
Measuring Cognitive Load using
Eye Tracking Technology in Visual Computing

Johannes Zagermann, Ulrike Pfeil, and Harald Reiterer

HCI Group, University of Konstanz

{johannes.zagermann,ulrike.pfeil,harald.reiterer}@uni-konstanz.de

ABSTRACT

In this position paper we encourage the use of eye tracking
measurements to investigate users’ cognitive load while in-
teracting with a system. We start with an overview of how
eye movements can be interpreted to provide insight about
cognitive processes and present a descriptive model represent-
ing the relations of eye movements and cognitive load. Then,
we discuss how specific characteristics of human-computer
interaction (HCI) interfere with the model and impede the
application of eye tracking data to measure cognitive load in
visual computing. As a result, we present a refined model,
embedding the characteristics of HCI into the relation of eye
tracking data and cognitive load. Based on this, we argue that
eye tracking should be considered as a valuable instrument to
analyze cognitive processes in visual computing and suggest
future research directions to tackle outstanding issues.
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INTRODUCTION

In addition to classical measurements of usability (effective-
ness, efficiency, satisfaction) [10], researchers and practition-
ers in visual computing are constantly investigating additional
metrics to assess the quality of system support for human task
performance. One such metric that is currently of interest is
the cognitive load that the system and task place on the user.
Cognitive load describes the amount of mental effort that is
used from the working memory while performing a cogni-
tive task [5] and interacting with a system [22]. Designing
successful systems means implementing visualizations and
interaction techniques in a way that they require little capacity
to use and allow the user to concentrate on the task at hand.
This includes to make good use of people’s perceptual and
cognitive abilities.

Focusing on cognitive processes, Sweller [23] distinguished
three types of load. The first kind of cognitive load is known
as intrinsic load, which is directly connected to the task at
hand (e.g. formulating a text). It cannot be influenced or
manipulated by the designer of a system. Extraneous load
refers to the load that is imposed by the format and the way
in which information is presented (e.g. the structure of an
interface). Germane load is caused by the effort that has to be
made in order to understand and process the materials. The
goal of successful visualizations is thus to keep the extraneous
load to a minimum by providing smooth system interaction.
A low extraneous load leads to more cognitive capacities for
intrinsic and germane load that both help to solve the task at
hand.

One widely used and validated measurement for the analysis
of task load is the NASA task-load index (TLX) [9] ques-
tionnaire, which divides task load that a system or a task
places on users into six sub-aspects: mental demand, physical
demand, temporal demand, own perception of performance,
effort and frustration. This questionnaire is currently the stan-
dard measure to investigate the extent to which a system or
a task strains users mentally, physically and emotionally. It
is widely applied in the HCI and information visualization
communities [8, 1]. As the nature of questionnaires applies, it
relies on subjective ratings of participants after an experiment.
Thus, in situ information cannot be provided, which implies
that the NASA-TLX cannot be used to provide real time infor-
mation e.g. for adapting an interface to the current load of a
user. In addition, the NASA-TLX collects users’ subjective
opinions, and it might not be applicable to assess unconscious
and even automatic processes.

Traditionally, brain activity has been measured through tech-
niques such as electroencephalography (EEG) and magnetoen-
cephalography (MEG) whose objective is to capture changes
in magnetic fields at the scalp caused by changing electrical
currents in brain neurons [7]. Cognitive load is one of the
indications of brain activity. The main strength of these tech-
niques is their millisecond-level time precision. However, this
measurement is quite intrusive to the user, requires a time-
consuming setup and its analysis is often complex. This also
inhibits real-time information and can therefore not be used
in situ or even in public. There are many other non-neural
techniques that are related to brain activity and cognitive load.
Cortical activity causes a small nervous response that is trans-
lated into variations in heart rate, blood pressure, electrodermal
activity, electrical activity in facial muscles, eye movements
and small dilations of the pupil.
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Recent studies have employed eye movement measures to in-
vestigate cognitive processes [17]. To this end, several studies
have investigated the relation of voluntary eye-movements
like fixations and saccades on cognitive processes [21] as well
as involuntary eye-movements like blink rate and pupil dila-
tion [17]. These eye movements are also called behavioural
(voluntary) and physiological (involuntary) [5]. Through the
tracking of the eyes, one can study a user’s physical reaction
to a task and a system and adapt the interface accordingly.
For example, in controlled environments, high-precision eye
trackers and pupillometers can be used to detect small pupil
dilations that are indicators of cognitive load [20]. However,
information visualization systems cover a wide span of con-
tent, visual representations and interaction modalities which in
itself influence users’ eye movements and make it difficult to
directly use eye movements as a measure of cognitive load in
situ. Thus, it is important to identify the interferences between
eye movements and cognitive load.

