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Measuring Cities with Software-Defined Sensors

Charlie Catlett�, Pete Beckman, Nicola Ferrier, Howard Nusbaum, Michael E. Papka,

Marc G. Berman, and Rajesh Sankaran

Abstract:  The Chicago Array of Things (AoT) project, funded by the US National Science Foundation, 

created an experimental, urban-scale measurement capability to support diverse scientific studies. Initially 

conceived as a traditional sensor network, collaborations with many science communities guided the project 

to design a system that is remotely programmable to implement Artificial Intelligence (AI) within the 

devices—at the “edge” of the network—as a means for measuring urban factors that heretofore had only 

been possible with human observers, such as human behavior including social interaction. The concept of 

“software-defined sensors” emerged from these design discussions, opening new possibilities, such as stronger 

privacy protections and autonomous, adaptive measurements triggered by events or conditions. We provide 

examples of current and planned social and behavioral science investigations uniquely enabled by 

software-defined sensors as part of the SAGE project, an expanded follow-on effort that includes AoT. 

Key words:  sensors; edge computing; computer vision; urban science 

1 Introduction: A New Approach to

Measuring Cities

In 2012, the City of Chicago announced plans to

replace 300 000 street lights with Light Emitting

Diode (LED) systems, potentially with sensors and a

wireless data network. To computer scientists developing

experimental sensor networks, this seemed to be an

opportunity to explore the potential for an urban-scale
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measurement system. What new science might be

possible with hundreds or even thousands of devices

deployed throughout a major city? What would scientists,

policymakers, community groups, or individual residents

want to measure? Would other capabilities be useful,

such as beacons for precise positioning or to provide

cryptographic tokens that would work with applications

to validate the location of a device at a particular

point in time or perhaps to design entirely new mobile

services and applications? Could we get a sense for the

volume and flow of people in public spaces by counting

Bluetooth devices? How would such a system publish

data in ways that would be useful not only to scientists

but also to students, educators, city managers, residents,

and businesses in the city? With these questions in

mind, we organized a series of workshops[1] including

both interdisciplinary and discipline-specific, asking

a common set of questions. In these workshops and

separate discussions, we engaged scientists as well

as city planners and managers from multiple City of

Chicago agencies and departments (transportation, parks,

building and fleet management, public health, and

information technology) and open data teams. Each

workshop began with a question: “if we could deploy
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some form of electronic device in hundreds of locations

throughout Chicago, what would those devices do to

help you answer the questions you are investigating?”

These and many other engagements identified two

broad classes of measurement: traditional measurements

(for which electronic sensors are available, such as

temperature or light levels) and what we termed

“observations”. For traditional measurements, the

workshops produced a list of several dozen sensors

including air quality (gases, particulate matter),

meteorology (temperature, humidity, and pressure),

vibration, sound, and light. For observations, suggestions

were based on measurements typically done infrequently

by human observers, either systematically, such as

counting vehicle or pedestrian traffic at intersections, or

through ad hoc mechanisms, such as residents reporting

street flooding.

What began as a sensor network project[2], then,

evolved into an intelligent measurement project

emphasizing new measurements that could be supported

with edge computing, in turn requiring Artificial

Intelligence (AI) and Machine Learning (ML) support,

or “AI-at-the-Edge”. In order to engage the broadest

community of developers and experimenters, this meant

using an open computing platform that would support

current and envisioned AI/ML software frameworks used

by those communities. The resulting system combines

traditional sensors with measurements that are defined

by the software interpreting those sensors (e.g., image

processing with a camera). We term this new type of

measurement system a “software-defined ” sensor[3].

We named the project Array of Things[4] (AoT)

combining the underlying technology approach,

leveraging technology trends in embedded computers

and wireless networks—or “Internet of Things (IoT)”—

with the strategy of deploying many identical detectors

aimed at the sky, as with an array telescope[5]. AoT

comprises individual devices, or “nodes”, focused on

the city, which some have also described as a fitness

tracker[6] for the city.

With systems deployed in over 130 locations

throughout Chicago (Fig. 1) and smaller pilot

deployments in other cities, AoT[7] and the underlying

platform, called Waggle[8], have catalyzed partnerships

between computer scientists (in particular, AI/ML

and computer vision experts) and researchers and

practitioners in fields ranging from transportation to

social and behavioral sciences to civil and environmental

engineering.

Fig. 1 Since 2016 over 250 AoT nodes have been installed,

including upgrades to existing locations. Shown here are 130

nodes in Chicago as of 2020. Map created with Google Maps.

