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Abstract In this chapter we focus our attention in how to measure consensus in
groups of voters when they show their preferences over a fixed set of alternatives
or candidates by means of weak orders (complete preorders). We have introduced a
new class of consensus measures on weak orders based on distances, and we have
analyzed some of their properties paying special attention to seven well-known dis-
tances.

1 Introduction

Consensus has different meanings. One of them is related to iterative procedures
where voters must change their preferences to improve agreement. Usually, a mod-
erator advise voters to modify some opinions (see, for instance, Eklund, Rusinowska
and de Swart [12]). However, in this chapter consensus is related to the degree of
agreement in a committee, and voters do not need to change their preferences. For
an overview about consensus, see Martı́nez-Panero [22].

From a technical point of view, it is interesting to note that the problem of mea-
suring the concordance or discordance between two linear orders has been widely
explored in the literature. In this way, different rank correlation indices have been
considered for assigning grades of agreement between two rankings (see Kendall
and Gibbons [21]). Some of the most important indices in this context are Spear-
man’s rho [31], Kendall’s tau [20], and Gini’s cograduation index [16]. On the other
hand, some natural extensions of the above mentioned indices have been considered
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for measuring the concordance or discordance among more than two linear orders
(see Hays [17] and Alcalde-Unzu and Vorsatz [1, 2]). For details and references, see
for instance Borroni and Zenga [6] and Alcalde-Unzu and Vorsatz [1, 2].

In the field of Social Choice, Bosch [7] introduced the notion of consensus mea-
sure as a mapping that assigns a number between 0 and 1 to every profile of linear
orders, satisfying three properties: unanimity (in every subgroup of voters, the high-
est degree of consensus is only reached whenever all individuals have the same
ranking), anonymity (the degree of consensus is not affected by any permutation of
voters) and neutrality (the degree of consensus is not affected by any permutation
of alternatives).

Recently, Alcalde-Unzu and Vorsatz [1] have introduced some consensus mea-
sures in the context of linear orders –related to some of the above mentioned rank
correlation indices– and they provide some axiomatic characterizations (see also
Alcalde-Unzu and Vorsatz [2]).

In this chapter1 we extend Bosch’s notion of consensus measure to the context of
weak orders (indifference among different alternatives is allowed)2, and we consider
some additional properties that such measures could fulfill: maximum dissension (in
each subset of two voters, the minimum consensus is only reached whenever prefer-
ences of voters are linear orders and each one is the inverse of the other), reciprocity
(if all individual weak orders are reversed, then the consensus does not change) and
homogeneity (if we replicate a subset of voters, then the consensus in that group
does not change). After that, we introduce a class of consensus measures based
on the distances among individual weak orders. We pay special attention to seven
specific metrics: discrete, Manhattan, Euclidean, Chebyshev, cosine, Hellinger, and
Kemeny.

The chapter is organized as follows. Section 2 is devoted to introduce basic ter-
minology and distances used along the chapter. In Section 3 we introduce consensus
measures and we analyze their properties. An Appendix contains the most technical
proofs.

2 Preliminaries

Consider a set of voters V = {v1, . . . ,vm} (m ≥ 3) who show their preferences on a
set of alternatives X = {x1, . . . ,xn} (n ≥ 3). With L(X) we denote the set of linear
orders on X , and with W (X) the set of weak orders (or complete preorders) on X .
Given R ∈ W (X), the inverse of R is the weak order R−1 defined by xi R−1 x j ⇔
x j Rxi, for all xi,x j ∈ X .

1 A preliminary study can be found in Garcı́a-Lapresta and Pérez-Román [15].
2 Recently, Garcı́a-Lapresta [14] has introduced a class of agreement measures in the context of
weak orders when voters classify alternatives within a finite scale defined by linguistic categories
with associated scores. These measures are based on distances among individual and collective
scores generated by an aggregation operator.
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A profile is a vector R= (R1, . . . ,Rm) of weak or linear orders, where Ri contains
the preferences of the voter vi, with i = 1, . . . ,m. Given a profile R = (R1, . . . ,Rm),
we denote R−1 = (R−1

1 , . . . ,R−1
m ).

Given a permutation π on {1, . . . ,m} and /0 ̸= I ⊆V , we denote
Rπ = (Rπ(1), . . . ,Rπ(m)) and Iπ = {vπ−1(i) | vi ∈ I}, i.e., v j ∈ Iπ ⇔ vπ( j) ∈ I.

Given a permutation σ on {1, . . . ,n}, we denote by Rσ = (Rσ
1 , . . . ,R

σ
m) the pro-

file obtained from R by relabeling the alternatives according to σ , i.e., xi Rk x j ⇔
xσ(i) Rσ

k xσ( j) for all i, j ∈ {1, . . . ,n} and k ∈ {1, . . . ,m}.
The cardinal of any subset I is denoted by |I|. With P(V ) we denote the power

set of V , i.e., I ∈P(V ) ⇔ I ⊆V ; and we also use P2(V ) = {I ∈P(V ) | |I | ≥ 2}.
Notice that |P2(V )|= |P(V )|− |V |−1 = 2m −m−1.

2.1 Codification of weak orders

We now introduce a system for codifying linear and weak orders by means of vectors
that represent the relative position of each alternative in the corresponding order.

Given R ∈ L(X), the position of each alternative in R is defined by the mapping
oR : X −→{1, . . . ,n}. Notice that the vector oR = (oR(x1), . . . ,oR(xn))∈ {1, . . . ,n}n

determines R and viceversa (oR is a bijection).
There does not exist a unique system for codifying weak orders. We propose one

based on linearizing the weak order and to assign each alternative the average of
the positions of the alternatives within the same equivalence class3. As an example,
consider R ∈W ({x1, . . . ,x7}):

R
x2 x3 x5

x1
x4 x7

x6

Then, oR(x2) = oR(x3) = oR(x5) =
1+2+3

3 = 2, oR(x1) = 4, oR(x4) = oR(x7) =
5+6

2 = 5.5 and oR(x6) = 7. Consequently, R is codified by (4, 2, 2, 5.5, 2, 7, 5.5).
Taking into account this idea, given R ∈ W (X), we may consider the mapping

oR : X −→ R that assigns the relative position of each alternative in R. We denote
oR = (oR(x1), . . . ,oR(xn)) and, depending on the context, R ≡ oR or oR ≡ R.