We believe that aspects of human-computer interaction can
help us understand how system interaction influences eye
movements. Especially in the visualization of large datasets
interactivity and thus HCI can be crucial factors: Interactivity
allows to manage limitations either on the human or on the
computational side by e.g. providing the possibility to inves-
tigate multiple levels of detail, to switch between different
views, or to compare various representations of data simulta-
neously [16]. Therefore, the field of HCI provides theories and
tools that help to design user interfaces that focus on human
factors as well as on the integration of computational power
[13]. A model describing the relation of eye movement, as-
pects of human-computer interaction and cognitive load can
help us understand how eye movements can be taken as a
measure of cognitive load in visual computing.

Current laptops have cameras to track faces, thus a technical
implementation of eye tracking technology into interactive
systems is becoming standard. If there is a link between cog-
nition and eye movements, eye tracking data can be used to
detect users’ cognitive states in situ. This information can
then be used by the system to adapt characteristics of visual-
ization and interaction to user’s current cognitive capacities
(like suggested by Portas et al. [19] and Manuel et al. [15]
in the learning domain). Thus, eye tracking could be used to
measure users’ cognitive processes during system usage to
allow the system to adapt to users current cognitive load.

Goal of the paper

Traditionally, performance has been described as the com-
pletion time of a task and the error rates. Including a third
measurement, cognitive load, can complement our definition
of performance. It will offer the possibility to distinguish be-
tween users who perform a task with equal completion time
and error rates but with different levels of mental effort, help-
ing to develop interfaces that require less cognitive capacities.
In addition, real-time information about a user’s cognitive
load could be used to adapt the content and presentation of a
system.

The aim of this position paper is to discuss the applicability
of eye tracking data to study cognitive load. This goal can be
divided into the following sub-questions:

• What are the eye tracking measures that are applicable to
analyze cognitive load in visual computing? (RQ1)

• Which aspects of Human-Computer Interaction influence
cognitive load? (RQ2)

• How can we analyze cognitive load in visual computing
using eye tracking? (RQ3)

We aim to construct a model that describes the link between
eye tracking metrics and cognitive load. In addition, we dis-
cuss how characteristics of HCI interfere with this model and
revise it respectively. We see this revised model as both, a
starting point for future research on this topic as well as com-
mon ground, which can trigger inspiration and discussions.
Findings can then be used to validate and further refine this
model iteratively. Finally, we suggest future work of what
we think could be either potential studies or ideas dealing
with real-world influences analyzing cognitive load with eye
tracking.

EYE MOVEMENTS AND COGNITIVE LOAD

This section summarizes eye tracking measures in general
and their relevance in assessing cognitive load. We discuss
related studies that employed eye tracking metrics in order to
investigate users’ cognitive and emotional processes. In the
second part, we present our model, describing the relations of
eye tracking metrics and cognitive load.

Eye tracking measures

As mentioned above, eye movements can be studied to detect
users’ cognitive states. This can be used to provide a system
with information about the user’s cognitive activities. In the
following section, we present related work to illustrate how
eye tracking measures are used to investigate and interpret cog-
nitive processes and cognitive load. We distinguish between
voluntary eye-movements like fixations and saccades and in-
voluntary eye-movements like pupil dilation and blinking. In
the following, these measurements are discussed and their
relation to cognitive processes and cognitive load is elaborated
on.

