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Abstract

Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major
repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and
citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors
don’t satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are
needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-
authorship. Here, I define I1 for a single scientist as the number of authors who appear in at least I1 papers of the specific
scientist. For a group of scientists or institution, In is defined as the number of authors who appear in at least In papers that
bear the affiliation of the group or institution. I1 depends on the number of papers authored Np. The power exponent R of
the relationship between I1 and Np categorizes scientists as solitary (R.2.5), nuclear (R = 2.25–2.5), networked (R = 2–2.25),
extensively networked (R = 1.75–2) or collaborators (R,1.75). R may be used to adjust for co-authorship networking the
citation impact of a scientist. In similarly provides a simple measure of the effective networking size to adjust the citation
impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics.
Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more
accountable co-authorship behaviour in published articles.
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Introduction

Appraisal of the scientific impact of researchers, teams and

institutions using their publication record and citation metrics [1–

6] influences career development, funding decisions, and expert

and public perceptions about science. The future of single

scientists, teams and large institutions increasingly depends on

‘‘publish-or-perish’’ (or ‘‘get-cited-or-perish’’) principles. In this

competitive environment, the average number of authors per

paper is increasing [7–10]. An increasing portion of papers in

influential journals contain very extensive lists of authors. This

may reflect in part the welcome advent of more collaborative

research efforts. However, probably several co-authors don’t

satisfy full authorship criteria. Gift (honorary) authorship has been

demonstrated repeatedly [11–13]. Ideally, one should know the

nature of the individual contributions of each author in each paper

and several journals have adopted listing of contributions [14].

Yet, empirical assessments have shown problems also with listing

contributions [15,16]. When asked twice about their own

contributions, authors have had only modest agreement in their

two responses [16].

While it is often difficult to see what an author has truly done in

a specific paper, it may be easier and more informative to examine

one’s overall co-authorship behaviour across one’s whole publica-

tion record. Current systems of measuring productivity and

citation impact for individuals or groups count all papers and all

citations the same, regardless of what each author has contributed.

Such exercises have acquired strong supporters and have also

raised major objections [4–6,17–20]. For example, the most

popular metric currently is the Hirsch h index [1,2], defined as the

number of articles (of a scientist, group, or institution) that have

received at least h citations each. The original paper describing h

[1] is already a most highly-cited article itself with approximately

200 citations received per GoogleScholar. However, neither h nor

other similar indices provide information about the co-authorship

pattern of a scientist. Two scientists may have the same h, but one

may have no or only few co-authors in all her papers while the

other may be a participant of one or several large collaborations

and may have co-authored all her papers with dozens of others.

Similar difficulties appear in appraising teams and institutions

[4–6]. Several popular ranking exercises of institutions and

universities have received fierce criticism; a key problem is

suboptimal accounting for institutional size [4–6]. A larger

institution is expected to publish more papers, receive more

citations and have higher h. Defining the size of a team or

institution with administrative data is difficult. Quotas for size

would differ enormously depending on whether tenured faculty,

tenure-track faculty, associates, post-graduates, pre-graduates,

supporting staff, and close collaborators (some not even in the

same location) are counted or not.

Here, I propose simple indices that measure the networking

intensity, the effective size of a network, for scientists or groups of
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scientists who co-author papers. These indices are empirically

demonstrated with data on authors from the medical sciences and

comparatively on authors from physical scientists, where ‘‘mega-

authorship’’ papers with hundreds of authors are already

commonplace. I also demonstrate the use of these indices for

institutions.

Results

Co-authorship networking for single scientists
For a single scientist, I define I1 as the number of authors who

appear in at least I1 papers of that scientist. I1 increases with

increasing number of publications Np. With more publications,

opportunities arise for having more co-authors and for more

papers written in common with each co-author. This relationship

can be expressed with a power law Np = (I1)R. R is calculated as the

ratio log10(Np)/log10(I1). R reflects the co-authorship pattern. With

fewer co-authors per paper, for the same Np the I1 is smaller and R

larger. For the same I1, R increases, when a scientist writes more

papers (larger Np) with new or sporadic co-authors who don’t

contribute to I1; or keeps co-authoring only with a small core of his

most common co-authors.

R may be imprecise when the two measures that enter into its

calculation, Np and I1, are small, because then small changes may

result in considerable changes in R. I recommend to view R very

cautiously if Np,30 or I1,4.