Remark 1. If (a1, . . . ,an)≡ R ∈W (X), then R−1 ≡ (n+1−a1, . . . ,n+1−an).

Remark 2. For every R ∈W (X), it holds

1. oR(x j) ∈ {1, 1.5, 2, 2.5, . . . , n−0.5, n} for every j ∈ {1, . . . ,n}.

3 Similar procedures have been considered in the generalization of scoring rules from linear orders
to weak orders (see Smith [30], Black [5] and Cook and Seiford [9], among others).
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2.
n

∑
j=1

oR(x j) = 1+2+ · · ·+n =
n(n+1)

2
.

In Proposition 1, we provide a complete characterization of the vectors that cod-
ify weak orders.

Given (a1, . . . ,an)≡ R ∈W (X), we denote Mi(R) = {m ∈ {1, . . . ,n} | am = ai},
for i= 1, . . . ,n. Given a permutation σ on {1, . . . ,n}, we denote Rσ ≡ (aσ

1 , . . . ,a
σ
n ),

with aσ
i = aσ(i).

Proposition 1. Given (a1, . . . ,an)∈Rn, (a1, . . . ,an)≡R∈W (X) if and only if there
exists a permutation σ on {1, . . . ,n} such that Rσ satisfies the following conditions:

1. aσ
1 ≤ ·· · ≤ aσ

n .

2. aσ
1 + · · ·+aσ

n =
n(n+1)

2
.

3. For all i ∈ {1, . . . ,n} and m ∈ Mi(Rσ ) it holds

aσ
m =

k−1

∑
l=0

j+ l
k

= j+
k−1

2
,

where j = min Mi(Rσ ) and k = |Mi(Rσ )|.

Proof. See the Appendix. ⊓⊔

Remark 3. Notice that if |Mi(R)|= 1 for every i ∈ {1, . . . ,n}, then R ∈ L(X). More-
over, if R ∈ L(X), then there exists a unique permutation σ such that aσ

i = i for
every i ∈ {1, . . . ,n}.

Definition 1. We denote by AW the set of vectors that codify weak orders, i.e.,

AW = {(a1, . . . ,an) ∈ Rn | (a1, . . . ,an)≡ R for some R ∈W (X)}.

Remark 4. For every R∈W (X), the mapping oR : X −→AW that assigns the relative
position of each alternative in R is a bijection. Thus, we can identify W (X) and AW .

Remark 5. AW is stable under permutations, i.e., for every permutation σ on {1, . . . ,n},
if (a1, . . . ,an) ∈ AW , then (aσ

1 , . . . ,a
σ
n ) ∈ AW .

Example 1. Consider R ∈W ({x1, . . . ,x8}):

R
x3

x1 x6
x4

x5 x7 x8
x2

Then, R ≡ (2.5,8,1,4,6,2.5,6,6).
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Let σ be the permutation on {1, . . . ,8} represented by
(

1 2 3 4 5 6 7 8
3 1 6 4 5 7 8 2

)
, i.e.,

σ(1) = 3, σ(2) = 1, . . . , σ(8) = 2. Then,

Rσ

xσ
1

xσ
2 xσ

3

xσ
4

xσ
5 xσ

6 xσ
7

xσ
8

and, consequently, Rσ ≡ (1,2.5,2.5,4,6,6,6,8).

1. aσ
i ≤ aσ

j , for 1 ≤ i < j ≤ 8.

2. aσ
1 + · · ·+aσ

8 = 8(8+1)
2 = 36.

3. For i = 7, we have M7(Rσ ) =
{

m ∈ {1, . . . ,8} | aσ
m = aσ

7

}
= {5,6,7},

j = min{M7(Rσ )}= 5, k = |M7(Rσ )|= 3 and

aσ
5 = aσ

6 = aσ
7 =

3−1

∑
l=0

5+ l
2

= 6 = 5+
3−1

2
= j+

k−1
2

.

Definition 2. W≤(X) = {R ∈W (X) | R ≡ (a1, . . . ,an) and a1 ≤ ·· · ≤ an}.

Remark 6. By Proposition 1, for every R ∈W (X) there exists some permutation σ
on {1, . . . ,n} such that Rσ ∈W≤(X). Notice that if R ∈ L(X), then σ is unique, but
if R ∈W (X)\L(X), then there exist more than one σ satisfying Rσ ∈W≤(X).

Lemma 1. For all (a1, . . . ,an) ≡ R1 ∈ W (X) and (b1, . . . ,bn) ≡ R2 ∈ W (X), there
exists a permutation σ on {1, . . . ,n} such that:

1. aσ
1 ≤ ·· · ≤ aσ

n .
2. For every i ∈ {1, . . . ,n} such that |Mi(Rσ

1 )| > 1, if j = min Mi(Rσ
1 ) and

k = |Mi(Rσ
1 )|, then bσ

j ≥ ·· · ≥ bσ
j+k−1.

