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Abstract—This paper proposes a methodology for measuring the similarity between programs based on their inherent

microarchitecture-independent characteristics, and demonstrates two applications for it: 1) finding a representative subset of programs

from benchmark suites and 2) studying the evolution of four generations of SPEC CPU benchmark suites. Using the proposed

methodology, we find a representative subset of programs from three popular benchmark suites—SPEC CPU2000, MediaBench, and

MiBench. We show that this subset of representative programs can be effectively used to estimate the average benchmark suite IPC,

L1 data cache miss-rates, and speedup on 11 machines with different ISAs and microarchitectures—this enables one to save

simulation time with little loss in accuracy. From our study of the similarity between the four generations of SPEC CPU benchmark

suites, we find that, other than a dramatic increase in the dynamic instruction count and increasingly poor temporal data locality, the

inherent program characteristics have more or less remained unchanged.

Index Terms—Measurement techniques, modeling techniques, performance of systems, performance attributes.
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1 INTRODUCTION

MODERN day benchmark suites are typically comprised
of a number of application programs where each

benchmark consists of hundreds of billions of dynamic
instructions. Therefore, a technique that can select a
representative subset of programs from a benchmark suite
can translate into large savings in simulation time with little
loss in accuracy. Understanding the similarity between
programs is important when selecting a subset of programs
that are distinct, but are still representative of the bench-
mark suite. A typical approach to studying the similarity
between programs is to measure program characteristics
and then use statistical data analysis techniques to group
programs with similar characteristics.

Programs can be characterized using microarchitecture-

dependent characteristics, such as cycles per instruction

(CPI), cache miss-rate, and branch prediction accuracy, or

microarchitecture-independent characteristics, such as tem-

poral data locality and instruction level parallelism.

Techniques that have been previously proposed to find

similarity between programs primarily use microarchitec-

ture-dependent characteristics of programs (or at least a mix

of microarchitecture-dependent and microarchitecture-in-

dependent characteristics) [12], [36]. This involves measur-

ing program performance characteristics such as instruction

and data cache miss rate, branch prediction accuracy, CPI,

and execution time across multiple microarchitecture

configurations. However, the results obtained from these

techniques could be biased by the idiosyncrasies of a

particular microarchitecture configuration. Therefore, con-

clusions based on performance characteristics such as

execution time and cache miss-rate could categorize a

program with unique characteristics as insignificant only

because it shows similar trends on the microarchitecture

configurations used in the study. For instance, a prior study

[36] ranked programs in the SPEC CPU2000 benchmark

suite using the SPEC peak performance rating (a micro-

architecture-dependent characteristic). The program ranks

were based on their uniqueness, i.e., the programs that

exhibit different speedups on most of the machines were

given a higher rank as compared to other programs in the

suite. In this scheme of ranking programs, the gcc bench-

mark ranks very low and seems to be less unique. However,

this result contradicts with what is widely believed in the

computer architecture community—the gcc benchmark has

distinct characteristics as compared to the other programs

and, therefore, is an important benchmark. This indicates

that an analysis based on microarchitecture-dependent

characteristics (such as the SPEC peak performance rating

and speedup) could undermine the importance of a

program that is really unique.
We believe that, by measuring similarity using inherent

characteristics of a program, it is possible to ensure that the

results will be valid across a wide range of microarchitec-

ture configurations. In this paper, we propose a methodol-

ogy to find groups of similar programs based on their

inherent characteristics and apply it to study the similarity

between programs in three popular benchmark suites. More

specifically, we make the following contributions:
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1. We motivate and present an approach that can be
used to measure the similarity between programs in
a microarchitecture-independent manner.

2. We use the proposed methodology to find a subset
of representative programs from the SPEC CPU2000,
MiBench, and MediaBench benchmark suites, and
demonstrate their usefulness in predicting the
average performance metrics of the entire suite.

3. We demonstrate that the subset of SPEC
CPU2000 programs formed using microarchitec-
ture-independent characteristics is representative
across a wide range of machines with different
instruction set architectures (ISAs), compilers, and
microarchitectures.

4. We provide an insight into how the program
characteristics of four generations of SPEC CPU
benchmark suites have evolved.

The paper is organized as follows: Section 2 describes
our characterization methodology. Section 3 describes the
results from applying the proposed methodology to find
subsets of programs from the SPEC CPU2000 [16],
MediaBench [23], and MiBench [14] benchmark suites.
Section 4 presents validation experiments to demonstrate
that the subsets of programs are indeed representative of
the entire benchmark suite. Section 5 uses the presented
methodology to study the similarity between characteristics
of programs across four generations of SPEC CPU bench-
mark suites. Section 6 describes the related work and
Section 7 summarizes the conclusions from this study.

2 CHARACTERIZATION METHODOLOGY

This section describes our methodology to measure the
similarity between benchmark programs. It includes a
description of the microarchitecture-independent character-
istics, an outline of the statistical data analysis techniques, the
benchmarks used, and the tools developed for this study.

2.1 Microarchitecture-Independent Characteristics

Microarchitecture-independent characteristics allow for a
comparison between programs based on their inherent
properties that are isolated from features of a particular
machine configuration. As such, we use a gamut of
microarchitecture-independent characteristics that affect
overall program performance. The characteristics that we
use in this study are a subset of all the microarchitecture-
independent characteristics that can be potentially mea-
sured, but we believe that our characteristics cover a wide
enough range of program characteristics to make a mean-
ingful comparison between the programs; the results in this
paper in fact show that this is the case. The microarchi-
tecture-independent characteristics that we use in this study
relate to the instruction mix, control flow behavior,
instruction and data stream locality, and instruction-level
parallelism. These characteristics are described below.

