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1 Introduction 

In recent years there have been significant improvements in understanding and measuring 

concentration risk in credit portfolios such as undiversified idiosyncratic risk and industry or 

country risk. The measurement of these risks is important against the background of regulato-

ry capital needs as well as for computing the economic capital. Unfortunately, the existing 

approaches are mostly not fully consistent with the new capital adequacy framework (Basel 

II) – sometimes within the derivation and sometimes within the implementation – so that the 

benefit of these approaches is restricted. Furthermore, comparative analyses on these models 

are scarce. Against this background we address the following questions: 

 How can the existing approaches be modified and adjusted to be consistent with the 

Basel framework? Is the risk measure Value at Risk problematic when dealing with 

concentration risk? 

 Which methods are capable to measure concentration risk and how good do they per-

form in comparison? What are the advantages and disadvantages of these methods? 

For answering these questions, we firstly investigate the assumptions underlying the Basel 

framework. The Basel II formula for measuring the Value at Risk of credit portfolios is based 

on the so-called asymptotic single risk factor (ASRF) framework as explained in Gordy 

(2003). In this framework it is assumed that 

 the portfolio is infinitely fine grained and thus it consists of a nearly infinite number 

of credits with small exposures, and 

 only one systematic risk factor influences the default risk of all loans in the portfolio. 

The first assumption implies that there are no name concentrations within the portfolio, thus 

all idiosyncratic risk is diversified completely. The second assumption implicates that there 

are no sector concentrations such as industry- or country-specific risk concentrations. These 

are idealizations that can be problematic for real world portfolios.  

The Basel Committee on Banking Supervision (BCBS) already recognized the high im-

portance of credit risk concentrations in the Basel framework: “Risk concentrations are argu-

ably the single most important cause of major problems in banks.”1 Since it is difficult to in-

corporate credit risk concentrations in analytic approaches, in Basel II there is no quantitative 

approach mentioned how to deal with risk concentrations. Instead, it is only qualitatively de-

manded in Pillar 2 of Basel II that “Banks should have in place effective internal policies, sys-

                                                 
1 See BCBS (2005) §770. 
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tems and controls to identify, measure, monitor, and control their credit risk concentrations.”2 

Thus, it is each bank’s task how to meet these requirements concretely. But of course the 

measurement and management of risk concentrations are not only important for the determi-

nation of regulatory capital but also for the measurement of the “true” portfolio risk. The capi-

tal needs regarding this “true” risk will be denoted as economic capital in the following. 

When measuring concentration risk it is important to notice the different interpretation of 

concentration risk by banks and supervisors. Banks often only look at the one side of concen-

tration risk – the diversification effect. They often argue that the Pillar 1 capital requirement 

does not measure benefits from diversification. Therefore it is argued that this framework is 

the non-diversified benchmark and thus an upper barrier for the true capital requirement. Con-

trary, supervisors interpret concentration risk as “a positive or negative deviation from Pillar 1 

minimum capital requirements derived by a framework that does not account explicitly for 

concentration risk.” 3 The latter perception is justified by the fact that the Pillar 1 capital rules 

were calibrated on well-diversified portfolios with low name and low sector concentration 

risk.4 Thus, if a portfolio is low diversified, the risk will be underestimated when using the 

Basel formula. Therefore, additional capital is required to capture these types of concentration 

risk. Contrary, if the portfolio is very high diversified, the Basel formula can overestimate the 

“true” risk. However, in the case of this overestimation of risk it is not allowed – at least at 

present – to reduce the regulatory capital. For well-diversified portfolios the Basel formula is 

a good approximation of the “true” risk. This relation is highlighted in Figure 1. 

 

- Figure 1 about here - 

 

Name concentrations as well as sector concentrations are already analyzed in the litera-

ture. The theoretical derivation of the so-called granularity adjustment that accounts for name 

concentrations was done by Wilde (2001) and improved by Pykhtin and Dev (2002) and Gor-

                                                 
2 See BCBS (2005) §773. Furthermore, because of the importance of this topic for the stability of the banking 

system, the Basel Committee launched the “Research Task Force Concentration Risk” that presented its final re-

port in BCBS (2006). The Task Force collected information about the state of the art in current practice and aca-

demic literature, analyzed the impact of departures from the ASRF model and reviewed some methodologies to 

measure name and sector concentrations. An additional workstream focused on stress testing against the back-

ground of risk concentrations. 
3 See BCBS (2006). 
4 See BCBS (2006) and CEBS (2006) §18. 
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dy (2003). This can be called “portfolio name concentration” because the approach refers to 

the finite number of credits in the portfolio. The adjustment formulas are derived in a more 

straightforward approach by Martin and Wilde (2002), Rau-Bredow (2002) and Gordy 

(2004). Furthermore, the adjustment is extended and numerically analyzed in detail by 

Gürtler, Heithecker, and Hibbeln (2008). An approach related to Wilde (2001) is the granular-

ity adjustment from Gordy and Lütkebohmert (2007). In contrast, the semi-asymptotic ap-

proach from Emmer and Tasche (2005) refers to name concentrations due to a single name 

while the rest of the portfolio remains infinitely granular. Thus, this type can be called “single 

name concentration”. 

There also exist analytic and semi-analytic approaches that account for sector concentra-

tions. One rigorous analytical approach is Pykhtin (2004) that is based on a similar principle 

as in Martin and Wilde (2002). An alternative is the semi-analytic model from Cespedes et al. 

(2006) that derives an approximation formula through a complex numerical mapping proce-

dure. Another approach from Düllmann (2006) extends the binomial extension technique 

(BET) model from Moody’s. Tasche (2006) suggests an ASRF-extension in an asymptotic 

multi-factor setting. Some numerical work on the performance of the Pykhtin model is done 

by Düllmann and Masschelein (2007). Furthermore, Düllmann (2007) presents a first compar-

ison of different approaches on sector concentration risk. The problem is that the derivation 

and the application of the approaches are often inconsistent with the Basel II framework what 

is critical for the following reasons: 

 Banks are demanded to measure concentration risks and “explicitly consider the ex-

tent of their credit risk concentrations in their assessment of capital adequacy under 

Pillar 2” of Basel II. Even if a bank uses a high-sophisticated multi-factor model, the 

results are not comparable with the Pillar 1 capital requirement if the results are not 

consistent to the Basel framework. Thus, it remains unclear if or how much additional 

regulatory capital is needed regarding risk concentrations. 

 Generally, it is not worthwhile to have a major gap between the regulatory and the 

“true” economic capital. A homogenization of these values is one goal of the new 

Capital Accord and would simplify the management of the credit portfolio. 

For these reasons we demonstrate how multi-factor models can be used in a way that is con-

sistent with the Basel II framework. This can be seen as expanding the validity of the Basel 

formula from the inner region of Figure 1 to the whole region. As sector concentrations typi-
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cally have a significantly higher impact on the capital requirement than name concentrations,5 

we focus on sector concentrations in the following. Furthermore we compare the capability of 

different multi-factor approaches in approximating the “true” portfolio risk through a simula-

tion study. In this context we also use our framework to test whether the problems mentioned 

in the literature with the widespread used VaR are relevant in connection with the measure-

ment of concentration risk. The use of the VaR is usually criticized since this risk measure 

does not fulfill all axioms of coherency.6 Instead, the application of the coherent risk measure 

Expected Shortfall (ES) is suggested. Since the non-coherency of the VaR is typically illu-

strated in contrived portfolio examples the relevance of this issue should be analyzed in more 

realistic settings.  

The rest of the paper is outlined as follows. In section 2 we briefly describe the ASRF 

framework and the Basel formula. Moreover, we discuss the problems of the non-coherent 

Value at Risk in the context of concentration risk and present how the coherent ES can be 

used consistent with Basel II. In section 3 we introduce multi-factor models in general, and 

the Pykhtin as well as the Cespedes model in particular. In this context we demonstrate how 

these approaches could be modified and applied to achieve meaningful results. We compare 

the performance of the models with a simulation study in section 4. Furthermore, we test the 

accuracy of the VaR in comparison to the ES. The paper concludes with section 5. 