Proof. See the Appendix. ⊓⊔

Example 2. In order to illustrate Lemma 1, consider R1,R2 ∈W ({x1, . . . ,x8}) :

R1
x3

x1 x4 x6
x8

x5 x7
x2

R2
x4

x5 x8
x7
x1
x3

x2 x6
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Then, R1 ≡ (3,8,1,3,6.5,3,6.5,5) and R2 ≡ (5,7.5,6,1,2.5,7.5,4,2.5). Let σ ′ be

the permutation on {1, . . . ,n} represented by
(

1 2 3 4 5 6 7 8
3 1 6 4 8 5 7 2

)
. Then,

Rσ ′
1 ≡ (1, 3, 3, 3, 5, 6.5, 6.5, 8),

Rσ ′
2 ≡ (6, 5, 1, 7.5, 2.5, 2.5, 4, 6).

Let σ ′′ be the permutation on {1, . . . ,n} represented by
(

1 2 3 4 5 6 7 8
1 4 2 3 5 7 6 8

)
. It

is clear that Rσ ′
1 = (Rσ ′

1 )σ ′′
. Thus, if σ = σ ′ ·σ ′′, i.e., σ(i) = σ ′(σ ′′(i)), then σ is

represented by
(

1 2 3 4 5 6 7 8
3 4 1 6 8 7 5 2

)
. Therefore,

Rσ
1 ≡ (1, 3, 3, 3, 5, 6.5, 6.5, 8) ,

Rσ
2 ≡ (6, 7.5, 5, 1, 2.5, 4, 2.5, 6) .

2.2 Distances

The use of distances for designing and analyzing voting system has been widely con-
sidered in the literature. On this, see Kemeny [18], Slater [29], Nitzan [26], Baigent
[3, 4], Nurmi [27, 28], Meskanen and Nurmi [23, 24], Monjardet [25], Gaertner [13,
6.3] and Eckert and Klamler [11], among others. A general and complete survey on
distances can be found in Deza and Deza [10].

The consensus measures introduced in this chapter are based on distances on
weak orders. After presenting the general notion, we show the distances on Rn used
for inducing the distances on weak orders. We pay special attention to the Kemeny
distance.

Definition 3. A distance (or metric) on a set A ̸= /0 is a mapping d : A×A −→ R
satisfying the following conditions for all a,b,c ∈ A:

1. d(a,b)≥ 0.
2. d(a,b) = 0 ⇔ a = b.
3. d(a,b) = d(b,a).
4. d(a,b)≤ d(a,c)+d(c,b).

2.2.1 Distances on Rn

Example 3. Typical examples of distances on Rn or [0,∞)n are the following:

1. The discrete distance d′ : Rn ×Rn −→ R ,

d′((a1, . . . ,an),(b1, . . . ,bn)) =

{
1, if (a1, . . . ,an) ̸= (b1, . . . ,bn) ,
0, if (a1, . . . ,an) = (b1, . . . ,bn) .
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2. The Minkowski distance dp : Rn ×Rn −→ R , with p ≥ 1,

dp((a1, . . . ,an),(b1, . . . ,bn)) =

(
n

∑
i=1

|ai −bi|p
) 1

p

.

For p = 1 and p = 2 we obtain the Manhattan and Euclidean distances, respec-
tively.

3. The Chebyshev distance d∞ : Rn ×Rn −→ R ,

d∞((a1, . . . ,an),(b1, . . . ,bn)) = max
{
|a1 −b1|, . . . , |an −bn|

}
.

4. The cosine distance dc : Rn ×Rn −→ R ,

dc((a1, . . . ,an),(b1, . . . ,bn)) = 1−

n

∑
i=1

ai bi√
n

∑
i=1

a2
i

√
n

∑
i=1

b2
i

.

5. The Hellinger distance dH : [0,∞)n × [0,∞)n −→ R ,

dH((a1, . . . ,an),(b1, . . . ,bn)) =

(
n

∑
i=1

(√
ai −

√
bi

)2
) 1

2

.

Notice that all the previous distances may be defined on [0,∞)n. In fact, we only
need distances on [0,∞)n to introduce a simple procedure for constructing distances
on W (X).

Definition 4. Given D ⊆Rn stable under permutations, a distance d : D×D −→R
is neutral if for every permutation σ on {1, . . . ,n}, it holds

d ((aσ
1 , . . . ,a

σ
n ) ,(b

σ
1 , . . . ,b

σ
n )) = d ((a1, . . . ,an),(b1, . . . ,bn)) ,

for all (a1, . . . ,an),(b1, . . . ,bn) ∈ D.

Remark 7. All the distances introduced in Example 3 are neutral.

2.2.2 Distances on weak orders

We now introduce a direct way of defining distances on weak orders. They are in-
duced by distances on Rn by considering the position vectors.

Definition 5. Given a distance d : [0,∞)n × [0,∞)n −→ R , the distance on W (X)
induced by d is the mapping d̄ : W (X)×W (X)−→ R defined by

d̄(R1,R2) = d
(
(oR1(x1), . . . ,oR1(xn)),(oR2(x1), . . . ,oR2(xn))

)
,
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for all R1,R2 ∈W (X).

Given a distance d− on [0,∞)n, we use d̄− to denote the distance on W (X)
induced by d−.

2.2.3 The Kemeny distance

The Kemeny distance was initially defined on linear orders by Kemeny [18], as the
sum of pairs where the orders’ preferences disagree. However, it has been gener-
alized to the framework of weak orders (see and Eckert and Klamler [11], among
others).

The Kemeny distance on weak orders dK : W (X)×W (X) −→ R is usually de-
fined as one half4 of the cardinal of the symmetric difference between the weak
orders, i.e.,

dK(R1,R2) =
|(R1 ∪R2)\ (R1 ∩R2)|

2
.

We now consider dK : AW ×AW −→ R , given by

dK
(
(a1, . . . ,an),(b1, . . . ,bn)

)
=

n

∑
i, j=1
i< j

|sgn (ai −a j)− sgn (bi −b j)| ,

where sgn is the sign function:

sgn (a) =

 1, if a > 0 ,
0, if a = 0 ,

−1, if a < 0 .