2.1.1 Instruction Mix

The instruction mix of a program measures the relative
frequency of various operations performed by a program,
namely, the percentage of computation instructions, data
memory accesses (load and store instructions), and branch

instructions in the dynamic instruction stream of a
program.

2.1.2 Control Flow Behavior

We use the following set of metrics to characterize the
branch behavior of programs:

. Basic Block Size. A basic block is a section of code
with one entry and one exit point. We measure the
basic block size as the average number of instruc-
tions between two consecutive branches in the
dynamic instruction stream of the program. A larger
basic block size is useful in exploiting instruction
level parallelism (ILP) in an out-of-order superscalar
microprocessor.

. Branch Direction. Backward branches are typically
more likely to be taken than forward branches. This
characteristic computes the percentage of forward
branches out of the total branch instructions in the
dynamic instruction stream of the program.

. Fraction of Taken Branches. This characteristic is
the ratio of the number of taken branches to the total
number of branches in the dynamic instruction
stream of the program.

. Fraction of Forward-Taken Branches. This charac-
teristic is the fraction of the forward branches in the
dynamic instruction stream of the program that are
taken.

2.1.3 Inherent Instruction Level Parallelism

Register Dependency Distance. We use a distribution of
dependency distances as a measure of the inherent ILP in
the program. Dependency distance is defined as the total
number of instructions in the dynamic instruction stream
between the production (write) and consumption (read) of a
register instance [8], [26]. While techniques such as value
prediction reduce the impact of these dependencies on ILP,
information on the dependency distance is very useful in
understanding the inherent ILP of the program. The
dependency distance is classified into six categories:
percentage of total dependencies that have a distance of
one instruction and the percentage of total dependencies
that have a distance of up to 2, 4, 8, 16, 32, and greater than
32 instructions. Programs that have a higher percentage of
large dependency distances are likely to exhibit a higher
inherent ILP.

2.1.4 Data Locality

Data Temporal Locality. Several locality characteristics
have been proposed in the past [5], [6], [18], [22], [32], [33],
[34]; however, the algorithms for calculating them are
computation and memory intensive. We selected the
average memory reuse distance characteristic proposed by
Lafage and Seznec [22] since it is more computationally
feasible than the other characteristics that have been
proposed. The data temporal locality is quantified by
computing the average distance (in terms of the number
of data memory accesses) between two consecutive accesses
to the same address, for every unique address in the
program that is executed at least twice. For every program,
we calculate the data temporal locality for window sizes of
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16, 64, 256, and 4,096 bytes—these windows are to be
thought of as cache blocks, i.e., the data temporal locality
counts the number of access between two consecutive
accesses to the same window. The choice of these particular
window sizes is based on the experiments conducted by
Lafage and Seznec [22]. Their experimental results showed
that these four window sizes were sufficient to accurately
characterize the locality of the data reference stream with
respect to a wide range of data cache configurations.

Data Spatial Locality. Caches exploit spatial locality
through the use of cache blocks, i.e., programs that have a
good spatial locality will benefit from a large cache block.
Therefore, a program that exhibits good spatial locality will
show a significant reduction in the value of the temporal
data locality characteristic, i.e., average memory reuse
distance, as the window size is increased. In contrast, for
a program with poor spatial locality, the value of the
temporal data locality characteristic will not significantly
reduce as the window size is increased. We capture the
spatial locality of a program by computing the ratio of the
data temporal locality characteristic for window sizes of 64,
256, and 4,096 bytes to the data temporal locality character-
istic for a window size of 16 bytes. The values of these three
ratios characterize the spatial locality of the program. A
smaller ratio for a higher window size indicates that the
program exhibits good spatial locality.

2.1.5 Instruction Locality

Instruction Temporal Locality. The instruction temporal
locality is quantified by computing the average distance (in
termsof thenumberof instructions) between twoconsecutive
accesses to the same static instruction, for every unique static
instruction in the program that is executed at least twice.
Similar to the data temporal locality characteristic, we
calculate the instruction temporal locality characteristic for
window sizes of 16, 64, 256, and 4,096 bytes.

Instruction Spatial Locality. The spatial locality of the
instruction stream is characterized by the ratio of the
instruction temporal locality for window sizes of 64, 256,
and 4,096 bytes, to the instruction temporal locality
characteristic for a window size of 16 bytes—this is similar
to how the data spatial locality characteristic is computed.

2.2 Statistical Data Analysis

There are several variables (29 microarchitecture-indepen-
dent characteristics) and many cases (benchmarks) involved
in our study. It is humanly impossible to simultaneously
look at all the data and draw meaningful conclusions from
them. Therefore, we use multivariate statistical data
analysis techniques, namely, Principal Component Analysis
and Cluster Analysis, to compare and discriminate programs
based on the measured characteristics and understand the
distribution of the programs in the workload space.

