traits” or “latent variables”.
Their quantity can also be inferred from counts of physical

events. For instance, ticking “yes” (a discrete event) to the
question “does your back hurt sometimes?” can be assumed to
reveal some “pain”. Ticking “yes” to the question “do you feel
excruciating pain in your back?” can be assumed to reveal yet
“more” pain, but to an unknown extent (we only know that 2
“yes” responses indicate more pain than 1 “yes” response).
Psychophysics is deterministic; a cause-effect relationship is
assumed between stimulus and response. The latent trait
approach is probabilistic, in that it implies inferences. The
following pivotal consequences should be highlighted:

� The particular behaviours we observe are only a sample
coming from a universe of infinite alternative behaviours
manifesting the same construct. These represent quantifiable
levels of the shared underlying construct.

� Cumulative scores are only a count of discrete observations/
items, no matter which numbers we assign to them (0/1, 0/10,
etc.). Any intermediate levels assigned to observations such as
pain while sitting = no/mild/moderate/severe = 0/1/2/3 also
give rise to mere counting of alternative events (2 happens
rather than 1, etc.), separated by unknown quantities. In
concept, a no/yes decision is made whenever one category is
selected rather than an adjacent one. The interval between 0
and 1 is not necessarily equal to the interval between 1 and 2,
etc.

� The “latent variable” approach implicitly removes the
distinction between “psychological” and “physical” variables,
as long as the person as a whole, a “self”, an “I” is postulated.

Table I. A schematic questionnaire of “mobility”. Items are aligned from easiest to most difficult in rightward direction. A “mobility” scale:
no = 0; yes = 1

(a) Expected pattern of responses across subjects and items

Turns in bed Sits Stands Walks Climbs upstairs Total

A 1 1 1 1 1 5
B 1 1 1 1 0 4
C 1 1 1 0 0 3
D 1 1 0 0 0 2
E 1 0 0 0 0 1
F 0 0 0 0 0 0

(b) Unexpected string of responses, due to an extraneous item

Turns in bed Sits Stands Speaks Italian Walks Climb upstairs Total

A 1 1 1 0 1 1 5
B 1 1 1 1 1 0 5
C 1 1 1 0 0 0 3
D 1 1 0 1 0 0 3
E 1 0 0 0 0 0 1
F 0 0 0 1 0 0 1

(c) Unexpected string of responses due to an inconsistent subject’s record

Turns in bed Sits Stands Walks Climbs upstairs Total

A 1 1 1 1 1 5
B 1 1 1 1 0 4
C 1 1 1 0 0 3
D 1 1 0 0 0 2
E 1 0 0 0 0 1
F 0 0 0 0 1 1
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Physical behaviours are movements credited with a meaning.
They always reflect something from within the individual (for
instance, walking reflects the intention to walk, the capacity
for space-time orientation, etc.). Therefore, in the author’s
opinion “psycho-metrics” should be more properly termed
“person-metrics”.

APPROACHING ABSTRACT CONSTRUCTS:
ESTIMATING THEIR QUANTITY FROM THE

COUNTS OF RELATED PHYSICAL
BEHAVIOURS

The latent trait paradigm, in itself, does not provide cues to valid
quantitative measurement. A further step is needed, i.e. a model
relating counts of observations to an abstract linear continuum of
“less to more”. Table Ia shows a simplistic questionnaire
purported to measure “mobility”.

Each item is scored “no” = 0, “yes” = 1. Higher scores mean
“more” mobility. More difficult items are aligned to the right of
the easier ones. More able subjects are aligned above the less
able ones. The matrix of “0” and “1” responses shows that
difficult items are only passed by high-scoring subjects. Less
able subjects only pass easier items. This “diagonal” pattern
makes sense. This is because the properties of the questionnaire
comply with at least some of the theoretical requirements of
measurement: unidimensionality and additivity.

In Table Ib a new item (”speaking Italian”) was added to the
scale in an attempt to widen the measure. Speech implies some
“mobility”, but few would deny that it predominantly represents
another construct, i.e. knowledge of that language. It may well
happen that a patient is paralysed, yet he/she can speak the
native language fluently. In the simplistic example of Table Ib
the unexpectedness of the scores of patients B, D and F is easily
ascribed to a lack of unidimensionality of the scale. Summing
“speaking Italian” with the other scores does not imply adding
mobility. As a result, another requirement of measurement, i.e.
additivity, is also lost. In Table Ic “Climbing stairs” gets 2
points = difficult item; person F, who cannot do easy items
(”Turn in bed”, “Sit”) was able to pass a difficult item. This is
unexpected. Was this patient presenting with a mixture of
interfering “constructs”? (e.g. was he/she hysterical, or mal-
ingering, beyond presenting with mobility deficits? Were the
scores miscoded when entered into a computer?). Again,
unidimensionality was lost and additivity was severely chal-
lenged. We know that care must be taken in ascribing to this
particular subject the amount of overall “mobility” usually
implied by a cumulative score of 1.

