
  

 

Abstract—Manipulators with compliant actuation exhibit passive 

joint displacements when exposed to external forces or collisions. 

This paper demonstrates that this displacement information is 

sufficient to infer a coarse estimate of the location of an 

incidental collision.  Three techniques for contact point detection 

are compared: a closed-form inference model based on a serial 

chain with joint springs, a variation on Self Posture 

Changeability, and an empirical memory-based model of joint 

trajectories.  The methods were experimentally tested using a 

Shadow Hand on an industrial Motoman SDA10 arm to quantify 

localization performance, actively discover and avoid a thin 

obstacle and localize and grasp a cup. 

I. INTRODUCTION 

  The addition of force and tactile sensors to multi-fingered 

robot manipulators adds cost, bulk and design constraints. 

We are interested in detecting collision using only joint 

angle measurements on compliant multi-fingered 

manipulators while performing dexterous tasks in changing 

or unknown environments.  

   Collision contact information can be used as control 

feedback when performing object detection or manipulation 

tasks. In this paper we compare theoretical and empirical 

methods to interpret joint angle data to perform obstacle 

avoidance. The output of each method provides a location 

for a single collision along the gripper. We demonstrated 

these methods with a Shadow Hand gripper attached to a 

Motoman SDA10 dual-arm robot.  We also performed a 

simple experiment to demonstrate object localization.  

The first of the three methods uses a simple closed form 

analytical model of a serial-chain finger with compliant joint 

actuation subjected to a single disturbance force. This 

approximates the palm and a single finger of the Shadow 

Hand, which has fingers that are tendon-driven by compliant 

actuators. We measured a virtual spring stiffness at each 

joint experimentally and constructed a stiffness function 

which we solve for the disturbance force and location given 

the joint angles. 

 The second method uses a variation on Kaneko and 

Tanie‟s Self Posture Changeability (SPC), a method in 

which a manipulator with one compliant joint estimates 
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contact point location by imposing a small posture change 

with other actuated joints while maintaining contact. The 

intersection of the manipulator surface over the two postures 

indicates the point of contact.  We extend the idea to 

accommodate multiple compliant joints. 

  The third method consists of building a classifier from joint 

angle displacement data to model a single collision during an 

axial motion of the hand. We set the Shadow Hand into an 

exploratory posture and collided with an obstacle placed at 

different points across the path of motion. We observed that 

the joint trajectories during collision are linearly separable 

and we used a nearest neighbor method to classify a new test 

trajectory to the means of a set of training trajectories at each 

contact point. 

We used a test set of 500 collisions with each method and 

found that our empirical model performed with higher 

precision and recall than the other methods. We demonstrate 

application of this method for obstacle avoidance and object 

localization in the accompanying supplement video. Using 

the empirical model, the Shadow Hand is shown to localize 

and navigate around an obstacle. Subsequently, the Shadow 

Hand is shown to grasp a cup after localizing the rim. 

II. RELATED WORK 

Several researchers have addressed the estimation of 

manipulator contact state from purely kinematic data, but the 

area seems underexplored.  

  Deckers, Dollar and Howe[1] describe a formulation of 

contact estimation as a POMDP model. The theoretical 

model is presented without simulation or hardware 

validation. Like our work, the model estimates a discrete 

contact state from the displacement of compliant joints using 

an active motion process, but unlike our approach uses a 

probabilistic foundation. 

  Haidacher and Hirzinger[2] present a solution for a multi-

fingered hand with compliance-controlled joints to infer 

contacts from joint angle data by actively exploring poses 

within the vicinity of a stable grasp and analyzing multiple 

pose measurements as kinematic constraints on contact 

location. They tested the solution on a simulation of a DLR 

Hand II. The motion generates measurements of multiple 

nearby stable grasps; these constraints on the contact 

locations are combined using either an optimization or an 

observer. 

  Kaneko and Tanie[3] demonstrate a method for estimating 

a single contact location using “self-posture changeability" 

(SPC) by actively controlling the motion and compliance of 

a single finger and treating the link poses as kinematic 
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constraints on a contact. The method is tested in hardware on 

a three-DOF finger. After contact is initially detected 

heuristically, one joint is controlled to be compliant and 

another to move along a prescribed trajectory. The compliant 

joint allows the link in contact to slip or roll at the contact 

point such that the location of contact can be inferred from 

the intersection of multiple measurements of the surface 

plane. As implemented, the compliance control utilizes 

torque sensors, but the method would only require joint 

angle sensing if one joint included physical compliance. 