 

2 Coherent Concentration Risk Measurement in the Context of the 
Basel Framework 

2.1 The ASRF Framework and the Basel II Formula 

As mentioned before, the Basel II risk quantification formula is based upon the ASRF frame-

work that assumes an infinitely granular portfolio and the existence of only one systematic 

risk factor x . If these two assumptions are fulfilled the relative portfolio loss L  in t = T al-

most surely equals the expected loss (EL) conditional on the realization of the systematic fac-

tor x 7 

                                                 
5 See BCBS (2006). 
6 See Artzner et al. (1999). 
7 To keep track of the model, stochastic variables are marked with a tilde “~”. Further, “E” denotes the expecta-

tion operator. 
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 L E L | x 0   a.s.8 (1) 

If the loss given default (LGD) is assumed to be deterministic, the conditional expectation can 

be written as 

 
n n

i i Default ,i i i Default ,i
i 1 i 1

E L | x E w LGD I | x w LGD E I | x∑ ∑ , (2) 

where DefaultI  represents the indicator function that is 1 in the event of default and 0 in case of 

survival of the obligor, n stands for the number of credits, and wi denotes the weight of credit 

i in the credit portfolio (i  {1, …, n}). For the concrete application of formula (2), the condi-

tional default expectation has to be determined. In the Basel II framework, the well known 

Vasicek model is used.9 In this one-period one-factor model the return of each obligor is dri-

ven by two components that realize at a future point in time T: a systematic part x  that influ-

ences all firms and a firm-specific (idiosyncratic) part i . Thus, the “normalized” asset re-

turns10 ia  of each obligor i in t = T can be represented by the following model 

 i i i ia x 1 , (3) 

in which x ~ N(0,1)  and i ~ N(0,1)  are independently and identically normally distributed 

with mean zero and standard deviation one. In this model, the correlation structure of each 

firm i is represented by the firm-specific correlation i  to the common factor. Hence, the 

correlation between two firms i, j can be expressed as i j  or simply as  for the case of 

a homogeneous correlation structure. 

Further, the probability of default of each obligor is exogenously given as PDi.11 Corres-

ponding to formula (3), an obligor i defaults at t = T when its “normalized” return falls below 

a default threshold bi which can be characterized by 

 i i i i i ia b x 1 b . (4) 

Against this background the threshold bi is determined by the exogenous specification of 

PDi:12  

                                                 
8 See Gordy (2003). 
9 See e.g. Vasicek (1987, 1991, 2002) and Finger (1999, 2001). 
10 The returns are normalized by subtracting the expected return and dividing the resulting term by the standard 

deviation in order to get standard normally distributed variables. 
11 The probability of default could either be determined by the institution itself or by a rating agency. 
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 1
i i i i i iPD prob a b N(b ) b N (PD ) . (5) 

Conditional on a realization of the systematic factor the probability of default of each obligor 

is 

 
i i

1
i i

i i a b i
i

N (PD ) x
prob a b | x E I | x N : p (x)

1

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. (6) 

Applying formula (6) from the Vasicek model to formula (2) from the ASRF framework, the 

portfolio loss distribution can be computed. For quantification of the credit risk, the Value at 

Risk (VaR) on confidence level z can be used, that is the z-quantile qz of the loss variable, in 

which z  (0,1) is the target solvency probability. Precisely, like Gordy (2004), we define the 

VaR as the loss that is only exceeded with the probability of at most 1–z, i.e. 

 z zVaR L : q L : inf l : prob L l z . (7) 

In the context of the ASRF framework, the VaR can be computed similarly to formula (1) as 

 z 1 zVaR L E L | x q (x) 0   a.s., (8) 

where zq (x)  stands for the z-quantile of the systematic factor. Recalling formula (2), (6), and 

the normality of the systematic factor, the VaR of the portfolio equals 

 

n
Basel

i i i 1 z
i 1

1 1n
i i

i i
i 1 i

VaR L w LGD p q (x)

N (PD ) N (0.999)
w LGD N ,

1

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 (9) 

if we insert the confidence level z = 0.999. This is the (well established) VaR formula used in 

Basel II. Obviously, the credit risk only relies on the systematic factor since due to the infinite 

number of exposures the idiosyncratic risks associated with each individual obligor cancel out 

each other and are diversified completely.  

 

2.2 Concentration Risk and Coherency 

In recent years there has been an extensive discussion about reasonable risk measures. Artzner 

et al. (1999) formulated four axioms that a risk measure should satisfy to be coherent: transla-

tion invariance, subadditivity, positive homogeneity, and monotonicity. Unfortunately, the 

commonly used VaR is not coherent because it is not necessarily subadditive. As long as we 
                                                                                                                                                         
12 The term prob(A) stands for the probability of the occurrence of an uncertain event A. N( )  characterizes the 

cumulative standard normal distribution and N 1 ( )  stands for the inverse of N( ) . 
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stay in the ASRF framework this characteristic is not problematic because in this context the 

VaR is exactly additive.13 But if we leave the ASRF framework, this behavior is not guaran-

teed anymore. This is true for non-asymptotic portfolios as well as for multi-factor models. 

However, many contributions that deal with concentration risk in the context of the Basel II 

framework use the VaR to quantify credit risk without calling the risk measure into question 

(possibly to be consistent with the ASRF-framework) even if the subadditivity could get prob-

lematic if concentration risk is considered.14 Thus, it could be beneficial to change the meas-

ure of risk, e.g. to use the coherent Expected Shortfall, that is defined as15 

 
z

1
z z z(L q )ES L (1 z) E L I q 1 z prob L q⎡ ⎤

⎣ ⎦  (10) 

with qz for the VaR on confidence level z (see formula (7)), or simply as 

 
z

1
z z(L q )ES L (1 z) E L I E L | L q⎡ ⎤

⎣ ⎦  (11) 

for continuous distributions. In addition to the mentioned coherency, the ES is also beneficial 

from an economic perspective. Instead of focusing on a single quantile which provides no in-

formation about tail events, the ES incorporates also information about the degree of losses in 

the case that the VaR is exceeded. This information is not only relevant for bondholders but 

also from a regulatory perspective as the shortfall amount could be required to recover the 

bank. 

But despite of the mentioned disadvantages of the VaR, it is still widespread used in prac-

tice, so there might be some opposing arguments. One point could be that the mentioned 

problems of the VaR do not appear in realistic settings and thus both the ES and the VaR lead 

to plausible results if applied accurately. As this issue is analyzed insufficiently for concentra-

tion risk in credit portfolios, we will take up this subject in our simulations later on.16 A fur-

ther often stated issue is that the ES is much less robust than the VaR.17 But as shown in 
                                                 
13 This can be seen in formula (8) considering that the expectation operator is additive. 
14 See e.g. Heitfield, Burton, and Chomsisengphet (2006), Cespedes et al. (2006), Düllmann (2006), as well as 

Düllmann and Masschelein (2007). 
15 See Acerbi and Tasche (2002). 
16 Some of our analyses regarding name concentrations show that the corresponding granularity adjustment for-

mulas lead to better results if the ES is used instead of the VaR, particularly if there is a high degree of concen-

tration risk. A numerical study can be requested from the authors. However, it is unclear if this is true for sector 

concentrations, too. 
17 The standard argument is reproduced by Acerbi (2004) as follows: “VaR does not even try to estimate the 

leftmost tail events, it simply neglects them altogether, and therefore it is not affected by the statistical uncer-

tainty of rare events. ES on the contrary, being a function of rare events also, has a much larger statistical error.” 
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Acerbi (2004), VaR and ES usually have similar statistical errors, implying this aspect not to 

be an argument against the use of the ES.18 An additional problem is that the measured eco-

nomic capital would be significantly higher if it is determined on the basis of the ES instead 

of the VaR (by use of the same confidence level). If we exemplary examine a portfolio with 

PD = 0.5% and ρ = 20% in the ASRF framework, the measured risk on confidence level 

z = 99.9% is 9.1% for the VaR and 11.81% for the ES, what is not the intended consequence 

of changing the risk measure. Instead, we would only like to have the appreciated properties 

when measuring concentration risk without to be bound to increase the required amount of 

capital. Therefore, we will show how the confidence level can be adjusted to account for this 

aspect subsequently. 

To sum up, from a theoretical perspective it is reasonable to use a coherent risk measure 

like the ES instead of the VaR when we allow for concentrated credit portfolios. Therefore, 

we show how the ES can be applied consistently to the Basel II framework in the next section. 

But as we do not know whether the mentioned disadvantages of the VaR appear in realistic 

settings of concentrated portfolios, we also apply the VaR during our simulations in chapter 4 

and analyze whether and in which degree, respectively, the usage of VaR leads to undesirable 

results. 

 

2.3 Adjusting for Coherency in Concentrated Portfolios 

Against the background of the preceding section we want to implement the ES and compare 

the outcome with the results by application of the VaR. But if we change the risk measure we 

have to ensure that the new risk measure (the ES) on the one hand is consistent with the 

framework presented in Pillar 2 of Basel II to get meaningful results for additional capital re-

quirements stemming from concentration risk. On the other hand the new risk measure should 

still match the capital requirements of Pillar 1 if the portfolio under consideration fulfills the 

assumptions of the ASRF framework. I.e. in the context of the ASRF framework, the capital 

requirements should not differ whether the risk is measured by the VaR or by the ES. There-

fore, we examine VaRBasel on the given confidence level z = 99.9% for several (infinitely gra-

nular) bank portfolios of different quality. As a next step we determine the confidence level of 

the ES that is necessary to match the results for both risk measures. We define this ES-

confidence level z (= z(ES)) implicitly as 
                                                 
18 Actually, due to the lower comparable confidence level – which will be explained in section 2.3 – the statisti-

cal error of the ES is smaller compared to the VaR. 
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 Basel Basel
zES L VaR L , (12) 

with BaselVaR  given by formula (9). Basel
zES  can be calculated using formula (11) and (9), 

leading to 

 
n

Basel 1 1i i
z 2 i i

i 1

w LGDES L N N (z), N (PD ),
1 z∑ , (13) 

where 2N ( )  stands for the bivariate cumulative normal distribution.19 

Firstly, we investigate the extreme cases that all creditors of a bank have a rating of (I) 

AAA or (VII) CCC.20 As can be seen in Table 1, the ES-confidence level must be in a range 

between 99.67% and 99.74%. Using these confidence levels the required capital is almost 

identical regardless of whether VaR or ES is used.  