FILLING THE GAP BETWEEN DISCRETE
COUNTS AND CONTINUOUS MEASURES

The need for a continuous ruler

The ideal scale given in Table Ia is not a measure yet. First,
scores are bounded between 0 and 5, but there may be subjects

whose mobility would be better represented by even easier or
more difficult items. Second, we do not know “how much more”
mobility is revealed by the increasing scores, always advancing
in arbitrary units of “1” (see the initial section, above). What we
need is a ruler-like instrument like the one represented in Fig. 1.

Now the item scores represent ticks along a continuous
gradient, like the 1-cm ticks along a 1-metre ruler.

Stable ordering does not require that subsequent ticks be
spaced evenly. For instance, going from “Turn-in-bed” to
“Sitting” may mean advancing more, along the construct of
“mobility”, than going from “Sitting” to “Standing”. Why are
there minor ticks in the figure? The Rasch model can be
extended to “rating scales” where each item is graded through
ordinal categories. Take, for instance, a questionnaire of
independence in daily activities (dressing, walking, etc.). Each
item might be rated (again, through no/yes decisions) “with
someone helping/with assistance/independent = 0/1/2”, and the
like. This justifies the analogy between mean item difficulty and
item grades, on the one hand, and the cm and mm ticks in a ruler,
on the other. Unlike for conventional length units, however,
there are no reasons to assume that the minor ticks in an item-
response scale are evenly spaced. Nor must it be assumed that
the spacing pattern (whatever it is) is replicated across items.

Raw scores are misleading: more ticks do not always mean
more information

In general, using more items and a rating scale (vs merely a pass/
fail one) adds latitude (i.e. width), precision and sensitivity by
increasing the range of available measures and the density of the
marks. This is not always the case, however. Figure 2 comes
from a study of the familiar Barthel Index of disability (7). Note
that different items (or different grades from different items)
may represent the same amount of the variable. This makes the

Fig. 1. The measure given by an item-response scale should
resemble, in concept, a metric ruler. Items (A, B, C major ticks)
represent quantitative levels along the same construct. Ordinal
categories within each item (1, 2, 3, 4, minor ticks) represent more
precise levels. Unlike in conventional metric rulers, raw integer
scores can be spaced irregularly, because the measure they
represent is not necessarily proportional. Also, “ticks” from
different items may overlap. When the corresponding level of
ability is reached several raw scores can be gained. In this case, raw
scores overestimate the actual ability of the subject.
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raw scores misleading. Depending on the overall ability of the
subject, the same improvement of ability can lead to a very
different raw score change, simply due to a local overlap
between ruler “ticks”.

Building up a continuous ruler from discrete counts:
frequencies are not enough

Returning to the oranges as a representation of weight, a true
measure occurs when the market scales transform the raw count
of oranges into the measure of weight (kg). Unlike the count, the
output of the market scales is continuous, so that “quantity” can
be assessed. How can a continuous transformation of the raw
scores from an item-response scale be achieved? The basic idea
is to estimate the “difficulty” of an item from the frequency (i.e.
the count) of people able to pass that item and the ability of a
subject from the frequency of items he/she can pass. Let us
consider the difficulty parameter (reasoning is symmetrical for
the ability parameter). A given sample of 0/1, pass/fail items is
administered to a sample of subjects. Item scores (the individual
count of “fail”) will show a given frequency distribution. For
each item the “fail” frequency can be converted into a fail/pass
proportion. Proportions are a continuous entity. The inference
can be made that proportions represent the general probability
that an item is failed. Another strategy may be one of turning
frequencies into z scores (the number of standard deviations a
given frequency is away from the mean frequency) (5). The z
scores are also a continuous, generalizable entity. These
solutions are not satisfactory, however.