Notice that dK is a neutral distance on AW .
Taking into account Kemeny and Snell [19, p. 18], it is easy to see that dK

coincides with the distance on W (X) induced by dK , i.e.,

dK(R1,R2) = d̄K(R1,R2) = dK
(
(a1, . . . ,an),(b1, . . . ,bn)

)
=

=
1
2

n

∑
i, j=1

|sgn (ai −a j)− sgn (bi −b j)|=

=
n

∑
i, j=1
i< j

|sgn (ai −a j)− sgn (bi −b j)| ,

where R1 ≡ (a1, . . . ,an) and R2 ≡ (b1, . . . ,bn).

4 Sometimes “one half” is removed.
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3 Consensus measures

Consensus measures have been introduced and analyzed by Bosch [7] in the context
of linear orders. We now extend this concept to the framework of weak orders.

Definition 6. A consensus measure on W (X)m is a mapping

M : W (X)m ×P2(V )−→ [0,1]

that satisfies the following conditions:

1. Unanimity. For all R ∈W (X)m and I ∈ P2(V ), it holds

M (R, I) = 1 ⇔ Ri = R j for all vi,v j ∈ I.

2. Anonymity. For all permutation π on {1, . . . ,m}, R ∈ W (X)m and I ∈ P2(V ),
it holds

M (Rπ , Iπ) = M (R, I) .

3. Neutrality. For all permutation σ on {1, . . . ,n}, R ∈W (X)m and I ∈ P2(V ), it
holds

M (Rσ , I) = M (R, I) .

Unanimity means that the maximum consensus in every subset of decision mak-
ers is only achieved when all opinions are the same. Anonymity requires symmetry
with respect to decision makers, and neutrality means symmetry with respect to
alternatives.

We now introduce other properties that a consensus measure may satisfy.

Definition 7. Let M : W (X)m ×P2(V )−→ [0,1] be a consensus measure.

1. M satisfies maximum dissension if for all R ∈W (X)m and vi,v j ∈V such that
i ̸= j, it holds

M (R,{vi,v j}) = 0 ⇔ Ri,R j ∈ L(X) and R j = R−1
i .

2. M is reciprocal if for all R ∈W (X)m and I ∈ P2(V ), it holds

M (R−1, I) = M (R, I) .

3. M is homogeneous if for all R ∈W (X)m, I ∈ P2(V ) and t ∈ N, it holds

M t(t R, t I) = M (R, I) ,

where M t : W (X)tm ×P2(t V )−→ [0,1], tR = (R, t. . .,R) ∈W (X)tm is the pro-
file defined by t copies of R and t I = I⊎ t· · · ⊎ I is the multiset of voters5 defined
by t copies of I.

5 List of voters where each voter occurs as many times as the multiplicity. For instance, 2{v1,v2}=
{v1,v2}⊎{v1,v2}= {v1,v2,v1,v2}.
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Maximum dissension means that in each subset of two voters6, the minimum
consensus is only reached whenever preferences of voters are linear orders and each
one is the inverse of the other. Reciprocity means that if all individual weak orders
are reversed, then the consensus does not change. And homogeneity means that if
we replicate a subset of voters, then the consensus in that group does not change.

We now introduce our proposal for measuring consensus in sets of weak orders.

Definition 8. Given a distance d̄ : W (X)×W (X)−→ R , the mapping

Md̄ : W (X)m ×P2(V )−→ [0,1]

is defined by

Md̄ (R, I) = 1−

∑
vi,v j∈I

i< j

d̄(Ri,R j)

(
|I|
2

)
·∆n

,

where
∆n = max

{
d̄(Ri,R j) | Ri,R j ∈W (X)

}
.

Notice that the numerator of the quotient appearing in the above expression is the
sum of all the distances between the weak orders of the profile, and the denominator
is the number of terms in the numerator’s sum multiplied by the maximum distance
between weak orders. Consequently, that quotient belongs to the unit interval and it
measures the disagreement in the profile.

Proposition 2. For every distance d̄ : W (X)×W (X)−→R , Md̄ satisfies unanimity
and anonymity.

Proof. Let R ∈W (X)m and I ∈ P2(V ).

1. Unanimity.

Md̄(R, I) = 1 ⇔ ∑
vi,v j∈I

i< j

d̄(Ri,R j) = 0 ⇔

∀vi,v j ∈ I d̄(Ri,R j) = 0 ⇔ ∀vi,v j ∈ I Ri = R j .

2. Anonymity. Let π be a permutation on {1, . . . ,m}.

∑
vi,v j∈Iπ

i< j

d̄(Rπ(i),Rπ( j)) = ∑
vπ(i),vπ( j)∈I

π(i)<π( j)

d̄(Rπ(i),Rπ( j)) = ∑
vi,v j∈I

i< j

d̄(Ri,R j) .

Thus, Md̄(Rπ , Iπ) = Md̄(R, I). ⊓⊔

6 It is clear that a society reach maximum consensus when all the opinions are the same. However,
in a society with more than two members it is not an obvious issue to determine when there is
minimum consensus (maximum disagreement).
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If Md̄ is neutral, then we say that Md̄ is the consensus measure associated with
d̄.

Proposition 3. If d : [0,∞)n × [0,∞)n −→ R is a neutral distance, then Md̄ is a
consensus measure.

Proof. By Proposition 2, Md̄ satisfies unanimity and anonymity. Obviously, if d̄ is
neutral, then Md̄ is neutral and thus Md̄ is a consensus measure. ⊓⊔

Proposition 4. If d̄ is the distance on W (X) induced by d′, d1, d2, d∞, dc or dK ,
then Md̄ is a reciprocal consensus measure.

Proof. See the Appendix. ⊓⊔

Remark 8. Md̄H
is not a reciprocal consensus measure.

