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2 

 

Abstract. Zeta diversity provides the average number of shared species across n sites (or shared 31 

operational taxonomic units (OTUs) across n cases). It quantifies the variation in species 32 

composition of multiple assemblages in space and time to capture the contribution of the full 33 

suite of narrow, intermediate and wide-ranging species to biotic heterogeneity. Zeta diversity 34 

was proposed for measuring compositional turnover in plant and animal assemblages, but is 35 

equally relevant for application to any biological system that can be characterised by a row by 36 

column incidence matrix. Here we illustrate the application of zeta diversity to explore 37 

compositional change in empirical data, and how observed patterns may be interpreted. We use 38 

10 datasets from a broad range of scales and levels of biological organisation – from DNA 39 

molecules to microbes, plants and birds – including one of the original data sets used by R.H. 40 

Whittaker in the 1960’s to express compositional change and distance decay using beta diversity. 41 

The applications show (i) how different sampling schemes used during the calculation of zeta 42 

diversity may be appropriate for different data types and ecological questions, (ii) how higher 43 

orders of zeta may in some cases better detect shifts, transitions or periodicity, and importantly 44 

(iii) the relative roles of rare versus common species in driving patterns of compositional change. 45 

By exploring the application of zeta diversity across this broad range of contexts, our goal is to 46 

demonstrate its value as a tool for understanding continuous biodiversity turnover and as a metric 47 

for filling the empirical gap that exists on spatial or temporal change in compositional diversity. 48 

 49 

Keywords: DNA methylation, environmental gradients, diversity index, spatial and temporal 50 

turnover, species composition, metagenome, microbial community, occurrence, operational 51 

taxonomic unit, rare and common species. 52 
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INTRODUCTION 54 

Changes in the composition of diversity in space and time, along with richness, abundance and 55 

biomass, are critical to understanding what drives biodiversity and the ways that humans are 56 

transforming it (McGill et al.  2015). Interest in measuring and understanding the way in which 57 

species composition changes in space and time has risen exponentially over the last two decades 58 

(Anderson et al.  2011, Shimadzu et al. 2015, Myers and LaManna 2016, Socolar et al.  2016). 59 

Compositional change is not only relevant to species diversity, but to other levels of biological 60 

organisation, including molecular, genetic and phylogenetic diversity (e.g. Nipperess et al. 2012, 61 

Thomas et al.  2016), as well as social phenomena such as cultural diversity, economic 62 

development, collaboration and societal instability (e.g. Nettle et al.  2007, Vaz et al.  2017). The 63 

concept of turnover1 in the identity of elements is therefore relevant across a broad range of 64 

biological and socioecological systems that span multiple scales (Arita et al. 2012). 65 

Zeta diversity was recently proposed as a concept that focusses attention on multi-site, 66 

cross-scale, assemblage patterns of turnover in biodiversity, with the purpose of better 67 

understanding how biodiversity is structured (Hui and McGeoch 2014). The zeta diversity 68 

measure quantifies the number of species shared by any given number of sites, and calculates all 69 

possible components from assemblage partitioning. Compositional, or incidence-based, turnover 70 

has traditionally been measured using metrics based on pairwise comparisons (i=2) of species 71 

incidence across sites or samples (Jost et al.  2010), commonly referred to as beta diversity (e.g. 72 

Jaccard dissimilarity). Differences in species composition between pairs of sites are driven 73 

largely by rare species rather than common ones (which are, by definition, shared by large 74 

numbers of sites). Comparisons of compositional change across i > 2 sites thus provides 75 

                                                           

