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ABSTRACT
This article develops an econometric framework to investigate the
structure of dependence between random variables and to test
whether it changes over time. Our approach is based on the
computation—over both a test and a benchmark period—of the
conditional probability that a random variable is lower than a
given quantile, when another random variable is also lower than its
corresponding quantile, for any set of prespecified quantiles. Time-
varying conditional quantiles are modeled via regression quantiles. The
conditional probability is estimated through a simple OLS regression.
We illustrate the methodology by investigating the impact of the crises
of the 1990s and 2000s on the major Latin American equity markets
returns. Our results document significant increases in equity return
comovements during crisis times. ( JEL: C14, C22, G15)
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This article proposes an econometric framework to measure dependence between
two (possibly heteroscedastic) random variables. The approach is based on the
estimation of the probability that a random variable yt falls below a conditional
quantile, given that the other random variable xt is also falling below its
corresponding quantile. Conditional quantiles are estimated via regression quantile
(Koenker and Bassett, 1978). In this framework, the stronger the dependence
between xt and yt, the higher the probability of comovement. We estimate this
probability through a simple OLS regression involving quantile coexceedance
indicators and derive a test to assess whether comovement likelihoods change over
time and across market conditions.1

A large body of literature has developed over the years investigat-
ing dependence among financial asset returns. Extensive surveys are pro-
vided, inter alia, by de Bandt and Hartmann (2000), Pericoli and Sbracia (2003),
and Dungey et al. (2005). In essence, one can distinguish three different
approaches: (i) modeling first and/or second moments of returns (see,
for instance, King, Sentana, and Wadhwani, 1994; Forbes and Rigobon, 2002;
Ciccarelli and Rebucci, 2007); (ii) estimating the probability of coexceedance (see,
among others, Longin and Solnik, 2001; Hartmann, Straetmans, and de Vries, 2004;
Bae, Karolyi, and Stulz, 2003); and (iii) methods based on copula theory (see
Rodriguez, 2003; Patton, 2004; Garcia and Tsafack, 2011). Each of these methodolo-
gies has its own merits and drawbacks. Correlation-based models and Generalized
Autoregressive Conditional Heteroscedastic (GARCH)-type approaches are easy
to implement, but assume that realizations in the upper and lower tail of the
distribution are generated by the same process (see for instance the discussion in
Garcia and Tsafack, 2011). Probability models focus on the tails of the distribution,
but generally analyze only single points of the support and adopt a two-step
estimation procedure, often without correcting the standard errors. Methods
based on parametric copulas rely on specific parameterizations of the dependence
measure, often using a single parameter to determine the shape of the entire
copula.

The approach we propose has several advantages with respect to existing
methodologies. First, we show that the coefficients of a simple OLS regression
of a quantile coexceedance indicator variable on a constant and economic
indicator variables provide consistent estimates of comovement probability. The
inclusion of economic variables permits us to test whether they contribute
to significantly change the probability of comovement. Second, casting the
econometric framework in terms of time-varying regression quantiles permits us
to make proper inference, since it is robust to heteroskedasticity which could
make correlation measures spurious. In addition, we correct standard errors

1Coexceedance occurs when both random variables xt and yt exceed some prespecified thresholds.
Baur and Schulze (2005) have proposed an analysis of contagion which is also based on coexceedance
and quantile regression. Their approach however is fundamentally different from the one proposed in
this article as their coexeceedance is computed assuming zero as threshold.

 at E
uropean C

entral B
ank , L

ibrary on Septem
ber 10, 2014

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


[13:04 20/8/2014 nbu009.tex] JFINEC: Journal of Financial Econometrics Page: 647 645–678

CAPPIELLO ET AL. | Measuring Comovements 647

to take into account that we use a two-step estimation approach. Third, we
are able to measure dependence over any subset of the support of the joint
distribution, and asymmetries in comovement in the upper and lower tails of the
distribution can be tested for. Fourth, since regression quantile is a semi-parametric
technique, there is no need to impose any assumptions on the joint or marginal
distributions of the variables under investigation. Finally, being based on quantiles,
it provides estimates of comovements robust to outliers, as opposed to conventional,
average-based measures (Kim and White 2004; White, Kim, and Manganelli, 2008;
2012).2

In this article, we show how our methodology can be used to test for changes in
comovements during periods of economic stress. We investigate the impact of some
of the major financial crises on the main Latin American equity markets during
the 1990s. One key unresolved issue is whether the Tequila crisis, the Asian flu,
the Russian worm, and more recently the worldwide crisis following the Lehman
bankruptcy were episodes characterized by an increase in cross-market linkages. In
the finance literature, this concept has been linked to contagion, which is broadly
defined as an increase in financial market comovements during periods of financial
turbulence. Our results show that comovements in equity markets increase during
turbulent periods. Furthermore, the increase tends to be asymmetric, with stronger
changes in comovement in the left tail than in the right tail.

The applications of this methodology are not limited to the specific issue of
testing for changes in financial comovements. For instance, for strategic-allocation
purposes, risk-averse investors could use our methodology to select those asset
classes which exhibit lowest comovements especially in the lower tail of the
distribution.3 Economists and policy makers are also interested in measuring
cross border dependence and changes thereof among asset returns and economic
variables. Our methodology can also be used to assess the impact of major economic
events (such as the introduction of the euro) on financial markets, as done for
instance in Cappiello, Kadareja, and Manganelli (2010).

This article proceeds as follows. In Section 1 we develop the econometric
framework. Section 2 illustrates how our approach can be used to study changes in
financial comovements, relating it to the existing empirical contributions. Section 3
describes the data. Section 4 reports the estimated comovements for four Southern
American countries. We also compare our approach with estimates based on copula
models. Section 5 discusses the empirical evidence about changes in comovements
between tranquil and crisis times. Section 6 concludes.

2There is an active area of research in statistics that attempts to extend the notion of quantile to a multivariate
framework. We refer the interested reader to the works of Chaudhuri (1996) and Chakraborty (2003).

3It is well documented that financial asset comovements increase more during turbulent times than over
calm periods (see, for instance, Longin and Solnik, 1995; Karolyi and Stulz, 1996; De Santis and Gérard,
1997; Ang and Bekaert, 2002).
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1 ESTIMATING COMOVEMENTS

This section discusses the estimation of the average probability of comovements
between two random variables, yt and xt.

Let qY
i,t be the θi-quantile at time t of yt, 0<θ1<...<θm<1, conditional on the

available information set �t. Analogously, for xt, we define qX
j,t. Let Ft(y,x) denote

the cumulative distribution function for the pair (yt,xt). The average probability
that both yt and xt fall below their respective quantiles over a given time period is
given by F̄ij

T ≡T−1∑T
t=1Ft(qY

i,t,q
X
j,t).

We propose to estimate F̄ij
T as follows. First, we estimate the conditional

univariate quantiles associated with the random variables yt and xt. Second, we
construct, for each series and for each quantile, indicator variables which are equal
to one if the realized random variable is lower than the conditional quantile and
zero otherwise. Finally, we regress the product of the indicator variables for series yt
and xt on a constant. If the interest lies in testing whether the average comovement
has changed over different time periods, appropriate dummies can be included in
the regression. As we show, the regression coefficients provide a direct estimate of
the conditional probabilities of comovements.

In subsection 1.1 we briefly review the estimation of time-varying quantiles,
and derive their joint distribution. Next, in subsection 1.2 we discuss the estimation
of the joint probabilities and their asymptotic properties.

1.1 Time-varying Regression Quantiles

Let qY
t (βi,Y) denote the empirical specification for the qY

i,t time-varying quantile
conditional on �t, where βi,Y denotes the p-vector of parameters to be estimated.
Let ρi(λ)≡ [θi −I(λ≤0)]λ, λ∈R, be a piecewise linear “check function,” where I(·)
denotes an indicator function that takes on value one if the expression in parenthesis
is true and zero otherwise. The unknown parameters of the quantile specification
can be consistently estimated by solving the following minimization problem
(Koenker and Bassett, 1978):

min
βi,Y

T−1
T∑

t=1

ρi

(
yt −qY

t (βi,Y)
)
≡T−1

T∑
t=1

[θi −I(yt ≤qY
t (βi,Y))]·[yt −qY

t (βi,Y)] (1)

where T denotes the sample size. Regression quantile is a generalization of the
least absolute deviation model: the objective function attaches asymmetric weights
to deviations from the quantile, depending on whether the realization yt falls below
or above the quantile. When θi =0.5 the weights become symmetric, and the solution
to the problem gives the median estimator. Engle and Manganelli (2004) provide
sufficient conditions for consistency and asymptotic normality results.
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For the purpose of the present study, we need to derive the joint distribution
of the regression quantile estimators of the two time series, yt and xt. Define:

DY
i

p×p
≡E[T−1

T∑
t=1

hY
i,t(0)∇qY

t (β0
i,Y)∇′qY

t (β0
i,Y)]

where hY
i,t(0) is the value at zero of the density of εY

i,t ≡yt −qY
t (β0

i,Y) and ∇qY
t (β0

i,Y) is
the gradient of the quantile function evaluated at the true parameter β0

i,Y . In words,
DY

i is the average cross-product of the derivative of the quantile function, weighted
by conditional density of yt at its θi-quantile. LetψY

i,t(β
0
i,Y) denote the first derivative

of ρi
(
yt −qY

t (βi,Y)
)
:

ψY
i,t(β

0
i,Y)

p×1
≡[θi −I(yt ≤qY

t (β0
i,Y))]∇qY

t (β0
i,Y).