  Huber and Grupen[4] build upon the SPC ideas to allow 

estimation of contact location during normal task motions. 

The algorithm uses observers which use joint angles to 

compute kinematic constraints that estimate feasible 

contacts, then joint torques to disambiguate the kinematic 

result and estimate forces. The result is tested both in 

simulation and on a MIT-Utah hand. 

  Siegel[5] analyzes the estimation of an equilibrium grasp 

state using only joint angle data and tests several methods in 

simulation and on a MIT-Utah hand. The work assumes the 

grasped object belongs to a small set of objects with known 

geometry, which implies the set of feasible grasps is finite. 

Two classifiers are presented which only require joint angles 

to identify the grasp, the first using an automatically 

generated decision tree and the second a memory-based 

nearest-neighbor method. 

A number of authors including [6][7] have addressed 

sensing contact location using internal force and torque 

measurements. These methods use structural strain sensors 

to estimate external forces and are thus simpler than 

distributing many active tactile sensors over the surface.  

However, we are interested in even simpler solutions which 

take advantage of joint compliance. Our methods avoid the 

complexity of adding strain gages or torque sensors and use 

only the existing joint sensors to determine contact location.  

III. HAND SETUP 

The Shadow Hand is mounted to one of the 7-DOF robot 

arms of a Motoman SDA10. The Shadow Hand System is a 

manipulator resembling the human hand with 24 degrees of 

freedom of which 20 are actuated.  The distal joints of the 

fingers (excluding thumb) are coupled to the medial joints to 

approximate human tendon constraints.  The finger flexion 

joints are actuated over -20° to 90° degrees to a precision of 

±1°.  Each joint is driven by a tendon pair attached to a total of 

36 McKibben actuators and four return springs. The joints are 

position controlled but remain compliant due to the elasti- 

 
Table 1: Shadow Hand Parameters 

Parameter Length 

Palm length 9.75 cm 

MF3 link length 4.52 cm 

MF2 link length 2.48 cm 

MF1 link length 3.00 cm 

Shadow Hand forearm 

diameter (the cluster of 

McKibben actuators) 

7.62cm 

city of the pneumatic artificial muscle actuators. The middle 

finger which we are using for contact has three links with 

joints labeled from tip to base (e.g. MF1 refers to the distal 

joint, MF2 the medial, etc.). While the Shadow Hand does 

have tactile sensors mounted on the finger and palm 

surfaces, we do not use their output at all in our experiments. 

Table 1 shows a select set of measurements of the physical 

structure of the Shadow Hand. 

IV. TASK DESCRIPTION 

For our obstacle avoidance task we assume that all hand 

trajectories are axial motions, i.e. parallel to the Shadow 

Hand forearm. This assumption guarantees contact with an 

obstacle only occurs on the compliant fingers of the hand 

and not on the rigid robot arm.  We would like to detect all 

collisions over the swept volume of the arm. This requires a 

hand pose which will incur some deflection of the compliant 

joints for any contact of interest. We call this posture the 

exploratory posture and the space over which a posture can 

detect obstacles the detectable space.  Given that initial 

exploratory trajectories are aligned with the Shadow Hand 

forearm axis, this only requires response to collisions in 

front of the bounding cylinder depicted in Fig. 1.  We further 

assume the obstacle is a vertical edge, which reduces the 

required detectable space to the band illustrated as a dark 

region on the cross section.  

 
Fig. 1. Region of contact collision and Shadow Hand 

 

          
(a)          (b)          (c) 

Fig. 2 (a), (b), (c). Possible Hand Postures and their detectable spaces 

   

 We can ensure both of these conditions by choosing a 

posture that responds to different points of collision uniquely 

and covers the entire width of the forearm. Fig. 2 shows 

three candidate posture choices, of which only Fig. 2(c) 

satisfies both these conditions. Any collision along the finger 

pose in Fig. 2(c) guarantees a response from at least one 

compliant joint, since each possible contact has a non-zero 

lever arm around at least one joint. As a counter example, in 

Fig. 2(a) and (b) collisions directly in line with the wrist 

joint would show no response. 

We chose to use only the middle finger of the Shadow 

Hand for exploration in order to increase sensitivity. 