1
 We use the term turnover in its broadest sense to mean change in composition of elements across sites or over time, 

including both richness dependent and independent components 
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information on the contribution of increasingly more common (widespread) species in the 76 

assemblage to turnover.  77 

The mathematical necessity of multiple site turnover measures, such as zeta diversity, has 78 

been shown. With information on only the alpha and all pairwise beta components in a 79 

community, it is not possible to know the full complement of partitions across multiple sites (Hui 80 

and McGeoch 2014). Dissimilarity indices based on combinations of multiple sites have been 81 

proposed (e.g. Diserud and Ødegaard 2007, Baselga et al. 2007, 2013), but provide a single 82 

measure of compositional turnover for a set of sites. By contrast, zeta diversity as a concept for 83 

the first time draws attention to the value of the full suite of multisite comparisons to quantifying 84 

compositional change. By incrementally increasing the number of sites and quantifying 85 

compositional change at each step, zeta diversity provides information on the full spectrum of 86 

rare to intermediate and common species as they contribute to driving compositional change. As 87 

such it provides a more comprehensive picture of turnover than a single aggregated value for 88 

compositional comparison. As a measure, zeta diversity (ζi) enables this exploration of how 89 

incidence-based composition changes with both scale and number of sites i involved (Hui and 90 

McGeoch 2014).   91 

The applied value of zeta diversity has to date also been shown in particular cases, for 92 

example as a measure of similarity and uncertainty in pest profile analysis (Roige et al. 2017), to 93 

measure field-specific interdisciplinarity (Vaz et al. 2017) and to upscale estimates of 94 

biodiversity (Kunin et al. in press). However, the main applications of zeta diversity (zeta decline 95 

and zeta decay) to classic incidence matrices in ecology, and how these are interpreted, has not 96 

yet been systematically illustrated. Using a range of levels of biological organisation, we show 97 

how zeta diversity can be applied and interpreted to provide insights on the nature of biotic 98 
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heterogeneity. Building on Hui and McGeoch (2014), we also introduce for the first time the 99 

species retention rate using the zeta ratio, which quantifies relative rate of turnover in rare and 100 

common species. Zeta diversity is one among several developments in the field (e.g. Baselga 101 

2010, 2013). While recognizing these developments, the aim here is not to contrast them, but 102 

rather to enable ecologists to further explore the structurally novel value and ecological insights 103 

provided by zeta diversity (Appendix S1 provides an illustrative approach).  104 

 105 

CALCULATING ZETA DIVERSITY 106 

Analysis 107 

Throughout we use ‘OTU’ (operational taxonomic unit) to refer to species or other levels of 108 

biological organisation, ‘case’ to refer to site, sample, assemblage or other unit of comparison, 109 

and ‘community’ to refer to the OTU by case matrix. Zeta diversity (ζi ) is the mean number of 110 

OTUs shared by i number of cases, with i referred to as the zeta order, ζ1 (where i = 1) is the 111 

mean number of OTUs across all cases (or alpha diversity). The first-order of zeta diversity (ζ1), 112 

or average species richness, is thus equivalent to alpha, and the total observed or estimated 113 

richness across all sites or assemblages, as usual, represents gamma diversity. Incidence-based, 114 

pairwise beta similarity metrics are equivalent to ζ2 (Hui and McGeoch 2014), and higher orders 115 

of zeta (i > 2) represent the contribution of increasingly widespread (common) OTUs to 116 

compositional change. Analyses can be performed either using raw zeta, i.e. the absolute number 117 

of OTUs shared by cases, or on transformations of zeta.  118 

Richness can vary substantially across sites and assemblages and, if desired, normalised 119 

zeta provides one option for dealing with richness difference effects (see for example Roige et al. 120 

2017, depending on the study objective, other approaches are possible, e.g. Latombe et al. 2017). 121 
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Normalised zeta is ζij/γj, where ζij is the number of species shared by the i sites in the specific 122 

combination j, and where γj (gamma diversity) is the total number of OTUs over the cases in the 123 

specific combination j (i.e. the gamma diversity of the combination). Normalised zeta is useful 124 

for comparing communities with large differences in richness, or where richness-independent 125 

patterns of turnover are of interest. The number of orders included in calculation of zeta is 126 

decided based on the dataset and question of interest, and at a maximum will be the total number 127 

of cases. If zeta reaches zero after i orders, i.e. no OTU is shared by more than i cases, there is of 128 

course no information to be gained by expressing it for orders beyond this.  129 

All analyses were performed using the zetadiv package V.1.0 (Latombe et al.  2016), in R 130 