Next, let βY ≡[βi,Y]m
i=1 denote the pm-vector stacking the βi,Y regression quantile

parameters, DY ≡diag
([DY

i ]m
i=1
)

the (pm×pm) block diagonal matrix with the
matrices DY

i along the main diagonal, Opm the (pm×pm) matrix of zeros, and
ψY

t (β0
Y)≡[ψY

i,t(β
0
i,Y)]m

i=1 the pm-vector stacking all the ψY
i,t(β

0
i,Y).4

Consider analogous terms for xt and finally define:

β
2pm×1

≡[β ′
Y,β

′
X]′,

D
2pm×2pm

≡
[

DY Opm
Opm DX

]
, (2)

ψt(β0)
2pm×1

≡[ψY
t (β0

Y)′,ψX
t (β0

X)′]′. (3)

Note that the block diagonality condition of DY , DX and D is required to ensure
that estimation can be carried out independently for each quantile and each
random variable. For a more general model where quantiles of one random
variables can depend on the quantiles of the same and other variables see
White, Kim, and Manganelli (2008, 2012).

The following corollary derives the joint asymptotic distribution of the
regression quantile estimators.

4When multiple quantiles are jointly estimated, some estimated quantile functions can cross each other,
which is known as the “quantile crossing” problem. If the quantile model is correctly specified, then
the population quantile functions are monotonic and the estimated quantile functions will converge to
the corresponding population quantile functions. Hence, the quantile crossing problem is simply a finite
sample problem in such a case, and should be negligible when the sample size is sufficiently large. If
either the quantile model is misspecified or the sample size is not large enough, then the quantile crossing
problem can still be of concern. In that case, one can use some recently developed techniques to correct
the problem such as the monotonization method by Chernozhukov, Fernandez-Val, and Galichon (2010)
or the isotonization method suggested by Mammen (1991).

 at E
uropean C

entral B
ank , L

ibrary on Septem
ber 10, 2014

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


[13:04 20/8/2014 nbu009.tex] JFINEC: Journal of Financial Econometrics Page: 650 645–678

650 Journal of Financial Econometrics

Corollary 1: Under assumptions C0–C7 and AN1-AN4 in Appendix A,√
TA−1/2D(β̂−β0)

d→N(0,I), where β̂ is the vector containing the solutions to (1)

and A≡E
[
T−1∑T

t=1ψt(β0)ψt(β0)′
]
.

Engle and Manganelli (2004) provide asymptotically consistent estimators of
the variance–covariance matrix (see their theorem 3).

1.2 Estimation of the Conditional Probability of Comovement

It is possible to estimate the average probability of comovement between yt and
xt and test whether it changes across time periods, by running the following
regression:5

IY
t (β̂i,Y)·IX

t (β̂j,X)=Wtα
0
ij +εt, i,j=1,...,m, (4)

where IY
t (βi,Y)≡ I

(
yt ≤qY

t (βi,Y)
)
, IX

t (βj,X) is defined analogously, Wt ≡[1,St], St is an
(s−1) row vector of time dummies, and α0

ij a (s,1) vector of unknown coefficients.6

Let α̂ij be the OLS estimator of (4) and denote with α̂l,ij the (l+1)-th element
of this vector, l=0,1,...,s−1. Analogously, let Sl,t denote the l-th element of St. Let
Cl be the number of observations identified by the dummies {Sl,t =1,S−l

t =0}T
t=1,

where S−l
t represents the vector St without its l-th element and 0 is a vector of zeros

of appropriate dimension. Define also F̄ij
l ≡C−1

l
∑

t∈{t:Sl,t=1,S−l
t =0}

Ft(qY
t (β0

i,Y),qX
t (β0

j,X)).7

The following theorem shows that α̂ij is a consistent estimator of the average
probabilities of comovements in the time periods defined by the dummies.

Theorem 1: (Consistency) - Assume that Cl/T
T→∞−→ kl, where kl ∈ (0,1), l=0,...,s−1,

is the asymptotic ratio between the number of observations identified by the lth dummy (Cl)
and the total number (T) of observations. Under the same assumptions of Corollary 1,

α̂0,ij
p→plim(F̄ij

0 ) i,j=1,...,m,[
α̂0,ij +α̂l,ij

] p→plim(F̄ij
l ) i,j=1,...,m, and l=1,...,s−1.

5Asymptotically, the dependent variable can be constructed with any n-tuple and not just for two variables,
as long as T grows at a faster rate than n. In practice, one quickly encounters curse of dimensionality
problems, as the number of periods in which all indicator variables are simultaneously equal to one
diminishes rapidly as one includes more than two variables. The implication is that the precision of the
estimator would deteriorate very quickly.

6An interesting extension of this model is to adopt a probit/logit framework with continuous regressors.
Such a model could be useful for instance to forecast probabilities of comovement in real time. The interest
of the present study, however, is in testing whether (average) comovements have changed over specific
periods of time.

7We denote with C0 the number of observations in the benchmark period, i.e., the periods t∈{t :St =0}. F̄ij
0

is correspondingly defined as the average cdf in the benchmark period.
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α̂0,ij is the parameter associated with the constant and, as such, it converges to
the average probability of comovement in the benchmark period (i.e., the period
when all other dummies are equal to zeros, t∈{t :St =0}). Similarly, since α̂l,ij for l=
1,...,s−1 is the coefficient of the l-th dummy Sl,t, the sum of α̂0,ij +α̂l,ij converges in
probability to the average probability of comovement in the period corresponding
to the dummy. According to this theorem, testing for a change in the conditional
probability of comovement in the periods identified by the dummy Sl,t is equivalent
to testing for the null that αl,ij is equal to zero. Indeed, it is only when αl,ij =0 that
there is no change in probabilities of comovement relative to the benchmark period.
Otherwise, if αl,ij is less than zero, the probability over the l-th dummy period will
be lower than the probability during the benchmark period, while if αl,ij is greater
than zero, the probability will be higher.

To obtain the asymptotic distribution of this estimator, define first the following
terms:

gt(βi,Y,βj,X)
s×1

≡W ′
tI

Y
t (βi,Y)·IX

t (βj,X)−T−1(W ′W)α0
ij,

where W ≡ [Wt]T
t=1 is a (T×s) matrix containing all the vectors of dummies from

regression (4), and

Gij
s×2pm

≡E

{
T−1

T∑
t=1

W ′
t

[
∇′
βqX

t (β0
j,X)
∫ 0

−∞
hij,t(η,0)dη+

+∇′
βqY

t (β0
i,Y)
∫ 0

−∞
hij,t(0,υ)dυ

]}
,

where hij,t(η,υ) is the joint pdf of (yt −qY
t (β0

i,Y),xt −qX
t (β0

j,X)), and ∇β denotes the

derivative with respect to the 2pm-vectorβ. Next let gt(β0)≡[gt(β0
i,Y,β

0
j,X)]m

i,j=1 be the

sm2-vector stacking all the m2 possible vectors gt(βi,Y,βj,X), and construct the (sm2 ×
T) matrix R≡[gt(β0)]T

t=1. Define also G≡[Gij
]m

i,j=1, an (sm2 ×2pm) matrix stacking all

the Gij matrices, and �≡[ψt(β0)]T
t=1, a (2pm×T) matrix where ψt(β0) was defined

in (3).
Finally, let α0 ≡[α0′

11, α
0′
12,...,α

0′
m(m−1), α

0′
mm]′ be the sm2-vector of true unknown

parameters to be estimated in (4). Similarly, define
α̂≡[α̂′

11,α̂
′
12,...,α̂

′
m(m−1),α̂

′
mm]′.

Theorem 2: (Asymptotic Normality) - Under the assumptions of Corollary 1 and AN5
(see Appendix A),

√
TM−1/2Q

(
α̂−α0

)
d→N(0,Jsm2 ),
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where

M
sm2×sm2

≡E[T−1(R+GD−1�)(R+GD−1�)′],

Q
sm2×sm2

≡ Jm2 ⊗(T−1W ′W),

Jr is the identity matrix of dimension r (where r is a positive integer) and D is defined
in (2).

This result is new in the regression quantile literature. Without the correction
term GD−1� in the matrix M, we would get the standard OLS variance–covariance
matrix. The correction is needed in order to account for the estimated regression
quantile parameters that enter the OLS regression. This correction term is similar
to the one derived by Engle and Manganelli (2004) for the in-sample Dynamic
Quantile test. The main difference is related to the composition of the matrix G.
Since two different random variables (xt and yt) enter the regression, G contains the
terms

∫ 0
−∞hij,t(η,0)dη and

∫ 0
−∞hij,t(0,υ)dυ, which can be interpreted as the bivariate

analogue of the height of the density function of the quantile residuals evaluated
at zero that typically appears in standard errors of regression quantiles.

The variance–covariance matrix can be consistently estimated using plug-in
estimators. The only non-standard term is G, whose estimator is provided by the
following theorem.

Theorem 3: (Variance–Covariance Estimation) - Under the same assumptions of

Theorem 2 and assumptions VC1-VC3 in Appendix A, Ĝij
p→Gij, where

Ĝij ≡ (2TĉT)−1
T∑

t=1

{
I(|xt −qX

t (β̂j,X)|< ĉT)I(yt<qY
t (β̂i,Y))W ′

t∇′
βqX

t (β̂j,X)

+I(|yt −qY
t (β̂i,Y)|< ĉT)I(xt<qX

t (β̂j,X))W ′
t∇′
βqY

t (β̂i,Y)
}

and ĉT is defined in assumption VC1.