I1 values are shown in Figure 1 as a function of the number of

papers Np for highly-cited scientists in Clinical Medicine and

Physics according to ISI (ISI highlycited.com. Available at: http://

isihighlycited.com Last accessed 2007 December 30). In particular

for Physics, the diversity is extreme with I1 values ranging from 6

to 235. The range of I1 for Clinical Medicine highly-cited scientists

is 9 to 25. About a third of the examined highly-cited scientists in

Physics have I1 above 130. They are all physicists who participate

routinely in extremely multi-authored collaborations, mostly in

high energy and particle physics. They have written few, if any,

papers as first authors, but based on plain citation counts they are

among the 250 most influential people in their science. The values

of R also range widely from 1.07 to 2.81.

I propose the following classification, based on R, to categorize

the co-authorship networking of scientists:

1. solitary (R.2.5)

2. nuclear (R = 2.25–2.5)

3. networked (R = 2–2.25)

4. extensively networked (R = 1.75–2)

5. collaborator (R,1.75)

The proposed cut-offs for R are simply an operational proposal.

If R is determined for large numbers of scientists in a specific

scientific field, it would also be possible to obtain quintile cut-offs

empirically. With increasing numbers of co-authors per paper,

typical R values may tend to get lower over time for several

scientific fields.

Figure 2 plots the R ratio and the h index for these same

scientists. This gives a more complete picture of the performance

of a scientist, since it shows not only the citation impact, but also

the co-authorship networking.

For authors with common names, it is unlikely that same-name

authors would share also co-authors. Therefore, if one inadver-

tently measures indices for a common name, Np will increase

(accumulation of papers from many authors), but I1 may not

increase similarly. This will lead to a spuriously high R. For

example, for Smith F, we get Np = 809, I1 = 9, R = 3.05.

One may also wish to adjust the h index for co-authorship

networking. I propose an adjustment that would standardize the h

index to what its value would have been for a typical ‘‘average’’

networking R = 2.00 (at the border between networked and

extensively networked). To do this, in general one may multiply

h by (R/2)k. Unadjusted analyses have k = 0. With increasing k

values, the citation impact of solitary-profile scientists is height-

ened, while the citation impact for collaborator-profile scientists

decreases.

For example, with k = 1, h is multiplied by R/2 to get hR = 2. This

standardization decreases the h index of the collaborator physicists

to a median hR = 2 of 29 (range 23 to 38) from the original

unadjusted median h = 53 (range 44 to 63). For the other highly-

cited physicists in the sample, the median hR = 2 increases to 71

(range 35 to 128) from the original unadjusted median h = 61

(range 37 to 116). For the sample of highly-cited scientists in

medicine, median hR = 2 is 86 (range 60 to 167) vs. the original

unadjusted median h = 83 (range 59 to 123). Upward or downward

changes for individual scientists are considerable.

R should not be confused with the total number of co-authors of

a scientist during his career. Scientists who typically co-author

articles with very large established networks of investigators will

have low R values because the same co-authors appear again and

again in their publications. Conversely, some other scientists may

also count cumulatively many co-authors, but these co-authors

may be different each time in each paper. The R index will classify

such scientists as solitary or nuclear. Paul Erdős, a legend for the

number of people he co-authored papers with, is a classic example.

In ISI, Erdős has Np = 671, h = 38 and his I1 is only 11, precisely

because during his life he kept moving and working with new

people each time. For Erdős, one gets R = 2.71, a most solitary R

value. His biographers stress exactly his solitary path where he

never really settled to be part of an established network. Per

Wikipedia: ‘‘He would typically show up at a colleague’s doorstep

and announce ‘‘my brain is open’’, staying long enough to

collaborate on a few papers before moving on a few days later. In

Figure 1. I1 values as a function of the number of papers Np for
selected highly-cited scientists in Clinical Medicine and
Physics. Both axes are in log-10 scale.
doi:10.1371/journal.pone.0002778.g001
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many cases, he would ask the current collaborator about whom he

(Erdős) should visit next.’’