 

- Table 1 about here - 

 

Additionally, we use five portfolios with different credit quality distributions (very high, high, 

average, low, and very low) that are visualized in Figure 2.21 All resulting confidence levels 

are between 99.71% and 99.73% with mean 99.72%. Even if there is some interconnection 

between the confidence level and the portfolio quality, an ES-confidence level of z = 99.72% 

seems to be accurate for most real world portfolios. 

 

- Figure 2 about here - 

 

3 Basel II-consistent Credit Risk Modeling in a Multi-Factor Setting 

3.1 Multi-Factor Models in Credit Risk Modeling 

To obtain a more realistic modeling of correlated defaults in a credit portfolio, we will intro-

duce a typical multi-factor model. In such a model the dependence structure between obligors 

is not driven by one global systematic risk factor but by sector specific risk factors. Addition-

ally, the group of obligors is divided into S sectors. Hereby a suitable sector assignment is 

                                                 
19 Cf. Acerbi and Tasche (2002) and Pykhtin (2004). 
20 We used the idealized default rates from Standard & Poors, see Brand and Bahar (2001), ranging from 0.01% 

to 18.27%, but the results do not differ widely for different values. 
21 The portfolios with high, average, low, and very low quality are taken from Gordy (2000). We added a portfo-

lio with very high quality. 



 10 

important,22 i.e. asset correlations shall be high within a sector and low between different sec-

tors. In contrast to the single factor model in which the correlation structure of each firm i is 

completely described by , in a multi-factor model we distinguish between an inter-sector 

correlation Inter  and an intra-sector correlation Intra . The inter-sector correlation describes 

the correlation between the sector factors and the intra-sector correlation characterizes the 

sensitivity of the asset return to the corresponding sector factor. Thus, the asset return of obli-

gor i in sector s can be represented by 

 s,i Intra ,i s Intra ,i ia x 1 , (14) 

where sx  is the sector risk factor and i  stands for the idiosyncratic factor. sx  and i  are 

normally distributed variables with mean zero and standard deviation one that are independent 

among each other. Since the sector risk factors sx  are potentially dependent random variables 

that are difficult to deal with23 we make use of the possibility to present the sector risk factors 

as a combination of independently and standard normally distributed factors kz  (k = 1, …, K) 

 
K K

2
ss s,k k s,k

k 1 k 1

x z with 1∑ ∑ , (15) 

in which the factor weights s,k  are calculated via a Cholesky decomposition of the inter-

sector correlation matrix.24 Hence the inter-sector correlation is given as  

 
K

Inter
s,t s,k t ,k

k 1
∑ . (16) 

From (14) and (15) the asset correlation between two obligors is given by 

 
Intra,i Intra , j

Ks,i t , j

Intra,i Intra , j s,k t,k
k 1

, if  s t,
corr(a ,a )

, if  s t.

⎧
⎪
⎨
⎪
⎩

∑
 (17) 

                                                 
22 As shown by Morinaga and Shiina (2005) an assignment of borrowers to the wrong sectors leads to a higher 

estimation error than a non-optimal sector definition. 
23 Concretely, the independence of the risk factors is essential for the derivation of the Pykhtin-model in section 

3.3. 
24 This approach is a common mathematical method to generate correlated normal random variables and leads to 

the identical number of independent risk factors kz  and dependent sector factors sx , that is K equals S. Another 

common method to determine independent risk factors is the principal component analysis which leads to a re-

duced number of risk factors. 
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Obligors in the same sector will be highly correlated with one another when their intra-sector 

correlation is high. The correlation of obligors in different sectors also depends on the factor 

weights, which are derived from the inter-sector correlation. Consequently, the dependence 

structure in the multi-factor model is completely described by the intra- and inter-sector corre-

lations. Taking formula (5) into account, the portfolio loss distribution can be written as 

 
s

1
s ,i s ,i

nS

s,i s,i a N (PD )
s 1 i 1

L w LGD I ,∑∑  (18) 

where sn  is the number of obligors in sector s. 

In the next three subsections we will present different approaches to determine the distri-

bution and tail expectations of L . Furthermore, we will demonstrate how the models can be 

parameterized to be Basel II-consistent. 

 

3.2 Monte-Carlo-Simulations and Parameterization through a Cor-
relation Matching Procedure 

A common approach to estimate the portfolio loss distribution is the use of Monte-Carlo-

Simulations. In each simulation run the sector factors as well as the idiosyncratic factor of 

each obligor are randomly generated. Herewith the asset return is calculated according to (14). 

If s,ia  is less than a threshold given by 1
s,iN (PD ) , obligor i defaults. The portfolio loss is de-

termined from formula (18) by summing up the exposure weights s,iw  multiplied by the 

s,iLGD  of each defaulted credit. To get a good approximation of the “true” loss distribution 

we choose 500,000 runs for our Monte-Carlo-Simulations. After running the simulation and 

sorting loss outcomes, we get the portfolio loss distribution. To obtain the ES for a given con-

fidence level z, in principle the mean for all loss realizations equal or greater than zq  has to 

be calculated. The quantile zq  is given by the z 500,000th  element of the simulated distribu-

tion.25 

To calibrate the multi-factor model, most variables can be chosen identically to the single 

factor model. The only difference is the correlation structure that generally consists of inter- 

and intra-sector correlations as described above. The matrix of inter-sector correlations is 

usually derived from historical default rates or from equity correlations between industry sec-

tors. The intra-sector correlations can be derived from historical default rates, too. The prob-

                                                 
25 The exact formulation is given in formula (10). 
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lem of a derivation based on historical default rates is that there are not always enough obser-

vations to get stable results. That is even more problematic if it is assumed (like in Basel II) 

that the correlation and the PD are interdependent. Furthermore, the results from the multi-

factor model would normally not be consistent with Basel II because the correlation structure 

is completely different. Thus, it would not be possible to identify if there is need for addition-

al regulatory capital under Pillar 2 (measured consistently to Pillar 1) of Basel II.  

For both reasons the intra-sector correlations could be chosen analogously to the Basel II 

formula 

 
50 PD 50 PD

Basel 50 50

1 e 1 e0,12 0,24 1
1 e 1 e

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (19) 

for corporates. This is what Cespedes et al. (2006) did in their analyses. But their approach is 

critical for the following reason: The validity of this formula for the intra-sector correlations 

is equivalent to the statement that the regulatory capital calculated via the formula of Pillar 1 

is an upper barrier of the true risk. This property in turn is only fulfilled if there exists only 

one sector or if all sectors are perfectly correlated. In all other cases there is an effect of sector 

diversification that leads to a lower capital requirement compared to the Basel framework. 

Beyond, the Basel II correlation formula is not intended by the Basel committee to reflect the 

intra-sector correlation exclusively. Instead, the framework is calibrated on well-diversified 

portfolios, as demonstrated in Figure 1, implying that the correlation formula is chosen in a 

way that the single factor model leads to a good approximation of the “true” risk based on the 

full correlation structure in a multi-factor model. Cespedes et al. (2006) already recognized 

this criticism and mentioned that it should be possible to use some scaling up for the intra-

sector correlations and the resulting capital, respectively, but their calculations are based on 

the formula above. 

Alternatively, the intra-sector correlation could be chosen in a way that the regulatory 

capital RC can be matched with the economic capital mfEC  that is simulated for a well-

diversified portfolio within a multi-factor model. Therefore, we define the “implicit intra-

sector correlation” (Implied)
Intraρ  by 

 mf (Implied)
Inter Intra BaselEC , RC . (20) 

Unfortunately, the portfolios for which the calibration was done by the Basel Committee in-

cluding the assumed inter-sector correlation structure are not publicly available. Thus, firstly 

we have to choose a concrete inter-sector correlation and determine the implicit intra-sector 

correlation for some hypothetical, well-diversified portfolios via Monte-Carlo-Simulations 
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with several parameter trials. This approach is related to Lopez (2004), who empirically de-

termines the single correlation parameter for the ASRF model that leads to the same 99.9% 

quantile as KMV’s multi-factor model for several portfolio types (geographical region, PD, 

and asset size categories) using a grid search procedure. Thus, in the approach of Lopez 

(2004) the left-hand side of formula (20) is given and the single correlation parameter of the 

right-hand side is determined, whereas we are searching for the intra-sector correlation on the 

left-hand side that leads to a match of both models when the other parameters, especially the 

single correlation parameter of Basel II, are exogenously given. 