  

Additional fingers in contact increase total stiffness which 

reduces the observed deflection. The final parameters 

selected for the exploratory posture of the hand were MF1: 

55°, MF2: 30°, MF3: 70° and wrist angle: -33°. This choice 

was motivated by the observation that our Shadow Hand 

consistently drifts into this particular pose from nearby 

commanded poses (within ±3°), possibly due to hysteresis, 

backlash and static friction. The other fingers of the hand are 

flexed to their flexion joint limits (i.e. 90° at each joint). 

The obstacle chosen for experimentation was a 1cm radius 

smooth round rigid pole to emulate point contact collisions.  

V. METHODS FOR DETECTING POINT CONTACT: CLOSED 

FORM MODEL 

A. Assumptions 

In order to develop a closed form model of the Shadow 

Hand, we assume that the compliance of each finger joint 

can be represented by a linear torsional spring at each joint, 

with neutral angle set at the chosen exploratory posture. 

Because the hand is only actuated in the plane we neglect 

gravity and the small mass of the finger. 

B. Theory 

Consider the m-link serial chain with torsional springs 

shown at rest in Fig. 3(a) and the accompanying state after a 

force has been quasi-statically applied to the system in 3(b). 

Each link is named from base to tip as Link 1, 2, …, n with 

link lengths li (i = 1, 2,…, n). Each joint angle θi is defined 

relative to the previous link. The torsional springs at each 

joint have a spring stiffness of ki. A force F is applied on the 

last link, at a distance lf from the last joint, displacing each 

joint angle by θdi. Let     represent a joint angle relative to the 

base:                                    (1) 

 

Because the system is in equilibrium, the torque due to the 

force is equivalent to the torque due to the torsional spring at 

each joint.                                              (2) 

Where  

    
                             

      
                          

 
                          (3) 

 

Let R represent the vector from the base joint to the 

location of the force on the last link. The torque due to the 

force about the base joint is:                                           (4) 

And is equal to the torque due to the torsional spring at 

joint 1:                                                   (5) 

For the other joints we have to consider the reaction force at 

the base joint which is given by: 

                                         (6) 

 
   (a)             (b)      

Fig. 3. (a) Serial chain at equilibrium due to springs 
(b) Quasi static equilibrium with an applied force 

 

Each successive joint has an equilibrium equation:                                                    (7) 

Where                                                         (8) 

 

A stiffness matrix can be constructed such that the spring 

torques are given by:                                           (9) 

Where 

K  
   
   
  
                       –                              

   
    

(10) 

      
                           

 
                                   (11) 

 

Using equations 7, 8 and 9, we can find the corresponding 

elements of the force torque vector given in Equation 2. If 

the force acts on link p then the elements of this torque 

vector are given by equations 10-12. 

 

For i = 1,2,…,p-1                                       (12)                                       (13) 

 

For j = p+1, p+2, …, n                                           (14) 

 

The elements of the        vector are zero for joints beyond 

the contact point. The link in contact corresponds to the last 

non zero row of       . For example, if the force acted on 

the second joint, the       would be as shown in 14. 
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                                                   (15) 

 

In a given collision, Q is measured and so         is easily 

computed using the physical parameters   . The only 

unknowns of the equilibrium equation (2) are F (direction 

and magnitude) and   . At least three elements of        must be non zero in order to solve for all three 

unknowns. This corresponds only to collisions on the third 

link or higher. If we assume zero friction, then the force is 

normal to the link in contact, and that would constrain our 

equation to two unknowns and solve for collisions on the 

second link as well. Given the exploratory posture, contact 

can never be made to the palm, so we will always have at 

least two non zero elements.  

C. Stiffness Measurements 

To determine the virtual spring stiffnesses, the Shadow 

Hand was set to the exploratory posture, and an Imada force 

gauge was pressed perpendicularly at each link tip. Using 

equilibrium Equation 3, we calculated the stipulated torques      (using the force gauge readings) and then 

simultaneously solved for the spring constants using 

Equation 9. Ten experiments were done on each joint and 

the average virtual stiffnesses are given in Table 2. A 

comparison of the stipulated torques calculated from the 

force gauge readings and the calculated stiffnesses are 

shown in Fig. 4. The curves are of the appropriate magnitude 

and generally linear, so the assumption that the joint 

compliance can be modeled as a linear spring is reasonable. 

The diversion of the curves in the MF3 figure is due to the 

MF3 joint reaching a joint limit due to the high force 

applied. 