Let us consider R1,R2 ∈W ({x1,x2,x3}):

R1
x1

x2 x3

R2
x1 x2 x3

R−1
1

x2 x3
x1

R−1
2

x1 x2 x3

The above weak orders are codified by R1 ≡ (1,2.5,2.5), R−1
1 ≡ (3,1.5,1.5) and

R2 = R−1
2 ≡ (2,2,2) . We have

d̄H(R1,R2) =

=

((√
1−

√
2
)2

+
(√

2.5−
√

2
)2

+
(√

2.5−
√

2
)2
) 1

2
= 0.476761 ̸=

̸= 0.415713 =

((√
3−

√
2
)2

+
(√

1.5−
√

2
)2

+
(√

1.5−
√

2
)2
) 1

2
=

= d̄H(R−1
1 ,R−1

2 ) .

In order to prove that the maximum dissension property is satisfied for some of
the consensus measures introduced above, we need two lemmas.

Lemma 2. Let R1 ∈W (X)\L(X) and R2 ∈W (X). If d̄− is the distance induced by
d2, dc, dH or dK , then there exists R3 ∈W (X) such that d̄−(R1,R2)< d̄−(R1,R3).

Proof. See the Appendix. ⊓⊔

Lemma 3. Let R1,R2 ∈ L(X) such that R2 ̸= R−1
1 . If d̄− is the distance induced by

d2, dc, dH or dK , then there exists R3 ∈W (X) such that d̄−(R1,R2)< d̄−(R1,R3).

Proof. See the Appendix. ⊓⊔

Proposition 5. If d̄− is the distance induced by d2, dc, dH or dK , then Md̄− satis-
fies the maximum dissension property.
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Proof. First of all, notice that Md̄− (R,{vi,v j}) = 0 if and only if d̄−(Ri,R j) = ∆n.
By Lemma 2 and Lemma 3, d−(R1,R2) = ∆n if and only if R2 = R−1

1 . ⊓⊔

Remark 9. If d̄− is the distance induced by d′, d1 or d∞, then Md̄− does not satisfy
the maximum dissension property.

Let us consider the following profile R = (R1,R2) ∈ L(X)2:

R1
x1
x2
x3

R2
x3
x1
x2

R−1
1
x3
x2
x1

Notice that R2 ̸= R−1
1 . Since the above linear orders are codified by R1 ≡ (1,2,3),

R2 ≡ (2,3,1) and R−1
1 ≡ (3,2,1), we have

1. d̄′(R1,R2) = d̄′(R1,R−1
1 ) = 1 and Md̄′(R,{v1,v2}) = 0.

2. d̄1(R1,R2) = d̄1(R1,R−1
1 ) = 4 and Md̄1

(R,{v1,v2}) = 0.
3. d̄∞(R1,R2) = d̄∞(R1,R−1

1 ) = 2 and Md̄∞(R,{v1,v2}) = 0.

As presented in the following result, none of the introduced consensus mea-
sures is homogeneous. In Garcı́a-Lapresta and Pérez-Román [15] we introduced
the Borda consensus measures, based on the Euclidean distance. We note that they
are homogeneous and reciprocal, but they do not satisfy the maximum dissension
property.

Proposition 6. The consensus measure Md̄ is not homogeneous for any distance d̄
on W (X).

Proof. Let R ∈ W (X)m such that R1 ̸= R2 and I = {v1,v2} ∈ P2(V ). We now
consider 2R = (R′

1,R
′
2,R

′
3,R

′
4), where R′

1 = R′
3 = R1 and R′

2 = R′
4 = R2, and

2 I = {v′1,v
′
2,v

′
3,v

′
4}, with v′1 = v′3 = v1 and v′2 = v′4 = v2. Then, we have

M 2
d̄ (2R,2 I) =

= 1−
d̄(R′

1,R
′
2)+d(R′

1,R
′
3)+d(R′

1,R
′
4)+d(R′

2,R
′
3)+d(R′

2,R
′
4)+d(R′

3,R
′
4)(

|2 I|
2

)
·∆n

=

= 1− 4 · d̄(R1,R2)

6 ·∆n
= 1− 2 · d̄(R1,R2)

3 ·∆n
̸= 1− d̄(R1,R2)

∆n
= Md̄ (R, I) . ⊓⊔

Proposition 7. If R ∈ L(X)2 and R2 = R−1
1 , then for any distance d̄ on W (X) it

holds:
lim
t→∞

M t
d̄ (t R, t I) =

1
2
.

Proof. Let I = {v1,v2} and R = (R1,R2) with R2 = R−1
1 . For every t ∈N, we have

t R = (R1,R2, . . . ,R2t), where R2k−1 = R1 and R2k = R2 for every k ∈ {1,2, . . . , t}.
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We should calculate the limit of the following expression:

M t
d̄ (t R, t I) = 1−

∑
vi,v j∈tI

i< j

d̄(Ri,R j)

(
|tI|
2

)
·∆n

.

Since

d̄(Ri,R j) =


0, if i, j are both even ,

0, if i, j are both odd ,

∆n, otherwise ,

we obtain

∑
vi,v j∈tI

i< j

d̄(Ri,R j) =
2t−1

∑
i=1

2t

∑
j=i+1

d̄(Ri,R j) =

(
t

∑
i=1

i+
t−1

∑
j=1

j

)
·∆n = t2 ·∆n .

On the other hand, we have (
|tI|
2

)
=

(
2t
2

)
= 2t2 − t .

Consequently,

lim
t→∞

M t
d̄ (t R, t I) = 1− lim

t→∞

t2 ·∆n

(2t2 − t) ·∆n
=

1
2
. ⊓⊔

Remark 10. Homogeneity ensures that a society has no consensus at all when it is
divided into two groups each one ranks order the alternatives just in the opposite
way to the other group. According to Proposition 6, our consensus measures are not
homogeneous. Thus, they perceive some consensus in polarized societies and, by
Proposition 7, consensus tends to 0.5 when the number of voters tends to infinity,
regardless of the distance used. Notice that this result holds even when the distance
used does not verify the maximum dissension property, which guaranteed that the
consensus between two profiles is zero if and only if they are opposites.