Principal components analysis (PCA) [10] is a classic
multivariate statistical data analysis technique that is used to
reduce thedimensionalityof adata setwhile retainingmostof
the original information. We use PCA to remove the
correlation between the measured variables and reduce the
dimensionality of the data set. After performing PCA,we use
clustering algorithms to findgroupsof programswith similar
characteristics. There are two very popular clustering

algorithms, k-means and hierarchical clustering [17]. In this
paper, we use both the clustering approaches. For k-means
clustering, we generate different random seeds to find the
best initial placement of centers and then use the BIC
(Bayesian Information Criterion) explained in [29] to find
the best fit of k for the data, i.e., the optimal number of
clusters in k-means clustering algorithm. The readers are
referred to [20] for an overview of the PCA and clustering
analysis techniques.

2.3 Benchmarks

Weuse programs from the SPECCPU [16], MediaBench [23],
and MiBench [14] benchmark suites in this study. Due to the
differences in libraries, data type definitions, pointer size
conventions, and known compilation issues on 64-bit
machines,wewereunable to compile someprograms (mostly
from old suites—SPEC CPU89 and SPEC CPU92). The
programs were compiled on a Compaq Alpha AXP-2116
processor using the Compaq/DEC C, C++, and the
FORTRAN compiler. The details of the programs and the
input sets that we used in this study are listed in [20].
Although the characteristics that we measure are micro-
architecture-independent, they are dependent on the
instruction set architecture (ISA) and the compiler. How-
ever, in Section 4.2, we show that the subsets are reasonably
valid across various compilers and ISAs.

2.4 Tools

SCOPE. The workload characteristics were measured using
a custom-grown analyzer called SCOPE. SCOPE was
developed by modifying the sim-safe functional simulator
from the SimpleScalar v3.0 tool set [1]. SCOPE analyzes the
dynamic instruction stream and generates statistics related
to the instruction mix, instruction and data locality, branch
predictability, basic block size, and ILP. Essentially, the
back-end of sim-safe is interfaced with custom developed
analyzers to obtain the various microarchitecture-indepen-
dent characteristics.

Statistical Data Analysis. We use STATISTICA software
version 6.1 for performing PCA and hierarchical clustering.
For k-means clustering, we use the SimPoint software [30].
However, we do not apply random projection before
applying k-means clustering as done by default in the
SimPoint software. Instead, we perform clustering in the
transformed PCA space.

3 SUBSETTING BENCHMARK SUITES

In order to find a subset of representative benchmark
programs from a suite, we first measure the microarchitec-
ture-independent characteristics, as described in Section 2,
for all the benchmark programs. We then apply the PCA
technique to remove correlation between the measured
characteristics and to reduce the dimensionality of the data
set and then use the k-means clustering algorithm and the
Bayesian Information Criterion (BIC) to group the programs
into k distinct clusters. A subset of representative programs
is then composed by selecting one program from each
cluster. In our study, we select the program that is closest to
the center of its cluster as a representative of that group. For
clusters with just two programs, any program can be chosen
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as the representative. We apply the subsetting methodology

to the SPEC CPU2000, MiBench, and MediaBench bench-
mark suites. For each benchmark suite, we compose two

subsets of programs, the first based on their overall
characteristics and the second based just on their data

locality characteristics.

3.1 Subsetting of SPEC CPU2000 Programs Using
Overall Program Characteristics

In this section, we find a subset of representative programs
from the SPEC CPU2000 benchmark suite based on the

similarity between the overall characteristics of the pro-

grams. All 29 microarchitecture-independent program
characteristics for 21 programs from the SPEC CPU2000

benchmark suite are used as input to the data analysis.
After performing PCA and using BIC with k-means

clustering, we obtain eight clusters as the best fit for the
measured data set. Table 1 shows the eight clusters and

their members. The programs in boldfaced font are chosen
to be the representatives (closest to the center of the cluster)

of that particular group.
Citron [4] presented a survey on the use of SPEC

CPU2000 benchmark programs in papers from four recent

ISCA conferences. He observed that some programs are
more popular than the others among computer architecture

researchers. The list of popular integer benchmarks in their
decreasing order of popularity is: gzip, gcc, parser, vpr, mcf,

vortex, twolf, bzip2, crafty, perlbmk, gap, and eon. For the
floating-point benchmarks, the list in decreasing order of

popularity is: art, equake, ammp, mesa, applu, swim, lucas,
apsi, mgrid, wupwise, galgel, sixtrack, facerec, and fma3d.

The clusters that we obtained in Table 1 suggest that the
most popular programs in the listing provided by Citron [4]

do not form a truly representative subset of the benchmark
suite (based on their inherent characteristics). For example,

subsetting SPEC CPU2000 integer programs using gzip, gcc,
parser, vpr, mcf, vortex, twolf, and bzip2 will result in three

uncovered clusters, namely, 1, 3, and 7. We also observe
that there is a lot of similarity in the characteristics of the

popular programs. The three popular benchmarks parser,
twolf, and vortex belong to the same cluster, Cluster 6, and,

hence, are not likely to provide any additional information.
The results from Table 1 suggest that using applu, gzip, gcc,

equake, fma3d, mcf, mesa, and twolf as a representative

subset of the SPEC CPU2000 benchmark suite would be a
better practice.