 
Fig.4. Stipulated Torques. Smooth blue curve calculated from force gauge 

readings, green curve from Equation 9 using virtual spring stiffnesses. 
 

Table 2. Stiffness Results (in N-m/radians)   (wrist) 45.72 ± 9.55   (mf3) 5.33 ± 2.69   (mf2) 1.64 ± 0.86   (mf1) 0.49 ± 0.16 

VI. METHODS FOR DETECTING POINT CONTACT: SPC 

 We augment Kaneko and Tanie‟s Self Posture 

Changeability method to use more than one compliant joint. 

The extra degrees of freedom imply that there may be more 

than one possible intersection of the SPC motions. However, 

we assume that an obstacle makes contact at only one link 

and remains in contact on that link after an SPC motion. 

This guarantees that one of the observed geometric 

intersection points is the correct collision point. Fig. 5 

illustrates the concept and how the intersection of the finger 

posture after an SPC motion represents the contact position. 

The SPC motion we use is a forward linear motion 

increment up to a maximum of 1.2cm (this is the maximum 

distance that can be travelled before MF3 reaches a joint 

limit given our chosen posture and any collision along the 

collision region). At each increment, we find the intersection 

point(s) between the initial posture and the current posture as 

the intersection point is indicative of the point of contact. If 

no intersection or multiple intersections spanning across 

multiple links are found then the collision is labeled as 

indeterminate. However, a result can still be found in the 

latter case if the link in contact is known (this would 

eliminate other intersection points and pinpoint the correct 

contact area). This concept is discussed in Section VIII. 

 
Fig.5. SPC motion from an initial to a final posture to detect contact 

location 

VII. METHODS FOR DETECTING POINT CONTACT: 

EMPIRICAL MODEL 

A. Construction 

  We constructed an empirical model that represents joint 

angle displacement data versus contact collision location. 

The Shadow Hand was set to the exploratory posture and 

made to collide with the obstacle at 10 contact locations, 

chosen over the surface of the middle finger, as depicted in 

Fig. 6. Joint angle state and robot arm position was recorded 

during the trials. Time of contact was measured when the 

joint angle displacement achieved a threshold of 2°. This 

value was chosen based on the variability and noise of joint 

values during typical position control of the Shadow Hand to 

hold a pose. After the onset of contact, the hand is moved 

1.2cm forward to create a deflection in the compliant joints. 

All joint angle displacement data during this sequence is 

considered collision data. 

The goal of the model is to map the joint angle 

displacements to contact locations. The collision data 

comprises the Wrist, MF1, MF2 and MF3 joint angle 

displacements. Fig. 7 (a) shows a plot of collision data on 
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each of the 10 contact locations in the three dimensional 

space of MF1, MF2, and MF3. Fig. 7(b) shows displacement 

data for 10 collisions on the first contact location.  

Classifying a new collision event is performed by using a 

nearest neighbor method to find the closest class 

representing contact location. The mean of each class is 

precomputed from 20 collision training examples collected 

at each contact location. The method uses one of four 

distance metrics to compare a new test sample to the training 

means: Manhattan, Euclidean Squared, Mahalanobis and 

Cosine Similarity. They are briefly described below. 

 
Fig. 6. Simulation showing contact locations and exploratory posture. 

Center line of the middle finger marked by dashed line. Bold line represents 

finger surface.  

B. Distance Metrics 

Four distance metrics are used to compare a test 

displacement set to the means of the displacement data at 

each contact location from a training set. For any test vector   and mean of each collision set  , the distance between 

them measured by manhattan (MAN), euclidean squared 

(ES), mahalanobis (MAH), and cosine similarity(COS) are: 

                                        (16)                                        (17)                                        (18)                                                  (19) 

Where   is the covariance all points in the collision set. 

VIII. TESTING AND METHOD SET UP 

In order to best compare the performance of all three 

methods we used a testing set of collision data from 50 

collisions at each contact location. This test set was created 

using the same procedure explained in Section VII.  

The closed form method requires the identity of the link in 

contact to determine which torque balance equations to use 

when solving for the contact location. Recall from Equation 

15 that the link in contact simply corresponds to the first link 

that experiences a non-zero torque. In practice however, we 

often found that all the links experienced non-zero torques 

regardless of the collision location. We therefore provide the 

identity of the link to the method beforehand. Thus for each 

point in a test collision data trajectory, the closed form 

method can solve for the contact location using the correct 

force balance equations. 