(R Core Team 2013). For each dataset, only those results that best illustrate each of the particular 131 

zeta diversity applications are discussed (full results in Supplementary Information). Like alpha 132 

and beta diversity, zeta diversity can be used in a wide variety of analyses, to quantify multiple 133 

facets of biodiversity. The two main applications are explored in detail in this paper, (1) zeta 134 

decline, including the OTU retention rate based on the zeta ratio, and (2) zeta decay over space 135 

or time.  136 

 137 

Data structure and sub-sampling schemes 138 

For any dataset, the combination of a specific data structure and choice of sub-sampling scheme 139 

results in different possible pathways for expressing zeta diversity (Fig. 1, Appendix S1). The 140 

sub-sampling scheme for i cases (Fig. 1) has a significant effect on the value and interpretation 141 

of diversity patterns (Scheiner et al. 2011), including those quantified using zeta diversity. The 142 

data sub-sampling scheme may encompass all (or a random selection) or only a subset of 143 

possible combinations of i samples, and partially depend on the spatial or temporal structure of 144 
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the data (Fig. 1). The main data sub-sampling schemes are all combinations (ALL), nearest 145 

neighbours (NON - non-directional or DIR - directional), and fixed point origin (FPO) or fixed 146 

edge origin (FEO) (Fig. 1). When zeta decline is calculated using the ALL combinations scheme 147 

(Fig. 1a, g), it provides an average expectation of compositional change in the data and could be 148 

considered as the lower bound (least shared OTUs) of expected turnover against structured 149 

sample designs. In cases where sites or surveys are positioned across a spatial or temporal 150 

gradient, and zeta is calculated using nearest neighbours (DIR or NON schemes, Figure 1b,c,e), 151 

zeta diversity will decline at a comparatively slower rate. This is due to the constraints imposed 152 

by this spatial or temporal dependence in the data sub-sampling scheme (versus the ALL scheme 153 

that considers combinations of sites that may be far from each other, and are therefore less likely 154 

to share OTUs than close sites). Zeta decline (using the ALL sub-sampling scheme) can thus be 155 

considered a null model against which scale or environmental mechanisms hypothesised to be 156 

responsible for driving patterns of turnover can be tested. Other sub-sampling schemes may be 157 

envisaged for more specific applications.  158 

The choice of the data pathway, i.e. the combination of data structure and data sub-159 

sampling scheme, will affect the outcome and is therefore important to consider a priori to 160 

ensure selection of the most appropriate pathway for the data and hypothesis of interest. 161 

 162 

Data 163 

Ten datasets were used to demonstrate the application of zeta diversity and represent a range of 164 

taxa, levels of biological organisation and spatial or temporal scales (Table 1). The data sets also 165 

encompass a broad range of OTU richness (39 to 1804) and numbers of cases (< 20 to >1000). 166 

Each data set was structured as an OTU by case matrix with non-zero marginal totals. Singletons 167 
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(OTUs present at only a single site) were removed from some datasets, especially where they are 168 

likely to be a result of under sampling or sampling bias (for further detail on treatment of 169 

individual datasets see Appendix S2). While each of these datasets described below potentially 170 

warrants a dedicated examination of compositional turnover of its own, here we use the diversity 171 

of cases and data structures to illustrate the application, and interpretation of zeta diversity and 172 

not to test data set-specific hypotheses per se. 173 

R.H. Whittaker presented the first applications of the concept of beta diversity to quantify 174 

turnover in plant communities (which he termed ‘coefficient of community’ now known as 175 

Jaccard’s similarity index) in a series of publications spanning the late 1950’s to early 1960’s 176 

(Whittaker 1960, 1967). To illustrate the conceptual shift from beta to zeta diversity, we start by 177 

using one of the original datasets of Whittaker (1956). Tree community composition was 178 

surveyed along an elevational gradient at 122 m intervals at mesic sites in the Great Smoky 179 