In this paper, we discuss early, emerging, and

envisioned use of software-defined sensors providing

measurements for social and behavioral science

questions that were heretofore only possible with human

observers. Moreover, by removing the limitations of

human observation—chief among them is the need

to sample rather than continuously measure—an even

broader set of measurement opportunities can be

envisioned, including measurements across much larger

spatial and temporal scales. Indeed the advantage of

software-defined sensors is that one need not define all

possible measurements prior to building and installing

devices. Section 2 discusses AoT in context of deploying

an urban-scale intelligent measurement system, privacy

and ethics considerations, and how these along with

practical matters, such as installation, were coordinated.

Section 3 introduces the concept of software-defined

sensors, focusing on the application of software-defined

sensors to understand urban activity patterns and support

social and behavioral science investigations. Section 4

provides a brief overview of the underlying technology

platform and the associated software and hardware

architecture necessary to move from bespoke systems

like AoT to a more general-purpose user-programmable

experimental infrastructure. Finally, in Section 5, we

conclude with directions of future work, including the

current follow-on and expansion of the AoT project,
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SAGE: A Software-Defined Sensor Network[9], with

examples of the potential for increased autonomy in

software-defined sensors and for understanding, and

ultimately improving urban life.

2 Array of Things: A Research Instrument

in Public Way

Common sensor networks are relatively straightforward

to build and scale, but the AoT user community needed

both traditional sensor measurements and new types

of measurements—observations—that would require

edge computing capabilities. Sending images or video

streams to a central server for analysis would have

been cost-prohibitive for hundreds of locations, thus

it was necessary to process images within the devices.

Even if free network access was available, some

scientists requested programmable devices that could

process data and act on that data in some fashion—

in near-real time. For instance, experiments with

intelligent traffic controls coordinating with vehicles to

make instantaneous decisions. These factors—cost and

latency—ruled out doing all data processing on central

servers.

With each science workshop, the number of traditional

sensors accumulated, and atmospheric scientists (the

first workshop we held) emphasized that a multi-sensor

approach is essential given the need for the context

of each measurement. For instance, interpreting a

temperature reading requires knowing not just the sensor

characteristics but how and where that measurement

was taken. Was it under the shade of a building or

an oak tree? In the middle of a concrete parking lot?

Near a large body of water? Similarly, does an air

pollutant measurement come from a sensor in a park? At

a congested intersection? Near a factory? The need for

context to each requested measurement was reinforced

throughout our interactions with science communities,

leading to a device design with several dozen sensors

(Fig. 2).

2.1 Capability and scale

What scale would make sense for such an urban

measurement system? Tens of devices? Hundreds?

Thousands? Many traditional measurements, for

instance air quality, were at the time primarily done

regionally. In the area within roughly 50 miles of

downtown Chicago, there are only two dozen regulatory

air quality monitors, providing hourly readings for

criteria air pollutants[10]. Yet we know that air

Fig. 2 An AoT node. Computers, camera, and light

(Ultraviolet (UV), Infrared (IR), and visible) sensors are in

the blue enclosure; a cellular modem, camera, environmental

(vibration, sound, magnetic field, temperature, relative

humidity, and barometric pressure), and air quality (CO,

NO2, SO2, PM2.5, and O3) sensors are in the white enclosure.

pollution is highly variable over geography and time

in urban areas[11], with significant impact to human

health and behavior even on short timescales[12–14].

Hourly measurements representing hundreds of square

kilometers, while valuable for many studies, do not

offer the spatial or temporal resolution necessary to

understand factors such as the impact of traffic on air

quality in individual communities. Noise is another

environmental factor that impacts human health and

well being[15, 16], yet few cities have measurement

systems providing noise levels at all, much less

on a neighborhood scale. A notable exception is

New York University (NYU)’s Sounds of New York

City (SONYC[17]), which involves over 100 sound

sensors in selected neighborhoods. Many cities, Chicago

included, also have microphone-based systems that

detect gunshots and use trilateration to locate the source

of the sound, but these are special-purpose, closed

systems that do not measure other sounds.

Equally important to the overall system architecture

was the continuous improvement of low-cost

components including sensors, processors, storage,

and communications. We thus targeted a roughly

2-year life span for the systems, expecting to replace

them with upgraded systems. Consequently, while the

selection of particular sensors and other components

was important, the more central objective was to develop

the underlying software, protocols, management tools,
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data management and access capabilities, and device

deployment partnerships and strategies, that could

support multiple generations of devices[4].