Many scientists have relatively stable R, i.e. the same

networking profile, throughout their career (Figure 3). A solitary

scientist may remain solitary throughout his career and a

collaborator may retain the collaborator profile over time. There

are exceptions to this rule, however, e.g. the physicist Steven

Pearton (Np = 1300, h = 61 as of 2007) had R = 2.50 in 1987 (at the

border of nuclear and solitary), and this became R = 2.06

(networked) in 1997 and R = 1.94 (extensively networked) in

2007 as he grew larger teams of co-authors in superconductor

research.

Networking for institutions
For a group of scientists or institution (e.g. a university, hospital,

department, team, or research center), I define In as the number of

authors who appear in at least In papers that bear an affiliation of

that specific institution. Table 1 shows the In values for various

institutions for the papers published in a single year (2003)

carrying their affiliation. In offers a simple measure to approximate

the effective networking size of an institution for a given year. In

increases with increasing number of papers authored with the

affiliation of interest.

In is susceptible to clustering of extremely multi-authored papers

in an institution. The institution-affiliated collaborator authors

inflate the top ranks of authors that contribute to In. Occasionally

they may also carry with them some of their collaborators from

other universities, further inflating In. This phenomenon is

practically limited to high-energy and particle physics. Excluding

such physics papers from calculations considerably reduces In for

some institutions (Table 1). This corrected value is more

representative.

Another artefact can be introduced, if different scientists with

the same name in the same institution cluster as the same person

and inflate In, e.g. the Agricultural University of Tokyo spuriously

seems to have the same effective networking size (In = 23) as

Harvard University. The same problem may arise with any

Japanese institution and possibly other national institutions where

many names are redundant. Close inspection of the lists of most-

prolific scientists, shows this is not an issue for American or

European institutions which may also have some Japanese

scientists: it is not common to have two same-name prolific

scientists in the same foreign institution.

One may similarly define R also for groups and institutions as

R = log10(Np)/log10(In), but extra caution is needed. Most institu-

tions take R values around 3. The extremes in Table 1 are 2.60

(National Institute for Human Genome Research [NHGRI]) and

3.24 (Federal University of Rio de Janeiro). These two institutions

have the same In = 8, but very different number of published

papers in the year 2003 (244 versus 844).

For large institutions, adjustment of citation impact should be

performed with 1/In rather than R. Institutions represent a mix of

Figure 2. Citation h index as a function of R for the scientists of Figure 1.
doi:10.1371/journal.pone.0002778.g002
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authors with variable types of networking behaviour. Also a single

year offers only a snapshot of the career of each author. Overall, R

would increase, when there are more authors affiliated with the

institution who don’t publish enough papers to contribute to In. The

difference in R between NHGRI and Rio de Janeiro is attributed to

a much longer tail in Rio de Janeiro of authors publishing ,8

papers each but who nevertheless cumulatively publish many

papers. This long tail may reflect low productivity of many affiliated

authors, or a different mix of scientific fields. For example, NHGRI

conducts genetics research (a high-output discipline), while a

university includes diverse scientific disciplines, several of which

publish few papers per author per year. Disciplines with inherently

low productivity don’t contribute to In, i.e. they don’t increase the

estimated networking size of an institution. This is appropriate,

because these disciplines usually also get few citations even for

excellent work, since fewer papers are published in their fields.

Inactive authors also don’t contribute to In; this is also appropriate,

since In reflects the effective networking size.

The ratio of institutional h over In, Q = h/In, may be used as a

measure of citation impact adjusting for the effective networking

size. For example, the papers published with a University of Texas

affiliation in 2003 received in 2003–2007 six times more citations

than the papers published with a Tufts University affiliation, but

both have Q = 5.0, suggesting that both institutions produce on

average research of similar citation impact. Q values in Table 1

range from 3.1 to 7.1. Lower values are possible: e.g., in the same

time period, the National Academy of Sciences of the Ukraine has

Q = 2.3 (In = 9, h = 21) and University of Panama has Q = 1.5

(In = 4, h = 6).

For institutions that focus on common mainstream biomedical

and/or physical science disciplines, one may say that Q.6 is

outstanding, 4.5–6 very good, 3–4.5 good and ,3 fair, using a

time window of 5-year citation impact (including the year whose

published papers are analyzed). However, one should be cautious

with simplifications. Q may depend on the mix of disciplines

involved in each institution, e.g. Harvard is excellent in

Mathematics, but similar analysis on papers carrying Harvard

Univ and Dept Math in the same affiliation yields Q = 3.0.