We observe that gcc is in a separate cluster by itself and,
hence, has characteristics that are significantly different from
other programs in the benchmark suite. After inspecting the
characteristics, we observe that gcc has a peculiar instruction
temporal locality behavior (large reuse distance for the
instruction stream) and, hence, stands out from the rest of
theprograms.However, in the ranking schemeused inaprior
study [36], gcc is ranked very low and does not seem to be a
very unique program. Their study uses a microarchitecture-
dependent characteristic, namely, the SPEC peak perfor-
mance rating, and, hence, a program such as gcc that shows
similar speedup on most of the machines will be ranked
lower. This example shows that the results from analyzing
microarchitecture-independent characteristics can identify
redundancy more effectively.

3.2 Subsetting of Embedded Programs Using the
Overall Program Characteristics

The MiBench and MediaBench benchmark suites represent
the typical workloads used in embedded computing.
MiBench suite consists of benchmarks that are representa-
tive of the workloads used in automotive, consumer
devices, network, security, office automation, and telecom-
munications applications. The benchmarks in the Media-
Bench suite are representative of embedded multimedia
and communication workloads. In this section, we compose
a subset of representative embedded programs from
MiBench and MediaBench benchmark suites, based on
their overall program characteristics. We use the same
procedure as described in the previous section, i.e.,
performing PCA on all 29 microarchitecture-independent
characteristics followed by k-means clustering, to divide
benchmarks into groups of similar programs. Using BIC
with k-means clustering, we found five clusters as the best
fit for this data.

Table 2 shows the five different groups of embedded
benchmark programs. The program-input pairs marked in
boldfaced font are the cluster representatives. We observe
that, although MiBench and MediaBench are two different
suites, they still have three common programs, namely,
cjpeg, djpeg, and ghostscript. Although the cjpeg and djpeg
benchmarks from the MiBench and MediaBench suites have
different input sets, they reside in the same cluster
(Clusters 1 and 3). This suggests that the input set does
not affect the program behavior of the jpeg compression/
decompression benchmarks. Also, the ghostscript bench-
marks from the MiBench and MediaBench suites exhibit
similar program characteristics.

Interestingly, the six automotive benchmarks from the
MiBench suite show very little similarity between each
other and are distributed in four out of five clusters.
However, the benchmarks from the telecommunication and
networking application domains are relatively very similar
to each other. The bitcount automotive benchmark forms a
singleton cluster (Cluster 5) and is, therefore, the most
unique program in the two benchmark suites. The encoder
and decoder versions of the MediaBench programs g.721,
adpcm, and mpeg2 are also very similar to each other. From
these observations, we can conclude that a large number of
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programs from the MiBench and MediaBench suites show
very similar program behavior and only five benchmarks,
namely, cjpeg, rasta, invFFT, adpcm, and bitcount, are
required to represent the 32 embedded benchmark pro-
grams from the two suites.

3.3 Subsetting of SPEC CPU2000 Programs Using
the Data Locality Characteristics

In Section 3.1, we selected a representative subset of SPEC
CPU2000 programs based on their overall program char-
acteristics. However, architects and researchers often use
cache simulations when performing studies related to the
data memory hierarchy of a microprocessor. In order to
select a representative subset of programs for such studies,
one needs to understand the similarity between programs
just based on their data locality characteristics.

In this analysis, we find a subset of the SPEC CPU2000
benchmark suite by only considering the seven character-
istics of SPEC CPU2000 programs that are related to their
temporal and spatial data locality. We use the same
methodology, i.e., PCA followed by k-means and BIC, to
group the programs into an optimal number of clusters.
Table 3 shows the groups of SPEC CPU2000 programs that
have similar data locality characteristics. We observe that a

large number (nine out of 21) of SPEC CPU2000 programs
are grouped together in one cluster (Cluster 3) and, hence,
exhibit very similar data locality characteristics. Surpris-
ingly, the floating-point benchmarks art, ammp, applu, and
mgrid have similar temporal and spatial data locality
characteristics as the integer benchmarks crafty, eon, parser,
twolf, vortex, and vpr. Also, the floating-point benchmark
mesa shows similar data locality characteristics as the
integer benchmark gcc. We conclude that only three integer
programs, gzip, mcf, and bzip2, and six floating-point
programs, ammp, equake, mesa, fma3d, galgel, and
wupwise, are representative of the data locality character-
istics exhibited by programs in the SPEC CPU2000 bench-
mark suite.

3.4 Subsetting Embedded Benchmarks Using Data
Locality Characteristics

We now select a subset of representative embedded
programs from the MiBench and MediaBench benchmark
suites based on their similarity in data locality character-
istics. Table 4 shows the eight groups of media programs
that differ in their data locality behavior.

We observe that all the automotive benchmarks from the
MiBench benchmark suite, susan, bitcount, basicmath, and
qsort, reside in different clusters, suggesting that they have
very different data locality characteristics. Particularly, the
benchmark susan exhibits different data locality character-
istics depending on the input set used. Also, susan forms a
singleton cluster for inputs sets 1 and 2 and, therefore, has the
most unique data locality characteristics of all the embedded
programs. Interestingly, except for the epic benchmark, all
the other pairs of compress/decompress and encoder/
decoder benchmarks, namely, adpcm, g.721, jpeg, and
mpeg2, show very similar data locality. One key conclusion
that we can draw is that the combined set of embedded
benchmark programs from the MiBench and MediaBench
suites can be represented by six programs from the
MiBench suite, namely, susan (input sets 1 and 2), djpeg,
sha, qsort, ghostscript, and one program from the Media-
Bench suite, namely, adpcm. In other words, except for the
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adpcm program, the data locality characteristics of the
MediaBench programs are a subset of the data locality
characteristics exhibited by programs from the MiBench
suite.