We summarize the properties of the analyzed consensus measures in Table 1.

Appendix

Proof of Proposition 1. Consider (a1, . . . an)≡ R ∈W (X).

1. Obvious.
2. By Remark 2.
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Table 1 Summary

Max. diss. Reciproc. Homogen.
Md̄′ No Yes No
Md̄1

No Yes No
Md̄2

Yes Yes No
Md̄∞ No Yes No
Md̄c

Yes Yes No
Md̄H

Yes No No
Md̄K

Yes Yes No

3. Consider i ∈ {1, . . . ,n} with |Mi(Rσ )| = k > 1, and j = min Mi(Rσ ) . Then,
Mi(Rσ ) = { j, j+1, . . . , j+(k−1)} and aσ

j = aσ
j+1 = · · ·= aσ

j+(k−1) = aσ
i .

Since we assign each alternative the average of the positions of the alternatives
within the same equivalence class, then we have

aσ
i =

∑
m∈Mi(Rσ )

m

k
=

j+( j+1)+ · · ·+( j+(k−1))
k

= j+
k−1

2
.

Reciprocally, given (a1, . . . ,an) ∈ Rn and a permutation σ verifying conditions
1, 2 and 3, then we can consider that aσ

i is the relative position of the alternative xi
in R ∈W (X). Then, R ≡ (a1, . . . ,an). ⊓⊔

Proof of Lemma 1. By Proposition 1, there exists a permutation σ ′ on {1, . . . ,n}
such that Rσ ′

1 satisfies 1. We consider Rσ ′
2 . Let σ ′′ be a permutation on {1, . . . ,n}

such that:

1. If
∣∣∣Mi

(
Rσ ′

1

)∣∣∣= 1, then σ ′′(i) = i.

2. If
∣∣∣Mi

(
Rσ ′

1

)∣∣∣ = k > 1 and j = min Mi

(
Rσ ′

1

)
, then let σ ′′ be a permutation on

{1, . . . ,n} such that bσ ′
σ ′′( j) ≥ bσ ′

σ ′′( j+1) ≥ ·· · ≥ bσ ′
σ ′′( j+k−1). Obviously, aσ ′

σ ′′( j) =

· · ·= aσ ′
σ ′′( j+k−1) = aσ ′

i .

Therefore, σ = σ ′ ·σ ′′. ⊓⊔

Proof of Proposition 4. By Remark 7 and Proposition 3, we only need to prove that
the corresponding distances are reciprocal.

1. Case d̄′.

Since Ri = R j ⇔ R−1
i = R−1

j , we have d̄′(Ri,R j) = d̄′(R−1
i ,R−1

j ). Consequently,
Md̄′(R−1, I) = Md̄′(R, I).
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2. Cases d̄p (p ∈ {1,2}).

By Remark 1, we have

d̄p(R−1
i ,R−1

j ) =

(
n

∑
k=1

|(n+1−oRi(xk))− (n+1−oR j(xk))|p
) 1

p

=

=

(
n

∑
k=1

|oRi(xk)−oR j(xk)|p
) 1

p

= d̄p(Ri,R j) .

Thus, Md̄p
(R−1, I) = Md̄p

(R, I).

3. Case d̄∞.

By Remark 1, we have

d̄∞(R−1
i ,R−1

j ) =

= max
{
|(n+1−oRi(xk))− (n+1−oR j(xk))| | k ∈ {1, . . . ,n}

}
=

= max
{
|oRi(xk)−oR j(xk)| | k ∈ {1, . . . ,n}

}
= d̄∞(Ri,R j) .

Thus, Md̄∞(R
−1, I) = Md̄∞(R, I).

4. Case d̄c.

d̄c(R−1
i ,R−1

j ) = 1−

n

∑
k=1

(n+1−oRi(xk))(n+1−oR j(xk))√
n

∑
k=1

(n+1−oRi(xk))
2

√
n

∑
k=1

(n+1−oR j(xk))
2

.

By Remark 2, we have
n

∑
k=1

(
(n+1)− (oRi(xk)+oR j(xk))

)
= 0. Thus,

n

∑
k=1

(n+1−oRi(xk))(n+1−oR j(xk)) =

= (n+1)

[
n

∑
k=1

(
(n+1)− (oRi(xk)+oR j(xk))

)]
+

n

∑
k=1

oRi(xk)oR j(xk) =

=
n

∑
k=1

oRi(xk)oR j(xk) .

By Remark 2, we also have
n

∑
k=1

((n+1)−2oRi(xk)) =
n

∑
k=1

((n+1)−2oR j(xk)) = 0.

Thus,
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n

∑
k=1

(n+1−oRi(xk))
2 = (n+1)

n

∑
k=1

((n+1)−2oRi(xk))+
n

∑
k=1

oRi(xk)
2 =

n

∑
k=1

oRi(xk)
2 ,

and

n

∑
k=1

(n+1−oR j(xk))
2 = (n+1)

n

∑
k=1

((n+1)−2oR j(xk))+
n

∑
k=1

oR j(xk)
2 =

n

∑
k=1

oR j(xk)
2 .

Consequently,

d̄c(R−1
i ,R−1

j ) = 1−

n

∑
k=1

oRi(xk)oR j(xk)√
n

∑
k=1

(oRi(xk))
2

√
n

∑
k=1

(oR j(xk))
2

= d̄c(Ri,R j) .

Thus, Md̄c
(R−1, I) = Md̄c

(R, I).