One may examine also whether smaller teams or sub-

institutions with a similar research orientation have similar or

dissimilar Q indices. The five major medical centers affiliated with

Harvard Medical School (Table 1) have Q indices between 5.7 and

7.1, close to the Q value for Harvard University as a whole (6.7)

and Harvard University Medical School (Q = 7.0). Similarity of Q

values occurs despite considerable differences in the size of each

medical center (In 7 to 19; In = 21 for the medical school).

The appropriate time window for institutional citation impact

can be debated and there is no perfect choice [5]. Recent papers

may still have not accumulated their complete citation impact,

while papers published a long time ago do not reflect the current

status of an institution [3]. Increasing the citation window to 10

years (papers published in 1998, citations until end-2007) increases

all Q values, but discipline-related differences remain (all Harvard

Univ Q10 = 8.4, Harvard Univ SAME Dept Math Q10 = 3.8).

Discussion

The proposed indices provide a simple overall impression of co-

authoring behaviour. This allows examining whether a scientist has

been mostly a participant in large established collaborations vs. a

nuclear or solitary investigator. Nuclear or solitary investigators

would either work with a core of few colleagues or keep changing

collaborators rather than settling within a single large collaborative

network. The indices may also convey a sense of how large is the

effective networking size of a group or institution. This information

may complement and adjust productivity and citation metrics.

Figure 3. Evolution of R over time as function of the number of papers Np for selected scientists with different networking profiles.
doi:10.1371/journal.pone.0002778.g003
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Adjustment for co-authorship may correct some of the major

limitations of traditional bibliometric indices [17–20]. Not all

authorships are created equal, even within the same paper [11].

Ideally, one would like to know explicitly and truthfully the

contribution of each author in a scientific paper, but this goal is

often not met. Many journals still don’t report contributions or

report them vaguely. Authorship position (first, senior, middle

position) may offer hints on contributions, but this varies across

scientific micro- and macro-environments with divergent author-

ship cultures [21–24]. Moreover, even if one gives extra bonus to

first authorships, this does not solve the challenge of sorting

contributions of authors in other positions.

Alternative quantitative approaches for adjusting for co-authorship

may also be considered [20]. One may adjust citations for single

papers, e.g. dividing the number of citations in each paper by the

number of authors and using adjusted citation counts to generate

total adjusted-citation counts or respectively normalized h indices, as

performed automatically by the Publish or Perish software (hI,norm

index) (www.harzing.com). However, sometimes this may be a very

stringent adjustment. For example, the 2001 Nature paper on the

initial sequencing and analysis of the human genome received 5968

citations by the end of 2007, but included 244 authors, thus each

author of this truly landmark paper would get credit for only 5968/

244<24 citations. Similarly, mega-authored physics papers would

typically give credit for ,1 citation to each author; collaborator-

profile most-cited physicists may then be re-classified as being among

the least-cited physicists. Another option is to adjust citations in a

paper differently depending on the position of each author, e.g. the

first author may get credit for the full number of citations, while the

second and the last author may get credit for half, the third may get

credit for a third of the citations and so forth. However, it is difficult to

reach consensus on what adjustment would be appropriate across

different papers and disciplines. Many multi-authored papers simply

list authors alphabetically without any connotation of relative

contribution in the presented order. Moreover, such complex

adjustments would be computationally cumbersome. Conversely,

an advantage for the indices that I propose is their easy computation.

ISI Web of Science allows the routine automated listing of all authors

in a set of papers according to diminishing number of papers to which

they have participated. The set of papers can be defined based on the

name of the author or institution of interest. Many authors or

institutions may be appraised rapidly.

Table 1. Networking size and citation impact for various institutions.