As mentioned above, the required inter-sector correlation matrix could be estimated from 

historical default rates or from time series of stock returns.26 Düllmann, Küll, and Kunisch 

(2008) demonstrate on the basis of an extensive simulation study that it is recommendable to 

use stock prices instead of historical default rates as this involves smaller statistical errors. 

Against this background we rely on equity correlations, too, and use the correlation matrix of 

the MSCI EMU industry indices computed by Düllmann and Masschelein (2007) for the in-

ter-sector correlation structure (see Table 2).27  

 

- Table 2 about here - 

 

Our definition of a well-diversified portfolio is based on the overall sector concentration of 

the German banking system.28 Even if it is theoretically possible to achieve lower capital re-

quirements through different sector decomposition, this can only be done by a restricted num-

ber of banks since a deviation from the market structure of all banks immediately leads to a 

disequilibrium. The composition can be seen in Table 3. In addition, the total number of cre-

dits is assumed to be n = 5000 to guarantee a low degree of name concentration. 

 

- Table 3 about here - 

 

                                                 
26 An overview of the literature regarding the measurement of asset correlation parameters can be found in 

Düllmann, Küll, and Kunisch (2008) and Grundke (2008). 
27 The correlation structure based on the MSCI US is similar, see Düllmann and Masschelein (2007). 
28 Düllmann and Masschelein (2007) notice that the concentration is very similar to other countries like France, 

Belgium and Spain. 
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If we assume a constant intra-sector correlation, the best match is achieved by (approximate-

ly) (Implied)
Intraρ  = 25%.29 The concrete results, however, vary with the portfolio quality (see Table 

4).30 Thus, the use of a constant intra-sector correlation can lead to a significant underestima-

tion of economic capital for high-quality portfolios and to an overestimation for low-quality 

portfolios. 

 

- Table 4 about here - 

 

To reduce the deviation, the intra-sector correlation should be decreasing in PD. We found 

that the following intra-sector correlation function leads to a good match for portfolios with 

different quality distributions: 

 
50 PD 50 PD

(Implied)
Intra 50 50

1 e 1 eρ 0.185 0.34 1
1 e 1 e

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (21) 

Thus, we use the correlation function type from Basel II but the correlation range is from 

18.5% to 34% instead of 12% to 24%.31 It has to be noted that this formula is still a substan-

tial simplification as we assume that the intra-sector correlation is PD-dependent only. In ad-

dition, empirically there are also inter-sectoral differences of this parameter.32 In principle it 

would be possible to capture both effects, e.g. by multiplying a sector-specific factor to for-

mula (21), which covers the relation of the empirically observed correlations.33 Of course, the 

absolute level of the resulting correlations would usually be different from the empirical ob-

servations to keep Basel II consistent results. But for convenience we rely on the PD-

dependent formula (21) in our following analyses. 

                                                 
29 This value results on the basis of both measures (VaR and ES) on the respective confidence level as described 

in section 2.3. The result is consistent with Düllmann and Masschelein (2007) who use a constant intra-sector 

correlation of 25% in their analysis. 
30 See Figure 4 for the portfolio characteristics. 
31 We tried several different functional forms but the formula above performed best. The multipliers 18.5% and 

34% in function (21) were determined with a grid search using a reasonable parameter range, which is similar to 

the procedure of Lopez (2004) used for the single correlation parameter. 

32 E.g. Heitfield, Burton, and Chomsisengphet (2006) determine the sector loadings, which equal Intra  for 50 

industry sectors using KMV data on asset values. The resulting intra-sector correlation is on average 18.8% and 

the standard deviation is 8.3%. These inter-sectoral differences are not captured by the formula above. 
33 A correlation structure with one degree of freedom for every PD-/sector-combination is practically unfeasible 

due to high data requirements. 
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Thus, all additional input data needed for typical multi-factor models, e.g. using Monte- 

Carlo-Simulations, are given with Table 2 and formula (21). Using these values, the multi-

factor models should be consistent with the Basel framework. Consequently, the measured 

economic capital is only lower than the regulatory capital if the portfolio is less concentrated 

than a typical, well-diversified portfolio and the needed economic capital will be above the 

capital requirement of the regulatory framework if there is more concentration risk in the cre-

dit portfolio. 

 

3.3 Implementation for the Pykhtin-Model 

In this section we present the multi-factor adjustment of Pykhtin (2004). It is an extension of 

the granularity adjustment, introduced by Gordy (2003), Wilde (2001) and Martin and Wilde 

(2002), for multi-factor models and provides an analytical method for calculating the VaR and 

ES of a credit portfolio. 

The basic idea of Pykhtin is to approximate the portfolio loss L  in the multi-factor model 

with the respective portfolio loss L  in an accurately adjusted ASRF-model. This is done by 

mapping the correlation structure of each credit in the multi-factor model into a single correla-

tion factor. This factor is determined by maximizing the correlation between the new single 

risk factor x  and the original sector factors { sx }. 

Via this approach it is possible34 to approximate the z-quantile zq (L)  of the portfolio loss 

by a quadratic Taylor series around the ASRF solution. This leads to 

 
2

z z
z z 2

0 0

dq (L U) d q (L U)1q (L) q (L) ,
d 2 d

 (22) 

where  is the scale of perturbation and U  describes the approximation error between L  and 

L , i.e. U L L . The first summand on the right-hand side of (22) is the z-quantile of the 

loss L  within the reasonable adjusted ASRF-model. The corresponding distribution of L  can 

be calculated by 

 
1n

i i
i i

i 1 i

N (PD ) c x
L l(x) w LGD N

1 c

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ , (23) 

where ic  is the correlation between the systematic risk factor x  and the asset return.35 

                                                 
34 See Martin and Wilde (2002). 
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Instead of using  as it is done in the ASRF-model, the new correlation parameter ic  is 

used to match the correlation structure in the multi-factor model. As shown in formula (9), the 

loss quantile zq (L)  is given by 1l(N (1 z))  in the ASRF-model. In addition, it can be shown 

that the first derivative in formula (22) is equal to zero. Hence, the so-called multi-factor ad-

justment zq  is completely described by the second derivative in formula (22). According to 

Pykhtin (2004) and Wilde (2001) zq  can be written as 

 
1

z z z

x N (1 z)

1 l (x)q q (L) q (L) v (x) v(x) x ,
2 l (x) l (x)

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (24) 

in which l (x)  and l (x)  are the first and second derivative of l according to formula (23) and 

v( x ) is the conditional variance of U. Further, v( x ) can be decomposed into two terms, 

v (x)  and GAv (x) . The first term v (x)  describes the systematic risk adjustment, which is 

given by the difference between the multi-factor and single-factor loss distribution in infinite-

ly granular portfolios. The second term GAv (x)  is the granularity adjustment, which measures 

the influence of single-name concentration.36 Using these terms the multi-factor adjustment 

can be presented as  

 GA
z z zq q q ,  (25) 

i.e. the multi-factor adjustment can be split into a systematic risk adjustment component and a 

granularity adjustment component. Finally, the approximation of a loss quantile zq (L)  in (22) 

is given by (23) and the multi-factor adjustment: 

 GA
z z z zq (L) q (L) q q . (26) 

After dealing with the VaR we now present the ES in a multi-factor model. In this context 

formula (11) can be rewritten as 

 

1

z z s s
z

1

z s z z
z

1ES (L) E L | L q (L) (q (L) q )ds
1 z

1ES (L) q ds : ES (L) ES
1 z

∫

∫
. (27) 

                                                                                                                                                         
35 The derivation of ci to obtain the maximum correlation between x  and { sx } can be found in Appendix A.1. 

From Appendix A.1 we also know that for determination of ci both (the intra- and inter-sector) correlations are 

needed, which can be taken from section 3.2. 
36 The derivatives and the conditional variances can be found in Appendix A.2. 
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To get this result the quantile zq (L)  is substituted by approximation (26). The first summand 

of the right-hand side describes the ES for the single factor portfolio and the second summand 

is the multi-factor adjustment. 