A CONTINUOUS RULER IS NOT NECESSARILY
LINEAR, NOR OBJECTIVE

Unfortunately, obtaining a continuous ruler is not enough. The
linearity of the measures must be achieved. Proportions are
continuous, but they are bound between 0 and 1. At the
extremes, subjects with different abilities tend to be ascribed
the same probability for “fail” or “pass”. The z scores are not
linear, either (they are not proportional to the frequencies
observed). As will be shown later, “logit” transformation
provides the solution to linearization of proportions. Let us
now focus on the “objectivity” issue. An item measure is
“objective” if it is independent of the particular sample of
subjects tested. A subject’s measure is objective if it is
independent of the particular set of items administered (so-
called “separation” of items and subjects). If, say, the distance
(i.e. the difference in difficulty) between “Climb upstairs” and
“Walking” is 4 times the distance between “Walking” and
“Standing”, this must hold true for any subject of whatever
ability. Of course, an able subject will have a higher probability
of climbing upstairs compared with a less able subject. But if the
ruler remains the same, both of them will find the step from
“Walk” to “Stairs” 4 times “longer” than the step from “Stand”
to “Walk”. The relative difficulty of the items must not change.
Items must be difficult per se, they must be separated from the
sample of examinees. This property was never attained before

Rasch. In any other model (including those relying on z scores)
the particular distribution of people’s abilities does influence the
estimate of relative difficulty of the items.

THE RASCH SOLUTION: PROBABILITIES ARE
DICTATED BY A MODEL IMPOSED ON THE

DATA

The Rasch model reverses the traditional view of data-model
relationship. Data must conform to the model, it is not the model
that strives to “explain” the data (this is often referred to as a
prescriptive vs a descriptive approach). The Rasch model is a
theory of how probabilities of response should be, in order to
comply with fundamental requirements of measurement. Then,
the observed frequencies of response are compared with the
expectations. Of course, differences between observed and ex-
pected scores (”residuals”) will be found. If these are not too
large, it is said that “the data fit the model”, and the estimate of
item difficulties and subjects abilities are said to be “likely”. The
Rasch model is a rule, formalized in a simple equation, stating
how the probability of passing a no/yes item should change as a
function of 2 “parameters” most often called subject ability (�)
and item difficulty (�). It is defined as a 1-parameter logistic
(1-pl) model, because conventionally item difficulty is not
counted.

For the Rasch’s original dichotomous model (no/yes, 0/1
items) the equation is

P�X � 1�0� 1� � e�����1 � e���� �1�
It is read as: the probability (P) that response (X) is observed to

Fig. 2. The sum of raw scores (ticks in Fig. 1) can be a misleading
pseudo-measure. This graph refers to 192 patients admitted to a
rehabilitation unit (7). Items of the Barthel Index of disability are
aligned from bottom to top in order of increasing difficulty. The
ordinate gives the overall ability required to reach the ordinal levels
(0/10, or 0/10/15) foreseen for each item. The 4 vertical lines
encase 3 equal intervals of ability, yet corresponding to unequal
cumulated raw scores. For instance, advancing from score 0 to
score 15 requires the same overall improvement in ability required
to advance from score 45 to score 85. Wrong conclusions about
patients’ improvements may be attained by looking at raw scores.
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be 1, given that (�) it may be either 0 or 1 (0, 1), depends on
subject’s ability and item difficulty, according to the relation-
ship… (see the right side of the equation). The term “e” is the
base of natural logarithms (2.718…). The exponentiation may
look abstruse. In fact, the graphic representation (Fig. 3a) gives
an intuitive S-shaped relationship between probability to pass
rather than fail (on the ordinate) and ability (on the abscissa).

This shape recalls that probabilities cannot go either below 0
or above 1, whereas ability can be infinitely higher or lower
compared with the difficulty of an item.

Furthermore, the elegance and strength of the model become
evident once the equation is rewritten, after simple algebraic
manipulation, as:

ln �P��1 � P�� � � � � �2�
where (1– P) is obviously the probability for fail.

Let us now define:

ln �P��1 � P�� � logit

Logit stands for logarithm of the odds (log-odds) where odd =
P/(1–P).

In the particular case where � = 0, Eq. [2] simplifies to

logit � � �3�
When exponentiation disappeared on the right side of the
equation, a linear measure of the variable arose. The greater the
subject’s ability, the greater the measure. The term “logit” is
derived from the root of the adjective “logistic” and is given to
the S-shaped function of Fig. 3a. In Rasch models the logit
actually measures a difference, a local distance (e.g. between
subjects, between items or between ability and difficulty, as in
Eq. 1). Zero is conventionally assigned to the average difficulty
of the items, so that one number only is sufficient to represent a
measure. Abilities of 0, 1, 2 and 3 logits correspond to 50%,
73%, 88% and 95% probabilities of passing an item with 0 logit
difficulty. To capture the clinical meaning of this unit, one may
consider that, at discharge from post-acute inpatient rehabilita-
tion, stroke patients show average improvements in indepen-
dence, compared with their condition at admission, as measured
by the FIM scale (see below, Table IV), in the order of
magnitude of 1 logit (unpublished observation).