Mountains, spanning 480 - 1700 m a.s.l. (39 tree species at 11 ‘sites’ or elevational bands) (Table 180 

5 in Whittaker 1956) (referred to from here on as the data set ‘Trees’, see Table 1).  181 

Three different Australian bird datasets were used (Table 1). The first is a selection of 182 

atlas data for terrestrial (non-freshwater) species at 25 × 25 km grain, in a 150 km radius around 183 

the Sydney Central Business District (33° 51' 44.4132'' S, 151° 12' 31.77'' E) (Barrett et al.  184 

2003) (‘‘Sydney birds’’, Table 1, Appendix S2). The second dataset uses checklist-type lists of 185 

species across the 85 (unequal area) bioregions in the country (Ebach et al. 2013) (‘‘Bioregion 186 

birds’’, Table 1). The third bird data set includes temporal data for native birds in two 187 

catchments in a major river basin in southeastern Australia (‘‘Temporal birds’’, Table 1). These 188 

were collected from 2 ha sites over a 6-year period from 1998 to 2003 (Appendix S2), which 189 

coincided with a regional drought (Selwood et al.  2015). 190 
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Microbial communities (bacterial and archaeal OTUs defined based on a <97% identity 191 

of their 16S rRNA genes) associated with the surfaces of common kelp (Ecklonia radiata) were 192 

examined along the coastline of temperate Australia. Samples from within two marine 193 

Biogeographic Provinces (BPs) were examined (alongside the Australian states of New South 194 

Wales (NSW) and Western Australia (WA), Appendix S2). Within each BP, 3 regions (spanning 195 

~ 4° latitude or ~ 600km) were sampled with 3 sites per region (Marzinelli et al.  2015) (‘Kelp 196 

microbes’, Table 1). 197 

Two very different insect datasets were used. The crop pest data include occurrence 198 

records at the level of country, state (province) and island group for over 800 insect pest species 199 

of interest to global crop protection (Roige et al.  2017) (‘‘Crop pests’’, Table 1). The second 200 

dataset includes insect herbivores (bugs (Hemiptera) and beetles (Coleoptera)) sampled from a 201 

single host plant (Acacia falcata, data pooled for 120 trees per site) across 12 sites spanning a 202 

1200 km latitudinal extent in Eastern Australia (Andrew and Hughes 2005) (“Acacia 203 

herbivores”, Table 1, Appendix S2).  204 

Plant survey data from Banks Peninsula (New Zealand) includes native and alien plant 205 

species (n=1037) from a regular array of plots (n=1338) approximately 1km apart across the 206 

extent (~50 x 30 km) of the Peninsula (Wiser et al.  2001) (Appendix S3). (‘‘Plants’’, Table 1). 207 

The ‘Soil metagenome’ data set was generated from twelve, 5 ml soil samples taken as an 208 

array within an area of approximately 50 m2 in a dry sclerophyll woodland in New South Wales 209 

(Australia) (Michael et al.  2004, see for further details on DNA extraction and gene cassette size 210 

class screening, assessment and characterisation). The data matrix used is thus based on small, 211 

mobile genetic elements (or gene ‘cassettes’) as OTUs versus soil samples (‘‘Soil metagenome’’, 212 

Table 1).  213 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/216580doi: bioRxiv preprint 

https://doi.org/10.1101/216580


10 

 

Finally, because ecological metrics are increasingly being used for other biological 214 

applications (La Salle et al. 2016, Warton and McGeoch 2017), we included a dataset on sub-215 

cellular patterns of turnover that consisted of the presence or absence of DNA hypermethylation 216 

(a mechanism used by cells to control gene expression) at nucleotide sites in tissues from 217 

patients with and without a metabolic disorder (Table 1). The dataset included the incidence of 218 

DNA methylation (‘DNAm’) at CpG (dinucleotide) sites in human occipital cortex tissue from 219 