As shown by Pykhtin (2004) zES (L)  and zES (L)  can be calculated as 

 
n

1 1
z i i 2 i i

i 1

1ES (L) w LGD N N (PD ), N (1 z),c ,
1 z

⎡ ⎤⎣ ⎦∑  (28) 

and 

 
1

1
z 1

v N (1 z)1ES n N (1 z) ,
2 (1 z) l N (1 z)

⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦ ⎡ ⎤⎣ ⎦
 (29) 

with n( )  denoting the density function of the standard normal distribution. Again, the multi-

factor adjustment can be decomposed into a systematic and an idiosyncratic part by decom-

posing the conditional variance. Hence the ES for a portfolio in a multi-factor model is given 

by 

 GA
z z z zES (L) ES (L) ES ES . (30) 

In principle it is straightforward to implement the Pykhtin model. For calculating the ES we 

have to compute formula (29).37 If applied to large portfolios, its computation can be extreme-

ly time-consuming since the calculation procedure inter alia requires n2-times the computation 

of the conditional asset correlation,38 with n being the number of credits. An alternative pro-

cedure performed by Düllmann and Masschelein (2007) is to neglect the multi-factor adjust-

ment and to use (23) only to aggregate all credits for each sector and thus using the formulas 

on sector and not on borrower level. To consider the multi-factor adjustment and thus to in-

crease the accuracy, we propose to built PD-classes for each of the sectors and aggregate the 

credits to these buckets for the calculation of the multi-factor adjustment. With this approach, 

the computation time is basically controlled by 

 2
PD SectorsLoops (N S ) , (31) 

where NPD and S denote the number of PD-classes and sectors.39 If the number of PD-classes 

is sufficient high, the approximation error resulting from aggregating individual PDs to PD-

classes is negligible. As the number of loops will not grow with bigger portfolios, it is possi-

                                                 
37 For the implementation we need the derivatives and conditional variances given in Appendix A.2. 
38 The quadratic computation effort is due to the determination of a double sum (see Appendix A.2, (A.10)). 
39 The results of the multi-factor adjustment do not differ whether different exposures with the same PD are ag-

gregated or handled separately on borrower level. For details see Appendix A.2. 
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ble to perform the adjustment on bucket level within reasonable time. Only the granularity ad-

justment should be calculated on borrower level but this is no computational burden.40 

 

3.4 Implementation for the Cespedes-Model 

Cespedes et al. (2006) present a method to relate the economic capital in the multi-factor 

model to the regulatory capital via a diversification factor DF( ), which depends on two para-

meters:41 

 the average sector concentration CDI and 

 the average weighted inter-sector correlation . 

Herewith the economic capital of a portfolio can be approximated by: 

 mfEC DF RC. (32) 

Thus, the economic capital in the multi-factor model mfEC  can be approximated by a well-

defined diversification factor DF multiplied by the regulatory capital RC of the ASRF-model. 

As mentioned before, Cespedes et al. assume that the regulatory capital of Pillar 1 is an upper 

barrier of the true risk because no diversification effects between the sectors are considered, 

which in turn implies the parameter DF to be always less than or equal to one. In contrast, if 

we use our definition of the intra-sector correlation Intra  from section 3.2, it is possible to ob-

tain mfEC RC  as well as mfEC RC depending on the degree of diversification in compar-

ison to the well-diversified portfolio defined in section 3.2. Hence, our later on calculated DF-

function can be greater than one, i.e. the DF-function measures not only the benefit from sec-

tor diversification but also the risk resulting from high sector concentration. As the regulatory 

capital is additive in the ASRF-model (32) can be substituted by 

 
S

mf s
z

s 1

EC DF RC∑ , (33) 

in which mf
zEC  is the economic capital in the multi-factor model and sRC  is the regulatory 

capital of sector s. In principle, the approach can be characterized as follows: Firstly, mf
zEC  is 

calculated for a multitude of portfolios via Monte-Carlo-Simulations. For each simulated port-
                                                 
40 The computation time when calculating the multi-factor adjustment on bucket- instead on borrower-level can 

be reduced from 67 minutes to 5 seconds for a portfolio with 11 sectors, 7 PD-classes, and 5000 creditors. 
41 In the strict sense Cespedes et al. relate the multi-factor model to the economic capital in a single-factor mod-

el. But since they apply the regulatory capital formula and we require a relation to this formula, too, we use the 

term regulatory capital instead. 
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folio the diversification factor can be calculated according to formula (33). Finally, a regres-

sion is performed to get an approximation for DF as a function of the two parameters CDI and 

. If DF can capture the industry diversification effects, we are able to approximate mf
zEC  

with formula (33) without additional Monte-Carlo-Simulations. 

To derive the parameters which explain the effect of diversification and concentration in a 

multi-factor model, Cespedes et al. suggest to use the average inter-sector correlation . This 

can be interpreted as a scale of the dependence between the sectors. The formula for  is giv-

en as 

 
sj

S
int er s j

s 1 j s
S

s j

s 1 j s

RC RC
.

RC RC

∑∑

∑∑
 (34) 

The correlation is weighted by the expected shortfall in order to account for the contribution 

of each sector. The second suggested parameter is the capital diversification index denoted by 

CDI. It describes the sector concentration measured by the relative weight of each sRC :42 

 

S 2s

s 1
2S

s

s 1

RC
CDI .

RC⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
 (35) 

The parameter CDI lies between the two extreme values:  

 1CDI
n

, i.e. perfect sector diversification, 

 CDI 1, i.e. perfect sector concentration. 

To avoid a too complex model Cespedes et al. neglect further potential input parameters to 

determine the DF-function. To approximate the multi-factor model, formula (33) can be re-

written as 

 
S

mf s
z

s 1

EC CDI, DF CDI, RC .∑  (36) 

In the following, we present the procedure to estimate the DF-function. To get a universally 

valid DF-factor as many portfolios as possible have to be generated and simulated. To reduce 

the necessary number of trials, the portfolios should be restricted to those with reasonable 

characteristics. Our portfolios are randomly generated using the following parameter setting. 

                                                 
42 This concentration measure is also known as the Herfindahl-Hirschmann-Index. 
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When we state several parameter values or a parameter range, the parameter is randomly 

drawn from this set. 

For the intra-sector correlations we use the functional form of formula (21). The inter-

sector correlation structure is taken from Table 2, so that all simulated portfolios are stem-

ming from this sector definition. Each portfolio consists of {2, …, 11} sectors that are ran-

domly drawn from the different industries. The sector weights are in [0, 1]. The total number 

of credits is 5000, equally divided for each sector. Each sector in turn consists of credits from 

the PD classes {AAA, AA, A, BBB, BB, B, CCC}. Instead of using equally distributed PD 

classes we draw the quality distribution from our predefined credit portfolio qualities {very 

high, high, average, low, very low} for every sector.43 We draw 25,000 and 50,000 portfolios, 

respectively, and compute the economic capital in the multi-factor model for each portfolio.  

To determine the economic capital we tried both Monte-Carlo-Simulations with 100,000 

trials44 for every portfolio and the Pykhtin formula from section 3.3. Because the computation 

time for Monte-Carlo-Simulations is materially longer, the corresponding results are based on 

25,000 random portfolios whereas we computed the economic capital for 50,000 portfolios 

when using the Pykhtin formula instead. Furthermore, since Cespedes et al. (2006) use the 

VaR as the relevant risk measure and thus define economic capital as mf mfEC VaR EL  we 

redefine the economic capital of the multi-factor model with respect to ES as argued in sec-

tion 2.3: mf mfEC ES EL .45 In contrast, for the regulatory capital we use 
BaselRC VaR EL . The result could also be related to the Expected Shortfall in the ASRF-

model but we detected that the results differ only marginally and the VaR is easier to imple-

ment in typical spreadsheet applications.46 The results for the diversification factor DF are 

very similar whether they are based on Monte-Carlo-Simulations or on the Pykhtin formula. 

Figure 3 presents characteristics of the diversification factor when using the Pykhtin formula. 

 

                                                 
43 The setting is similar to Cespedes et al. Until this point, the main difference is the definition of the intra- and 

inter-sector correlations. 
44 For the determination of the economic capital for one specific portfolio the number of trials is slightly low but 

as we perform 25,000 simulations and the simulation noise of each simulation is unsystematic, the error terms 

should cancel out each other to a large extent. 
45 We also tested the results when using the ES instead of the unexpected loss but the coefficient of determina-

tion is higher when subtracting the EL in the corresponding formulas when performing the simulations. 
46 To determine the Expected Shortfall with formula (13), a bivariate cumulative normal distribution has to be 

computed whereas the Value at Risk only makes use of univariate distributions. 
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- Figure 3 about here - 

 

For determination of the functional form of DF we use a regression of the type47 

 2 2
0 1 2 3DF a a (1 CDI) (1 ) a (1 CDI) (1 ) a (1 CDI) (1 )  (37) 

in both cases. The resulting function when using Monte-Carlo-Simulations is 

 MC

2 2

DF 1.4626 1.4475 (1 CDI) (1 )

0.0382 (1 CDI) (1 ) 0.3289 (1 CDI) (1 )
 (38) 

with a coefficient of determination of R2 = 95.5%. Analogously, we determined the DF-

function when using the Pykhtin formula 

 Pykhtin

2 2

DF 1.4598 1.4168 (1 CDI) (1 )

0.0213 (1 CDI) (1 ) 0.2421 (1 CDI) (1 )
 (39) 

with R2 = 97.9%. The latter function is plotted in Figure 4.48 In order to get the approximation 

for the multi-factor model, formula (36) has to be computed using either function (38) or (39). 

 

- Figure 4 about here - 

 

It can be seen that the maximum diversification factor is about 1.46. Thus, in the case of (al-

most) no diversification effects the measured capital requirement is 46% above the regulatory 

capital under Pillar 1. This will appear in the case of being concentrated to a single sector, 

leading to CDI 1, as well as in the theoretical case of perfect correlations between the rele-

vant sectors, leading to 1. Furthermore, the diversification factor is strongly increasing in 

CDI and in  which is consistent with the intuition.  