When using the SPC method, we found that the geometry 

of our finger configuration led to multiple intersection 

points, which made identifying the point of contact 

ambiguous. We therefore provide the identity of the link in 

contact to the SPC method as well and so each point in a test 

trajectory is compared to the reference posture until an 

intersection is found that lies on the provided link in contact. 

If no solution is found the trajectory is labeled 

indeterminate.  

 
(a) 

 
(b) 

Fig. 7 (a) Plot of MF1, MF2 and MF3 displacement data for one collision at 

each contact location. 

   (b) Plot of MF1, MF2, and MF3 displacement data for ten collisions 
at contact location 1.  

 

 
Fig. 8. Bin locations 

 

The empirical model training set consists of collision data 

from 20 collisions at each contact location; collected using 
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the same method described in Section VII. An eleventh 

“cluster” is included comprising non-collision displacement 

data. The empirical model uses the final point of a test 

collision trajectory for classification. 

We also used the 10 possible contact locations to create 

regions or bins of contact location, shown in Fig. 8. We can 

then quantize the results of the closed form method and SPC 

method output into one of these bins and compare them to 

the results of the empirical method on the same test set. 

IX. RESULTS AND DISCUSSION 

Tables 3, 4, and 5 represent histograms of the results of 

submitting each test trial to each classification method. Each 

column represents a contact location tested, and each row 

represents a classifier output bin. The perfect classifier 

would thus be depicted as a matrix with values only in the 

diagonal. The additional row in each table represents cases 

that were indeterminate by the method. For the closed form 

model and SPC method, these indeterminate values include 

the test cases that were classified to a contact location 

inconsistent with the provided link in contact. These 

infeasible outputs are represented by the grayed out areas.  

The empirical model is not given the link in contact so all 

output bins are always feasible. Indeterminate cases in the 

empirical model results represent trajectories that were 

classified as non-contact. 

Table 5 depicts the histogram of the results using the cosine 

similarity distance metric to classify samples; this metric 

was the best of the four tested. An LDA analysis was also 

performed to transform the training and testing data in an 

attempt to maximize cluster separation, but the results of the 

analysis did not show a significant gain that would justify its 

use.  

It is important to note that in all methods, an indeterminate 

classification is not necessarily a system failure. Because the 

existence of contact can be trivially determined using 

thresholding, if the location cannot be estimated a control 

system can retry the collision after possibly performing a 

reset, dither or retreat to take a new reading and reattempt 

classification. 
 

Table 3. Closed Form Method Results 

Actual Position 1 2 3 4 5 6 7 8 9 10 

Classified in 

 
Bin 1 24 4 0 0 

      
Bin 2 13 38 32 1 

      
Bin 3 2 2 11 49 

      
Bin 4 1 0 1 0 2 0 0 

   
Bin 5 

    
21 2 0 

   
Bin 6 

    

19 20 41 

   
Bin 7 

    
0 7 2 

   
Bin 8 

       
0 3 0 

Bin 9 
       

3 5 0 

Bin 10 

       

37 19 46 

Indeterminate 10 6 6 0 8 21 7 10 23 4 

            

Table 4. SPC Method Results 

Actual 

Position 1 2 3 4 5 6 7 8 9 10 

Classified in 
 

Bin 1 9 4 5 3 

      
Bin 2 23 24 17 7 

      
Bin 3 15 22 27 14 

      
Bin 4 0 0 0 25 11 5 3 

   
Bin 5 

    
10 13 12 

   
Bin 6 

    

24 23 24 

   
Bin 7 

    

4 3 0 

   
Bin 8 

       
29 22 19 

Bin 9 

       

16 9 7 

Bin 10 
       

4 19 23 

Indeterminate 3 0 1 1 1 6 11 1 0 1 

            
Table 5. Empirical Model Results using Cosine Similarity 

Actual 
Position 1 2 3 4 5 6 7 8 9 10 

Classified in 
 

Bin 1 26 14 1 0 0 0 0 0 0 1 

Bin 2 21 33 14 0 0 0 0 0 0 0 

Bin 3 2 3 34 1 0 0 1 0 0 0 

Bin 4 0 0 0 49 5 1 0 0 0 1 

Bin 5 0 0 0 0 23 12 12 10 1 9 

Bin 6 0 0 1 0 4 33 14 0 2 3 

Bin 7 0 0 0 0 18 3 11 18 0 1 

Bin 8 0 0 0 0 0 1 12 15 19 1 

Bin 9 1 0 0 0 0 0 0 7 27 9 

Bin 10 0 0 0 0 0 0 0 0 0 25 

Indeterminate 0 0 0 0 0 0 0 0 1 0 

            
Table 6.  Method Success Rates in Percent (%) 