1.2.1 Hypothesis testing. Using theorems (2) and (3), a test of linear restric-
tions on the estimated probability of comovement can be easily constructed.

Corollary 2: Suppose that α is subject to the u (≤sm2) linearly independent restrictions
Uα0 =b, where U is an (u,sm2) matrix of rank u and b is an u-vector. Under the assumptions
of Theorem 3 √

T(UQ−1M̂Q−1U′)−1/2(Uα̂−b
) d→N(0,Ju),
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which can be equivalently restated as a Wald test

T(Uα̂−b)′(UQ−1M̂Q−1U′)−1(Uα̂−b)
d→χ2(u),

where the ˆ indicates estimated quantities.

This result is useful to test for changes in the average probability of
comovement. For example, one could be interested in testing whether comovements
differ in the upper tail relative to the lower tail, or whether comovements changed
in the test period with respect to the benchmark period.

2 MEASURING CHANGES IN FINANCIAL COMOVEMENTS

In this section we show how the econometric model previously developed can be
used to test for significant changes in financial comovements.

When θi =θj, the comovement between two random variables can be
conveniently represented as follows. Let F−

t (θi)≡Pr(yt ≤qY
t (βi,Y)|xt ≤qX

t (βi,X))=
θ−1

i Pr(yt ≤qY
t (βi,Y),xt ≤qX

t (βi,X)) and F+
t (θi)≡(1−θi)

−1Pr(yt ≥qY
t (βi,Y),xt ≥

qX
t (βi,X)). Moreover, define the following conditional probability:8,9

pt (θi)≡
{

F−
t (θi) if θi ≤0.5

F+
t (θi) if θi>0.5

.

Hence, pt (θi) is the likelihood of a tail event for random variables y, given a tail
event occurred for x.

Consider regression (4), where the first dummy variable S1,t denotes crisis
times, while the other dummies represent suitably chosen control variables. Using
the notation of subsection 1.2, the probability of comovements in crisis times is
given by p̄1(θi)≡C−1

1
∑

t∈{t:S1,t=1,S−1
t =0}

pt(θi), while the probability of comovements in

tranquil times is p̄0(θi)≡C−1
0

∑
t∈{t:St=0}

pt(θi), where C1 and C0 denote the number of

observations during crisis and tranquil times, respectively. We adopt the following
working definition of market comovements:

8We could plot both F−
t (θi) and F+

t (θi) for the whole range of θi between 0 and 1, 0≤θi ≤1. However, as
θi →1, F−

t (θi)→1 and as θi →0, F+
t (θi)→1. The interesting information about the comovements of xt and

yt can be obtained by plotting F−
t (θi) for θ≤0.5 and by F+

t (θi) for θ >0.5.
9For hedging purposes, we would be interested in the likelihood that the hedge asset returns are high when
the returns on the asset to be hedged are low. We would define F+−

t (θi,θj)≡Pr(yt ≥qY
t (βi,Y)|xt ≤qX

t (βj,X))
and F−+

t (θi,θj)≡Pr(yt ≤qY
t (βi,Y)|xt ≥qX

t (βj,X)).
In addition, one could include a time dimension to test whether the distribution of returns in one

country leads or lags the distribution of returns in another country. This can be easily accommodated
in our framework by analyzing the behaviour of Pr(yt ≤qY

t (βi,Y)|xt−k ≤qX
t−k(βi,X)) with k>0 to analyze

spillovers from country X to country Y and with k<0 to analyze spillovers from country Y to country X.
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Definition 1: (Changes in comovements with respect to the information set �S) -
Let�S ≡{S2,t,...,Ss−1,t}T

t=1 denote the information set represented by the control dummies
in regression (4). Comovements with respect to �S will be increasing in a given interval

(θ,θ̄ ) if δ
(
θ,θ̄
)=∫ θ̄

θ
[p̄1(θ )− p̄0(θ )]dθ >0.

Note that �S ={Wt}Y
t=1\{1∪{S1,t}T

t=1}, that is it excludes the constant and
the first time dummy which identifies the crisis period. δ

(
θ,θ̄
)

measures the
area between the average conditional probabilities p̄1 and p̄0 over the interval
(θ,θ̄ ). Unlike correlation-based measures, δ

(
θ,θ̄
)

permits us to analyze changes
in dependence over specific quantile ranges of the distribution. For instance, it may
occur that δ(0,1) is small just because of positive dependence on the left tail of
the distribution and negative on the right tail, so that the two values tend to offset
each other. Note that the above definition with an empty information set (�S=∅)
coincides with the concept of contagion used in the international finance literature
(see, for instance, Eichengreen, Rose, and Wyplosz, 1996, or Forbes and Rigobon,
2002).10

The characteristics of pt (θi) can be conveniently analyzed in what we call the
“comovement box” (see Figure 1). The comovement box is a square with unit side,
where pt (θi) is plotted against θi. The shape of pt (θi) will generally depend on
the characteristics of the joint distribution of the random variables xt and yt, and
therefore for generic distributions it can be derived only by numerical simulation.
There are, however, three important special cases that do not require any simulation:
1) perfect positive correlation, 2) independence, and 3) perfect negative correlation.
If two markets are independent, implying ρYX =0, pt (θi) will be piece-wise linear,
with slope equal to one, for θi ∈ (0,0.5), and slope equal to minus one, for θi ∈ (0.5,1).
When there is perfect positive correlation between xt and yt (i.e., ρYX =1), pt (θi) is
a flat line that takes on unit value. Under this scenario, the two markets essentially
reduce to one. The polar case occurs for perfect negative correlation, i.e. ρYX =−1.
In this case pt (θi) is always equal to zero: when the realization of yt is in the lower
tail of its distribution, the realization of xt is always in the upper tail of its own
distribution and conversely.

In general, the higher the comovement between two random variables, the
higher pt (θi).

2.1 Relation with Previous Literature

The estimation of the probability of comovement in equation (4) echoes the
literature on performance evaluation of investment advisers (see, for instance,
Cumby and Modest, 1987). Cumby and Modest (1987) construct a test similar to

10The World Bank’s “very restrictive” definition states that “contagion occurs when cross-country corre-
lations increase during ‘crisis’ times relative to correlations during ‘tranquil’ times.” See http://www1.
worldbank.org/economicpolicy/managing%20volatility/contagion/definitions.html.
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pt(qi) 

0.5 

0.5 qi

Perfect posi�ve correla�on 

Independence 

Perfect nega�ve correla�on 

1 

10

Figure 1 The comovement box. This figure plots the average probability that a random variable yt
falls below (above) its θi-quantile conditional on another random variable xt being below (above) its
θi-quantile, for θi<0.5 (θi ≥0.5). The case of perfect positive correlation, independence, and perfect
negative correlation are represented.

the test carried out in Equation (4) in the sense that they first transform investment
recommendations and performance into dichotomous variables and next run
regressions where both the dependent and independent variables are indicator
functions. If the recommendation has value, it should enter with a positive
coefficient in a regression predicting future outperformance. One key difference of
our approach is that it is a two-step procedure which defines the indicator variables
in terms of exceedances vis-à-vis conditional quantiles estimated in the first step.

Our framework can take into account heteroskedasticity which plagues
correlation measures. Previous research (see, for instance, Longin and Solnik,
1995; Karolyi and Stulz, 1996; De Santis and Gérard, 1997; Ang and Bekaert, 2002)
suggests that correlation increases when returns are large in absolute value, and
in particular over bear markets. However, as pointed out by Longin and Solnik
(2001), Forbes and Rigobon (2002), and Ball and Torous (2005), among others, the
difference in estimated correlation between volatile and tranquil periods could be
spurious and due to heteroskedasticity. By modeling conditional probabilities with
regression quantiles, our approach is robust to this time-varying volatility issues
(provided the quantile model is well specified).
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We can describe existing contributions to the comovement/contagion literature
in terms of the comovement box. First, our approach has direct ties with
Extreme Value Theory (EVT). Indeed, limθi→0pt(θi) is exactly the definition of
“tail dependence” for the lower tail used in the EVT literature (similar result
holds for the upper tail). Existing contributions (e.g., Longin and Solnik, 2001;
Hartmann, Straetmans, and de Vries, 2004) differ from ours on two important
aspects. First, they only consider the distribution beyond an (extreme) threshold.
Second, in the light of Definition 1, they do not compare this distribution to some
benchmark against which contagion can be measured. Moreover, it is not obvious
how these approaches can be modified to control for economic variables.

Our methodology is also close to the logit/probit literature (e.g.,
Eichengreen, Rose, and Wyplosz, 1996; Bae, Karolyi, and Stulz, 2003). The value of
pt(θi) can in principle be estimated through the logit/probit approach. The main
issue with this methodology is that, differently from our approach, the probability
of contagion is computed with respect to specific points of the distribution support.
Moreover, this approach adopts a two-step procedure and it is not obvious how
correct inference can be made.

A third strand of the literature uses copula methods to study dependence
structure between markets (see, for instance, Rodriguez, 2003; Patton, 2004;
Chollette and Heinen, 2006; Garcia and Tsafack, 2011). Loosely speaking, a copula
is a multivariate distribution function which relates univariate marginal distribu-
tions to form a joint distribution. Empirically, this approach is often implemented
using a single parameter to determine the shape of the copula.11 Furthermore,
one can either allow for flexible time variation in the copula parameter to capture
changes in the dependence structure while fixing the univariate marginals (Patton,
2004), or one can accommodate volatility regimes while limiting the variation in
the copula (Rodriguez, 2003; Chollette and Heinen, 2006).