Fixations

The most common type of eye tracking event refers to a fo-
cused state when the eye remains still over a period of time.
This event is called fixation and lasts from 200-300 millisec-
onds to up to several seconds. It is a voluntary movement. The
number of fixations indicates the number of times that a user
looked to a certain area of interest (AOI). Thus, the state of
attention is indicated by the position of the gaze within the
display or a specific AOI. Rudmann et al. [21] found that the
gaze direction indicates the interface element that is relevant
for the current cognitive activity. It can be interpreted as a
repeated interest in an area. One can also make use of the
fixation duration, the period of time that a user looked to a
certain AOI. The fixation duration has been related to the level
of cognitive processing with a high fixation duration indicating



an increased strain on the working memory. This was accom-
panied by a decrease in fixation rate. Chen et al. conclude
that fixation duration and fixation rate are indicators of an
increment in the attention that is needed as the complexity of
the task increases [6].

Based on these findings, we propose the influence of cognitive
load on fixation duration (the higher the load, the longer the
fixations) and fixation rate (the higher the load, the lower the
fixation rate).

Saccades

Another eye tracking event refers to a shift between two loca-
tions. When the eye performs a voluntary movement from one
fixation to another, this event is called saccade. This movement
is the fastest movement the body can produce and typically
takes from 30-80 milliseconds to complete. The most common
visualization for saccades are scanpaths. One can measure
the velocity and length of saccades and observe the patterns
of a scanpath. Chen et al. [6] included the measurements of
saccade velocity and saccade length in order to investigate
human mental effort. Amongst other measures, their results
show that saccade velocity and length are highly discrimina-
tory parameters, both related to achieving a high performance.
Similarly, Manuel et al. [15] have found that a decrease in
saccade velocity indicates tiredness and an increase of saccade
velocity indicates a higher task difficulty.

Based on these findings, we propose an influence of cognitive
load on saccade length (the higher the load, the longer the
saccades) and saccade velocity (the higher the load the higher
the saccade velocity): However, we have to take into account
that these two measurements are highly correlated.

Pupil dilation

Another relevant eye measurement is the pupillary response.
It is an involuntary reflex and the pupil can range in diameter
from 1/16 inch (1.5mm) to more than 1/3 inch (8mm). Psychol-
ogists have argued for more than twenty years that changes
in pupil dilation accompany effortful cognitive processing.
Previous research has shown that users’ pupils dilate when
the difficulty of the task and their cognitive effort to solve it
increase [6, 19, 20, 18, 14]. Many studies have validated this
argument across a variety of tasks, including reading, problem
solving, and visual tasks [21]. Porta et al. [19] also observed a
decrease in pupil diameter size towards the end of the task in
their experiment, interpreting it as a potential sign for tiredness.
In addition to cognitive processes, variations in the brightness
of the environment produces changes on the pupil size. When
the environment becomes darker, the pupil dilates in order
to acquire more light and it contracts when the environment
becomes brighter. Controlling environmental brightness and
display luminance is crucial when pupil dilation is investigated
in experiments. Pomplun and Sunkara [18] have developed
and implemented an eye tracker calibration interface that is
able to almost completely eliminate the geometry-based distor-
tion of pupil measurements. They perform a pupil calibration
setup to determine the relative size of the pupil as a function
of the participant’s gaze position. In order to compute the
pupil dilation induced by cognitive load, they subtract the
calibration value for the current display brightness from the

current measured pupil size resulting in a method for accurate
cognitive workload measurement even in situations where the
display brightness cannot be kept constant.

Therefore, we propose an influence of cognitive load on users’
pupil sizes, in the sense that the pupil dilates with increasing
cognitive load.

Blink rate

Rate and latency of blinking activities can be another eye track-
ing metric providing information about a user’s cognitive load.
Blinking can be a voluntary eye movement although, most of
the time, it is an involuntary movement. The rate and latency
of blinks can help to provide a deeper understanding about
the state of attention of the participant. For example, high
blink latency and a low blink rate has been found to indicate
high mental effort [6]. Similarly, Manuel et al. [15] found
that an increase in the blinking rate, a decrease in the blinking
velocity and a decreasing degree of the eyelids’ openness are
signs of increasing tiredness.