The rating scale model (6) applies to items scored on more
than 2 levels (e.g. 0/1/2/3). Increasing categories must imply
“more” of the variable. The more a subject is able, compared
with an item, the more any higher category must become
probable, compared with the previous one. The ability level at
which 2 adjacent categories are equally probable are called
“thresholds” or “steps”, depending on the different authors. The
model equation becomes:

ln �Pnik��1 � Pnik�� � �n � ��i � �k� �4�
where �n indicates the ability of person n, �i indicates the
average difficulty of item i, and �k indicate the difficulty of the
kth threshold (same for all items). If the pattern of threshold
difficulties changes across items (so-called partial credit model)
the equation becomes:

ln �Pnik��1 � Pnik�� � �n � �ik �5�
Note that �ik replaced (�i � �k) from Eq. 4, because each pattern
of threshold estimates is unique to the corresponding item and it
is not estimated as a separate set of threshold applying to all
items.

To sum up, what should be expected from data in the Rasch
perspective? They should comply with the model. The observed
frequencies of response should give rise, through dedicated
computations, to the ideal � and � values, for each subject and
each item. “Ideal” here means that, reasoning the other way
round, � and � values are such that, once their relationship is the
one prescribed by Eq. 1 (or Eq. 4 or Eq. 5, depending on the
model adopted) they give rise for each response to the observed
score, i.e. nearly 1 when 1 was observed, nearly 0 when 0 was
observed. Why “nearly”? The model is probabilistic.

The pattern of responses depicted in Fig. 1a (so called
Guttman-deterministic, “too good to be true”) is not “ideal” in
this context. First, certainty for either “pass” or “fail” is never
expected (1 and 0 are asymptotes). Second, each prediction is an
estimate, surrounded by uncertainty (the Bernoulli variance for
dichotomous independent events).

THE RASCH SOLUTION TO OBJECTIVITY:
ONLY SUBJECT’S ABILITY AND ITEM

DIFFICULTY MUST GOVERN THE RESPONSE

The question remains, as to why the Rasch model claims to be
the only one generating objective measures, so that the data must
comply with its prescriptions? This is because in his “separ-
ability theorem” (1) Rasch demonstrated that Eq. 1 is the only
formulation allowing the item difficulties to be independent
from the particular set of respondents, and the subjects’ abilities
to be independent from the particular set of items administered.
This item-person separation is a fundamental requirement of
measurement. The separation is also demonstrated for Eq. 4 and
Eq. 5, which therefore belong to the family of Rasch models.
The logistic formulation is essential. In fact, it gives lineariza-

Fig. 3. (a) The “logistic” relationship between the probability that
an item is passed rather than failed, foreseen by the Rasch model.
The probability (on the ordinate) is only a function of the difference
between subject’s ability and item difficulty. (b) The relationship
becomes linear if the probabilities are turned into logits (the natural
log of the odd, i.e. of the pass/fail ratio).
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tion of the probabilities (see legend to Fig. 3), yet it does not
imply any assumptions about the sample distribution of either
abilities or difficulties (unlike, for instance, a probit formulation
based on normal distribution). However, perhaps an even
stronger characteristic is that the parameters of ability and
difficulty, only, through their linear difference, are assumed to
cause the expected response. Why are 1-parameter logistic
Rasch models the only ones that are objective? In Fig. 4 the
ordinate gives the probability that a dichotomous 0/1 item is
passed. The abscissa gives the item difficulty. Each curve (called
Item Characteristic Curve) refers to a dichotomous item with a
different difficulty (more difficult items to the right).

Note that the curves do not cross; they run parallel. This
prevents the hierarchy of difficulty of the items from changing
depending on the ability of the subjects. The instrument remains
conceptually the same for any subject. Other logistic models can
include 2 or 3 parameters (e.g. item-specific slope and intercept
of the Item Characteristic Curves). For instance, a 20%
minimum probability to pass (an intercept) can be ascribed to
a given 5-choice item, to account for guessing. This will makes
the curves cross, and the hierarchy of difficulty of the items
change, depending on the overall ability of the subjects. Perhaps
the scores of the individual people belonging to the sample being
examined will be more thoroughly “predicted” by the model. In
the mean time, however, the requirements of separation and
objectivity will be violated and comparability of measures
across persons will be challenged.