3 DATA

The empirical analysis is carried out on returns on equity indices for four Latin
American countries, Brazil, Mexico, Chile, and Argentina. We choose these equity
markets for two reasons. First, they are considered to be emerging markets and
therefore believed to be less robust to external shocks than fully developed
economies. Second, the four equity markets are open over the same hours during
the day. Hence the daily returns we investigate are synchronous, avoiding the
confounding effects that nonsynchronous returns can have on the measurement of
comovements (see Martens and Poon, 2001; Sander and Kleinmeier, 2003).12 Equity

11Patton (2006) provides an example of a two-parameter copula. A number of authors use mixtures of
copulas, which require the estimation of three or more parameters (see, for instance, Chollete, de la Peña,
and Lu, 2005).

12Our empirical investigation does not include other Latin American countries such as Colombia and Peru
since we choose those economies with the largest market capitalisation value, in U.S. dollars. While Brazil,
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returns are continuously compounded and computed from Morgan Stanley Capital
International (MSCI) world indices in local currency, which are market-value-
weighted and do not include dividends.13 The data set covers the period from
December 31, 1987 to September 3, 2012 for a total of more than 5500 days in which
at least one of the markets is open. Although the four equity markets in our sample
are almost always open simultaneously, there are instances in which markets are
closed in one country and open in the other, as national holidays and administrative
closures do not fully coincide. To adjust for these non-simultaneous closures, for
each pair of countries, we include only the returns for the days on which both
markets were open that day and had been open the day before.14

Descriptive statistics for the asset data and the sample characteristics are given
in Table 1. In Panel A the overall sample univariate statistics are reported. There
is strong evidence of excess skewness and leptokurtosis at 1% significance level, a
clear sign of nonnormality. This is confirmed by the Jarque–Bera test for normality.
The second part of Panel A reports, for each pair of countries, sample correlations
on the first line and sample size on the second line. When considering each market
individually (diagonal elements), we have a maximum of 5647 valid daily returns
for Mexico and Chile, and a minimum of 5568 returns for Brazil. Bivariate sample
sizes instead vary from a maximum of 5647 for Mexico and Chile to a minimum of
5532 for Brazil and Argentina.

We use the definitions of Forbes and Rigobon (2002) to determine the timing
of period of financial market stress. In our sample, they cover three subperiods:
November 1, 1994 to March 31, 1995 (Tequila crisis); June 2, 1997 to December 31, 1997
(Asian crisis); and August 3, 1998 to December 31, 1998 (Russian crises). In addition,
since we have a much longer sample than Forbes and Rigobon (2002), we define
four more crisis: March 26, 2001 to May 15, 2001 (Argentinean crisis),15 February 15,

Chile, and Mexico exhibit the highest market capitalisation value throughout the sample, Argentina ranks
fourth most of the times. Approximately the same outcome holds true when the market capitalisation is
expressed in percentage of GDP. In addition to these considerations, Colombia and Peru equity indices
are available only since 1993. We do not include in our analysis other emerging market economies, such
as those of East Asia, since these markets are not open simultaneously to Latin American markets.

13We use equity indices denominated in domestic currencies to remove the impact related to exchange
rate changes. For example, if one converts domestic indices into U.S. dollars, the compounded returns

will include changes in the exchange rate: Xt ≡ ln
(

PtEt
Pt−1Et−1

)
=(lnPt −lnPt−1)+(lnEt −lnEt−1)=xt +et,

where Pt is the equity index denominated in the domestic currency, Et is the spot exchange rate, xt ≡
(lnPt −lnPt−1) and et ≡(lnEt −lnEt−1). Moreover, we use equity indices without dividends since we are
not analyzing a portfolio choice where agents re-invest dividends. In any case, equity returns including
dividends track very closely equity returns without dividends.

14We also implemented an alternate way to adjust for nonsimultaneous market closures. We retained the
returns on the day after the market closure for the market that did close. However, since the return on
the day after a market closure is in fact a multi–day return, we adjusted the returns on the market that
did not close by cumulating the daily returns over the period the other market closed plus the day it
reopened. Lastly we divided the two returns by the number of days of closure plus one. This procedure
added between 10 and 25 observations to the different pairs and did not materially affect the results.

15These dates coincide respectively with the start and end dates of a series of lowering of Argentina’s
government debt rating by rating agencies (Moody’s and S&P).
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Table 1 Descriptive statistics of daily returns on stock market indices

Panel A: Overall sample—December 31, 1987—September 3, 2012

Mexico Brazil Argentina Chile

Summary statistics
Mean 0.09 0.33 0.18 0.06
Minimum −12.69 −21.74 −20.40 −7.36
Maximum 12.14 24.66 39.04 8.60
Std. Dev. 1.57 2.42 3.03 1.13
Autocorrelation 0.14 0.17 0.11 0.23
Skewness 0.06 0.27∗∗ 1.35∗∗ −0.09
Kurtosis 8.17∗∗ 9.80∗∗ 16.30∗∗ 7.30∗∗
J-B 6210.26∗∗ 10797.35∗∗ 43174.21∗∗ 4346.55∗∗

Correlations and sample size
Mexico 1.000 0.427 0.306 0.378

5647 5568 5622 5647
Brazil 1.000 0.305 0.366

5568 5532 5562
Argentina 1.000 0.277

5625 5625
Chile 1.000

5647

Panel B: tranquil days

Standard deviations, correlations, and sample size
Mexico 1.457 0.359 0.238 0.313

5214 5134 5188 5214
Brazil 2.245 0.215 0.266

5134 5087 5128
Argentina 2.986 0.199

5177 5177
Chile 1.036

5214

Panel C: crisis days

Standard deviations, correlations, and sample size
Mexico 2.491 0.692 0.707 0.609

433 434 434 433
Brazil 3.904 0.815 0.713

434 445 434
Argentina 3.473 0.708

448 448
Chile 2.016

433

This table reports the summary statistics of daily returns of the four country indices. Data are from MSCI
and returns are continuously compounded. The significance level for excess skewness and excess kurtosis
is based on test statistics developed by D’Agostino, Belanger, and D’Agostino (1990). The Jarque-Bera (J-B)
test for normality combines excess skewness and kurtosis, and is asymptotically distributed as χ2

m with
m=2 degrees of freedom. ∗ and ∗∗ denote 5% and 1% significance levels, respectively.
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2007 to March 30, 2007 (U.S. sub-prime crisis), September 1, 2008 to October 31, 2008
(Lehman bankruptcy),16 and August 1, 2011 to September 30, 2011 (turbulences in
the euro area).17 For robustness, we have experimented with slightly larger sample
sizes for the crisis (extending them by about one month), but results are qualitatively
the same. The crisis sample includes almost 450 potential trading days. Excluding
market closures and the subsequent day, we have a maximum of 448 valid crisis
daily returns for Argentina and a minimum of 433 returns for Mexico and Chile.
Panels B and C report univariate sample size and volatilities (diagonal elements)
and bivariate sample size and correlations (off-diagonal elements) for both tranquil
periods and those of financial market stress. What is striking from Panels B and C
is that correlations increase dramatically between tranquil and crisis periods: the
average correlation is approximately 0.26 over tranquil days and approximately
0.7 for days of turbulence. Based on this type of evidence traditional tests of
correlation would have indicated the presence of contagion. However, the table
also documents that for all countries, except Argentina, returns volatility increased
dramatically in crisis over tranquil periods. This highlights the heteroskedasticity
problem identified by Forbes and Rigobon (2002) and casts doubts on the reliability
of the correlation-based evidence.

In the following section we investigate these issues with the comovement box
and provide a more robust and nuance answer to the question.

4 AN APPLICATION TO LATIN AMERICA

In this section, we report the results of the methodology to the analysis of
comovements across some Latin American equity markets. First, we discuss the
conditional quantile estimation procedure (Section 4.1). Second, in Section 4.2
we estimate the probability of comovements over the whole sample period. To
illustrate our methodology we compare these probabilities with those obtained
from simulations of normal and Student-t distributions calibrated to match sample
moments. We also compare them to alternative estimations based on copula models.

4.1 Modelling Individual Quantiles

We estimate the time-varying quantiles of the returns with the CAViaR model
proposed by Engle and Manganelli (2004). We adopted the following CAViaR
specification:

qY
t (βi,Y)=β0,i,Y +β1,i,Yyt−1 +β2,i,YqY

t−1(βi,Y)−β1,i,Yβ2,i,Yyt−2 +β3,i,Y
∣∣yt−1

∣∣, (5)

16This period saw the collapse of Lehman, and the subsequent bailout of AIG and other major U.S. banks.
17During this period Greece (which had received the first bailout package), Portugal and Ireland were

downgraded to junk status and markets were scared for Italy and Spain. In September Italy and Spain
(government and banks) were downgraded several times.
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Table 2 Estimates of the CAViaR specification (5) in the text

θ = 0.1 θ = 0.25 θ = 0.75 θ = 0.90

Parameters Value s.e. Value s.e. Value s.e. Value s.e.