2.2 Creating an urban-scale “laboratory”

Although AoT was primarily a technology prototyping

effort to explore the feasibility of an urban-scale

measurement instrument, embedding such a system

in the public way required partnerships with local

government and the residents of the city. We worked

with Mayor Rahm Emanuel’s office to include the

concept of such an instrument in the city’s 2013

Strategic Technology Plan[18, 19]. In addition to science

and stakeholder partnerships, policies and governance

structures were needed along with a feasible and

affordable plan to install and communicate with

hundreds of devices in the city. Devices had to be

prototyped, stress-tested for outdoor harsh conditions,

packaged, and mass-produced. The architecture had

to be reasonably secure with respect to cyber (e.g.,

Internet-based) or physical threats. Mechanisms were

also required to provide data to a diverse audience

of scientists, policymakers, and residents. We briefly

describe these topics below, and they are covered in

much greater detail in Refs. [4, 8].

Placing scientific instruments—particularly those with

cameras and microphones—in the public way required

taking initiative to engage residents and community

groups on issues such as privacy and governance. At

the same time, a shared objective between the project

team, the National Science Foundation (NSF) and the

City of Chicago was to stimulate interest in science

and technology among Chicago’s youth. This suggested

that the devices should be visually conspicuous, inviting

curiosity or even engagement. To this end, the physical

form and appearance of the nodes were explored with

artists, designers, and behavioral and social scientists.

Although some behavioral science research suggested

that the appearance of the devices would have an impact

on behavior[20], this was not an objective for the project.

The goal of the bright and inviting design was to draw

attention and ideally foster a sense of ownership by using

the blue and red colors similar to Chicago’s city flag[21].

To explore the design options, faculty members from

the School of the Art Institute of Chicago created a

special course for masters of fine arts students in fall

2013. Students developed multiple prototypes in and

around the University of Chicago, leading to the design

shown in Fig. 2[22].

To engage residents and community groups, we

partnered with the Smart Chicago Collaborative[23], now

part of the CityTech Collaborative[24]. Smart Chicago’s

mission is to engage residents, especially youth, to

leverage technology to improve lives in Chicago. The

Collaborative worked with our team and Chicago’s

Department of Innovation and Technology to organize a

series of open public town halls in different Chicago

neighborhoods where residents were briefed on the

project and its objectives, with open discussion regarding

their interests and concerns.

2.3 Ethics, privacy, and policy

Many private entities, such as businesses and even

universities, have live cameras in and around their

property, including those trained on public spaces (e.g.,

sidewalks in front of a café). Because AoT involved

partnership with local government and installation

of devices with cameras on public infrastructure,

residents would understandably have concerns about

potential government surveillance. Anticipating this, we

begin the public dialog well in advance of deploying

systems, presenting the concept to Chicago’s civic

data community at the weekly ChiHackNight[19, 25].

These weekly gatherings draw hundreds of people

who are active in civic data analytics in support of

open data and transparent government. The ensuing

discussions, including both skeptical and supportive

media coverage, helped to guide subsequent and ongoing

public engagement activities.

At the time (2014), we found no examples of

published privacy policies regarding public cameras.

The prevailing view from ethics and privacy law experts,

as well as the University of Chicago’s Institutional

Review Board (IRB) confirmed that there were no

ethical or legal restrictions on capturing images in

the public way given there is “no expectation of

privacy”. However, a central goal of the AoT project

was to provide open data about the city for use by

students, scientists, businesses, the city, and the general

public. Thus we collaborated with Trusted CI, the

NSF Cybersecurity Center of Excellence[26] to develop

privacy and governance policies. With drafts in hand,

we convened experts from academia, industry and

government privacy law, and privacy advocacy groups

including the Electronic Frontier Foundation (EFF) and

American Civil Liberties Union (ACLU) to review and

improve the policies. A subsequent series of public

town halls, along with online feedback and discussion
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forums, were used to improve and finalize the AoT

privacy policies and governing principles[27]. After a

six-month public comment period, the policies as well

as all questions and concerns with responses from the

team, were published in early 2016, prior to the first

installations.

Here, edge computing and software-defined sensing

also provide a means for stronger privacy protections

than traditional camera networks, which transmit

and store all images, because all of the images are

analyzed within the node and then deleted, in contrast

to being sent to central servers for processing (and

saving). Moreover, a list of all image and sound

processing functions and associated research objectives

are maintained at the AoT website, thus publishing the

exhaustive list of what is done with images, rather than

a list of prohibited uses (implying an infinite number

of other potential uses). AoT nodes only save sample

images—typically one every fifteen minutes—which

are kept in a protected repository for research use only.

Access to this library of images, necessary for training

AI/ML algorithms, is provided to academic researchers

under a data use agreement that defines the specific

intended use and prohibits, for instance, publishing

any images with visible identification, such as faces or

license plates.