16 males of a range of ages, with (n=8) or without (n=8) a developmental disorder (autism) (see 220 

Ginsberg et al.  2012). Here, age was considered as a relational variable as DNA methylation has 221 

been shown to be negatively related to age (Horvath 2013). In this case the OTUs were CpG sites 222 

and the tissue from individual patients were the cases (‘‘DNAm’’, Table 1). The question of 223 

interest here is – does the distribution of hypermethylation across CpG sites (i.e. compositional 224 

turnover) distinguish patients with and without a developmental disorder. 225 

In datasets where a large proportion of the OTUs are shared by the majority of cases (and 226 

where the value of zeta would therefore be high at high orders), it may be appropriate to consider 227 

this subset of OTUs with a close to saturated distribution as uninformative and to exclude them – 228 

as we did for the high proportion of nucleotide sites at which hypermethylation occurred across 229 

all patients in the ‘DNAm’ dataset (Appendix S2). These OTUs may otherwise hide the signal in 230 

zeta diversity from the whole suite of less common OTUs (see details below). However, in some 231 

systems the identification of common suites of species may itself be of interest (Gaston 2010, 232 

McGeoch and Latombe 2016). For example, in microbial studies the identification of ‘core 233 

microbiomes’ is meaningful (Shade and Handelsman 2012), and wide-ranging components of 234 

assemblages are also relevant in invasion biology. 235 

 236 
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INTERPRETING ZETA DIVERSITY 237 

 238 

1. ZETA DECLINE 239 

Zeta decline quantifies how the number of shared OTUs decreases with zeta order, i.e. with 240 

increasing number of cases included in the calculation of shared OTUs. Plots of zeta diversity 241 

against the order of zeta (i.e. zeta decline) provide information on the form and rate of decline in 242 

the average number of OTUs shared across increasing orders of zeta, where orders represent 243 

selected pairs (order 2 for value zeta 2), triplets (order 3 for value zeta 3) of cases and so on (Hui 244 

and McGeoch 2014).  245 

As a departure point, we used Whittaker’s (1956) tree data to show how traditional 246 

pairwise decline using Jaccard similarity compared with the decline in zeta diversity for n-sites, 247 

(Fig. 2). [Note that only in this particular and simple case of a one-dimensional data structure and 248 

a directional point source sub-sampling scheme, is zeta order (elevational bands in this case) 249 

directly comparable to distance along the transect. The data underlying Fig. 2 match the scheme 250 

in Fig. 1 j, and in this case zeta decline is directly comparable to zeta decay.]. Applying zeta 251 

diversity so that it most closely matches the approach used by Whittaker (1967) (Appendix S2,4) 252 

revealed a comparatively similar steady decline in species shared beyond the first two elevational 253 

bands (Fig. 2). However, normalised zeta across the transect was lower by comparison, as 254 

expected given the inclusion of multiple elevational bands in its calculation beyond the second 255 

band (normalised ζ2 is equivalent to the Jaccard similarity index between the first pair of sites) 256 

(Fig. 2). The significance of the difference in interpretation using Jaccard versus zeta diversity is 257 

that pairwise comparison of sites underestimates compositional diversity along the elevation 258 

gradient. Underestimation of turnover such as this could potentially affect any conservation 259 
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decision that is made based on relative or comparative levels of heterogeneity, such as the 260 

placement of monitoring localities or protected areas (Socolar et al. 2016).   261 

In the following sections we examine the ecological interpretation of zeta decline and its 262 

parametric form, and introduce the zeta ratio and species retention rate curves built from the zeta 263 

ratio. 264 

 265 

1.1 The ecological interpretation of zeta decline 266 

Features of interest in zeta decline include: (i) the rate of decline in shared OTUs, particularly 267 

across the first few orders, and (ii) if at higher orders the curve reaches or approximates zero or 268 

not. The larger the change in the value of zeta across subsequent orders, the greater the relative 269 

difference in the numbers of rare versus increasingly common species in the community. At 270 

lower orders this provides information on the rate at which rare species are lost from the 271 

community. At higher orders, the value of zeta diversity provides information on the existence 272 

and size of the common core of OTUs in the community for a particular order, that is of interest 273 

itself but also for comparisons within and across datasets.  274 

We used normalised zeta to enable a comparison across datasets (or assemblages with 275 

very different richness) with a wide range of OTU richness, including the ‘Crop pest’, ‘DNAm’, 276 