Based on these findings, we propose an influence of cognitive
load on blink rate (the higher the load, the lower the blink
rate) and blink latency (the higher the load, the higher the
blink latency). Furthermore, there might be a relation between
cognitive load and blink velocity.

Model of Eye Movements and Cognitive Load

There have been several studies in the field of cognition states
and eye tracking for visual and auditive tasks, e-learning, and
visualization of interfaces that investigate cognitive processes
and cognitive load. This previous research shows that volun-
tary as well as involuntary eye movements can be used as ways
to measure cognitive load. Figure 1 shows the influence of
cognitive load on aspects of the four discussed eye movements:
fixations, saccades, pupil dilation, and blinks. For the sake of
simplicity, we deliberately focused on these main metrics. Fu-
ture research has to prove if minor eye movements like smooth
pursuit or microsaccades could be indicators of cognitive load,
too.

Figure 1. Model of eye-based indicators of cognitive load.



As previously discussed, our model (see Figure 1) is based on
several mostly artificial lab experiments with e.g. controlled
luminance of the environment and the interface, a precise
sequence of tasks, and high precision devices. This results
in a focus on intrinsic (represented by a task) and germane
(processing of content) load. We believe that in real-world vi-
sualization settings, it is especially important to focus on extra-
neous factors as a minimization of these can provide free cog-
nitive capacities to be used for the task at hand. At the moment,
extraneous factors, that are essential aspects of HCI, are mostly
excluded: Visualization and Interaction. To further elabo-
rate on this, we discuss several aspects of human-computer
interaction based on the conceptual framework Blended In-
teraction [11] and their influence on eye movements in the
following section.

BLENDED INTERACTION & DOMAINS OF DESIGN

Jetter et al. [11] introduced Blended Interaction – a concep-
tual framework that describes the nature of human-computer
interaction. The concept of Blended Interaction combines
the virtues of familiar physical and social environments with
the benefits of the digital realm in a way that desired proper-
ties of both worlds are preserved while providing a ’natural’
human-computer interaction. To illustrate their concept of
Blended Interaction, Jetter et al. [11] apply it to four domains
of design: Individual Interaction, Social Interaction and Com-
munication, Workflow, and Environment. These four domains
can basically serve as lenses or points of view to identify HCI
aspects of information visualizations.

• Individual Interaction describes the way each individual
interacts with an interactive system, the usage of different
input modalities like pen, touch, or traditional input via
mouse but also the interface itself.

• Social Interaction and Communication describes the so-
cial aspects, standards or norms that influence the way we
collaborate via the system.

• Workflow describes the overall workflow in which multiple
tasks are embedded.

• Environment describes the physical environment in which
interaction takes place.

The framework and especially the named four domains encom-
pass not only technical aspects but also physical surroundings
and social context of an interface. As these additional factors
also influence eye movements, we believe that this framework
– although it was originally developed for a different purpose –
is particularly applicable for our work.

Eye tracking and Blended Interaction

In this section we describe possible correlations between the
four domains of Blended Interaction and major eye move-
ments.

Individual Interaction

Visual interfaces are designed to draw users’ attention to spe-
cific areas of interest: menus, content, and tools. The task at
hand requires users to focus on specific content while knowing
where to find proper tools. Thus, the location of the fixation

is influenced by the system design in the sense that the con-
tent influences the users’ fixations. Visual representations of
content might influence fixation location, duration and rate
without a cognitive engagement.

The structure of the interface as well as the activity that the user
performs with the system influence saccadic eye movements:
for example in visual analytic tasks where users have to switch
between different tools, layers, and views, users not only have
to select and use the named interface elements, but also have to
visually search for specific items. Depending on the structure
of the interface and the expertise of the user, this can result in
differences in length, velocity and angle of saccades. Thus,
the activity that the user engages in influences saccadic eye
movements. For example, searching for information in images
results in different saccades than reading a text.