5. Case d̄K .

d̄K(R−1
1 ,R−1

2 ) =

=
n

∑
i, j=1
i< j

∣∣sgn
(
n+1−oR1(xi)− (n+1−oR1(x j))

)
−

− sgn
(
n+1−oR2(xi)− (n+1−oR2(x j))

)∣∣=
=

n

∑
i, j=1
i< j

∣∣sgn
(
oR1(x j)−oR1(xi)

)
− sgn

(
oR2(x j)−oR2(xi)

)∣∣=
=

n

∑
i, j=1
i< j

∣∣sgn
(
oR1(xi)−oR1(x j)

)
− sgn

(
oR2(xi)−oR2(x j)

)∣∣= d̄K(R1,R2) .

Thus, Md̄K
(R−1, I) = Md̄K

(R, I). ⊓⊔

Proof of Lemma 2. Let (a1, . . . ,an)≡R1 ∈W (X)\L(X), (b1, . . . ,bn)≡R2 ∈W (X)
and (a′1, . . . ,a

′
n) ≡ R′ ∈ W (X). By Proposition 1 and Lemma 1, and taking into

account that all the considered distances are neutral (Remark 7), we can assume
without loss of generality:

• R1 ≡ (a1, . . . ,a j, . . . ,a j+k−1, . . . ,an) ∈ W≤(X) with j = min{i | |Mi(R1)| > 0},
|M j(R1)|= k and a j = · · ·= a j+k−1 = j+ k−1

2 .
• R2 ≡ (b1, . . . ,b j, . . . ,b j+k−1, . . . ,bn) ∈W (X) with b j ≥ ·· · ≥ b j+k−1.

Let now (a′1, . . . ,a
′
n) = (a1, . . . ,a j−1, j, . . . , j+k−1,a j+k, . . . ,an)≡ R3 ∈W (X) and
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m =

{
k−1

2 −1, if k is odd,
k−1

2 − 1
2 , if k is even.

1. Case d̄2 .

d̄2(R1,R2)< d̄2(R3,R2) ⇔ 0 <
(
d̄2(R3,R2)

)2 −
(
d̄2(R1,R2)

)2 ⇔

⇔ 0 <
n

∑
i=1

(a′i −bi)
2 − (ai −bi)

2 =
k−1

∑
l=0

( j+ l −b j+l)
2 −
(

j+
k−1

2
−b j+l

)2

=

=
m

∑
l=0

( j+ l −b j+l)
2 −
(

j+
k−1

2
−b j+l

)2

+(( j+ k−1)− l −b j+k−1−l)
2 −

−
(

j+
k−1

2
−b j+k−1−l

)2

=

=
m

∑
l=0

2
(

l − k−1
2

)2

+
(
( j−b j+k−1−l)− ( j−b j+l)

)(
(k−1)−2l)

)
.

Since 0 < l < k−1
2 and 0 < b j+k−1−l ≤ b j+l , we have d̄2(R1,R2)< d̄2(R3,R2).

2. Case d̄c . Consider ∥R∥=
√

a2
1 + · · ·+a2

n whenever R ≡ (a1, . . . ,an).

∥R3∥2 −∥R1∥2 =
n

∑
i=1

(
(a′i)

2 − (ai)
2)=

=
m

∑
l=0

( j+ l)2 −
(

j+
k−1

2

)2

+( j+(k−1)− l)2 −
(

j− k−1
2

)2

=

= 2
(

k−1
2

− l
)2

> 0. (1)

Thus, ∥R3∥> ∥R1∥.
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d̄c(R3,R2)− d̄c(R1,R2) =
∑n

i=1(ai bi)

∥R1∥ ∥R2∥
− ∑n

i=1(a
′
i bi)

∥R3∥ ∥R2∥
by (1)
>

>
1

∥R1∥ ∥R2∥

(
n

∑
i=0

(
ai bi −a′i bi

))
=

=
1

∥R1∥ ∥R2∥

(
m

∑
l=0

((
j+

k−1
2

)
b j+l − ( j+ l)b j+l +

+

(
j+

k−1
2

)
b j+k−1−l − ( j+ k−1+ l)b j+k−1−l

))
=

=
1

∥R1∥ ∥R2∥

(
m

∑
l=0

(
b j+l

(
k−1

2
+ l
)
+b j+k−1−l

(
l − k−1

2

)))
≥

≥ 1
∥R1∥ ∥R2∥

(
m

∑
l=0

b j+k−1−l 2l

)
≥ 0.

Thus, d̄c(R1,R2)< d̄c(R3,R2).

3. Case d̄H .

d̄H(R1,R2)< d̄H(R3,R2) ⇔ 0 <
(
d̄H(R3,R2)

)2 −
(
d̄H(R1,R2)

)2 ⇔

⇔ 0 <
n

∑
i=1

(√
a′i −

√
bi

)2

−
(√

ai −
√

bi

)2
=

m

∑
l=0

(√
j+ l −

√
b j+l

)2
−

−

(√
j+

k−1
2

−
√

b j+l

)2

+
(√

( j+ k−1)− l −
√

b j+k−1−l

)2
−

−

(√
j+

k−1
2

−
√

b j+k−1−l

)2

=

= 2
m

∑
l=0

√
b j+l

(√
j+

k−1
2

−
√

j+ l

)
+

+
√

b j+k−1−l

(√
j+ k−1−

√
j+ k−1− l

)
.

Since 0 < l < k−1
2 , we have d̄H(R1,R2)< d̄H(R3,R2).

4. Case d̄K .

d̄K(R1,R2) =
n

∑
i,h=1
i<h

|sgn (ai −ah)− sgn (bi −bh)| .



MEASURING CONSENSUS IN WEAK ORDERS 19

d̄K(R3,R2) =
n

∑
i,h=1
i<h

|sgn (a′i −a′h)− sgn (bi −bh)| .

|sgn (ai −ah)− sgn (bi −bh)| =

=

{ |sgn (a′i −a′h)− sgn (bi −bh)| , if {i,h} ̸⊆ a j(R),

|− sgn (bi −bh)| < |sgn (a′i −a′h)− sgn (bi −bh)| , if {i,h} ⊆ a j(R).