 

                                                 
47 We tried several different regressions but similar to Cespedes et al. this function worked best. In contrast to 

Cespedes et al. we do not set the first parameter a0 to one because our DF-factor is not bound by the single-

factor-model. 
48 The shape of the function is similar to Cespedes et al. but their range is from 0.1 to 1.0 whereas our function 

ranges from 0.2 to 1.5. In addition, they received a little higher R2 (99.4% instead of 95.5% and 97.9%, respec-

tively) but this is mainly due to the different simulation setting. Cespedes et al. directly draw the parameter  as 

an input parameter for each simulation, implying  to fully define their correlation structure. We use a hetero-

geneous correlation structure instead and compute  for the portfolios. Thus, in our setting  does not reflect 

the complete correlation structure which results in a lower R2 but does not imply a worse approximation. 
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4 Performance of the Concentration Risk Models 

4.1 Analysis for Deterministic Portfolios 

To determine the quality of the presented models, we start our analysis with calculating the 

risk for five deterministic portfolios of different quality.49 We generate well-diversified port-

folios consisting of 5,000 credits. Consequently, we have neither high name nor high sector 

concentration risk. Concretely, we choose the sectors and their weights as given in Table 3. 

The inter-sector correlation is given in Table 2 whereas the intra-sector correlation is calcu-

lated on the basis of formula (21). The five portfolios differ in their PD distribution which is 

presented in Figure 4. Portfolio 1 is the portfolio with the highest and Portfolio 5 is the one 

with the lowest credit quality distribution.  

In Table 5 we compare the results from the Monte-Carlo-Simulation (MC-Sim.), the Ba-

sel II formula (Basel II), the Pykhtin model (Pykhtin), the Cespedes model calibrated with 

Monte-Carlo-Simulations (Cespedes I) and the Cespedes model calibrated with the Pykhtin 

formula (Cespedes II). As can be seen in the table, the benchmark portfolio is constructed in a 

way that the Basel II formula represents a very good approximation50 of the “real” ES in a 

multi-factor model given by Monte Carlo Simulations.51 Besides, the simulated VaRmf 

matches the simulated ESmf, our benchmark, almost exactly. The calculated values of the 

Pykhtin model are very good approximations of the ES in almost all cases, too. The outcomes 

of the Cespedes model are somewhat more imprecise in both cases. With better credit quality 

the estimation error is increasing, which leads to an underestimation of risk in high quality 

portfolios. 

 

- Table 5 about here - 

 

As a next step, we change the portfolio structure towards high sector concentration. There-

fore, we increase the sector weights of two sectors. We assume that 45% of the creditors – in 

terms of their exposure – belong to the Information Technology sector and an equal amount 

                                                 
49 The results refer to the total gross loss of a portfolio in terms of ES and VaR, respectively. To relate this to the 

unexpected net loss, the results have to be multiplied by the LGD and the EL has to be subtracted. 
50 The small mismatch is mainly due to keeping the ES-confidence level constant and not a result of the chosen 

intra-sector correlation function. If we directly compare the results from Monte-Carlo-Simulations with the ES in 

the ASRF-framework, the relative root mean squared error is reduced from 0.97% to 0.28%. 
51 In our analyses the number of simulation runs is 500,000. 
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belongs to the Telecommunication Services sector. The remaining 10% of exposure are equal-

ly assigned to the miscellaneous sectors. As shown in Table 6 the risk materially increases for 

all types of portfolio quality. Again, the simulated values for ESmf and VaRmf are very close to 

each other. However, the Basel formula underestimates the risk by 14% to 20% depending on 

the portfolio quality. This is the (relative) amount that should be considered in the assessment 

of capital adequacy under Pillar 2. The approximation formula of Pykhtin can capture this 

concentration risk with a negligible error in all cases. Cespedes I leads to an underestimation 

of risk in high quality portfolios and to an overestimation of risk in low quality portfolios with 

a maximum deviation of nearly 4%. Contrary, Cespedes II underestimates the risk in most 

cases with up to 6%. Thus, the sector concentration risk is not fully captured for high quality 

portfolios. 

 

- Table 6 about here - 

 

Furthermore, we build credit portfolios with low sector concentration. For this purpose, we 

use the concept of naïve diversification implying each sector to have an equal weight of 1/11. 

As can be seen in Table 7, the economic capital is significantly lower than the regulatory 

capital. Moreover, this shows that it is easy to construct portfolios that are better diversified 

than the overall credit market.52 Apart from insignificant deviations both simulated risk meas-

ures lead to the same solutions. Again the Pykhtin model approximates the “real” risk very 

good for all types of credit quality. The Cespedes model I underestimates the risk for high 

quality portfolios with up to 3%. The Cespedes model II underestimates the risk, too, but the 

approximation error is negligible. 

 

- Table 7 about here - 

 

4.2 Simulation Study for Homogeneous and Heterogeneous Portfo-
lios 

To achieve more general results we test the models for different, randomly generated portfo-

lios. For this reason, we implement four simulation studies. In these studies we analyze the 
                                                 
52 If we consider all 25,000 simulated portfolios from section 3.4, the lowest measured economic capital re-

quirement was even 26% lower than the regulatory capital. This result underlines the prospects of actively man-

aging credit portfolios, e.g. with credit derivatives, but this is not in the scope of this paper. 



 24 

accuracy for homogeneous as well as for heterogeneous portfolios with respect to PD and 

EAD. In each simulation run we generate a portfolio and determine its ES by the three mod-

els. After 100 runs we calculate the root mean squared error for the outcomes of the Pykhtin 

model and of the Cespedes models I and II53 in absolute and relative terms to quantify its per-

formance in comparison to Monte-Carlo-Simulations using 500,000 trials. Furthermore, we 

calculate the VaR with the Basel II formula and with Monte-Carlo-Simulation to measure its 

accuracy compared to ESmf. In the following we describe the four simulation settings. 

 

Simulation I: In this scenario we generate portfolios with homogenous exposure sizes and 

homogenous PDs, that is, iw 1/ 5000  and iPD PD const  for each credit. To test the ac-

curacy for different portfolio qualities a PD is drawn from a uniformly distribution between 

0% and 10% before each new run. The sector structure and correlation is the same as in sec-

tion 4.1. 

 

Simulation II: We generate portfolios with homogenous exposure sizes but heterogeneous 

PDs. For each sector we determine randomly one of the quality distributions from section 2.3. 

After that we draw the PD for each credit of the sector according to this quality distribution. 

The exposure size remains as in Simulation I. Again, the sector structure and correlation is 

taken from section 4.1. 

 

Simulation III: We generate portfolios with homogenous PDs as in Simulation I but with he-

terogeneous exposure sizes. Firstly, we choose the number of sectors randomly between 2 and 

11. Then we apply a uniform distribution between 0 and 1 for the weight of every sector and 

scale this in order to sum up the weights to one. The weights for the credits in each sector are 

determined in the same manner. The correlations remain unchanged. 

 

Simulation IV: In this setting the PDs as well as the exposure sizes of the generated portfo-

lios are heterogeneous. The PDs are determined as in Simulation II and the exposure sizes as 

in Simulation III. 

 

                                                 
53 Cespedes I still corresponds to the DF-function based on Monte-Carlo-Simulation and Cespedes II complies 

with the DF-function based on the Pykhtin formula. 



 25 

In each simulation we calculate the intra-sector correlations with formula (21) and choose 

5,000 credits. These portfolios contain a relatively low amount of name concentration. Instead 

we focus on sector concentration. The reason is that the identical methodology for measuring 

name concentrations, the granularity adjustment, can be used within both approaches. Thus, 

we prefer to avoid name concentrations to be able to separately analyze the effect of sector 

concentrations. The degree of sector concentration differs between the simulations. In Simula-

tions I and II the portfolios consist of homogenous exposures leading to a CDI of 9.1% in 

each case. This equals the CDI for a naïve diversified portfolio. On the contrary in Simulation 

III and IV exposures are chosen randomly and the CDI of the generated portfolios can take 

values between 9.1%. (naïve diversification) and 1 (perfect concentration). The mean of these 

CDIs is around 30% in each simulation, which is only slightly higher than the CDIs of the 

bank portfolios analyzed by Acharya, Hasan, and Saunders (2006), which shows that the set-

ting leads to a realistic degree of diversification.54 The results of our simulation study can be 

found in Table 8. 

 

- Table 8 about here - 

 

Again, the outcomes of the Pykhtin model are a good approximation of the “true” result from 

the Monte-Carlo Simulations. Especially, when EADs are homogeneous the results are very 

good. Both types of the Cespedes model lead to very stable results in all simulation settings. 

Interestingly, the Cespedes model performs even better when PDs are heterogeneous, proba-

bly because the portfolios used for calculation of the functional form have heterogeneous 

PDs, too, and thus the resulting portfolios are more similar. Somewhat surprising, in Simula-

tion III the Cespedes model shows a better performance than the Pykhtin model even if the 

Pykhtin formula is used for determination of the diversification factor. Probably the approxi-

mation errors of the Pykhtin model are partially smoothed by the regression from formula 

(37).  