Brazil
b0 −0.112 0.007 −0.061 0.007 −0.002 0.003 0.036 0.004
b1 0.288 0.006 0.205 0.006 0.090 0.006 0.082 0.006
b2 0.870 0.005 0.877 0.011 0.902 0.004 0.864 0.003
b3 −0.107 0.004 −0.034 0.003 0.099 0.004 0.215 0.005

Argentina
b0 −0.104 0.005 −0.032 0.004 −0.002 0.003 0.029 0.003
b1 0.183 0.005 0.109 0.005 0.022 0.005 0.022 0.005
b2 0.859 0.004 0.884 0.006 0.883 0.004 0.869 0.002
b3 −0.153 0.004 −0.067 0.003 0.104 0.003 0.200 0.004

where βi,Y ≡[β0,i,Y,β1,i,Y,β2,i,Y,β3,i,Y]′. A similar model has been estimated for
xt. To illustrate, in table 2 we report the coefficient estimates and the associated
standard errors relative to equation (5) for some given θi-quantiles for Brazil and
Argentina.

The rationale behind this parametrization lies in the autocorrelation (both in
levels and squares) exhibited by our sample returns. This CAViaR model would be
correctly specified for instance if the true DGP were as follows:

yt =γ0 +γ1yt−1 +εt, where εt =σtηt, ηt ∼ i.i.d.(0,1),

σt =γ2 +γ3
∣∣yt−1

∣∣+γ4σt−1.
18

To check whether the parametrization we propose is sensible, we carry out the
in-sample Dynamic Quantile (DQ) test of Engle and Manganelli (2004). The DQ
statistic tests the null hypothesis of no autocorrelation in the exceedances of the
quantiles as correct specification would require. In theory the quantile of Y could
depend on lagged values of X as well. We formally tested for this potential cross-
dependence, by implementing the DQ test with 10 lags of the “hit” function for
the both Y and X (the “hit” function takes on value 1−θ if the variable exceeds
the quantile and −θ otherwise; see Theorem 4 of Engle and Manganelli, 2004, for
details). We report in figures 2A-2B the p-values of the DQ test statistic for the
19 estimated quantiles of Argentinian and Brazilian returns. For comparison, we
show in the same picture the DQ test associated to the unconditional quantiles.

18Even if the CAViaR model is misspecified in that it includes an explanatory variable too many to capture
the returns autocorrelation in levels, it would still be consistent and the consequent efficiency loss is
negligible due to our large data sample.
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(a)

(b)

Figure 2A-2B P-values of the dynamic quantile test. These figures plot the p-values of the in-
sample DQ test statistic of Engle and Manganelli (2004). The DQ statistic tests the null hypothesis
of no autocorrelation and no lagged cross-correlation in the exceedances of the quantiles, as the
correct specification would require.
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Unconditional quantile specifications are rejected most of the times, while CAViaR
models are not.19

4.2 Estimates of Comovements and Comparison with other
Approaches

In this section, we estimate the probabilities of comovements over the whole
sample period, i.e., p̄T(θ )≡T−1∑T

t=1pt(θ ). For comparison purposes, we simulate
probabilities of comovements assuming that returns are distributed according
to either a bivariate normal or a Student-t with five degrees of freedom, which
accommodates fat tails. The distributions are calibrated using the unconditional
correlations and volatilities of the relevant sample returns. We also estimate
comovements using copula models with a semiparametric approach. We first
constructed the marginal empirical CDF from the returns. In the second stage, the
copula parameters are estimated via maximum likelihood. In Figure 3, we compare
the estimated conditional probabilities following these different approaches.

Specifically, we estimated the equivalent of equation (4), where only a constant
is included:

IY
t (β̂i,Y)·IX

t (β̂i,X)=α0,ii +εt, i=1,...,m. (6)

Time-varying quantiles were estimated as described in the previous sub-
section. When estimating this probability we use the whole sample period, which
includes both crisis and tranquil times. More importantly, no assumption about the
distribution of returns is needed.

A visual comparison allows one to detect whether estimated probabilities
deviate from what would be expected if the true data-generating process followed
a normal or a Student−t distribution. Take as an example the country pair Brazil–
Argentina displayed in Figure 3A. For θi �0.5, that is, for returns below the
median, the estimated conditional probabilities of comovements are significantly
higher than those obtained from the simulation of normal and Student-t bivariate
distributions. In particular, they seem to depart from the characteristics of tail
independence that both t and normal distributions should exhibit. In contrast,
for the right tail, i.e., for θi>0.5, the probability curve obtained with regression
quantiles approximately coincides with the comovement probability generated
by the simulation. If comovements were analyzed through simple correlation
estimates, it would not be possible to detect this asymmetry between right and
left tails of a distribution.20

19While it is true that even some CAViaR specifications are rejected over some quantile ranges, they
do significantly better than unconditional quantiles. It is not obvious how to address the issue of
misspecification in this context. While simulation exercises would be able to address only specific forms
of misspecification and cannot be easily generalized, they can help to shed some light on the behavior of
the estimator proposed in this article. We leave this issue for future research.

20See, however, Ang and Chen (2002) and Hong, Tu, and Zhou (2007) for alternative tests of asymmetric
correlations which go beyond simple correlation analysis.
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(a)

(b)

Figure 3 Brazil-Argentina simulated and estimated tail dependence. The figure plots the estimated
probability that the second country equity index returns falls below (above) its θ -quantile
conditional on the first country index returns being below (above) its θ -quantile, for θ≤0.5
(θ >0.5). The quantiles of each returns series are estimated using conditional quantile regressions.
The dashed lines are the two (pointwise) standard error bounds for the estimated comovement.
The estimated comovement is compared to a benchmark of independence and to simulated tail
dependence based on a bivariate normal or a bivariate Student-t distribution with 5 degrees of
freedom Figure 3A and a Clayton, Joe-Clayton, and Plackett copulas Figure 3b. The simulations
are calibrated to match the sample volatilities and correlation of the returns series. Daily index
returns are from MSCI for the period January 1, 1988 to September 3, 2012 (n=5532).
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The comparison with copula models reported in Figure 3B is also instructive.
It illustrates how the choice of the copula significantly affects the degree of
tail comovement. For instance, while the degree of comovement implied by
the Joe–Clayton copula is consistent with that of the conditional quantile, the
Clayton copula matches well only the left tail of the distribution, but significantly
underestimates the amount of positive comovement. The Plackett copula is
symmetric and shows analogous shortcomings to those highlighted with the
normal and Student-t simulations.

Next, we briefly discuss the small sample performances of our quantile-based
comovement estimator, and we compare our methodology with a multivariate
GARCH approach as well as with regime switching models.

Remark 1: Small sample performance of quantile-based comovement
estimator—In an application of the methodology developed in this paper,
Cappiello, Kadareja, and Manganelli (2010) perform a Monte Carlo experiment to
study the finite sample properties of the quantile-based comovement estimator.
They find that with a smaller sample size than the one used here, the methodology is
powerful enough to detect statistically significant changes in comovements between
the test and benchmark periods. We refer the interested reader to that paper for
details about the Monte Carlo experiment.

Remark 2: Comparison with multivariate GARCH—Cappiello et al. (2006)
compare this methodology with multivariate GARCH estimations. The two
methodologies are complementary in the sense that GARCH-based measures
provide a short run picture of the correlation evolution, while regression quantile-
based measures can be used to analyze changes in long run comovements. One of
the strengths of our approach over correlation is that it allows us to detect different
comovements between different parts of the distribution. See also the discussion
in Garcia and Tsafack (2011) for the shortcomings of GARCH models in detecting
asymmetric dependence.

Remark 3: Comparison with regime switching models—Differently from regime
switching models, our methodology is not about forecasting periods of high or
low comovements. It is rather about understanding the nature of comovement for
a given identified period. This could in principle be extended to regime switching
models, although we do not pursue this approach in this paper. For instance,
let yt and xt denote the equity returns on two different markets. In line with
Ang and Bekaert (2002) the mean equation for each equity return can be expressed
in terms of a two state regime switching model:

yt =μy
(

sy
t

)
+
√
σ y
(

sy
t

)
ε

y
t ,

where the mean and variance depend on the regime sy
t , which follows a two state

Markov chain, i.e. sy
t =1,2. An analogous equation can be written for xt. In general
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combining sy
t and sx

t generates 22 =4 states st. Next, one can compute the probability
that returns on, say market Y fall below (or above) a given quantile, provided that
returns on market X also fall below (or above) a given quantile and conditional on
the states st:

Pr
(

yt ≤qY
t
(
βi,Y

)∣∣∣xt ≤qX
t
(
βi,X

)
,st

)
,

or, equivalently,

Pr

(
ε

y
t ≤ qY

t
(
βi,Y

)−μy
√
σ y

∣∣∣∣∣εx
t ≤ qX

t
(
βi,X

)−μx
√
σ x

,st

)
.

Conditional on each state st, Markov switching models assume that realizations
in the upper and lower tail of the conditional distributions are driven by the same
process.

5 IS THERE A CHANGE IN COMOVEMENTS DURING CRISIS TIMES?

In this section, we show how our methodology can be used to investigate if the
probability of comovement increases over crisis times relative to tranquil periods for
Brazil, Mexico, Chile, and Argentina. First, we estimate the conditional probabilities
over tranquil and crisis times and provide tests for the difference in comovement
between the two periods. In Section 5.2 we analyze to what extent the differences
in comovements can be explained by differences in some control variables.

5.1 Tests of Changes in Comovements

We estimate the probabilities of comovement over crisis and tranquil times, using
equation (4) with just the crisis dummies:

IY
t (β̂i,Y)·IX

t (β̂i,X)=α0,ii +α1,iiS1,t +εt, i=1,...,m, (7)

where S1,t represents the crisis dummy, constructed as discussed in section 4.
To estimate the individual quantiles underlying the indicator functions, we

add the dummy variable S1,t to the CAViaR specification (5) to ensure that we have
exactly the same proportion of quantile exceedances in both tranquil and crisis
periods:21

qY
t (βi,Y)=β0,i,Y +β4,i,YS1,t +β1,i,Yyt−1 +β2,i,YqY

t−1(βi,Y)

−β1,i,Yβ2,i,Yyt−2 +β3,i,Y
∣∣yt−1

∣∣.
For each market we estimate the model for 19 quantile probabilities ranging from
5% to 95%.