All of these training images are owned by the

University of Chicago, and the nodes are managed and

operated by the University of Chicago and Argonne

National Laboratory. The City of Chicago provides

power and installation services, but the city has no

special access to the limited volume of training images,

which are only available for scientific research within

the data use agreement.

2.4 Practical matters

A common question early in the AoT project was

“how will you decide where to place AoT nodes, with

only a few hundred nodes and a city of nearly 600

square kilometers?” Through the policy discussions

noted above, a rubric was developed for node placement,

requiring three factors. Firstly, it is essential that

residents are interested in an issue for which AoT devices

can provide relevant data, such as air quality, traffic

safety, or noise. Secondly, one or more scientists must

be interested in using AoT data to study that issue.

Thirdly, a representative from local government, such

as a commissioner or department head, must share

the interest in understanding and potentially acting on

the insight from scientific analysis of AoT data. In

some cases, the locations were suggested by scientists

as illustrated by the line of nodes along the 18-mile

shoreline of Lake Michigan in Fig. 1, which is intended

to support the study of lake-effect on air quality and

weather. In other cases, locations were requested by city

officials. For example, Chicago’s Vision Zero safety

program[28] requested nodes in the forty intersections

and corridors with the greatest number of traffic-related

fatalities. In at least a half dozen instances, the requests

came from residents or community groups (for example,

a school crossing guard concerned about illegal heavy

truck traffic).

Most nodes were installed by the Chicago Department

Of Transportation (CDOT), and discussions regarding

electrical safety and ease-of-installation began with

CDOT electricians two years before the first installation.

In addition to electrical safety reviews, this collaboration

led to design changes to streamline installation in order

to enable crews to swap (i.e., upgrade) units in under

15 min—roughly the time it takes to change holiday

decorations.

The most common AoT installation is on a traffic

signal light pole, roughly 8 m above the sidewalk,

with the unit (and thus the downward-facing camera)

facing the center of the intersection (see Fig. 3). In

most cases, this provides a field of view covering the

entire intersection including sidewalks and crosswalks.

Additional partners also installed nodes, including

Crown Castle Communications and ComEd/Exelon.

AoT nodes have dedicated electrical circuits to reduce

the possibility of being confused with operational traffic

signal systems during routine city maintenance work.

Though not legally required, AoT nodes were also tested

for susceptibility to power surges and for radio frequency

emissions to provide evidence (if requested) that the

Fig. 3 A typical view from an AoT camera showing object

recognition results from edge software.
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devices would not interfere with other services.

Corporate partners also participated in the project.

Intel designed, developed, and prototyped the air

quality sensor board; Cisco and Schneider Electric

brought engineering insight into packaging electronics

for outdoor installation; AT&T provided initial cellular

data service; and Microsoft prototyped an education

portal for students to analyze AoT data.

3 Software-Defined Sensors for Urban

Social Sciences

AoT introduced new capabilities for measuring the

urban environment, with rudimentary software-defined

measurements, such as river water levels, cloud

cover, or pedestrian and vehicle flows (e.g., Fig. 4).

The AoT devices—still used today to develop such

measurements—nonetheless have very limited edge

compute capacity relative to what is available now, four

years after the first units were built. AoT is now one

of several measurement instruments, or observatories,

participating in the NSF-funded SAGE: A Software-

Defined Sensor Network project[29]. Below we discuss

Fig. 4 Software-defined sensor to measure crosswalk usage.

Images courtesy P. Bharti, D. Koop, and M. E. Papka,

Northern Illinois University.

the SAGE project, the basics of software defined sensing,

and applications in social and behavioral sciences.

Fundamentally, AoT is a distributed system of

independent computing and sensing devices with a

central service (as detailed in Section 2) to publish

measurements. Such a system allows for software-

defined sensors—measurements defined by software

running within the nodes based on analysis of data from

the node’s sensors, including cameras, microphones, etc.

SAGE builds on lessons learned from AoT[7] to extend

the Waggle platform in several directions. The first is

a modular design to support independently developed

(or purchased) sensor packages, commercially-packaged

cameras, and edge processing functions. Thus, different

projects can develop or purchase commercial sensor

packages necessary for their investigations. The second

involves extensions to the software infrastructure to

enable scientists to develop, test, and deploy edge

functions as discrete modules, similar to the virtual

machines that can be developed, managed, and operated

as units in cloud services, such as Amazon Web Services.