Institution ESI ranking In (In with physics) h (h with physics) R Q

Harvard Univ 1 23 (26) 155 (157) 2.92 6.7

Univ Texas 2 24 (29) 121 (122) 2.90 5.0

Max Planck 3 19 (24) 103 (108) 2.93 5.4

Johns Hopkins Univ 4 18 (18) 111 (111) 2.94 6.2

Stanford Univ 5 16 (26) 108 (112) 3.05 6.8

Univ Washington 6 16 (17) 115 (115) 3.14 7.2

Univ Tokyo 13 36 (47)* 88 (92) * *

Univ Toronto 16 18 (19) 92 (92) 3.00 5.1

Univ Cambridge 18 16 (26) 88 (90) 3.08 5.5

Univ British Columbia 51 16 (25) 70 (71) 2.92 4.4

Tufts Univ 101 13 (13) 65 (65) 2.87 5.0

Mt Sinai Sch Med 151 13 (13) 62 (62) 2.81 4.8

Beth Israel Deaconess Med Ctr 201 12 (12) 80 (80) 2.87 6.7

Med Coll Wisconsin 251 12 (12) 52 (52) 2.74 4.3

Univ Grenoble 1 301 8 (14) 33 (33) 3.10 4.1

NHGRI 351 8 (8) 46 (46) 2.60 5.8

Charles Univ 401 9 (14) 32 (34) 3.22 3.6

Univ Fed Rio de Janeiro 451 8 (14) 25 (26) 3.24 3.1

New York Med Coll 501 9 (9) 36 (36) 2.73 4.0

Oklahoma State Univ 551 8 (8) 33 (33) 3.16 4.1

Montana State Univ 601 7 (7) 33 (33) 3.16 4.7

Tokyo Univ Agr & Technol 651 23 (23)* 29 (29) * *

Princess Margaret Hosp 701 8 (8) 42 (42) 2.91 5.3

Brigham & Womens Hosp 46 19 (19) 109 (109) 2.64 5.7

Massachusetts Gen Hosp 39 16 (16) 105 (105) 2.84 6.6

Childrens Hosp (SAME Harvard Univ) Not listed 7 (7) 51 (51) 2.99 7.3

Dana Farber Canc Inst 165 13 (13) 87 (87) 2.65 6.7

NHGRI: National Human Genome Research Institute. Data on In, h, R, and Q are based on papers published in 2003 and their citation impact in the 5-year window 2003–
2007. Extremely multi-authored physics papers are excluded using subject category filters. Essential Science Indicators (ESI) ranking is automatically generated by
Essential Science Indicators module of ISI Web of Knowledge based on citations to papers published in 1997–2007. * considered unreliable due to common Japanese
names (artifact).
doi:10.1371/journal.pone.0002778.t001
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With mounting pressure to publish-or-perish, more authors are

squeezed in the same manuscript [7–10,25,26], while the number

of papers over the last 35 years has simply grown at the same pace

as the number of scientists working in each field [27]. Therefore,

the publication and citation record of each researcher becomes

inflated primarily by the inclusion of more co-authors per paper,

not by taking the lead in more original work. When papers count

the same in bibliometric indices, no matter if single-authored, first-

authored, or co-authored with hundreds of others, investigators

may be willing to be more lenient in including more co-authors.

This may even pay off by reciprocal inclusion in each other’s

papers. Mutually enhancing collaboration may then regress into

paper trading. Moreover, the continuous funding and survival of

collaborations often depends on the CVs of the leaders; extensive

gift authorship is suspected for some influential chairmen [28].

The danger is major, if unscrupulous teams that practice mutual

gift authorship extensively [29] make their unscrupulous members

more competitive against scientists with more demanding

authorship standards.

Increasing number of authors over time does not reflect only

increased work that needs to be done per paper. An evaluation

focusing on studies with similar design has witnessed a significant

increase over time in the number of authors required to run a

similar study [7]. The proposed indices may be helpful in

addressing this trend of inflated co-authorship, by providing

information about the networking pattern of each scientist. While

in medicine coalitions of authors are not yet as large as those

observed in high-energy physics [27,30], an increasing number of

collaborative articles in prestigious journals have many dozens or

even several hundreds of authors. Systematic gift authorship or

other unsound practices for inflating CVs (e.g. salami publications

[31]) would show themselves as more extensive networking in the

indices that I propose. At the institutional level, excessive

publications and mounting numbers of authors per paper similarly

make an institution look larger in effective networking size and will

decrease its adjusted scientific impact (Q). Adoption of metrics that

measure and adjust for co-authorship may offer a disincentive

against poor authorship practices. Of course, a ‘‘collaborator’’

profile should not be taken to mean gift authorship. However,

authors may be more accountable about who will co-author a

manuscript, if they know that inclusion of more authors will

decrease their own estimated scientific performance.

Conversely to gift authorship, the opposite trend, ghost

authorship, typically occurs when corporate authors write

manuscripts for academics and the real authors don’t appear on

the manuscript [32]. The proposed indices would not be able to

pick the presence of ghost authors in specific manuscripts.