The comparison of the risk measures with different confidence levels shows an almost 

perfect match between ESmf and VaRmf. The relative error is smaller than 1% in each case. 

Thus, our simulation study clarifies that the above-mentioned theoretical problems of the non-

                                                 
54 Acharya, Hasan, and Saunders (2006) examined credit portfolios of 105 Italian banks during the period 1993-

1999. In this study, most bank portfolios had a CDI between 20% and 30%. However, it has to be considered 

that the number of different industry sectors was 23 whereas we used 11 different sectors. Thus, for a compara-

ble degree of diversification their calculated CDIs have to be slightly smaller than our CDIs.  
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coherent VaR are not practically relevant for a very broad range of credit portfolios. Hence, 

the use of the VaR for determining the credit risk seems to be unproblematic from a practical 

point of view even if the portfolio incorporates sector concentration risk. The Basel formula, 

however, shows the largest inaccuracy of all tested models for any simulation. Since in Simu-

lation I and II a naïve diversified portfolio is taken as a basis, the Basel formula overestimates 

the risk in every case due to the diversification effect. A plot of the relative errors of the Basel 

formula and of VaRmf in Simulation III, sorted in ascending order, can be found in Figure 5. 

Apart from slightly higher deviations, a plot with a similar characteristics results for Simula-

tion IV.  

 

- Figure 5 about here - 

 

It can be seen that for more than 50% of the simulated portfolios the Basel VaR is too low. 

That means the risk measured under Pillar 1 is underestimated compared to the “real” risk. In 

general this happens when the sector concentration of the generated portfolio increases, as al-

ready demonstrated for deterministic portfolios. Consequently, the simulation study accentu-

ates the need for considering sector concentration when calculating the risk of a credit portfo-

lio. Otherwise the risk can be massively underestimated. This conclusion coincides with that 

of BCBS (2006), which points out that sector concentration can increase the capital require-

ment up to 40%. The maximal deviation of VaRmf is around 3%, which is negligible for prac-

tical implementation. Actually, for most of the generated portfolios the error is almost zero. In 

order to verify if there is a systematic pattern, which may help to explain the occurrence of 

these deviations in the multi-factor setting, we tried to find portfolio variables such as CDI, 

average correlation or average PD that can explain these deviations. Since our analyses did 

not show a link between the deviations and any of the mentioned variables, it seems that the 

occurrence is unsystematic  

As the purpose of deriving (semi-)analytical approximation formulas for the VaR or the 

ES is an acceleration of the computation time, we compare the runtime of the demonstrated 

methods in Table 9.55 The main advantage of the Pykhtin model is that it can be applied with-

out an excessive calibration procedure and it is considerably faster than Monte-Carlo-

Simulations without leading to major approximation errors. When comparing both alternative 

implementations of the Cespedes model, we strongly propose to use the Pykhtin model for ca-

                                                 
55 The runtimes refer to a quad-core PC with 2.66 GHz CPUs (calculated on one core). 
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libration (Cespedes II) instead of Monte-Carlo-Simulations (Cespedes I) as the approximation 

accuracy is almost identically but the computation time for determination of the DF-function 

is significantly lower. As this calibration procedure only has to be computed once for a speci-

fied correlation structure and the application of the formula is very fast, in most situations the 

Cespedes type model should be a very good choice. 

 

- Table 9 about here - 

 

5 Conclusion 

In this paper we proposed a methodology to perform multi-factor models that are able to 

measure concentration risk in credit portfolios in terms of economic capital and still deliver 

results that are consistent with Basel II. Furthermore, we applied this to different multi-factor 

approaches and compared their performance. It could be shown that it is possible to achieve 

good approximations in reasonable time when the approaches are adjusted in the proposed 

way. 

We also discussed the shortcomings of the Value at Risk, which can arise when leaving 

the ASRF-framework. From a theoretical point of view, it is advisable to use a coherent risk 

measure like the ES. Since the ES, by definition, is higher than the VaR if we use the same 

confidence level, we performed a mapping procedure that determines the confidence level (z 

= 99.72%) of the ES to get reasonable results. Despite the mentioned shortcomings, however, 

the accuracy of the VaR turned out to be almost perfect compared to the ES for a multitude of 

generated portfolios. Thus, in our opinion, it is unproblematic to use the VaR for measuring 

concentration risk of credit portfolios.  

Furthermore, we chose input parameters, especially the inter- and intra-sector correla-

tions, in a way that the results are comparable with the regulatory Pillar 1 capital. Conse-

quently, we do not follow some approaches that assume a pure diversification effect com-

pared with the Basel II formula. Instead, we relate the results to a well-diversified portfolio as 

assumed when calibrating the Basel II formula and determine a function for the implied intra-

sector correlation. Hence, it is possible to directly consider the extent of credit risk concentra-

tions in the assessment of capital adequacy under Pillar 2. Using these modifications, we per-

formed an extensive numerical study similar to Cespedes et al. (2006) to get a closed form 

approximation formula. In addition, we suggest computing the multi-factor adjustment on 

bucket instead of borrower level. This allows to compute the Pykhtin formula much faster 

than Monte-Carlo-Simulations even for a high number of credits. 
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Having assured a Basel II consistent capital requirement, we analyzed the impact of credit 

concentration risk and carried out a simulation study to compare the performance of the (mod-

ified) models from Cespedes et al. (2006) and Pykhtin (2004). We detect that the Pykhtin 

model leads to very good results for homogeneous as well as heterogeneous PDs when EADs 

are homogeneous. The performance is slightly lower for heterogeneous EADs. The results of 

the Cespedes model have a throughout high accuracy. Interestingly, the approach works better 

for heterogeneous portfolios. In general, both models can be used for approximating the eco-

nomic capital in a multi-factor setting when adjusted in the proposed way. The main advan-

tage of the Pykhtin model is that it can be directly applied to an arbitrary portfolio type, whe-

reas the approach of Cespedes et al. (2006) should not be used without initially performing 

the demonstrated extensive numerical work when the portfolio structure is very different. On 

the contrary, the results of the Cespedes model were slightly better for heterogeneous portfo-

lios and it allows for ad-hoc analyses including sensitivity analyses when the non-recurring 

extensive numerical work is progressed. 

In further analyses it would be interesting to analyze the approach of Cespedes et al. 

(2006) when adjusted to a specific bank portfolio. Under the (plausible) assumption that a 

bank’s portfolio will only be faced to minor changes for a finite period, it should be possible 

to get a higher accuracy for this bandwidth of scenarios. Moreover, it would be helpful to 

know how much numerical work is necessary when the parameters are highly restricted to 

these realistic cases to achieve stable results because the extensive computation time is still a 

challenge. 
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Appendix A.1 

To relate L  to L  the systematic factor x  is defined as 

 
K K

2
k k k

k 1 k 1
x b z , with b 1.∑ ∑  (A.1) 

On condition that L E L | x⎡ ⎤⎣ ⎦  Pykhtin (2004) shows that ic  can be calculated as 
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with i,k s,k  and i sx x  for obligor i in sector s.  

Since there is no unique method to determine the coefficients k{b }, we use the approach 

presented by Pykhtin (2004). Thus, the coefficients are chosen in a way that the correlation 

between x  and { x } will be maximized, in order to minimize the difference given by (24) be-

tween the quantiles zq (L)  and zq (L) . This leads to the following maximization problem: 
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The solutions of k{b } are given as 

 
n

i ik
k

i 1

db ,∑  (A.4) 

where the Lagrange multiplier  is chosen so that { kb } satisfy the constraint. There is no ob-

vious choice of the weighting factors id  but 
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 (A.5) 

leads to good results, which is the VaR formula in a single factor model. The intuition behind 

this choice is that obligors with a high exposure in terms of VaR should get a high weight in 

the maximization problem. 

 

Appendix A.2 

The derivatives of (23) are calculated as follows: 

 
n n

i i i i i i
i 1 i 1

l (x) w LGD p (x), l (x) w LGD p (x)∑ ∑ . (A.6) 
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The derivatives ip (x)  and ip (x)  of the conditional default probability are calculated by diffe-

rentiation of equation (6) as 
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i i i
i

i i

c N (PD ) c x
p (x) n

1 c 1 c
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Since L  is deterministic for given x , v( x ) equals the conditional variance of L , this means 

v(x) var(L L | x) var(L | x). To calculate v( x ) the conditional variance can be decom-

posed as the sum of systematic and idiosyncratic parts: 

 
GA

k k

v (x) v (x )

v(x) var[E(L |{z }) | x] E[var(L |{z }) | x].  (A.9) 

The first summand v (x)  of (A.9) can be calculated as 
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where x
ij  describes the conditional asset correlation 
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The first derivative of v (x)  is given by: 

 

n n

i j i j i
i 1 j 1

1 x 1
j ij i

jx
ij

v (x) 2 w w LGD LGD p (x)

N p (x) N p (x)
N p (x) .