21Asymptotically, correct specification would imply the same number of exceedances in crisis and tranquil
periods. However, in finite samples, this need not be the case. Failure to account for this fact would affect
the estimation of the conditional probabilities.
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Results are reported in Figure 4A–4F. Our approach permits us to explore how
and if the probability of comovements changes for any interval in the support of
the distribution. The attractiveness of inspecting all the quantiles lies in the fact that
one does not need to arbitrarily specify a large absolute value return as a symptom
of a crisis.

In Figure 4A–4F two solid lines are plotted together with the case of
independence. The thin line indicates the conditional probability of comovements
under the benchmark or, equivalently, over tranquil times. This line is the graphical
representation of p̄0(θ) in Definition 1. The thick line, instead, shows the conditional
probability of comovements during crisis times and plots p̄1(θ ). The confidence
bands associated to plus or minus twice the standard errors are plotted as dotted
lines. When the bold line lies above the benchmark, this can be interpreted as
evidence for increased comovements. When the two lines approximately coincide,
there is no difference in comovements between the two periods. Finally, if the thick
line lies below the benchmark, during crises times the comovements between two
different markets actually decrease.22

The results for Argentina and Brazil (Figure 4A) show striking evidence of
increased comovements for most quantiles. For the other country pairs (Figure 4B–
F), we find similar significant increases in the probability of comovement in periods
of financial turmoil relative to tranquil times, except for the extreme lower and upper
parts of the distribution, where standard errors become wider due to the limited
number of coexceedances.

It is worthwhile pointing out how, for Brazil and Argentina, the probability of
comovement associated to the 10%-quantile jumps from about 30% in tranquil times
to about 60% in crisis times. This implies that in quiet periods one should expect
Brazilian and Argentinian equity returns to simultaneously fall below their 10%-
quantile only one day out of three. In crisis periods, instead, almost two thirds of
the days either country equity market experiences a 10% lower tail return, the other
one will as well. Similar patterns characterize the other country pairs, although the
increases in probabilities are not as large.

The interest may lie in testing whether specific parts of the distribution
are subject to increases in comovements. Rigorous joint tests for increases in
comovements which follow from the Definition 1 can be constructed as follows:

δ̂
(
θ,θ̄
) = (#θ )−1 ∑

θi∈[θ,θ̄]
[p̄1(θi)− p̄0(θi)] (8)

= (#θ )−1 ∑
θi∈[θ,θ̄]

α̂1,ii,

22Notice that although the confidence bands are plotted around p̄C1 (θ ), they represent pointwise confidence
intervals for the estimated coefficients associated to the crisis dummy, α̂1,ii . They could be equivalently
plotted around the difference p̄C1 (θ )− p̄C0 (θ ) and check whether they lie above zero to test for statistical
significance.
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(a) (b)

(c) (d)

(e) (f)

Figure 4 Estimated probability of comovements in crisis vs. tranquil periods. The figures plot
the estimated probability that the second country equity index returns falls below (above) its
θ -quantile conditional on the first country index returns being below (above) its θ -quantile for
θ≤0.5(θ >0.5), in crisis and in tranquil periods. The quantiles of each returns series are estimated
using conditional quantile regressions. The dashed lines are the two standard error bounds for
the estimated co-exceedance likelihood in crisis periods. Daily index returns are from MSCI for
the period January 1, 1988 to September 3, 2012 (nMax = 5647, Mexico–Chile, nMin = 5532, Brazil–
Argentina). The crisis sample includes a maximum of 448 (min: 433) observations and cover the
sub periods November 1, 1994 to March 31, 1995 (Tequila crisis), June 2, 1997 to December 31, 1997
(Asian crisis), August 3, 1998 to December 31, 1998 (Russian crisis), March 26, 2001 to May 15, 2001
(Argentinean crisis), February 15, 2007 to March 30, 2007 (U.S. subprime crisis), September 1, 2008
to October 31, 2008 (Lehman bankruptcy), and August 1, 2011 to September 30, 2011 (euro crisis).
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Table 3 Test of difference in tail coexceedance between crisis and tranquil periods

Country pairs Lower tail (θi ≤0.5) Upper tail (θi ≥0.5)

δ̂(0.05,0.50) δ̂(0.50,0.95)

Stat. s.e. Stat. s.e.
Mex.–Bra. 0.148 0.048 0.076 0.038
Mex.–Arg. 0.209 0.050 0.111 0.040
Mex.–Chi. 0.158 0.048 0.091 0.039
Bra.–Arg. 0.252 0.046 0.196 0.046
Bra.–Chi. 0.174 0.045 0.146 0.042
Arg.–Chi. 0.201 0.046 0.177 0.043

δ̂(0.05,0.25) δ̂(0.25,0.50) δ̂(0.50,0.75) δ̂(0.75,0.95)

Stat. s.e. Stat. s.e. Stat. s.e. Stat. s.e.
Mex.–Bra. 0.175 0.061 0.118 0.044 0.105 0.041 0.050 0.046
Mex.–Arg. 0.290 0.065 0.145 0.045 0.112 0.042 0.116 0.050
Mex.–Chi. 0.188 0.065 0.124 0.042 0.084 0.039 0.091 0.051
Bra.–Arg. 0.303 0.058 0.204 0.043 0.128 0.043 0.269 0.060
Bra.–Chi. 0.173 0.056 0.173 0.043 0.120 0.041 0.167 0.054
Arg.–Chi. 0.226 0.061 0.181 0.042 0.150 0.042 0.213 0.055

This table reports the average of α̂1,ii over θi , i.e. δ̂(θ,θ )= (#θ )−1∑
θi∈[θ,θ ] α̂1,ii , as well as the associated

standard errors. The resulting t statistics are obtained applying Corollary 2 and provide a joint test for
changes in comovements which follows from Definition 1. Statistics indicated in bold are NOT significant
at the 5% level.

where #θ denotes the number of addends in the sum and α̂1,ii the OLS estimate of
(7). Note that according to Definition 1, the information set with respect to which we
measure changes in comovements is �S =∅. We can therefore view the above test
as a necessary condition for contagion: if δ̂

(
θ,θ̄
)

is not significantly different from
zero, we can rule out the presence of contagion. On the other hand, rejection of the
null hypothesis δ̂

(
θ,θ̄
)=0 signals that comovements do change between tranquil

and crisis periods. It still leaves unanswered the question whether these changes in
comovement can be explained by economic variables. We will present in the next
subsection a test for changes in comovements with a nonempty information set.

For each country pair, Table 3 contains the standard errors associated with
the sum of α̂1,ii over all the θis, computed using Corollary 2. It reports the test
statistics computed over different intervals of θ .23 For example for Brazil and
Argentina, for θi<0.5, the average likelihood of observing a joint coexceedance
is 25% higher in crisis times than in tranquil times. For comparison, in Table 4 we
also report the correlation matrix computed using the Forbes and Rigobon (2002)
heteroskedasticity correction.

23Choosing a finer or coarser grid will result in different values for the test statistic. We have replicated the
tests with a finer grid and the results are qualitatively the same.
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Table 4 Correlation coefficients with the Forbes–Rigobon (2002) correction

Panel A: Unconditional correlations

Brazil Argentina Chile

Mexico 0.427 0.306 0.378
0.483 0.652 0.367

Brazil 0.305 0.366
0.771 0.463

Argentina 0.277
0.458

Panel B: one sided t-tests for Contagion (C) or No contagion (N)

Mexico N C N
1.52 12.54 −0.26

Brazil C C
24.18 2.59

Argentina C
4.85

This table compares the full sample correlation together with the correlation in the turmoil periods,
adjusted for differences in heteroscedasticity using the formula suggested by Forbes and Rigobon (2002).
Standard full sample correlations are reported in italics for comparison. Panel B reports the t-test statistics
for one-sided t-tests examining if the cross-market correlation coefficient during the full period is
significantly greater than during the crisis (high volatility) period.

Three interesting points emerge from a close examination of Table 3. First,
comovements increase significantly for all country pairs for all parts of the
distribution, with two exceptions highlighted in bold. Second, there are instances
where one part of the distribution is subject to increases in comovements, while
others are not. This is the case for Mexico and Brazil, where the test indicates
statistically significant increases in comovements during crises for the lower tail
but no increase in comovements in the upper tail. Notice that this analysis could
not be carried out with tests based on the estimation of correlation coefficients
(Forbes and Rigobon, 2002). Third, the test statistics gets weaker as the range of θ
for the tests is selected closer to the right tails.

Overall, our analysis suggests that the distributions are characterized by strong
asymmetries, which cannot be detected by simple correlation.

5.2 Controlling for Economic Variables

Our methodology allows the researcher to control for common factors which
may drive asset return comovements. Potential control variables could be, inter
alia, interest rate and bond yield differentials, return volatilities or cross-border
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financial flows (an extensive list of potential control variables is given, for instance,
in Eichengreen, Rose, and Wyplosz, 1996).