4 VALIDATING THE REPRESENTATIVENESS OF

BENCHMARK SUBSETS

It is important to understand whether the subsets of
programs we have created are meaningful and are indeed
representative of the original benchmark suite. Therefore,
we use the subset of programs, composed using our
proposed methodology, to estimate the average benchmark
suite IPC, L1 data cache miss-rate, and speedup. We then
compare our results to those obtained by using the entire
benchmark suite.

4.1 Estimating IPC through Subsetting

Using the subset of programs based on overall program
characteristics from the SPEC CPU2000, MiBench, and
MediaBench benchmark suites, we estimated the average
IPC of the entire suite for two different superscalar
configurations. For the SPEC CPU2000 benchmark pro-
grams, we used an 8-way and a 16-way issue superscalar
microprocessor configuration, whereas, for the MiBench
and MediaBench programs, we used a 2-way and a 4-way
issue configuration. The details of the configurations are
listed in [20]. From Table 1 and Table 2, we observe that
each cluster has a different number of programs and, hence,
the weight assigned to each representative program should
depend on the number of programs that it represents, i.e.,
the number of programs in its cluster. For example, from
Table 1, the weight for fma3d (Cluster 4) is 7. Similarly, we
assign a weight to each representative program and, using
these weights, we calculate the weighted harmonic mean of
the IPC for the entire suite.

Fig. 1a shows the weighted average (harmonic mean)
IPC of the entire SPEC CPU2000 benchmark suite, the
estimated IPC from the subset of programs from Table 1,
and the average (harmonic mean) IPC calculated using the
list of popular programs published by Citron [4]. We

obtained the IPC performance data for an 8-wide and

16-wide superscalar out-of-order microarchitecture for

every program in the SPEC CPU2000 benchmarks from

Wenisch et al. [38].
The error in weighted average IPC computed using the

subset of programs in Table 1 for both 8-way and 16-way

issue widths is less than 5 percent. We observe that the

average IPC calculated using the list of popular programs

published by Citron in [4] shows high errors (-15 percent

774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006

TABLE 4
Optimal Number of Clusters for Embedded Programs Based on the Data Locality Characteristics

Fig. 1. Estimating average IPC using a subset of programs from the
(a) SPEC CPU2000 and (b) MiBench and MediaBench benchmark
suites.



and -23.4 percent, respectively, for the 8-way and 16-way
issue configurations, respectively). The two main reasons
why we see a higher error from the subset of popular
programs are: 1) The popular subset of programs is not
selected by using a formal methodology to find similarity/
dissimilarity with the rest of the programs and 2) there is no
method to assign weights to the programs in the subset.

Fig. 1b shows the average IPC (harmonic mean) of all the
embedded programs from the MiBench and MediaBench
benchmark suites and the estimated average IPC (weighted
harmonic mean) using the subset of programs shown in
Table 2. We find that the error in estimating the average IPC
using the subset of programs is very small for both the
configurations (-0.67 percent for 2-way issue and -3.9 per-
cent for 4-way issue).

Since the IPC of the entire suite can be estimated with
reasonable accuracy using the subsets formed using our
methodology, we feel that it is a good validation for the
usefulness of the subsets.

4.2 Estimating Speedup of SPEC CPU2000
Benchmarks through Subsetting

In the previous section, we evaluated the usefulness of the
subset to accurately estimate the overall IPC in a single
design point. However, in the early stages of the design
cycle, relative accuracy, i.e., the ability to predict speedup,
is even more important. We now demonstrate the useful-
ness of the subset of programs from the SPEC CPU2000
suite to estimate the speedup of 11 machines from different
vendors with respect to the base machine (Sun Ultra5_10
with 300MHz processor) that SPEC uses to calculate the
SPEC CPU rating. Fig. 2 shows the estimated weighted
average (geometric mean) speedup of the entire suite using
the subset based on overall program characteristics and the
average speedup (geometric mean) of the entire suite for
computers from various manufacturers.

The speedup numbers for the SPEC CPU2000 programs
were directly obtained from their execution times published
by SPEC [42]. The maximum error in the speedup estimated
using the subset is 9.1 percent. Since themachines used in this
experiment have different ISAs, microarchitecture, and
compiler settings, we can conclude that the subset of
programs composed using inherent program characteristics
is valid across different microarchitectures, ISAs, and
compilers.

4.3 Estimating Average Data Cache Miss-Rate
through Subsetting

In this section, we evaluate the usefulness of the subset of

programs, formed using the data locality characteristics, in

estimating the average data cache miss-rate of the entire

suite. Similarly to the procedure described in the earlier
section, we assign a weight to every representative

program. Fig. 3a shows the weighted average (harmonic

mean) L1 data cache miss-rate of the SPEC CPU2000

benchmark suite estimated using the subset of programs
shown in Table 3 (based on data locality characteristics), the

estimated average (harmonic mean) L1 data cache miss-rate

using the entire benchmark suite, and the estimated average

L1 data cache miss-rate using the list of popular programs
published by Citron in [4]. We obtained the miss-rates for

nine different L1 data cache configurations from Cantin and

Hill [3]. The average absolute error in estimating the L1 data

cache miss-rate of the entire suite using the subset of

programs shown in Table 3 is 0.8 percent. The average
absolute error in estimating the L1 data cache miss-rate

using the set of popular programs is 3 percent. From these

results, we can conclude that the program subset derived in

Table 3 is indeed representative of the data locality
characteristics of programs in the SPEC CPU2000 bench-

mark suite.
Fig. 3b shows the average (harmonic mean) L1 data cache

miss-rate of the entire set of embedded programs and the
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SPEC CPU2000 benchmark suite.