DISCOVERING THE MEASURE CONCEALED BY
THE DATA

How can one “discover” in practice the ability and difficulty
parameters from the data matrix? One should look again at Eq. 1
(but the principles are the same for Eq. 4 and Eq. 5). From the
matrix (items 	 persons) of raw scores the logit values for �n

and �i should be extracted. For each person-item interaction, �n

and �i give rise to an “expected” score between 0 and 1. The
mathematical algorithms for the “extraction” may be various,
complex and computer-intensive. They belong to the family of
“maximum likelihood estimation” (8). The parameters that one
estimates are those that result in the smallest difference
(becoming a “residual” after algebraic manipulations) (9)
between the expected and the observed scores, and are thus
said to be the “most likely” ones. Minimization of the residuals
does not apply independently to any single response, but it is a
compromise across responses, because the matrix as a whole
must be the “most likely” one. One should remember that
“most” likely does not necessarily mean “very” likely. The
problem is how much the actual matrix of responses supports the
inference that (in the universe) the extracted parameters hold. If
high residuals remain after estimation, this indicates that real
data do not fit well with the “most likely” model the data
themselves suggest.

DO YOUR DATA JUSTIFY THE MODEL
ESTIMATES? THE ISSUE OF “FIT”

How much do the observed scores justify the inference that the
scale is a Rasch-consistent measure?

The accumulation of residuals gives rise to sophisticated
summary indexes for individual subjects and individual items
(9). These quantify the consistency (fit) of a whole string (across
subjects and across items) of observed scores with the string
expected by the model. The most common index in the literature
is the “fit mean-square”. A value of 1 indicates that the subject
(or the item) overall has an expected pattern of responses; values
between 0 and 1 indicate too a predictable pattern; values above
1 indicate too an unpredictable pattern. Note that some residuals
are expected by this probabilistic model. Therefore, a value of 1
does not indicate absence of residuals, but that the amount of
residuals is the one expected. When is a given “fit mean square”
too large? There are no mandatory limits. Fit mean-square
indexes can be assigned probabilities, so that significance levels
(and thus, unexpectedness of the unexpectedness) can be
adopted as an acceptance criterion. For instance, mean-squares
in the range 0.7–1.3 are acceptable at p � 0.05, for sample sizes
of about 100 records. Significance is highly dependent on
sample-size, however, so such criteria should not be taken
dogmatically. Given the acceptable range, “fit” indexes either
above (misfit, too unexpected scores) or below (overfit, too
predictable scores) should trigger diagnostic investigations. For
instance, in case of misfit, through successive software runs one

Fig. 4. In this example, the simple Rasch model was applied to an
imaginary scale composed of 4 dichotomous items. The “Item
Characteristic Curves” give, for each item, the probability for pass
rather than fail (on the ordinate) as a function of the subject’s
ability (on the abscissa). More difficult items (1 to 4, in order of
increasing difficulty) are shifted to the right. In the meanwhile, the
Item Characteristic Curves always remain parallel. The vertical
lines represent the ability of 2 subjects (a: less able; and b: more
able). For both a and b the item hierarchy remains stable so that the
construct, the very nature of the measuring instrument, is
independent of the ability of the particular subject measured.
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can easily test the effect of removing items and/or subjects (does
the subject’s — or item’s — fit to the model increase? Do the
changes make clinical sense?). In rating scales with items graded
along many ordinal categories (such as 0/1/2/3) one can also
detect misfit of categories. Suppose category 2 = with assistance
and 3 = with help are selected randomly by the patients, who do
not perceive any substantive difference: these categories will
accumulate large “residuals” across many subjects. By contrast,
suppose that 0 = can’t do and 4 = independent are clearly
selected as a function of subject’s overall ability. These
categories will show responses very close to the ones expected.
Perhaps the 4 categories can be collapsed by rescoring 0/1/2/3
into 0/1/1/2, without any substantive loss of precision in the
estimations of ability and difficulty. In short, knowledge of the
specific field and Rasch statistics can be used together very
effectively in clarifying the “construct”. Unexpected records
also convey a lot of information. The experienced analyst knows
that specific alterations of the fit indexes may flag specific
respondent’s behaviours (Table II).

THE GROWING FAMILY OF RASCH MODELS

Georg Rasch proposed his model for dichotomous scales (no/
yes, 0/1). Since then, research has evolved, and is still in
progress. The principles of the model were applied, as
anticipated above, to “rating” scales with graded items (6).
The model remains a 1-parameter logistic one. A “many-facet”
model was also developed (10). For instance, when several
raters apply the same test to a given sample of subjects, raters’
severity and consistency may influence the observed response. If
a rating scale model is adopted, the “many-facet” version takes
the form:

ln �Pnikj��1 � Pnikj�� � �n � ��i � �k � �j� �6�
where all symbols are as given in Eq. 4, and �j is the severity of
rater j.