3.1 SAGE: Cyberinfrastructure for software-

defined sensing

With today’s edge computing power, scientists can

design software-defined sensors ranging from image

processing (e.g., count the number of people wearing

face masks) to fully autonomous behaviors, such as

to learn what are “typical” values for measurements

and increase the sampling rate when atypical events

or conditions are detected. For example, if the typical

pedestrian count at 3 am is fewer than 5 people but 50 are

detected, an autonomous software defined sensor could

begin to analyze the aggregate movements of the crowd

to determine the nature of the gathering.

For AoT, the significantly increased edge computing

power of SAGE nodes will enable more nuanced

measurements heretofore requiring trained human

observers. These will in turn catalyze new research into

human interactions in public spaces, such as not only the

trajectories of people moving through a public square,

but how those movements are influenced by other people

and groups. Combining these visual analyses with

sound analysis capabilities[30], researchers can begin

to explore whether it is possible to determine stress,

depression[31], fear, or social cohesion[32] from ambient

measurements of human movement. For example, speed

or gait measurements—extrapolating from nonhuman

animal research[33–35] and also from research on the pace
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of life and movement in cities[36, 37]—could be used to

measure individual and group level factors (e.g., mood,

stress, and neighborhood cohesion). Auditory data,

such as the volume and pace of speech[38, 39], as well

as physical activity, exposure to human voice, ambient

audio amplitude, phone usage, and location data[40],

could also be used to further elucidate specific features of

people in these spaces to predict their internal emotional

states.

The central objective of the AoT and SAGE software-

defined sensor work is to provide a platform with

which scientists can define these and other new

types of measurements about the urban or natural

environment. For instance, new protocols, such as the

Gehl Institute’s Public Life Protocol[41] for measuring

the use of public spaces, are ideal for implementing

via software-defined sensors. The work of a computer

science team at Northern Illinois University (NIU)

shown in Fig. 4 demonstrates exactly the kind of

software-defined measurements necessary for the Gehl

Public Life Protocol. Similarly, these types of new

measurements are needed in order to explore the impact

that different urban and natural environments have

on cognitive performance[42, 43] or more generally how

urban morphology affects human decision-making[44].

3.2 Observation with computer vision

Computer Vision (CV) systems seek to obtain high-

level information from digital images or video. A

computer vision technique may produce numerical

or symbolic information, e.g., there are 6 cars, or,

this is a coyote, not a dog. CV has been an active

area for computer scientists since the 1960s, and

includes tasks, such as object detection and recognition,

event detection and recognition, motion tracking, and

3D scene reconstruction. Many techniques have been

developed using geometry, physics, statistics, and

signal processing (electrical engineering), but recent

CV systems often rely heavily on ML. These ML-

based approaches have outperformed earlier methods

for many tasks, especially object/event detection and

recognition. Object recognition or object classification is

the task of identifying that the image contains a specific

object (from a set of possible objects). Similarly, event

recognition is applied to video to classify the video into

one of a set of pre-specified activities (e.g., person is

playing guitar, brushing teeth, etc.). Tracking involves

locating the same object in a sequence of images (or

video). While object recognition could be applied in

every image of the sequence, more effort is involved to

“connect” the object across images. For example, if two

people cross by each other, simply recognizing that there

are two people is not sufficient. Tracking algorithms

typically also use various techniques to measure the

similarity between objects across images in the sequence

and assign unique IDs to objects, as is illustrated in

Figs. 3 and 4, which shows the output of a tracking

approach to record movements of pedestrians.

Computer vision techniques can thus be developed

to address a large variety of applications. For example,

object recognition could be used to recognize animals

and measure occurrences of urban wildlife. AI-based

methods in CV can also classify images along axes, such

as natural-vs-built or ordered-vs-disordered (Fig. 5). CV

might improve traffic control by adjusting traffic signal

timing to improve flow. Likewise, CV methods could

Fig. 5 Use of AI to extract straight edges (magenta) and curved edges (green) from scenes for characterization of different

features of the scene (e.g., more ordered vs. more disordered[45–48] as well as providing privacy protection). Figures adapted

from Ref. [49].
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make it straightforward to understand, for instance, the

impact of at-grade rail crossings on different types of

roadway traffic. By recognizing and counting the number

of types of vehicles (public transit, private, emergency,

etc.) affected by an at-grade rail crossing, decisions can

be made as to which crossing should be prioritized for

replacement with under- or over-passes.

Pedestrians interact in a variety of ways that can be

observed even from a distance. Observing pedestrians,

isolating individual bodies in motion, and tracking this

motion in space as just described can yield information

about body velocity and acceleration, distribution of

spatial distance among bodies, and collisions. These

basic measures could be used, with an appropriate

ground-truth database of motion-related to behavior, to

infer social relationships among the bodies. For example,

a group of bodies sharing velocity with a defined

spatial distribution would constitute a group. Vectors

for different groups that come together or have different

trajectories could form an observational basis for

inferring social relationships among groups. Similarly,

two vectors for individuals coming together and stopping

before collision could serve to make inferences about

a social interaction between individuals. To the extent

that the major axis of a body can be observed, some

aspects of posture or body inclination can be classified

and possibly serve as the basis for inferring more

about the nature of the social interaction (see Fig. 6).