Fig. 3. Estimating the average data cache miss rate using a subset of

programs from the (a) SPEC CPU2000 and (b) MiBench and

MediaBench suites.



estimated weighted average (harmonic mean) L1 data cache
miss-rate using the subset of programs shown in Table 2 (all
characteristics) and Table 4 (only data locality characteris-
tics). We use 12 different cache configurations (sizes of 4KB,
8KB, 16KB, and 64KB, each with a direct-mapped, 4-way set
associative, and fully associative configurations) to validate
the representativeness of the subset of programs. The average
absolute error in estimating L1 data cachemiss-rate using the
subset based on overall program characteristics is 0.6 percent
and using the subset based on data locality characteristics is
0.5 percent. Again, our results show that the subset of
programs is very effective in estimating the data cache miss-
rate of the entire suite.

5 SIMILARITY ACROSS FOUR GENERATIONS OF

SPEC CPU BENCHMARK SUITES

We now use the methodology presented in this paper for
analyzing how benchmark programs evolve with time. The
Standard Performance Evaluation Corporation (SPEC) CPU
benchmark suite, which was first released in 1989 as a
collection of 10 computation-intensive benchmark pro-
grams (average size of 2.5 billion dynamic instructions per
program), is now in its fourth generation and has grown to
26 programs (average size of 230 billion dynamic instruc-
tions per program). So far, SPEC has released four CPU
benchmark suites: in 1989, 1992, 1995, and 2000.

In this section, we use our collection of microarchitecture-
independent characteristics, described in Section 2, to
characterize the generic behavior of four generations of SPEC
CPU benchmark programs. In these experiments, we use the
same compiler to compile programs from all four suites. The
data is analyzed using PCA and cluster analysis to under-
stand the changes in the CPU workloads over time. First, we
use all the characteristics and perform k-means clustering to
find optimal number of clusters for all the four generations of
SPEC CPU benchmarks. In the subsequent sections, we
analyze each important characteristic separately for all the

generations. In order to visualize the workload space, we
plot the scores for the first two PCs for 60 programs on a
two-dimensional graph and also plot a dendrogram
showing the similarity between the programs.

5.1 Overall Characteristics

In order to understand the (dis)similarity between pro-
grams across SPEC CPU benchmark suites, we perform a
cluster analysis in the PCA space as described in Section 3.
Clustering all the 60 benchmarks yields 12 optimum
clusters, which are shown in Table 5; the benchmarks in
boldfaced font are the cluster representatives.

A detailed analysis of Table 5 gives us several interesting
insights. First, out of all the benchmarks, gcc (2000) and gcc
(95) are together in a separate cluster. We observe that
instruction locality forgcc isworse than anyother program in
all fourgenerationsof theSPECCPUsuite.Becauseof this, the
gcc programs from the SPEC CPU 95 and 2000 suites reside
in their own separate cluster. Due to its peculiar data
locality characteristics, mcf (2000) resides in a separate
cluster (cluster 2), and bzip2 (2000) and gzip (2000) form one
cluster (cluster 12). SPEC CPU2000 programs exist in 10 out
of 12 clusters, as opposed to SPEC CPU95 in seven clusters,
SPEC CPU92 in six clusters, and SPEC CPU89 in five
clusters. This shows that the SPEC CPU2000 benchmark
suite is more diverse than its ancestors.

5.2 Instruction Locality

We perform PCA on the raw data measured for the
instruction locality characteristics,whichyields twoprincipal
components explaining 68.4 percent and 28.6 percent of the
total variance. Fig. 4 shows the benchmarks in the PCA space.
In order to visualize the relative positions of the benchmarks
in theworkload space, we also present a tree, or dendrogram,
using hierarchical clustering. Fig. 5 shows the dendrogram
obtained from applying hierarchical clustering to the data set
in thePCAspace. Thehorizontal scale of thedendrogram lists
the benchmarks and the vertical scale corresponds to the
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Optimum Number of Clusters for the Four Generations of SPEC CPU Benchmark Programs

Using the Overall Program Characteristics



linkage distance obtained from the hierarchical clustering
analysis. The shorter the linkage distance, the closer, i.e., the
more similar, the benchmarks are to each other in the
workload space.

For example, in Fig. 5, the gcc (2000) and gcc (95)
benchmarks combine into a cluster at a linkage distance of
0.2 and the cluster containing the two gcc benchmarks
combines into a cluster containing all the other programs at
a linkage distance of 6.2. This means that the gcc bench-
marks from the SPEC CPU95 and SPEC CPU2000 bench-
mark suites are more similar to each other than to all the
other programs.