1

⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∑∑
 (A.12) 

The second summand GAv (x)  of (A.9) and its derivative GAv (x)  are 
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 I 

FIGURE 1 Accuracy of the Pillar 1 capital requirements considering risk concentra-
tions 
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FIGURE 2 Portfolio quality distributions 
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FIGURE 3 Diversification Factor realizations on the basis of 50,000 simulations 
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FIGURE 4 Surface plot of the DF-function 
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FIGURE 5 Deviations of VaRBasel and VaRmf from ESmf
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 VI 

 
TABLE 1 Confidence levels for the ES implying Basel

zES  to be matched with the  
VaRBasel for portfolios of different quality 

 
 Portfolio Type / Quality VaRBasel & Basel

zES  Confidence Level z(ES) 

(I) AAA only 0.57% 99.672% 

(II) Very High 6,12% 99.709% 

(III) High 7.59% 99.711% 

(IV) Average 12.94% 99.719% 

(V) Low 20.89% 99.726% 

(VI) Very Low 23.30% 99.727% 

(VII) CCC only 57.00% 99.741% 
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TABLE 2 Inter-sector correlation structure based on MSCI industry indices (in %) 

 a 

Sector A B C1 C2 C3 D E F H I J 
A: Energy 100 50 42 34 45 46 57 34 10 31 69 

B: Materials  100 87 61 75 84 62 30 56 73 66 

C1: Capital Goods   100 67 83 92 65 32 69 82 66 

C2: Comm. Svs. & Supplies    100 58 68 40 8 50 60 37 

C3: Transportation     100 83 68 27 58 77 67 

D: Consumer Discretionary      100 76 21 69 81 66 

E: Consumer Staples       100 33 46 56 66 

F: Health Care        100 15 24 46 

H: Information Technology         100 75 42 

I: Telecommunication Services          100 62 

J: Utilities           100
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TABLE 3 Overall sector composition of the German banking system  

Sector Exposure Weight 
A: Energy 0.18% 

B: Materials 6.01% 

C1: Capital Goods 11.53% 

C2: Comm. Svs. & Supplies 33.69% 

C3: Transportation 7.14% 

D: Consumer Discretionary 14.97% 

E: Consumer Staples 6.48% 

F: Health Care 9.09% 

H: Information Technology 3.20% 

I: Telecommunication Services 1.04% 

J: Utilities 6.67% 
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TABLE 4 Implicit intra-sector correlations for different portfolio quality 
 

 
 
 
 
 
 
 
 
 
 

Portfolio Type / Quality Implicit Intra-Sector Correlation 

(I) Very High 30% 

(II) High 28% 

(III) Average 25% 

(IV) Low 23% 

(V) Very Low 21% 
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TABLE 5 Comparison of the models for the 5 benchmark portfolios with absolute er-
ror in basis points (bp) and relative error in percent (%) 
 

 

 Portfolio 
1 

Portfolio 
2 

Portfolio 
3 

Portfolio  
4 

Portfolio 
5 

MC-Sim. 

ES 6.23% 7.68% 12.95% 20.88% 23.15% 

VaR 6.18% 7.62% 12.94% 20.93% 23.3% 

Absolute Error -5 bp -6 bp -1 bp 5 bp 15 bp 

Relative Error -0.80% -0.78% 0.08% 0.24% 0.65% 

Basel II 

VaR 6.12% 7.59% 12.95% 20.89% 23.26% 

Absolute Error -11 bp -9 bp 0 bp 1 bp 11 bp 

Relative Error -1.77% -1.17% 0.00% 0.05% 0.48% 

Pykhtin 

ES 6.21% 7.66% 12.91% 20.80% 23.20% 

Absolute Error -2 bp -2 bp -4 bp -8 bp 5 bp 

Relative Error -0.32% -0.26% -0.31% -0.38% 0.22% 

Cespedes I 

ES 6.07% 7.51% 12.70% 20.43% 22.79% 

Absolute Error -16 bp -17 bp -25 bp -45 bp -36 bp 

Relative Error -2.57% -2.21% -1.93% -2.16% -1.56% 

Cespedes II 

ES 6.00% 7.45% 12.68% 20.48% 22.87% 

Absolute Error -23 bp -23 bp -27 bp -40 bp -28 bp 

Relative Error -3.69% -2.99% -2.08% -1.92% -1.21% 
a 
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TABLE 6 Comparison of the models for 5 high concentrated portfolios with absolute  
error in basis points (bp) and relative error in percent (%) 

 Portfolio 
1 

Portfolio 
2 

Portfolio 
3 

Portfolio  
4 

Portfolio 
5 

MC-Sim. 

ES 7.69% 9.22% 15.41% 24.41% 27.10% 

VaR 7.48% 9.17% 15.36% 24.51% 27.06% 

Absolute Error -21 bp -5 bp -5 bp 10 bp -6 bp 

Relative Error -2.73% -0.54% -0.32% 0.41% 0.15% 

Basel II 

VaR 6.12% 7.59% 12.95% 20.89% 23.26% 

Absolute Error -157 bp -163 bp -246 bp -352 bp -384 bp 

Relative Error -20.42% -17.68% -15.96% -14.42% -14.17% 

Pykhtin 

ES 7.66% 9.29% 15.46% 24.39% 27.03% 

Absolute Error -3 bp 7 bp 5 bp -2 bp -7 bp 

Relative Error -0.35% 0.76% 0.31% -0.08% -0.24% 

Cespedes I 

ES 7.40% 9.08% 15.59% 25.07% 27.95% 

Absolute Error -29 bp -14 bp 18 bp 66 bp 85 bp 

Relative Error -3.77% 1.52% 1.17% 2.70% 3.14% 

Cespedes II 

ES 7.22% 8.86% 15.19% 24.38% 27.14% 

Absolute Error -47 bp -36 bp -22 bp -3 bp 4 bp 

Relative Error -6.11% -3.90% -1.43% -0.12% 0.15% 
a 
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TABLE 7 Comparison of the models for 5 low concentrated portfolios with absolute  
error in basis points (bp) and relative error in percent (%) 
 

 

 Portfolio 
1 

Portfolio 
2 

Portfolio 
3 

Portfolio  
4 

Portfolio 
5 

MC-Sim. 

ES 5.66% 6.98% 12.16% 19.78% 22.06% 

VaR 5.64% 6.94% 12.17% 19.81% 22.10% 

Absolute Error -2 bp -4 bp 1 bp 3 bp 4 bp 

Relative Error -0.35% -0.57% 0.08% 0.15% 0.18% 

Basel II 

VaR 6.12% 7.59% 12.95% 20.89% 23.26% 

Absolute Error 46 bp 61 bp 79 bp 111 bp 120 bp 

Relative Error 8.13% 8.74% 6.50% 5.61% 5.44% 

Pykhtin 

ES 5.67% 6.98% 12.14% 19.74% 22.08% 

Absolute Error 1 bp 0 bp -2 bp -4 bp 2 bp 

Relative Error 0.26% -0.07% -0.16% -0.21% 0.09% 

Cespedes I 

ES 5.66% 6.94% 11.92% 19.17% 21.38% 

Absolute Error 0 bp -4 bp -24 bp -61 bp -68 bp 

Relative Error 0.0% -0.57% -1.97% -3.08% -3.08% 

Cespedes II 

ES 5.64% 6.94% 12.06% 19.52% 21.81% 

Absolute Error -2 bp -4 bp -10 bp -26 bp -25 bp 

Relative Error -0.35% -0.57% -0.82% -1.31% -1.13% 
a 
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TABLE 8 Comparison of the models resulting from simulation studies  
with different parameter settings 
 

 Simulation
I 

Simulation
II 

Simulation 
III 

Simulation
IV 

MC-Sim. VaR 
Ø Absolute Error 18 bp 6 bp 22 bp 8 bp 

Ø Relative Error 0.67% 0.43% 0.77% 0.60% 

Basel II 
Ø Absolute Error 259 bp 186 bp 264 bp 379 bp 

Ø Relative Error 11.66% 13.70% 8.81% 25.76% 

Pykhtin 
Ø Absolute Error 14 bp 11 bp 54 bp 18 bp 

Ø Relative Error 0.64% 0.81% 3.40% 1.26% 

Cespedes I 
Ø Absolute Error 54 bp 11 bp 47 bp 20 bp 

Ø Relative Error 1.73% 0.79% 1.65% 1.53% 

Cespedes II 
Ø Absolute Error 54 bp 12 bp 46 bp 21 bp 

Ø Relative Error 1.72% 0.84% 1.56% 1.59% 
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TABLE 9 Comparison of the runtime 
 

 Runtime: Calibration Runtime: Application 

MC-Simulation  20 min 

Pykhtin  ~ 10 sec - 2 min 

Cespedes I 30 days 0.01 sec 

Cespedes II 150 min 0.01 sec 
 

 