Similarly, sound recording, if sufficient to capture speech

envelope information of proximal pedestrians, could

be used to model the prosodic aspects of pedestrian

speech. Combined with spatial vector modeling of

motion and body inclination, these observations could

provide the first naturalistic measurements of real-life

social interaction including the affective tone of the

communication.

In principle, this information could be used as the

basis for classifying the nature of the social interaction.

Are groups or individuals that come together interacting

in a positive or negative way? How does the frequency of

such interactions vary with environmental, sociological,

and cultural factors? Is it possible to predict an adverse

or threatening interaction from the trajectory of motion

of a group or person prior to the interaction? Does the

prediction based on particular motion parameters change

based on heat index, air quality, proximity of green

space, Social-Economic Status (SES), neighborhood

crime statistics, or population diversity? By observing

pedestrian movement at street level, measuring sound

Fig. 6 Use of edge computing in Ref. [53] to detect a

pedestrian crossing during a red-light (top) and analyze body

language (bottom). Images courtesy of Potdar and Torrens,

used with permission.

properties and spatializing those to particular pedestrians,

and combining these visual observations with acoustic

measurements, it is possible to address a large number

of questions about social interaction including physical-

social interaction within and between different social

groups, such as race or SES, or amongst friends

and strangers. Although previous research has used

certain physical observations of individuals, such as gait,

proximity, and speech envelope, as markers of social

interaction, most of the prior work has taken place in

laboratory settings. While individuals in these studies

have been characterized by group membership (race,

SES, age, etc.) or relationships among group constituents

have been characterized (friends or strangers, same or

different races, same or difference SES, etc.), SAGE

software-defined sensing capabilities offer the possibility

to make these observations in the wild, in natural

environments, and at unprecedented scales, thereby

increasing the power of data to address fundamental

questions about behavior, mind, and society.

Observation of human location distributions has also

been used as the basis for inferences about behavior,

particularly in combination with other sources of data.

For example, predictive policing[50] has used statistical

distributions of crime locations and event data to predict

crime hotspots. In other words, criminal behavior is

predictable from past behavior-history data. But of

course this only predicts behavior probability and
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collecting such statistics is coarsely limited to the grain

of reporting. Using geotagged Twitter data can provide

more specific location and movement information[51],

but activities that are not fully Twitter-reportable (e.g.,

crime or just a chance social interaction) will not be

observed. Direct street-level physical movement can

augment such information and potentially provide, on

the basis of observed movement trajectories information

about the nature of the social interaction. Meng et al.[52]

used ego-motion from body mounted cameras to show

that physical body movements of different kinds have

different spectra. Although the egocentric motions

of looking and turning may not be easily detectable

from a third-person camera observation, small steps,

walking, and running have discernible spectra. This is

clear evidence that SAGE should support recognition

of aspects of motion trajectory and characteristics of

movement from an analysis of the visual record. Further,

Potdar and Torrens[53] showed that it is possible from

a street-level third-person camera to determine aspects

of pedestrian behavior, such as crossing a street at a

red light (Fig. 6). While the kind of modeling of limbs

that can be carried out shown in Fig. 6 from a street-

level view is not possible from a bird’s eye perspective

above the street, other inferences can be made. Hands

moving in front of the body, body changing orientation,

and bending will be observable. From these images, it is

possible to infer aspects of face-to-face social interaction

when taken together with changes in movement allowing

the possibility of classification as confrontation, greeting,

or conversation.

4 Underlying Technology: Waggle Platform

Ultimately, all of these software-defined sensor

applications require a robust, programmable platform

installed outdoors. Here we describe the Waggle

platform. Designing a device to support edge

computation and associated challenges, such as

packaging for severe weather conditions, increases

device complexity and requirements for security and

resilience. The edge computers must be well-secured

and require a high level of resilience, with the ability to

recover from common types of hardware and software

failures without physical intervention as they are

typically located beyond convenient reach on city poles

and buildings. When the AoT project was conceived, no

commercial devices provided the functionality defined

by scientific input from an expanding science and

education community[54]. A hardware/software platform

was necessary to support edge computation, reliable

data transmission, and protocols for keeping track of

continual streams of sensor readings from hundreds of

nodes. The Waggle platform that the team had begun

to develop at Argonne National Laboratory provided a

starting point.