PC1 represents the instruction temporal locality and PC2
represents the instruction spatial locality of the benchmarks,
i.e., the benchmarks with a higher value along PC1 show
poor temporal locality for the instruction stream, and the
benchmarks with a higher value along PC2 show good
spatial locality in the instruction stream. Fig. 4 and Fig. 5
show that programs from all the SPEC CPU generations

overlap. The biggest exception is gcc in SPECint2000 and

SPECint95 (the two dark points on the plot on the extreme

right). The gcc benchmark from the SPECint2000 and

SPECint95 suites exhibits poor instruction temporal locality.

It also shows very low values for PC2 due to poor spatial

locality. The floating-point program matrix300 from the

SPEC CPU89 suite and compress from SPEC CPU92 show

very good temporal and spatial locality. The benchmark

program applu from SPEC CPU2000 shows a very high

value for PC2 and would therefore benefit a lot from an

increase in block size. The fppp benchmarks from the SPEC

CPU89, SPEC CPU92, SPEC CPU95 suites, and the bzip2

and gzip benchmarks from the SPEC2000 suite show similar

instruction locality.
In general, we observe that, although the average

dynamic instruction count of the benchmark programs

has increased by a factor of x100, the static instruction count

has remained more or less constant. This suggests that the

dynamic instruction count of the SPEC CPU benchmark

programs have simply been scaled—more iterations

through the same instructions.

5.3 Branch Characteristics

For studying the branch behavior, we include the following

characteristics in our analysis: the percentage of branches in

the dynamic instruction stream, the average basic block

size, the percentage forward branches, the percentage taken

branches, and the percentage forward-taken branches. From

PCA analysis, we retain two principal components explain-

ing 62 percent and 19 percent of the total variance,

respectively. Fig. 6 plots the various SPEC CPU benchmarks

in this PCA space and Fig. 7 is a dendrogram showing the

linkage distance between the programs based on the branch

characteristics.
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Fig. 4. PCA space built from the instruction locality characteristics.

Fig. 5. Dendrogram showing the linkage distance between programs based on the instruction locality characteristics.



We observe that the integer benchmarks are clustered in
an area. We also observe that the floating-point benchmarks
typically have a positive value along the first principal
component (PC1), whereas the integer benchmarks have a
negative value along PC1. The reason is that floating-point
benchmarks typically have fewer branches and, thus, have a
larger basic block size; also, floating-point benchmarks
typically are very well structured and have a smaller
percentage of forward branches and fewer forward-taken
branches.

In other words, floating-point benchmarks tend to spend
most of their time in loops. The two prominent outliers in
the top right corner of this graph are SPEC 2000’s mgrid and
applu programs due to their extremely large average basic
block sizes, 273 and 318 instructions, respectively. The two
outliers on the right are swim benchmarks from SPEC92 and
SPEC95 suites, due to their large percentage of taken
branches and small percentage of forward branches. On the

extreme left of the PCA space is vortex from SPEC2000,
which shows a very low average basic block size. Due to a
significant overlap seen in the plot, we can conclude that
the branch characteristics of the SPEC CPU programs did
not significantly change over the past four generations of
SPEC CPU programs. Fig. 7 also suggests that the branch
behavior of programs has not significantly changed for the
last four generations—doduc, espresso, fppp, hydro2d, li,
and tomcatv are examples of programs whose branch
characteristics have not changed across generations of SPEC
CPU benchmark suites.

5.4 Instruction-Level Parallelism

In order to study the instruction-level parallelism (ILP) of
the SPEC CPU suites we used the interinstruction register
dependency characteristic. This characteristic is closely
related to the intrinsic ILP available in an application. Long
dependency distances generally imply a high ILP. The first
two principal components explain 96 percent of the total
variance. The PCA space is plotted in Fig. 8 and Fig. 9
shows the dendrogram with the linkage distance between
the programs based on their ILP characteristics.

We observe that the integer benchmarks typically have a
high value along PC1, which indicates that these bench-
marks have a higher percentage of short dependency
distances. The floating-point benchmarks typically have
larger dependency distances. We observe no real trend in
this graph. The intrinsic ILP did not change over the four
benchmark suites except for the fact that several floating-
point programs from the SPEC CPU89 and SPEC CPU92
suites (and no SPEC CPU95 or SPEC CPU2000 benchmarks)
exhibit relatively short dependencies compared to other
floating-point benchmarks; these overlap with integer
benchmarks in the range -0.1 < PC1 < 0.6.

In the top left corner, we can see two outliers, mgrid and
applu, that are quite far from a lot of other programs and
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Fig. 6. PCA space built from the branch characteristics.

Fig. 7. Dendrogram showing linkage distance between programs based on the branch characteristics.



show large dependency distances, which implies better ILP.

The program swim from the SPEC CPU2000 suite also

shows large dependency distances. The majority of the

programs on the right side of the PCA space are integer

programs, with vortex from SPEC 2000 being the one with

the largest number of short dependency distances. In Fig. 9,

we observe that a lot of floating-point programs across

various generations, e.g., fppp, tomcatv, nasa7, li, and

doduc, form a tight cluster. Hence, we can conclude that

there is a lot of similarity between the ILP characteristics

exhibited by the floating-point programs across all four

generations of the SPEC CPU suites.