‘Bioregion birds’ and the ‘Soil metagenome’ datasets (Table 1, Fig. 3) (see also Appendix 277 

S2,S4). From Fig. 3a, it is apparent that in some cases the average number of OTUs shared 278 

across sites declines to zero within the extent of the study system, whereas in datasets with some 279 

OTUs present in all sites, zeta converges towards this number of widespread OTUs. The value of 280 

zeta at the highest expressed order represents the most common subset of species in the 281 

assemblage for that order, i.e. the average number of species shared by large numbers of cases 282 
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(interpreted as a % using normalised zeta), where large is equivalent to the highest order of zeta 283 

expressed in the zeta decline curve.  284 

The species shared by global crop pest assemblages declined to approximately zero after 285 

only 6 orders, and although the rate of decline in the ‘Soil metagenome’ data at a micro scale 286 

was somewhat slower, it also declined to approximately zero after ~ 10 orders (Fig. 3a). 287 

Ecologically, in both these datasets, the extent of the study exceeds the scale at which 288 

communities are structured because the number of shared species declines to zero fairly rapidly. 289 

Zeta diversity declined sharply for ‘Crop pests’, with complete turnover in the pest assemblage 290 

expected across more than 6 states or countries. Therefore, although there are a small suite of 291 

widespread insect crop pests globally shared by several countries, the global composition of pest 292 

assemblages actually differs widely (Roige et al.  2017).  293 

By contrast, although zeta decline approximated zero at higher orders of zeta for global 294 

‘Crop pests’, it declined to approximately 20 % of bird species shared by Australian bioregions 295 

by order 12 (14% across all bioregions). There was therefore a core set of common bird species 296 

(~ 20% or 50 species, across 12 orders) shared across bioregions, shown by the large zeta values 297 

for high orders (Fig. 3a, Appendix S5). This long tail of zeta decline for birds represents a set of 298 

wide-ranging species that are either habitat generalists (e.g. Australian Owlet-Nightjar 299 

(Aegotheles cristatus)), or long-range dispersers (e.g. Fairy Martin (Petrochelidon ariel)) 300 

(Appendix S3). Similarly, but using raw zeta, in the ‘Trees’ data there were a common suite of ~ 301 

5 tree species (Fig. 4a), whereas for ‘Sydney birds’ there were approximately 40 bird species in 302 

common on average across combinations of ten or more sites around Sydney (Fig. 4b). 303 

Intermediate to the other datasets in Fig 3a, shared nucleotide sites at which 304 

hypermethylation occurs (‘DNAm’ data) declined more rapidly after zeta order 4 in comparison 305 
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with bird composition, with fewer than 10% of dinucleotide sites shared by zeta order 12 (Fig. 306 

3a, interpreted further below). Here, the low percentage of shared sites (low zeta diversity) at 307 

order 12 is driven in part by the pre-analysis removal of hypermethylation sites shared by all 308 

patients, because they are uninformative in the context of this dataset (Appendix S2,S4). This 309 

illustrates the importance of biologically-driven decisions on how to treat the data pre-analysis, 310 

and the study specificity of how zeta decline is interpreted – at least across this widely divergent 311 

set of examples that were used to illustrate the array of possible forms of zeta decline.  312 