We have elsewhere described the architecture and

details of the Waggle platform[8], which employs special-

purpose resilience and recovery hardware and software,

foundational architecture features to minimize security

vulnerabilities, and open protocols for communication,

management, and data publication. Designed to support

remote sensing, Waggle borrows its name from the

elaborate dance that honeybees perform to communicate

with the hive regarding the location of food sources[55].

Naturally then, the central servers that support AoT and

SAGE nodes are collectively called Beehive.

4.1 Platform at the edge: What is a node

AoT nodes comprise both computing and sensing

hardware, and are programmed to report all sensor

values at specific intervals (typically 30 s), transmitting

these to a central database (discussed below). Each

node has sensor packages (see Fig. 2), communications

(typically a cellular modem, though WiFi and other

options have been used in other Waggle projects), and

two fully programmable Linux computers. Because

they are typically installed high on utility poles or in

remote locations that make physical access impractical,

Waggle nodes include multiple hardware and software

components to enable recovery from common faults

(e.g., a power or network outage) without human

intervention.

One of the Linux computers functions as the “node

controller”, which performs system functions, such

as data integrity checking, reading simple sensors,

reporting data, and managing security and reliability.

The node controller is only accessed by system support

staff. The second Linux computer is used as an “edge

processor”, which runs user-provided software for

analysis of images, sound, and other sensor data.

Software running on the edge processor is reviewed to

ensure its functionality aligns with its description and

that it complies with privacy policies. This includes a

specification of what data will be recorded and reported

with other sensor data. User software running on the

edge processor has no way to transmit data—it places

data into a common data cache for the node controller to



Charlie Catlett et al.: Measuring Cities with Software-Defined Sensors 23

validate and transmit to the central database.

4.2 Waggle Beehive: Data and management

All AoT nodes (and Waggle nodes in other projects)

regularly transmit sensor readings, data from software-

defined sensors (e.g., the number of vehicles seen in

the past reporting interval), and internal management

data for system administration and troubleshooting.

Three central services are collectively called “Beehive”.

A registration service manages node registration,

secure credentials, and a database with node manifests

(node-specific data, such as location, street address, and

sensor hardware configuration). A management server

maintains encrypted (node-initiated) connections to

nodes along with information and tools for maintaining

software updates and configuration data. The third

service is a parallel database scalable to support

thousands of concurrent node connections for reporting

data. At each reporting interval, each node sends a set

of sensor readings. After injection into appropriate

databases, the sensor data are decoded, processed, and

exported as comma-delimited text. Each line includes

a node identifier, date and timestamp, metadata (such

as the sensor board, firmware version, and exact part

number of the sensor), and the raw data read from

the sensor (typically a voltage or current level). Each

line also includes the converted value of the raw

reading in appropriate units, such as temperature, light

levels, or sound pressure. With some sensors, this

conversion is a simple mapping while others involve

sensor-specific calculations, in some cases including

data from other sensors. For instance, some gas sensors

are temperature-sensitive or cross-sensitive to multiple

gases, thus conversion requires temperature data and

data from other sensors. For software-defined sensors,

the metadata include information to enable data users to

examine the software used to create the measurement.

The Beehive database does not provide access directly

to external users, but rather uses a periodic data push to

provide data through two public-facing services. First

is a data download service. Every 24 h all data are

exported to a bulk download server, where users can

download bundles ranging from a single day to all

data from the first installations in 2016. Downloads

include instructions and additional information, such

as where to find sensor data sheets and how to map

a node identifier to a geographic location. Waggle

supports multiple “projects” so that, for instance, the

Chicago AoT nodes and associated data services are

distinct from those associated with deployments in other

cities or deployments by other scientific teams, such

as environmental sensing projects. Secondly, Beehive

supports the AoT Application Programming Interface

(API)[56] by exporting data to a process that caches data

and handles API calls in Amazon Web Services. With

a latency of 3–5 min from measurement to availability

(not real-time, yet relevant for questions about what is

happening “at the moment”), the API supports mobile

applications and integrating AoT data into other data

systems.

4.3 Security

Primary node security risks identified through numerous

security reviews are (1) service disruption and (2) the

introduction of unauthorized functions, such as the

use of the cameras and microphones for surveillance.

These threats typically involve unauthorized access. To

reduce the potential for unauthorized access, Waggle

nodes have no software enabled to “listen” for, and

thus respond to, any network connection requests (even

from system administrators). This requires that the nodes

operate autonomously, initiating an encrypted Internet

connection back to the central servers to enable remote

access for management functions discussed above.