Interaction with a system through different in- and output tech-
nologies and modalities also influence eye movements. Input
devices might require the user to not only fixate on visual in-
formation on a display, but also to visually focus on the input
device itself. Knowledge worker often switch between differ-
ent media: Printed information has to be read, highlighted with
physical tools such as pens and later summarized on digital
input and output devices. Visual analysts often switch between
desktop displays, high-resolution wall displays and portable
devices while taking notes on sheets of paper [13]. This mixed-
focus working style with multiple analog and digital media
artifacts and devices influences saccadic eye movements and
fixations. In addition, it also influences pupil dilation and
blinking behavior as the luminance of the element in focus
changes frequently.

In summary, we conclude that regarding the individual in-
teraction, it is especially the content, the activity, as well as
the input- and output modality that influence eye movements
(see column b) in Figure 2). Thus, it is important to focus on
these kinds of interferences when investigating the relation
between eye movements and cognitive load through the lens
of individual interaction.

Social Interaction and Communication

Many interactive systems are inherently social, as users often
work with a system in groups. Even in cases when a user uses
the system individually, (s)he is situated in a social context,
as (s)he is embedded in a social environment which might
require him/her to engage in communication and coordination
activities beyond system usage. This means, that users might
change their visual focus often, in order to cope with social as-
pects while interacting with an application. Depending on the
activity, the number of collaborators, and interactive devices
various physical as well as social situations can occur. For
example, multiple persons can stand around a tabletop, gather
around a small display, or sit in rows while another person
holds a presentation.

Different physical positions of persons as well as social roles
can influence saccadic eye movements to allow for face-to-face
communication. Switching focus between different collabora-
tors and interactive devices not only results in differences in
fixations and saccades but also in differences in blinking rates



Figure 2. Model of eye-based indicators of cognitive load with possible influences of different aspects of HCI.

and its velocity. This mixed-focus nature of collaboration can
be exhausting for the eye itself, resulting in a higher blink rate.
Communication with collaborators often appears as face-to-
face communication, which means focusing on another person.
In combination with working on digital tabletops, or mobile
devices, the pupil size changes due to different luminances
and distances.

Investigating the cognitive load with eye tracking requires to
take into account the social setting as well. Analyzing systems
through the lens of Social Interaction and Communication
requires to take into account the interference of eye movements
through communication (see column b) in Figure 2).

Workflow

The structure and sequence of individual and social interaction
activities can be guided by an overall workflow that defines
several phases of a task and the intended outcome. Often,
these workflows can be described as mixed-focus: Knowledge
workers find important information in physical books on their
table, that have to be transferred to office applications, using
the right tools and input devices. Same for visual analysts: the
comparison of documents and visualizations [3], the summa-
rization of interesting data [4], and possible discussions with
colleagues [12] can be seen as subtasks of an overall workflow.

Multiple devices and pieces of information in a variety of
media are represented as various areas of interest and should
thus be considered when analyzing cognitive load in visual
computing. The sequence of various tasks and activities in
mixed-focus environments can require the user to focus on dif-
ferent areas of interest (either digital or analog) and therefore
influence saccadic eye movements. The same is true for dif-
ferent subtasks: Switching between printed and digital media
or multiple devices with different screens can be exhausting
and thus influence blinking behavior. Also, different types

of media or even different types of output devices can have
various luminances, which influences pupil dilation.

When analyzing cognitive load based on eye tracking data in
settings that require users to engage in multiple activities with
multiple devices, researchers should take into account that
users have to switch their visual focus frequently. Thus, it is
important to incorporate focus switch (see column b) in Figure
2) as a main interference when analyzing cognitive load with
eye tracking through the lens of Workflow.

Environment

Interactions take place in a physical environment: e.g. an office,
a control room, or in a conference room. Different types and
shapes of interactive devices and a great variety of physical
surroundings (either moving or stationary) compete for users’
attention and focus while performing a task. Thus, an interface
cannot be regarded on its own, but the resulting fixations
have to be evaluated with respect to the physical surroundings.
Not only multiple different devices and the resulting switch
of focus but also environmental characteristics like e.g. air
temperature, humidity, or luminance can exhaust the eye and
result in blinking. The physical environment and the overall
luminance have the highest impact on pupil size. Eyes regulate
light input depending on the luminance of an environment with
changing the size of pupils.