 313 

1.2 The retention rate based on the zeta ratio 314 

A measure of OTU retention rate can be calculated using the ‘zeta ratio’ (e.g. ζ2/ζ1). The 315 

retention rate curve quantifies the degree to which common OTUs are more likely to be retained 316 

across cases than rare ones with an increase in zeta order. Common OTUs are intuitively more 317 

likely to be retained in extra samples than rare OTUs, although not necessarily so (dependent to 318 

some extent on scale (grain) and species aggregation) (Harte 2008, Hui and McGeoch 2008). By 319 

comparing the ratios of zeta diversity values (e.g. ζ10/ζ9 vs. ζ2/ζ1), it is therefore possible to assess 320 

the extent to which this is the case.  321 

Because the average number of shared OTUs declines with increasing numbers of cases 322 

(as in zeta decline), a random species shared by i sites has a probability ζi+1/ζi of still being 323 

shared by i+1 sites. The zeta ratio plotted against increasing orders is interpreted as the rate (or 324 

the probability) at which species are retained in the community as additional cases are included 325 

in the comparison. The zeta ratio for a particular order is therefore the probability of retaining (or 326 

rediscovering) an OTU of the same order of commonness in additional samples. In addition, as 327 

shown in Hui and McGeoch (2014), the specific ratio ζ1/ζ0 provides an estimate of the probability 328 
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of discovering new species in additional samples. The abscissa in the species retention rate plot 329 

is interpreted slightly differently to the order in zeta decline. For example, the zeta ratio for order 330 

nine is interpreted as the probability of retaining species with an occupancy of nine (present at 331 

nine sites) in a tenth site, or the probability that these species remain widespread with the 332 

addition of another site.  333 

  In Fig. 3b, all OTU retention rates start increasing, indicating a rapid loss of rare OTUs 334 

and demonstrating that pairwise beta turnover is largely driven by the gain or loss of rare species 335 

(consistent with strong modes of rare OTUs, Appendix S5). The probability of retaining common 336 

species is much lower for ‘Crop pests’ than ‘Bird bioregions’, but the rates of common species 337 

retention for both these datasets start to asymptote beyond order 6 (Fig. 3b). The retention rates 338 

for the ‘Soil metagenome’ and ‘DNAm’ data increase and then start to decline (i.e. show signs of 339 

becoming modal, for a stronger example of this form of species retention curve see Fig. 5b, 340 

beetles). This means that at higher orders there is a decline in the probability of retaining 341 

common species in the community with an increase in order (or a decrease in the rate of OTU 342 

retention) (Fig. 3b). Across all the datasets examined (see also examples in Fig. 5), three general 343 

forms of retention rate curves were observed, (i) increasing (e.g. the bugs in the ‘Acacia 344 

herbivores’ data, Fig. 5b), (ii) asymptotic (e.g. ‘Bioregion birds’ and ‘Crop pests’, Fig. 3b) and 345 

(iii) modal (e.g. beetles in the ‘Acacia herbivores’ data and to a lesser extent the ‘DNAm’ and 346 

‘Soil metagenome’ data, Figs 3b, 5b). 347 

Within a study system the three types of retention rate are likely to be a continuum, 348 

shifting from increasing to asymptotic if a core set of common OTUs remain for a particular zeta 349 

order, and either directly from increasing to decreasing, or via a modal curve, when moving 350 

beyond the footprint of the most common suite of OTUs in the community. The biological 351 
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significance of these will be study dependent, but can generally be interpreted as follows: An 352 

increasing curve indicates that common OTUs are more likely to be retained in additional 353 

samples than rare ones, and as a result perhaps that the sampling extent is narrower than the 354 

metacommunity, or that site selection is relatively homogenous and well characterised by habitat 355 

specialists (Myers and LaManna 2016). In an asymptotic curve, an asymptote of 1 indicates the 356 

presence of common species over all sites, whereas an asymptote < 1 indicates that common and 357 

intermediate species are equally likely to be retained in subsequent sites or samples. A modal 358 

curve indicates that for high orders of zeta, the most common OTUs are less likely to be retained 359 

when adding sites, i.e. the study extent encompasses the community or metacommunity 360 