5 Conclusion and Future Work

In discussions with social scientists seeking to

understand cities, two challenges seem to recur. The

first is that experiments in laboratory settings are very

difficult to conduct “in the wild”, that is, in natural

urban settings. For instance, multiple studies show

that people tend to sit near others who look like

them[57], yet does this hold true with the movement of

people in public spaces? Are such principles limited

to seating in some contexts (e.g., a classroom) but not

others (e.g., on public transit)? Physical distance and

interpersonal movement have been used in relatively

restricted settings as measures of social interaction and

attitudes. Instrumenting public spaces with software-

defined sensors opens the potential for testing these

hypotheses in the real world, in natural human movement

and interaction, and provides an important basic test

of the interpretations of these findings. A second

challenge identified is a paucity of opportunities for

repeatable experiments, for instance to examine social

interaction theories in similar public venues across cities

of different populations and densities, cultures, climates,

or topology.
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To address the first of these challenges, a SAGE

laboratory is being deployed at the University of Chicago

in collaboration with its Environmental Neuroscience

Laboratory[58]. In order to interpret pedestrian motion

vectors, spatial distribution, postural inclination, and

acoustic properties of vocal behavior including speech,

it will be necessary to develop a database of defined

measurements. Firstly, from large scale data collection

with SAGE software-defined sensors, over a broad

range of pedestrian behaviors and interactions at street

level, after computing motion, spatial distribution, and

acoustic properties, multivariate statistical classification

of observations will yield sets of categories that can

be reviewed by human researchers. Taking examples

from each category, researchers can review and code

these examples for inferred social behavior (commercial

transaction, friendly greeting, threat, social affiliates

walking together, etc.). The reliability of this coding,

given software-defined observations, can be assessed

over the database. It will be important to have raters

come from diverse backgrounds and experiences to

reduce bias in the labeling. In fact, similar assessments

will need to be made on the initial training data to

ensure that we obtain a representative sample of social

interactions to avoid bias. Secondly, for a subset of

locations with SAGE nodes installed, higher resolution

instrumentation at ground level can produce a “ground-

truth” database that can be used to validate the coding

of the social interaction categories. The coding of the

high resolution audio-video recordings at ground level

can be registered against the coding of the software-

defined observation data, making it possible to test the

validity of the classifications against the ground-level

data. This strategy is being used in an installation at

Argonne National Laboratory to improve vehicle type

recognition. Traditional training images for vehicle

type are taken from ground-level rather than from 8 m

above, thus images from both vantage points are used to

improve the accuracy of vehicle recognition from such

angles.

For the second challenge—repeatable experiments—

the SAGE team is exploring the potential for a

collaborative, multi-city instrument—a set of software-

defined sensor deployments in common venues (e.g.,

a marketplace, public park, or rail station) across a

diverse set of cities in order to support these types of

investigations (Fig. 7).

Ultimately, software-defined sensing infrastructure,

which SAGE is developing, allows for the creation of a

new kind of social science laboratory. At any location,

in any city, where SAGE nodes are installed, it will be

possible to “stage” specific kinds of social interactions

(with or without ground-level recording). Confederates,

such as actors, can meet, travel in groups, or interact in

various “staged” ways as another means of producing

“ground-truth” data. These interactions, recorded in

high-resolution and through SAGE nodes, can be

coded as prototypes for categories of social interaction.

Similarly, such a laboratory would allow researchers

to set up experimental situations using human subjects

who are not confederates, that is, participants who

are not explicitly instructed to behave in particular

ways, but who are participants in studies designed

to elicit different kinds of behavior, such as helping,

challenging, greeting, ignoring, etc. These participants

would not know the purpose of their behavior when

acting, but would be primed to act in a specific way

by virtue of context or expectations. In this way, it

will be possible to elicit more natural social interaction

behavior than explicit instruction to actor-confederates

to further validate the classification of social interactions.

We have described the origins and development of

software-defined measurement systems to support new,

diverse scientific questions, focusing here on social and

Fig. 7 SAGE social and urban science partners are exploring a network of software-defined sensor deployments at common

venues in diverse cities (for example, public parks in (left-to-right) New York City, Chicago, San Francisco). Images from

Wikimedia Commons, used without modification[59].
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behavioral sciences.

Fueled with significant advances in AI/ML hardware

and software capabilities, the underlying objective of

this work is to empower domain scientists to “define”

the measurements they require. To this end, the SAGE

project is focused on supporting teams of AI/ML

and domain scientists developing their own software-

defined functions, and on providing a general-purpose

platform, Waggle, that allows such teams to focus on

measurements required for scientific insights without

first having to design and build bespoke instrumentation.
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