As an illustration, this subsection shows how to control for different levels of
volatilities in financial markets. We compute the volatility σ 2

EWMA,t of the average
returns on Argentinian and Brazilian stock markets as an exponentially weighted
moving average (EWMA) with decay coefficient equal to 0.97. Next, we identify
as periods of high volatility the 10% number of observations with highest EWMA

volatility, i.e., we construct the control dummy S2,t ≡ I
(
σ 2

EWMA,t>q
σ 2

EWMA
0.90

)
, where

q
σ 2

EWMA
0.90 is the 90% unconditional quantile of the time series {σ 2

EWMA,t}T
t=1. Finally, we

estimate the usual Equation (4), where in addition to the crisis dummy we include
the volatility dummy:

IY
t (β̂i,Y)·IX

t (β̂i,X)=α0,ii +α1,iiS1,t +α2,iiS2,t +εt, i=1,...,m. (9)

To ensure that we have exactly the same proportion of quantile exceedances
across all dummy periods, we add both the crisis and volatility dummies to the
CAViaR specification of the individual quantiles underlying the indicator functions
of the above regression:

qY
t (βi,Y)=β0,i,Y +β4,i,YS1,t +β5,i,YS2,t +β1,i,Yyt−1 +β2,i,YqY

t−1(βi,Y)

−β1,i,Yβ2,i,Yyt−2 +β3,i,Y
∣∣yt−1

∣∣.
For each market we estimate this model for 19 quantile probabilities ranging from
5% to 95%.

In Table 5, for each country pair, we report the value of the following test
statistics for α̂1,ii and α̂2,ii:

δ̂
(
θ,θ̄
) = (#θ )−1 ∑

θi∈[θ,θ̄]
α̂1,ii (10)

ξ̂
(
θ,θ̄
) = (#θ )−1 ∑

θi∈[θ,θ̄]
α̂2,ii, (11)

together with the associated standard errors computed over different intervals of θ .
By and large, the crisis dummy is still significant even when the volatility dummy is
included in the regression (9), although results are sometimes weakened in the right
part of the distribution. The volatility dummy is more often than not insignificant,
suggesting that comovement likelihoods are not higher in periods of high return
volatility. Moreover the test suggests that there is less asymmetry between lower
and upper tail coexceedance likelihoods in high volatility periods than in tranquil
or crisis times. These results are at odds with the findings of Bae, Karolyi, and Stulz
(2003): in our framework periods of high returns volatility do not necessarily
coincide with periods of crisis and only in a few cases contribute to increase return
comovements.

To check for the robustness of our estimates, we have repeated the exercise
using four different specifications. First, we have computed the EWMA volatility
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Table 5 Test of difference in tail coexceedance between crisis and tranquil periods
when controlling for volatility

Country pairs Lower tail (θi ≤0.5) Upper tail (θi ≥0.5)

δ̂(θ,θ ) δ̂(0.05,0.50) δ̂(0.50,0.95)

Stat. s.e. Stat. s.e.
Mex.–Bra. 0.142 0.050 0.048 0.042
Mex.–Arg. 0.230 0.050 0.120 0.039
Mex.–Chi. 0.123 0.048 0.043 0.041
Bra.–Arg. 0.278 0.045 0.215 0.044
Bra.–Chi. 0.157 0.044 0.146 0.043
Arg.–Chi. 0.209 0.045 0.194 0.040

ξ̂ (θ,θ ) ξ̂ (0.05,0.50) ξ̂ (0.50,0.95)

Stat. s.e. Stat. s.e.
Mex.–Bra. –0.008 0.040 0.067 0.042
Mex.–Arg. –0.072 0.036 –0.047 0.039
Mex.–Chi. 0.066 0.042 0.121 0.041
Bra.–Arg. –0.082 0.036 –0.050 0.044
Bra.–Chi. 0.050 0.038 0.020 0.043
Arg.–Chi. –0.084 0.033 –0.051 0.040

δ̂(θ,θ ) δ̂(0.05,0.25) δ̂(0.75,0.95) δ̂(0.25,0.50) δ̂(0.50,0.75)

Stat. s.e. Stat. s.e. Stat. s.e. Stat. s.e.
Mex.–Bra. 0.179 0.064 0.028 0.049 0.107 0.047 0.075 0.048
Mex.–Arg. 0.312 0.066 0.131 0.049 0.159 0.045 0.118 0.040
Mex.–Chi. 0.157 0.065 0.033 0.052 0.089 0.043 0.046 0.042
Bra.–Arg. 0.332 0.056 0.292 0.056 0.229 0.043 0.147 0.043
Bra.–Chi. 0.156 0.056 0.172 0.052 0.152 0.043 0.115 0.045
Arg.–Chi. 0.227 0.059 0.229 0.050 0.197 0.042 0.166 0.041

ξ̂ (θ,θ ) ξ̂ (0.05,0.25) ξ̂ (0.75,0.95) ξ̂ (0.25,0.50) ξ̂ (0.50,0.75)

Stat. s.e. Stat. s.e. Stat. s.e. Stat. s.e.
Mex.–Bra. –0.009 0.047 0.111 0.049 –0.005 0.042 0.024 0.048
Mex.–Arg. –0.063 0.046 –0.041 0.049 –0.080 0.036 –0.058 0.040
Mex.–Chi. 0.066 0.055 0.172 0.052 0.064 0.040 0.082 0.042
Bra.–Arg. –0.105 0.046 –0.051 0.056 –0.067 0.037 –0.051 0.043
Bra.–Chi. 0.065 0.049 0.025 0.052 0.044 0.037 0.015 0.045
Arg.–Chi. –0.098 0.042 –0.035 0.050 –0.076 0.032 –0.065 0.041

This table reports the average of α̂1,ii and α̂2,ii over θi as well as the associated standard errors. The resulting
t statistics are obtained applying Corollary 2 and provide a joint test for changes in comovements which
follows from Definition 1. Statistics indicated in bold are NOT significant at the 5% level.
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by choosing a decay parameter equal to 0.94, instead of 0.97.24 Second, we have
carried out the estimation identifying as periods of high volatility the 5% number
of observations with highest EWMA volatility.25 To do so, we have used a new

control dummy, which is defined as S′
2,t ≡ I

(
σ 2

EWMA,t>q
σ 2

EWMA
0.95

)
. Third, since the

volatility of the average return on Argentina and Brazil can go down when
correlations are negative, we have assumed that market turbulences are captured by
the average volatilities of Argentinian and Brazilian equity returns. To this end, we

have constructed another dummy variable S′′
2,t ≡ I

(
σ 2

A−EWMA,t>q
σ 2

A−EWMA
0.90

)
, where

σ 2
A−EWMA,t is the average variance of Argentinian and Brazilian equity returns (still

constructed with a decay parameter equal to 0.97), and q
σ 2

A−EWMA
0.90 is the associated

90% unconditional quantile. Fourth, we control for the strong correlation between
the U.S. and the Latin American equity markets. In order to do so, we have computed
the EWMA correlation between the average returns on the equity market pair
Brazil–Argentina and the S&P500,ρEWMA,t. Next, we have constructed a new control
dummy, S′′′

2,t ≡ I
(
ρEWMA,t>qρEWMA

0.90
)
, which equals one when ρEWMA,t is larger than

qρEWMA
0.90 , i.e., the 90% unconditional quantile of the time series {ρEWMA,t}T

t=1.
In the first case, the results are similar to those obtained assuming a decay

coefficient equal to 0.97: including the volatility dummy does not affect much the
significance of the crisis dummy, which still enters significantly the regression (9).
By the same token, when adopting the control dummy variables S′

2,t and S′′
2,t the

results do not differ much from the those reported in Table 5. Finally, when we use
the control dummy S′′′

2,t, the crisis dummy continues to enter significantly into the
regression, even though the control dummy S′′′

2,t is significantly different from zero
most of the times.26

6 SUMMARY AND CONCLUSIONS

In this study we propose a new methodology to measure dependence across
random variables. Our approach is based on conditional quantiles and permits us to
investigate whether dependence across series of interest changes over time or across
economic environments. We compute, for all quantiles, the conditional probability
that realization of one series fall in the left (or right) tail of their own distribution
provided that the realization of the other series have fallen in the same tail of their
own distribution. We estimate these conditional probabilities through a simple OLS

24The decay parameter in EWMA processes is arbitrarily chosen. Commonly it is assumed that it takes on
values larger than 0.90, so that it captures the high persistence typical of second moments.

25In this specification we set the decay parameter equal to 0.97.
26To save space, we do not report the results relative to the EWMA volatility computed by choosing a decay

parameter equal to 0.94, neither those obtained when using the dummy variables S′
2,t, S′′

2,t, and S′′′
2,t. Such

estimates are available upon request.
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regression of quantile coexceedance indicator variables on a constant and economic
indicator variables. We derive a simple test of changes in comovements across
time periods and market conditions. The full range of conditional dependence is
conveniently visualized in what we call “the comovement box.”

As an illustration, we use our methodology to investigate whether financial
comovements increase during crisis periods across the most important Latin
American equity markets. Our results show that, on average, over turbulent
times, comovements in equity returns across national markets tend to increase
significantly, both in the left and in the right tail of the distributions.

A number of questions can be addressed within the framework we propose.
For instance, a persistent issue in the literature is whether the increase in financial
markets comovements is due to economic linkages and common macro-economic
conditions or to investor behavior unrelated to these fundamental links.27 A
possible strategy to investigate this question would be to define the crisis periods
in terms of a set of economic variables and then testing whether the associated
coefficient is significantly different from zero. Surprisingly, when we define crisis
as periods of high volatility, we find that returns comovements do not change
significantly between low and high volatility periods than in times of low volatility.