The model is still a linear, Rasch one. Raters’ parameters are
estimated independently from persons’ and items’ parameters,
and represent an additional separate “facet” along the shared
continuum. Raters are thus provided with “ability” and “fit”
estimates. In fact, their “ability” is their “leniency”: more “able”
raters are those assigning, rather than receiving, higher scores to
the same subjects on the same items. The analysis of fit may help
to detect any rater-dependent bias in examinee’s scores (10).
Perhaps the most advanced example of “many-facet” application
to rehabilitation is the Assessment of Motor and Process Skills
(AMPS, 12, 13). This instrument provides a measure of quality
of performances of the activities of daily living. People (facet 4)
perform tasks (facet 1) scored on items (smaller units of
activities of daily living; facet 2) rated by raters (facet 3). A
large and ever-growing data bank provides stable estimates of
item difficulty parameters. Against these anchor values, cre-
dentialed raters can be “calibrated” in severity, and their ratings
adjusted correspondingly. This system allows the AMPS to
provide ability measures generalizable world-wide (13).

RASCH MODELLING AND REHABILITATION
RESEARCH: SOME EXAMPLES

Any item-response scale or questionnaire aiming at functional
assessment can lend itself to Rasch analysis. In practice, the
analysis has 2 main applications:

� the building and/or validation of scales
� the assessment of persons, either examinees or raters, once a

scale is credited with established validity.

Scale building and validation

Table III is taken from the original publication of “BACKILL”,
a questionnaire for the assessment of back pain (14).

The study originated from the authors’ experience that

Table II. Fit of individual records to the Rasch model. Five typical
patterns of response to an imaginary 18-item 0/1 questionnaire are
depicted, with self-explanatory labels. The more difficult (farther
right) is the item, the more “0” is the expected response. Within a
probabilistic framework, some 0/1/0/1 sequence is “ideal” near the
estimated ability of the subject (“pass” and “fail” are equally
expected when an item captures the limit of subject’s ability). A fit
mean square value of 1 indicates that the expected (Bernoulli)
variance was accumulated across the items. Values below and
above 1, respectively, indicate lack of variance or excessive
randomness, to be diagnosed

Pattern
Items
Easy to Difficult

Fit mean
square

Modelled-Ideal 111101101101000000 1
Deterministic 111111111000000000 �1
Carelessness 011111111110100000 �1
Lucky guessing 111111110101000001 �1
Miscoding

(reverse deterministic)
000000000111111111 
1

0 = fail; 1 = pass.

Table III. Rasch measure (logit transformed into 0–100 units) and
fit mean square of the BACKILL scale for low-back pain
syndromes, derived from existing scales (14). McGILL:McGill
Pain Questionnaire—short form; OSWESTRY: Oswestry Low Back
Pain Disability Questionnaire; FASQ: Functional Assessment
Screening Questionnaire. Items made up a linear measure of
“back illness”. Fit indexes revealed good fit to the Rasch model

Source scale Item
Logit measure
(transformed 0–100)

Fit mean
square

McGill Aching 60 0. 71
Oswestry Lifting 57 1. 13
McGill Tiring 56 0. 93
FASQ Sitting 55 1. 07
FASQ Standing 53 1. 30
Oswestry Traveling 48 0. 79
FASQ Low sit

(raising from)
47 0. 92

Oswestry Walking 42 0. 83
Oswestry Personal care 34 0. 86

(Modified after Tesio et al. (14), Table 2).

J Rehabil Med 35

Measuring behaviours and perceptions 111



satisfaction with treatments (reporting “I feel improved”) cannot
easily be confirmed (”objectified”) on the basis of either pain-
based or activity-based questionnaires. Are the patients unreli-
able? The authors hypothesized that “feeling better” is a latent
variable, distinct from either pain or mobility, in which “feeling
less pain” and “moving better” interact (for instance, you can
feel less pain if you move less). A series of existing validated
scales were collected and administered to patients with lumbar
disc herniation who were undergoing a physical treatment
(lumbar auto-traction). The most responsive items were col-
lected from each of the source scales, and included in a “hybrid”
scale, which was subjected to repeated runs of Rasch analysis.
On the basis of the fit indexes, the records from misfitting items
and subjects were recursively inspected, interpreted, and
removed or retained. Nine items appeared to define a homo-
geneous construct of “back illness”. Rasch analysis revealed that
the scale was no longer “hybrid”, although it included items of
both pain or mobility. That is, a single latent trait emerged. This
Rasch-built questionnaire worked well. In fact, an improvement
in the score predicted the overall feeling of improvement with
sensitivity and specificity above 0.85.