However, typically these manuscripts also have gift authors.

Therefore, the same inflation of networking indices may be

observed for these scientists.

The proposed metrics should not discourage true collaboration

that serves the needs of science rather than gift authorship. As

discussed above, the proposed metrics may downgrade the citation

impact of collaborator-profile scientists only modestly, while other

methods such as adjustment of citations per number of authors almost

totally eliminate their citation impact. Besides established networks

producing routinely high numbers of papers, new cross-field

collaborations at the margin of disciplines and in newly developing

fields are particularly helpful. Such collaborations increase mostly the

number of new co-authors in one’s CV. This does not affect I1,

therefore R decreases and the impact of one’s work becomes even

more prominent when adjusted by R. Therefore, the proposed

approach would give more credit to scientists who can create and be

involved in new cross-field collaborations.

The networking profile of a scientist may also be examined as it

evolves over time. Large-scale evaluations may examine whether

indeed most scientists have the same profile throughout their

career. A few scientists may also exhibit a mixed networking

behavior, e.g. they may have their own solitary methodological

work, but they may also be involved as participants in established

large collaborations. If their involvement in large collaborations

exceeds a certain level, they may get the label of ‘‘collaborator’’,

even though they may have also a strong track record in solitary

and nuclear work. Such scientists would also have a high hI,norm in

contrast to the typical ‘‘collaborator’’ whose impact is almost

annihilated in the hI,norm metric.

Some additional limitations should be discussed. The number of

indexed papers and citations depend on the database used [33]

(e.g. ISI, Scopus, or GoogleScholar). For some fields, specific

databases have deficient coverage, e.g. ISI has imperfect coverage

in Economics, Computing or Engineering. Citation counts also are

affected by entry errors [34], but the impact is small on indices

such as h, I1 and In that are roughly proportional on logarithm of

counts [1]. Entries for scientists with the same exact name should

be resolved. Also, the proposed indices can be tenuous when Np is

small. Finally, comparisons of scientists and institutions can be

misleading, when they work on fields with different citation

densities [35].

Automated indices should not replace critical scientific thinking

and careful multifaceted evaluation of excellence. However, even

with the best intentions, peer assessment may be subjective and

occasionally even clearly partial. Moreover, the proposed metrics

should not offer an alibi towards lack of transparency about author

contributions. We should encourage the complete, transparent,

and just communication of contributions for each scientist

participating in any project that results in a written manuscript.

Nevertheless, automated measures of performance have already

made a sweeping presence across scientific fields and they are

probably here to stay, so we need to find ways to improve them.

Absent a perfect, transparent world on who has done what, at a

minimum the proposed co-authorship and networking indices can

offer some clues about how each author is networking in

publishing scientific work.

Materials and Methods

Definitions
For a single scientist, I1 is defined as the number of authors who

appear in at least I1 papers of that scientist. For a group of

scientists or institution (e.g. a university, hospital, department, or

research center), In is defined as the number of authors who appear

in at least In papers that bear an affiliation of that specific

institution.

Calculation of I1 requires ranking co-authors in order of

decreasing number of papers that they have co-authored with the

specific scientist. Calculation of In requires ranking authors in

order of decreasing number of papers they have authored where

the affiliation of the specific institution is involved. The decreasing-

count ranking is conceptually similar to the process used to

calculate the Hirsch h index for citations [1,2].

Database of highly cited scientists
ISI Web of Knowledge includes a list of most-cited scientists in

each scientific field based on the number of ISI citations they have

received in the period 1981–1999. Approximately 250–300

scientists are included per scientific field. For this analysis, I

ordered the scientists in the fields of Clinical Medicine and Physics

alphabetically and selected every tenth name for further analysis.

Co-Authorship Indices
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Evaluation of publication records and citations was performed in

ISI Web of Science for the entire career of each scientist until

December 2007. Filters were used to exclude from all analyses

meeting abstracts, corrections, and art items since they would

increase the count of papers and co-authors without increasing

citations perceptibly. Subject category filters were used, when

needed, for disambiguation of same-name scientists. Four Japanese

scientists and 4 non-Japanese scientists with very common names

were not analyzed as it might not be possible to disambiguate with

sufficient accuracy which papers were theirs and which belonged

to synonymous scientists working in the same scientific field.