5.5 Data Locality

For studying the temporal and spatial locality behavior of

the data stream, we used the locality characteristics

described in Section 2. Recall that the characteristics by

themselves quantify temporal locality, whereas the ratios

between them are a measure of the spatial locality. Fig. 10

shows a plot of the benchmarks in the PCA space built from

these data locality characteristics and Fig. 11 shows the

linkage distance between various programs.
In Fig. 10, the first principal component measures

temporal locality, i.e., a more positive value along PC1

indicates poorer temporal locality. The second principal

component measures spatial locality. Therefore, bench-

marks with a high value along PC2 will thus benefit more

from an increased cache line size. From this figure, we

conclude that several SPEC CPU2000 and CPU95 bench-

mark programs, namely, bzip2, gzip, mcf, and wupwise,

from CPU2000, and gcc, turbo3d, applu, and mgrid from

CPU95, exhibit a temporal locality that is significantly

worse than the other benchmarks. Concerning spatial

locality, most of these benchmarks exhibit a spatial locality

that is relatively higher than that of the remaining bench-

marks, i.e., increasing the window sizes improves the

performance of these programs more than it does for the

other benchmarks.
Programs like gzip, bzip2, and mcf show poor spatial

locality. There are a lot of programs in all four generations

of the SPEC CPU suites that overlap. This indicates that,

although the objective of SPEC is to worsen the data stream

locality behavior of subsequent CPU suites, several bench-

marks in recent suites exhibit a locality behavior that is

similar to older versions of SPEC CPU. Moreover, several

CPU95 benchmarks, like wave, perl, compress, apsi, and

CPU2000 benchmarks, like equake, galgel, lucas, and swim

that show a temporal locality behavior that is better than

some CPU89 and CPU92 benchmarks.
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6 RELATED WORK

Weicker [37] used characteristics such as statement dis-

tribution in programs, distribution of operand data types,

and distribution of operations, to study the behavior of

several stone-age benchmarks. Saveedra and Smith [28]

characterized Fortran applications in terms of the number

of various fundamental operations and predicted their

execution time. They also developed a measure for program

similarity that makes it possible to classify benchmarks with

respect to a large set of characteristics.
Prior work in studying benchmark characteristics has

typically taken the approach of measuring microarchitec-

ture-dependent characteristics, e.g., cycles per instruction,

cache miss rate, branch prediction accuracy, etc., on various

microarchitecture configurations that offer a different

mixture of bottlenecks [11], [12], [36], [41]. The variation

in these characteristics is then used to infer the generic
program behavior.

There has been prior research to find redundancy in
benchmark suites. Dujmovic and Dujmovic [9] developed a
quantitative approach to evaluate benchmark suites. They
used the execution time of a program on several machines
to calculate measures that quantify the size, completeness,
and redundancy of the benchmark space. Vandierendonck
and De Bosschere [36] analyzed the SPEC CPU2000 bench-
mark suite peak results on 340 different machines repre-
senting eight ISAs and used PCA to identify the
redundancy in the benchmark suite. In [36], the authors
quantify redundancy as the ability of a program to show
different speedup on two different machines. The programs
that do not show very different speedups are considered
redundant. They conclude that only a subset of programs
from SPEC CPU2000 benchmark programs is required to
accurately predict the ranks of these 340 machines.

There has been some research on microarchitecture-
independent locality and ILP characteristics. For example,
locality models researched in the past include working set
models, least recently used stack models, independent
reference models, temporal density functions, spatial
density functions, memory reuse distance, locality space,
etc. [5], [6], [18] [22], [32], [33], [34]. Generic measures of
parallelism were used by Noonburg and Shen [26] and
Dubey et al. [8] based on a profile of dependency distances
in a program. Microarchitecture-independent characteris-
tics, such as true computations versus address computa-
tions and overhead memory accesses versus true memory
accesses, have been proposed by several researchers [15],
[19]. The methodology presented in this paper can benefit
from more microarchitecture-independent characteristics,
but we believe that the characteristics we have used cover a
wide enough range of the program characteristics to make a
meaningful comparison between the programs.
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Fig. 10. PCA space built from the data locality characteristics.

Fig. 11. Dendrogram showing the linkage distance between programs based on the data locality characteristics.



Another stream of work reduces the simulation time of

benchmarks by finding representative phases within a

program [29], [30], [40]. These techniques are orthogonal

to the one presented in this paper and can be used to further

reduce the simulation time of the subset of programs

selected from the suite.

7 CONCLUSION

In this paper, we proposed a method to measure the

similarity between programs based on their inherent

microarchitecture-independent characteristics and we

demonstrated the use of this technique to subset programs

from the SPEC CPU2000, MiBench, and MediaBench

benchmark suites. We validated the usefulness of the

subsets obtained using our methodology by demonstrating

that the average IPC, data cache miss rate, and speedup of

the entire suite could be estimated with reasonable accuracy

by just simulating the subset of programs. Based on our

results and validation experiments, we recommend that, if

the time required to simulate the entire SPEC CPU bench-

mark suite is prohibitively high, the following set of

programs should be used as a representative subset: applu,

equake, fma3d, gcc, gzip, mcf, mesa, and twolf.
From our study on the similarity between the four

generations of SPEC CPU benchmark suites, we find that no

single characteristic has changed as dramatically as the

dynamic instruction count. Our analysis shows that the

branch and ILP characteristics have not changed much over

the last four generations, but the temporal data locality of

programs has become increasingly poor.
The methodology presented in this paper can be used to

select representative programs for the characteristics of

interest should the cost of simulating the entire suite be

prohibitively high. This technique can also be used during

the benchmark design process to compose a benchmark

suite from a group of candidate program.
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