A promising field of application is the cross-cultural valida-
tion of scales. Linguistic equivalence does not warrant metric
equivalence. For example, in a disability scale “Eating”—
whatever its translation—can be much more difficult in east
Asian countries where chopsticks are used, compared with
western countries. A large European project was specifically
dedicated to cross-cultural validation of questionnaires adopted
in rehabilitation (15). Differences in the hierarchy of item
difficulties were found across different countries even for
instruments used worldwide such as the Mini-Mental State
Examination and the Functional Independence Measure
(FIM)1. This suggests that techniques for “equating” the

Fig. 5. A “Rasch ruler”, also said an “item map”. The figure refers
to the application of the Functional Assessment Measure-FAM
(Table IV) to 42 high-functioning brain-injured outpatients (16).
The vertical line represents the measure of disability, with logit
values given on the left. Patients’ ability levels are represented as
“X” symbols and aligned to the left of the corresponding measure.
Items are aligned to the right of the corresponding values. Ten
fitting FAM items added to the FIM are underlined. “M”: mean
value of subjects’ abilities (left) and item difficulties (right).

Table IV. The Functional Assessment Measure (FAM) (17) consists of the 18-item Functional Independence Measure (FIM�), with the
addition of 12 items deemed to be more specific for brain injury outpatients. All items are scored 1–7, the higher the score, the higher the
patient’s independence or performance

Motor FIM� items Cognitive FIM� items Newly designed FAM items

1. Eating 14. Comprehension 19. Swallowing
2. Grooming 15. Expression 20. Car transfer
3. Bathing 16. Social interaction 21. Community access
4. Dressing upper body 17. Problem solving 22. Reading
5. Dressing lower body 18. Memory 23. Writing
6. Toileting 24. Speech intelligibility
7. Bladder management 25. Emotional status
8. Bowel management 26. Adjustment to limitations
9. Bed, chair, wheelchair transfer 27. Employability

10. Toilet transfer 28. Orientation
11. Tub, shower transfer 29. Attention span
12. Walking, wheelchair 30. Safety judgement
13. Stairs

�������� �� 	���� 
� ���� �� ������ �� �� ��� � ������
�������� ������� � ������������� �������� � ������������
������ ������ ������������ ��������������� ��� 	��!"#�
��$���� "�������� �����������
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different measures (also available from the Rasch armamentar-
ium) might be necessary in cross-cultural trials.

As another application, Rasch analysis allows one to re-test
existing, validated instruments more strictly. This was the case
for the Functional Assessment Measure (FAM) (16). The scale
was designed specifically for measuring disability in high-
functioning brain-injured outpatients, for whom the widely
adopted 18-item FIM (Table IV) is too easy. In the attempt to
raise the “ceiling” of the FIM and to capture more specific
impairments of these patients, the authors added 12 new items
(e.g. Entering a car; Speech intelligibility; Employability) and
proposed that disability should be measured by cumulating the
scores achieved in the 30 items.

The Rasch analysis demonstrated that the attempt was not
successful. Figure 5 shows the classic “Rasch ruler” (also termed
the “item map”) obtained through the analysis (17).

Although a distinct analysis of the 13-item “motor” and the 5-
item “cognitive” FIM sub-scales is recommended, the FAM
authors’ approach was followed (16). The analysis was thus
conducted on the whole 30-item set. The vertical line represents
the variable (disability in brain injured outpatients). The logit
measure is given on the left of the figure. Items are aligned on
the right of the line, the more difficult on top. Subjects are
represented by crossed symbols on the left of the line, more able
subjects on top. Underlined, 10 of the new items are shown (2
were deleted because of excessive misfit). It is clear that the new
items share the same span of difficulty as the FIM items, which
indicates potential item redundancy and the risk for inflation of
the cumulative raw score when the scores of individual items
reflecting the same level of ability are summated (see Fig. 2).
Despite the greater number of items, the reliability indexes of
the 28-item FAM were superimposable on those recorded from
the 13-item “motor” FIM (not shown), thus confirming the
redundancy of the added items.

Testing the quality of data from item-response scales

Individual records. A useful application of Rasch analysis is
the control of data-model fit, for the string of responses given by
each subject.

Figure 6 is taken, modified, from a software output after
Rasch analysis on FIM data from 100 stroke patients at
admission to a rehabilitation unit (unpublished observations).