In finance applications, our approach can be useful for studies of financial
stability, as well as for portfolio allocation and risk management. The methodology
allows the researcher to estimate the probability of comovements for different
ranges of the support of the return distribution and for different market conditions,
while taking into account local and global economic forces that may drive returns
comovements, and without having to make distributional assumptions.

APPENDIX A - ASSUMPTIONS

When using the generic notation (zt,Z), we refer to both (yt,Y) and (xt,X).

A.1 Consistency Assumptions

C0. (�,F,P) is a complete probability space, and {yt,xt,ωt}, t=1,2,... are random
variables on this space.
C1. The functions qZ

t (βi,Z), i,j=1,...,m, a mapping from B (a compact subset of �p)
to � are measurable with respect to the information set available at time t, �t, and
continuous in B, for any given choice of explanatory variables {zt−1,ωt−1,...,z1,ω1},
ωt ∈�t.
C2. hZ

i,t(ε)≡hZ
i (ε|�t) - the conditional density of zt −qZ

t (β0
i,Z) - is continuous.

C3. There exists h>0 such that, for all t and for all i=1,...,m, hZ
i,t(0)≥h.

27See Yuan (2005) for an example of a rational expectation model of contagious crisis unrelated to
fundamentals.
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C4. |qZ
t (βi,Z)|<K(�t) for all βi,Z ∈B and for all t, where K(�t) is some (possibly)

stochastic function of variables that belong to �t, such that E[K(�t)]≤K0<∞.
C5. E[|zt|]<∞ for all t.
C6. {ρi(zt −qZ

t (βi,Z))} obeys the uniform law of large numbers.
C7. For every ξ >0, there exists a τ >0 such that if ||βi,Z −β0

i,Z||≥ξ , then
liminfT→∞

∑
P[|qZ

t (βi,Z)−qZ
t (β0

i,Z)|>τ ]>0.

A.2 Asymptotic Normality Assumptions

AN1. qZ
t (βi,Z), is differentiable in B and for all βi,Z and γi,Z in a neighborhood υ0 of

β0
i,Z, such that ||βi,Z −γi,Z||≤d for d sufficiently small and for all t:

(a) ||∇qZ
t (βi,Z)||≤F(�t), where F(�t) is some (possible) stochastic function of

variables that belong to �t and E[F(�t)3]≤F0<∞, for some constant F0.
(b) ||∇qZ

t (βi,Z)−∇qZ
t (γi,Z)||≤M(�t,βi,Z,γi,Z)=O(||βi,Z −γi,Z||), where

M(�t,βi,Z,γi,Z) is some function such that E[M(�t,βi,Z,γi,Z)2]≤
M0||βi,Z −γi,Z||<∞ and E[M(�t,βi,Z,γi,Z)F(�t)]≤M1||βi,Z −γi,Z||<∞
for some constants M0 and M1.

AN2. (a) max{hZ
i,t(ε),hij,t(η,υ)}≤H<∞ ∀t, where hij,t(η,υ) is the joint conditional

density of (yt −qY
t (β0

i,Y),xt −qX
t (β0

j,X)).

(b) hZ
i,t(ε) satisfies the Lipschitz condition |hZ

i,t(λ1)−hZ
i,t(λ2)|≤L|λ1 −λ2|, ∀t,

for some constant L<∞.
AN3. The matrices A and D have smallest eigenvalue bounded below by a positive
constant for T sufficiently large.
AN4. The sequences {T−1/2∑T

t=1[θi −I(zt ≤qZ
t (β0

i,Z))]∇qZ
t (β0

i,Z)} obey the central
limit theorem.
AN5. T−1�T

t=1Gij,t
p→E[T−1�T

t=1Gij,t], where Gij,t ≡W ′
t[∇′

βqX
t (β0

j,X)
∫ 0
−∞hij,t(η,0)dη+

∇′
βqY

t (β0
i,Y)
∫ 0
−∞hij,t(0,υ)dυ].

The sequences T−1/2∑T
t=1
[
gt(β0)+(T−1�T

t=1Gt)D−1ψt(β0)
]

obey the central
limit theorem.

A.3 Variance–Covariance Matrix Estimation Assumptions

VC1. ĉT/cT
p→1, where the non-stochastic positive sequence cT satisfies cT =o(1) and

c−1
T =o(T1/2).

VC2. E[F(�t)4]≤F1<∞, ∀t, where F(�t) was defined in assumption AN1(a).

VC3. (a) T−1∑T
t=1ψt(β0)ψt(β0)′

p→A

(b) T−1∑T
t=1hZ

i,t(0)∇Zqt(β0
i,Z)∇′qZ

t (β0
i,Z)

p→DZ
i

(c) T−1∑T
t=1W ′

t

[
∇′
βqX

t (β0
j,X)
∫ 0
−∞hij,t(qX

t (β0
j,X),y)dy+

+∇′
βqY

t (β0
i,Y)
∫ 0
−∞hij,t(x,qY

t (β0
i,Y))dx

] p→Gij
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APPENDIX B - PROOFS OF THEOREMS IN THE TEXT

Proof of Theorem 1: We denote with
∑

C0
the summation over the C0 periods

when all the dummies are zero and with
∑

Cl
the summation over the Cl periods

defined by the dummies {Sl,t =1,S−l
t =0}T

t=1. Define ÎYX
ij ≡ IY

t (β̂i,Y)·IX
t (β̂j,X). The OLS

estimators for generic θi and θj is consistent and therefore:

α̂0,ij
p→α0,ij

= E[ÎYX
ij |St =0]

= plim

∑
C0

ÎYX
ij

C0

and

α̂l,ij
p→αl,ij

= E[ÎYX
ij |Sl,t =1,S−l

t =0]−E[ÎYX
ij |St =0]

= plim[
∑

Cl
ÎYX
ij

Cl
−
∑

C0
ÎYX
ij

C0
]

We show only that
∑

C0
ÎYX
ij /C0

p→ F̄ij
0 . The other cases can be obtained similarly. We

show first that C−1
0 {∑C0

[ÎYX
ij −IYX

ij ]} =op(1), where IYX
ij ≡ IY

t (β0
i,Y)·IX

t (β0
j,X). Define

εZ
i,t ≡[zt −qZ

t (β0
i,Z)], ε̂Z

i,t ≡[zt −qZ
t (β̂i,Z)] and δt(β̂i,Z)≡qZ

t (β̂i,Z)−qZ
t (β0

i,Z). Suppose that
δt(β̂i,Z)>0. The same reasoning goes through for δt(β̂i,Z)<0. Then:

|ÎYX
ij −IYX

ij |=|I(εY
i,t ≤δt(β̂i,Y))·I(εX

j,t ≤δt(β̂j,X))−I(εY
i,t ≤0) ·I(εX

j,t ≤0)|
= I(0≤εY

i,t ≤δt(β̂i,Y))·I(εX
j,t ≤0)+I(εY

i,t ≤0) ·I(0≤εX
j,t ≤δt(β̂j,X))+

+I(0≤εY
i,t ≤δt(β̂i,Y))·I(0≤εX

j,t ≤δt(β̂j,X))

≤2I(0≤εY
i,t ≤δt(β̂i,Y))+I(0≤εX

j,t ≤δt(β̂j,X))

Applying the mean value theorem to the expectation of the first term of the last
expression:

E[I(0≤εY
i,t ≤δt(β̂i,Y))]=E|

∫ δt(β̂i,Y)

0
hY

i,t(ε)dε|

=E|hY
i,t(δt(β̂i,Y))∇qY

t (β∗
i,Y)(β̂i,Y −β0

i,Y)|

where hY
i,t(ε) is the pdf of (yt −qY

t (β0
i,Y)) and β∗

i,Y lies between β̂i,Y and β0
i,Y . Now

choose d>0 arbitrarily small and T sufficiently large such that ||β̂i,Y −β0
i,Y||<d.
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This, together with assumptions AN1(a) and AN2(a), implies that

E[I(0≤εY
i,t ≤δt(β̂i,Y))]≤E|HdF(�t)|

≤|HdF0|=O(d)

Same reasoning holds for the other term in the inequality. Since d can be chosen
arbitrarily small, this result implies that:

E

∣∣∣∣∣∣C−1
0

⎧⎨⎩∑
C0

[ÎYX
ij −IYX

ij ]
⎫⎬⎭
∣∣∣∣∣∣≤C−1

0

⎧⎨⎩∑
C0

E|ÎYX
ij −IYX

ij |
⎫⎬⎭

=O(d)=op(1)

It remains to show that C−1
0
∑

C0

[
IYX
ij −Pr[yt ≤qY

t (β0
i,Y), xt ≤qX

t (β0
j,X)]

]
=op(1).

This term has expectation 0 and variance equal to:

C−2
0

∑
C0

E[IYX
ij −Pr[yt ≤ qY

t (β0
i,Y), xt ≤qX

t (β0
j,X)]]2

≤ C−1
0

T→∞→ 0

because, by the Law of Iterated Expectations, all the cross products with different
time subscript have expectation 0. Q.E.D.

Proof of Theorem 2: Note that
(
α̂−α0)=[Jm2 ⊗(W ′W)]−1∑T

t=1gt(β̂). The proof
is obtained by showing that the conditions of theorems 7.2 and 7.3 of
Newey and McFadden (1994) hold.

Proof of Theorem 3: The proof is similar to the proof of theorem 3 of Engle and
Manganelli (2004).

Received March 27, 2013; revised and accepted March 5, 2014.
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