When analyzing cognitive load based on eye movements
through the lens of Environment, it is thus important to incor-
porate environmental aspects (see column b) in Figure 2) into
the analysis as it poses several interferences to the eye tracking
measurements.

A Revised Model of Eye Movements and Cognitive Load

Based on the discussion of the four domains of HCI in re-
lation to eye movements, we revised our model. Figure 2



shows how the four domains of design directly influence eye
movements. The individual interaction, which refers to dif-
ferent input & output devices as well as modalities, has an
impact on number & duration of fixations – the content and the
current activities influence different aspects of saccadic eye
movements. Social roles and the physical position of involved
persons and thus communication can lead to pupil dilation as
the focus changes. Environmental aspects can also influence
pupil size and blinking rates e.g. due to factors like luminance
or humidity.

We believe that this model can serve as a starting point for
future research when measuring cognitive load. It shows the
influences of system usage on eye movements that need to
be taken into account when using the same eye movements
to interpret users’ cognitive load. As we are in the starting
phase of a research project on quantitative methods for visual
computing1, we want to further evaluate, iterate, and extend
our proposed model.

As a first step, we present possible studies and ideas on how to
deal with real-world influences on eye tracking measurements
of cognitive load in the next chapter.

IMPLICATIONS FOR FUTURE RESEARCH

The following four implications for future research serve as
both: starting points for further evaluations as well as examples
of how the influences of different confounding factors can
be addressed when assessing users’ cognitive load using eye
tracking technology.

Pupil Dilation and Environment

Pfleging et al. [17] proposed a model on how to measure work-
load based on pupil dilation independently of the environmen-
tal luminance. In their experiment, they studied the influence
of six different lighting conditions and tasks with varying
mental demand. In their model, they describe the total pupil
dilation as the sum of luminance-based and workload-based
influence. Thus, knowing the luminance of the environment
can help to calculate load originated by the task at hand (see
Figure 3). However, as individual differences in pupil size are
quite large, one cannot easily substract the luminace-based
value from an individual’s pupil diameter without knowing
the individual pupil diameter in a non-loaded situation. This
could be solved by calculating an individual’s change of pupil
diameter as the measured luminance (interface, output device,
and environment) varies over time while interacting with a
system. These values can then be used to establish an indi-
vidual’s average pupil size and how it reacts to changes in
light conditions (e.g. compare the machine learning based
classification of cognitive load as described by [5]). Based
on this, conclusion about the user’s cognitive load could be
drawn, not based on a static value but based on the pupil size’s
dynamic changes over time.

Future research into this should focus on real-time measure-
ments of pupil dilation and light condition and on how these
values can be taken as a baseline to conclude about the user’s
cognitive demand ad hoc.

1SFB/Transregio 161 - http://www.trr161.de

Figure 3. Focus on the relation of Environment and Pupil Dilation

Saccades and Individual Interaction

Saccadic eye movements are highly distinctive and task-
dependent [24]. Based on the task at hand and the content
of the interface, a model could predict appropriate saccadic
eye movements (see Figure 4). For example, when reading
a document, it is already possible to tell from the patterns
of a scanpath how well the reader has understood the text
[2]. Aligning the actual saccadic eye movements with the
ideal saccades for a specific text helps to identify the extent
to which the user has understood the text. In addition, the
number of regressions (times that a user’s saccades go back-
wards whilst reading) as well as the reading speed (based on
the time between the start and end fixation of reading) indicate
users’ comprehension of a text. Based on this knowledge,
conclusions can be drawn about users’ current state of cogni-
tive load. This information could be used in real-time e.g. to
lower the difficulty of the text (if the cognitive load is high)
or provide additional information such as further descriptions,
or annotations (to challenge the user if the cognitive load was
considered to be low).

Figure 4. Focus on the relation of Individual Interaction and Saccades

Future research should thus aim at investigating "optimal"
saccadic patterns for specific atomic and compound tasks (like
has been done for reading) that are considered to be essential
in visual computing settings (for example analyze, produce,
search, query [16]). Furthermore, future research should ad-
dress how these optimal paths could be taken as a baseline
for comparisons with actual scanpaths to indicate a user’s
cognitive load.