Thus, d̄K(R1,R2)< d̄K(R3,R2). ⊓⊔

Proof of Lemma 3. Consider R1,R2,R3 ∈ L(X), R1 ≡ (a1, . . . an), R2 ≡ (b1, . . . bn)
and R′ ≡ (a′1, . . . a′n). By Proposition 1 and Lemma 1, and taking into account that
all the considered distances are neutral (Remark 7), we can assume without loss of
generality that R1 ≡ (1,2, . . . ,n) .

If R2 ̸= R−1
1 , then we consider j = min{i | bi ̸= n− i+1} and k = j+ l such that

bk = n− j + 1. Let now R3 ≡ (b′1, . . . ,b
′
n) such that b′i = b j for every i /∈ { j,k},

b′j = bk = n− j+1 and b′k = b j < n− j+1.

1. Case d̄2 .

d̄2(R1,R3)
2 − d̄2(R1,R2)

2 = | j−b′j|2 + |k−b′k|2 −
(
| j−b j|2 + |k−bk|2

)
.

| j−b′j|2 + |k−b′k|2 = ( j+ l −bk − l)2 +( j−b j + l)2 =

= (k−bk)
2 +( j−b j)

2 +2l(l +( j−b j)− (k−bk)) =

= ( j−b j)
2 +(k−bk)

2 +2l(bk −b j)> | j−b j|2 + |k−bk|2.

Thus, d̄2(R1,R2)< d̄2(R1,R3).

2. Case d̄c .

It is clear that ∥R2∥= ∥R3∥.

d̄c(R1,R3)− d̄c(R1,R2) =
∑n

i=1 ibi

∥R1∥ ∥R2∥
− ∑n

i=1 ib′i
∥R1∥ ∥R3∥

=

=
j b j + k bk − ( j b′j + k b′k)

∥R1∥ ∥R2∥
=

j b j + k bk − ( j bk + k b j)

∥R1∥ ∥R2∥
=

=
(bk −b j)(k− j)

∥R1∥ ∥R2∥
> 0.

Thus, d̄c(R1,R2)< d̄c(R1,R3).
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3. Case d̄H .

d̄H(R1,R3)
2 − d̄H(R1,R2)

2 =

=
(√

j−
√

b′j
)2

+
(√

k−
√

b′k
)2

−
(√

j−
√

b j

)2
+
(√

k−
√

bk

)2
=

=
(√

j−
√

bk

)2
+
(√

k−
√

b j

)2
−
(√

j−
√

b j

)2
+
(√

k−
√

bk

)2
=

= 2
(√

jb j +
√

kbk −
√

jbk −
√

kb j

)
=

= 2
((√

k−
√

j
)
−
(√

bk −
√

b j

))
> 0.

Thus, d̄H(R1,R2)< d̄H(R1,R3).

4. Case d̄K .

d̄K(R1,R3)− d̄K(R1,R2) =

= |sgn ( j− k)− sgn (b′j −b′k)|− |sgn ( j− k)− sgn (b j −bk)|=
= |sgn ( j− k)− sgn (bk −b j)|− |sgn ( j− k)− sgn (b j −bk)|=
= |−1−1|− |−1− (−1)|= 2 > 0.

Thus, d̄K(R1,R2)< d̄K(R1,R3). ⊓⊔
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ful to Jorge Alcalde-Unzu, Miguel Ángel Ballester, Christian Klamler and Miguel
Martı́nez-Panero for their suggestions and comments.

References

1. Alcalde-Unzu, J., Vorsatz, M. (2010): Do we agree? Measuring the cohesiveness of prefer-
ences. Mimeo.

2. Alcalde-Unzu, J., Vorsatz, M. (2010): Measuring Consensus: Concepts, Comparisons, and
Properties. This book.

3. Baigent, N. (1987): Preference proximity and anonymous social choice. The Quarterly Jour-
nal of Economics 102, pp. 161–169.

4. Baigent, N. (1987): Metric rationalisation of social choice functions according to principles
of social choice. Mathematical Social Sciences 13, pp. 59–65.

5. Black, D. (1976): Partial justification of the Borda count. Public Choice 28, pp. 1–15.
6. Borroni, C.G., Zenga, M. (2007): A test of concordance based on Gini’s mean difference.

Statistical Methods and Applications 16, pp. 289–308.



MEASURING CONSENSUS IN WEAK ORDERS 21

7. Bosch, R. (2005): Characterizations of Voging Rules and Consensus Measures. Ph. D. Disser-
tation, Tilburg University.

8. Cook, W.D., Kress, M., Seiford, L.M. (1996): A general framework for distance-based con-
sensus in ordinal ranking models. European Journal of Operational Research 96, pp. 392–397.

9. Cook, W.D., Seiford, L.M. (1982): On the Borda-Kendall consensus method for priority rank-
ing problems. Management Science 28, pp. 621–637.

10. Deza, M.M., Deza, E. (2009): Encyclopedia of Distances. Springer-Verlag, Berlin.
11. Eckert, D., Klamler, C. (2010): Distance-Based Aggregation Theory. This book.
12. Eklund, P., Rusinowska, A., de Swart, H. (2007): Consensus reaching in committees. Euro-

pean Journal of Operational Research 178, pp. 185–193.
13. Gaertner, W. (2009): A Primer in Social Choice Theory. Revised Edition. Oxford University

Press, Oxford.
14. Garcı́a-Lapresta, J.L. (2008): Favoring consensus and penalizing disagreement in group deci-

sion making. Journal of Advanced Computational Intelligence and Intelligent Informatics 12
(5), pp. 416–421.
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