Analyses of I1 and R indices for the earlier phases of each

scientist’s career censored the publications of each analyzed

scientist at the end of 1987 and 1997, respectively. If a previously

solitary scientist starts publishing many papers with many co-

authors and the same co-authors are involved in many papers, R

may gradually decrease. R may increase if the opposite scenario

occurs (networked scientist becoming solitary). However, if a

scientist has already been a common collaborator in many

extremely multi-authored papers, R will not increase a lot, if he

switches to publishing in solitary mode: I1 is already very high and

the career-wide I1 can never decrease. This solitary switch would

be better captured if the specific period, rather than the whole

career is considered.

Previous adjustments of scientific citation impact for co-

authorship have considered adjusting the h index by the number

of authors in the h top-cited papers [20]. However, these top-cited

papers are not necessarily a large enough or representative sample

of the researcher’s corpus and the number of authors can be highly

susceptible to a few extreme values. The same susceptibility occurs

for the total or average number of authors when all articles

published by a scientist are considered. For example, an author

who writes mostly papers with 2–3 co-authors may have a grossly

inflated total or average, if he writes 2 papers with 200 co-authors

in each. Distributions of numbers of authors are often far from

Gaussian. The median number of authors also does not capture

the spread of the distribution. Similar to the h index, I1 and In has

the advantage of being robust to the influence of sporadic papers

with extreme counts. Moreover, there is no automated rapid

approach currently to record and analyze the number of authors

in a set of papers. For large collections of articles the time and

effort would be prohibitive.

Database of institutions
The analyzed institutions have been selected for evaluation

based on the numbers of citations that papers with each institution

address have received in the last decade according to Thompson

Web of Knowledge Essential Science Indicators (ESI) module

(available with subscription from Thomson Scientific Web of

Knowledge). Data were collected for the 6 most cited institutions,

for the most-cited Canadian, Japanese, and European universities

(Univ Toronto [rank 16], Univ Tokyo [rank 13], Univ Cambridge

[rank 18], respectively), as well as for systematically sampled

institutions that have the ranks 51, 101, 151, 201, 251, 301,

351,401, 451, 501, 551, 601, 651, and 701 for number of citations

in the same database. Also data were collected for the 5 major

academic medical centers affiliated with Harvard Medical School

(those with largest number of published papers in 2003 among

Harvard-affiliated hospitals) and for the Department of Mathe-

matics (Dept Math Harvard Univ) and Harvard Medical School.

For the main analysis, published articles in the year 2003 were

considered and their citation impact traced for the 5-year window

start 2003-end 2007.

It is expected that some scientist names and institutional

affiliations (in the range of 10% based on detailed analysis of

samples of ISI records) may have been miscoded in the ISI

databases, and this would slightly underestimate h, Np, I1, and In.

For institutional impact, Kinney has recently proposed [36] that

the ratio of the institutional h index by (Np)
0.4 characterizes the

scientific work quality of an institution. The adjustment by 1/In

that I propose follows the same principle, but there are also some

differences. When scientific disciplines have inherently low

productivity per author and receive few citations, adjustment by

1/In will not penalize institutions that foster such disciplines, while

the cumulative number of papers may increase considerably.

Conversely, adjustment by 1/In does not penalize an institution as

much as 1/(Np)
0.4 when there are many low-productivity scientists

in the institution publishing few papers each and the cumulative

number of their papers is substantial.
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32. Gøtzsche PC, Hróbjartsson A, Johansen HK, Haahr MT, Altman DG, et al.
(2007) Ghost authorship in industry-initiated randomised trials. PLoS Med 4:

e19.

33. Bakkalbasi N, Bauer K, Glover J, Wang L (2006) Three options for citation
tracking: Google Scholar, Scopus and Web of Science. Biomed Digit Libr 3: 7.

34. Garfield E (2006) The history and meaning of the journal impact factor. JAMA
295: 90–3.

35. Ioannidis JP (2006) Concentration of the most-cited papers in the scientific
literature: analysis of journal ecosystems. PLoS One 1: e5.

36. Kinney AL (2007) National scientific facilities and their science impact on

nonbiomedical research. Proc Natl Acad Sci USA 104: 17943–7.

Co-Authorship Indices

PLoS ONE | www.plosone.org 8 July 2008 | Volume 3 | Issue 7 | e2778