Misfit indexes warned that this particular stroke patient gave
an unexpected string of responses (fit mean square = 3.7,
expected value 1). Given his/her overall ability revealed by
the cumulative score of 41 (available range 13–91), the score of
the item “Bowel” was unexpectedly low, while the score of the
item “Walking” was unexpectedly high. Was this subject
atypical for clinical reasons? Or, were the scores taken
carelessly? Inspection of the individual clinical record and of
other FIM records taken by the same rater can clarify these
issues. Is bowel care systematically overlooked by the nursing
staff? Does the “misfit” of this response string reflect an intrinsic
flaw of the FIM scale, where the item “Bowel” represents a
construct extraneous to the one represented by the other items?
Inspection of large record sets from several different sources
might clarify these issues.

Patterns of caring procedures within the hospital unit. In
Rasch language the term “differential item functioning” (DIF)
indicates the instability of the hierarchy of item difficulty levels.
The same scale may not be measuring exactly the same variable
across groups. Figure 7 is a DIF plot relating to the FIM, when
applied to healthcare management.

The difficulty parameters of the 13 motor items of the FIM at
discharge (on the ordinate) are plotted against the parameters of
the same items scored at admission. Conventionally, “0” is
assigned to the average difficulty of items in either set, so that an
identity line is expected (the diagonal). The model also allows
one to estimate confidence interval of the distances between the
item position and the identity line (95% in this case, lines aside
the diagonal, see figure legend). Records come from a mix of
200 orthopaedic and stroke patients admitted to an inpatient
rehabilitation unit (unpublished observation). Some items lie
outside the confidence “band”. To the right of the identity line,
one finds items that are more difficult at admission than at
discharge, compared with the other items. These are “Upper
body dressing”, “Transfer to chair and WC”, “Locomotion (by
walking or on wheelchair)”, and “Stairs”. These items depict the
capacity to move out of bed. Difficulty is a relative matter so that
some other items (to the left of the identity line) appear easier
(rather more difficult) at admission, compared with at discharge.
In the author’s experience this pattern flags a “vicarious nursing”
typical for admissions made too early from acute wards (which
was found to be the case). Patients are prevented from moving
around as much as they could, because they are confined to bed
for biomedical reasons (e.g. stabilization of fractures, optimiza-
tion of coagulation parameters, waiting for radiological controls
etc.). Once this restriction is removed, these items show a
dramatic improvement and resume their proper hierarchy. This

Fig. 6. The table refers to a person with stroke admitted to an
inpatient rehabilitation unit. The 13 “motor” items of the FIM
(Table IV) are aligned, left to right, in order of increasing difficulty.
Scores may range from 1 to 7, the higher the score the greater the
patient’s independence, and are given below each item label.
Scores are expected to decline from left to right. Below each score,
the residuals (9) between the observed and the model-expected
score (z-standardized and squared—STD) are given. Only residuals
significant at p � 0. 05 (i.e. � 2 or � �2) are represented. The most
unexpected scores were observed in “Bowel” (too low) and
“Walking” (too high). Across the various items, the patient mean
square “fit” index is very high (3.7, expected 1), suggesting that the
overall pattern of responses is unexpected. The reasons need to be
diagnosed.
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DIF plot warns that gains in FIM scores between admission and
discharge can be partly artefactual, due to the admission policy.
The DIF analysis is a general approach which can help testing
the stability of item hierarchy across classes of observations
defined according to the most various criteria, e.g. time of
administration, diagnostic category, age group, language, etc.

CONCLUSION

The principles, methods and applications of Rasch analysis go
far beyond those depicted here (see references for more hints).
Rasch analysis is not panacea (no model is). Its theoretical
framework, however, is the first one removing the distinction
between “psychological” and “physical” variables, in favour of a
unitary approach to the study of person’s behaviour. This is
perhaps of minor relevance for statisticians, but it is of the
utmost importance for the clinical community. Rehabilitation
medicine is deeply rooted in bio-medicine, which derived its
contemporary strength from physical sciences (18). In the
meantime, rehabilitation medicine ultimately aims at restoring
behaviours and perceptions (such as independence, balance,
continence and fatigue), through behaviours (such as exercise,
teaching, counselling and functional assessment). Once this
amazing potential of the method is captured, it is difficult to
renounce the attractive scenarios it discloses to the discipline.
The same rigorousness and power belonging to the physical
sciences and biostatistics are now within the reach of rehabilita-
tion medicine, in a version tailored to the scientific needs of a
person-oriented, holistic specialty. This may help to accelerate

the relatively slow development of research claimed for this
discipline, compared with organ-oriented ones (19).
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