Method 

Exact Rate 

(Average 

Recall) 

Average 
Precision 

Link 
Rate 

Left or 

Right 

Rate 

Indeter-

minate 

cases 

Closed 

Form 
33.40 39.43 80.11 82.33 19.00 

SPC 35.80 34.86 94.72 95.42 5.00 

Empirical Model using: 

Manhattan 35.40 44.13 78.17 88.42 1.20 

Euclidean 
Squared 

40.20 49.45 77.39 88.75 1.40 

Mahalanobis 51.40 67.30 74.33 84.50 0.34 

Cosine 
Similarity 

55.20 58.73 87.67 97.90 0.20 

   

Table 6 shows classification success rates for each method 

at several categories of precision. The first column shows 

the average recall (true positives over the sum of true 

positives and false negatives) or the rate of classifying 

contact exactly into the correct bin. The second is average 

precision (true positives over the sum of true and false 

positives). The third is the success rate for identifying the 

link in contact, regardless of the exact contact position. This 

is more appropriate for analyzing the results of the empirical 

model. The fourth column is the success rate for classifying 



  

a test case to the left or right of the exploratory posture (bins 

1 to 4 represent “right hand side” contact and bins 5 to 10 
represent “left hand side” contact).  Even this single bit is 
useful since we are intending to use these methods for 

obstacle avoidance. After a collision, the arm must 

circumnavigate the obstacle and so any method to determine 

the contact location should at the very least provide a coarse 

estimate of the position and allow the arm to clear the 

obstacle (by moving left or right). The final column lists the 

ratio of indeterminate classifications.  

The closed form method showed poor results for collisions 

on the link close to the base, possibly due to the no-friction 

assumption required at that link. Additionally, the estimate 

of the virtual spring stiffnesses have high variance but could 

likely be improved by constructing an apparatus to 

characterize the displacement forces instead of using a 

handheld force gauge.  

The high success rates for left or right classification using 

the empirical model should be expected. In Fig. 7 (a) we 

observe a large degree of separation from trajectories of 

collision on the right side of the finger and on the left. We 

should also note that the elliptical shape of the training 

trajectories should favor Mahalanobis distance and cosine 

similarity over the other distance metrics and this is reflected 

in the results. 

X. CONCLUSIONS AND FUTURE WORK 

We explored three different methods for detecting single 

contact collision location on a serial link manipulator using 

only joint displacements. The first two methods require the 

identity of the link in contact with the obstacle in order to 

determine a contact location. While in this work we 

provided that information directly to the methods, this 

information could instead be potentially provided by 

additional sensors, a heuristic on the joint angles or by an 

empirical model that trained and classified by „link in 

contact‟ instead of by contact location. We could also 
explore alternative increment motions, such as controlled 

movements of particular finger joints after a collision. 

While the SPC method showed greater overall accuracy on 

all links than the closed form method, both methods were 

still inundated by unclassifiable collisions. In practice, these 

collisions would have to be reattempted in order to find a 

better result.  

The empirical model method showed comparable results to 

the other two methods without prior information of the link 

in contact. The method could correctly classify the link in 

contact 88% of the time and give a correct coarse estimate of 

obstacle location to the left or right of the manipulator 98% 

of time. We successfully demonstrated the application of this 

method in the accompanying supplement video depicting 

obstacle avoidance and object localization to grasp a cup. 

Some stills are shown in Fig. 9. 

All of the methods described use the passive compliance 

properties of a manipulator to generate coarse contact 

collision location using incidental joint angle displacement 

data. As demonstrated in the work, manipulation tasks using 

collision feedback can be performed using only kinematic 

data. The idea could be extended to different arm trajectories 

and hand postures, and other tasks such as surface following. 

Including multiple fingers would provide a three 

dimensional contact area that could be used to detect 

obstacle shape, height or perform rough three-dimensional 

object reconstruction.  
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Fig 9. Top – Sequence showing obstacle avoidance, Bottom – Showing object localization and grasping 