Fixations and Individual Interaction

Up to now, researchers have mainly investigated AOIs when
using eye tracking to evaluate interactive systems. Further,
Rudmann et al. [21] have used the investigation of AOIs in
relation to cognitive states. Their results show that users ac-
tually visually focus on relevant parts of the system when
solving a task. Depending on the content and the task at hand,



focusing on specific aspects might support the user in its task
and therefore lower his cognitive effort. One example of this
is the attention that the user has to place on the input device
instead of the display (see Figure 5). Ideally, interaction with
the input device should be easy and smooth and should not
require any visual focus from the user’s side. Thus, measured
eye-fixations on the input device could indicate that handling
the device places an unnecessary cognitive demand on the user.
This can also be transferred onto the visual display as well.
Not being stressed might result in the user fixating AOIs that
help him performing a task. Cognitive load might trigger him
in visually attending to AOIs that are not of importance in
his situation. Also, the distribution of fixations on the display
could indicate cognitive load, as frequent fixation-jumps be-
tween different AOIs might indicate a higher cognitive load
than visually attending to one AOI (many fixations within
one AOI) before moving to the next one. On the other side,
focusing too long on one AOI might also indicate that the user
has difficulties understanding the content and is cognitively
loaded.

Figure 5. Focus on the relation of Individual Interaction and Fixations

Future research should further address the relation of fixation
duration time on an AOI and cognitive load in different task
settings to better understand how dwell time and fixation rate
as well as spatial distribution of fixations can be taken as a
measurement of cognitive load in visual computing.

Blinks and Workflow & Environment

Both, the workflow for the tasks at hand and the environment
in which users perform them, can influence the blinking rate.
Different lighting conditions and brightnesses of output de-
vices can exhaust the eye, which leads to a higher blinking rate
(see Figure 6). This increased blinking rate could be falsely
interpreted as an indicator for cognitive load as up to now it
is not possible to detect whether a blink is originated by the
cognitive load a task places on the users or whether it is caused
by workflow sequences with mixed-focus tasks. Using mobile
eye tracking glasses, a system could match the current gaze
position to specific context information like e.g. the brightness
of the current display or the type of media. Blinks that are de-
tected as not related to cognitive load could then be dismissed.
As the blinking rate is not only highly depending on the task
and environment but also on the individual eye characteris-
tics, a running average per user could detect blinking patterns
regarding the workflow and environment. Based on this, a
system could detect blinks connected to an increased cogni-
tive load and adapt the content of the current task accordingly.
Additional recommendations could be served to help users to
be aware of their actual load.

Figure 6. Focus on the relations of Workflow, Environment, and Blinks

Future research should thus further investigate factors that
can exhaust eyes like e.g. brightness of displays or similar to
further create models that describe their influence.

We think that these four described implications for future re-
search could serve as triggers as well as inspiration of how
different aspects of human-computer interaction can influence
the way cognitive load can be measured using eye tracking
technology. We think that a combination of multiple measure-
ments of eye movements with respect to the task at hand and
the overall context is a promising way to cope with current
issues.

CONCLUSION

Measuring cognitive load using eye tracking technology can
be seen as an effective and convenient way to evaluate systems
beyond classical measurements such as errors or task comple-
tion time. The provided data is objective and can be accessed
in real time, which allows to adapt interfaces to the current
cognitive load of a user. Our descriptive model represents
correlations between major eye movements and cognitive load
(RQ1). We discussed possible influences and effects based
on the four domains of design of the conceptual framework
Blended Interaction, which lead us to a revised model of the re-
lation of eye movements, cognitive load and human-computer
interaction (RQ2). The implications for future research show
possible starting points for further investigations for outstand-
ing issues (RQ3).

Overall we conclude that eye tracking can be a valuable in-
strument to measure and analyze cognitive load in the context
of HCI and visual computing. In future we want to further
evaluate, refine, and extend our proposed model – our vision
is a tool that supports researchers equally in designing exper-
iments and explaining phenomena in the intersection of eye
tracking and cognitive load.
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