(Appendix S3). 361 

Examining plots of the zeta ratio expressed as species retention rate curves is particularly 362 

useful for visualising turnover at higher orders (which in zeta decline curves may be difficult to 363 

distinguish because the values of zeta are low) and highlights potential differences between the 364 

zeta declines of related datasets. This is apparent in the ‘Acacia herbivore’ (beetle) and the 365 

DNAm data (Fig. 5b,c), which revealed patterns at higher zeta orders that were not apparent 366 

from the zeta decline curves. 367 

 368 

1.3 Effect of data subsampling scheme on zeta decline and retention rate 369 

As outlined above, when applying zeta diversity it is important not only to use an appropriate 370 

survey design (as for any ecological study), but also to consider the appropriate data subsampling 371 

scheme for the system and question of interest (Fig. 1). Comparing zeta diversity decline using 372 

three data sub-sampling schemes on the ‘Trees’ and ‘Sydney birds’ data (Fig. 4) illustrates the 373 

shallower rate of decline over all combinations (ALL) and using nearest neighbours (DIR), than 374 
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using the fixed point origin (FPO). This is a consequence of spatial clustering of species and the 375 

continuity of ranges, particularly of the more common species across the transect. This is 376 

apparent for both the one-dimensional ‘Trees’ data (Fig. 4a), and the two-dimensional data 377 

structure for ‘Sydney birds’ (Fig. 4b).  378 

Comparing the results from three subsampling schemes on the ‘Trees’ dataset illustrates 379 

the potential ecological value of retention rate curves (Fig. 4a,c). The zeta retention rate curve is 380 

particularly striking, with a rapid decline in the rate of species retention beyond zeta orders 6-9 381 

for the DIR and FPO schemes (Fig. 1i, j). This is not apparent from the zeta decline curve (Fig. 382 

3a) nor from the zeta ratio using the ALL scheme (Fig. 4c). For comparison, the zeta ratio 383 

identifies no sudden shift in bird composition in Fig. 4d for any of the three subsampling 384 

schemes. The rate of species retention stabilises beyond zeta order 10, demonstrating the absence 385 

of any conspicuous ecotone or dispersal barrier across the urban area encompassed by these bird 386 

data.  387 

 Whittaker (1967) concluded from his analysis of the change in Jaccard similarity in tree 388 

composition (from the lower elevational origin) across the Smoky Mountains elevational 389 

transect, that there was broad overlap in species distributions along the gradient. He remarked on 390 

the ‘striking’ straight-line relationship between log similarity and the elevational gradient. 391 

However, although Whitaker (1967) interpreted the patterns of Jaccard-based distance decay (as 392 

shown in Fig. 2) as the existence of ‘broadly overlapping’ species distributions across the 393 

transect, he also anecdotally pointed out the existence of a switch in dominance from cove forest 394 

species to gray beech and a suite of small tree species at ~ 1400 m a.s.l. along the transect 395 

(Whittaker 1960). This coincides with the abrupt shift in species composition between 976 m -396 

1098 m detected by the zeta ratio and shown by the sharp decline in species retention rate for the 397 
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DIR and FPO subsampling schemes (Fig. 4c). In the ‘Trees’ data, the retention rate of zeta 398 

diversity computed with the appropriate subsampling scheme thus enabled the identification of 399 

the ecotone noted by Whittaker (1960), by better capturing the contribution of common species 400 

to turnover along the gradient, in comparison with pairwise beta diversity (equivalent to ζ2).  401 

Spatially or environmentally structured sampling schemes affect the form of both the zeta 402 

decline and the retention rate. These may therefore be compared with the ALL sub-sampling 403 

scheme to test mechanistic explanations of turnover (McGill and Nekola 2010, Myers and 404 

Manna 2016, Latombe et al. 2017). 405 

 406 

1.4 The parametric form of zeta decline 407 

The parametric form of zeta decline as best fit by either a power law or exponential relationship 408 

provides insight on the relative probability of OTU (species) occurrences across cases (sites), and 409 

may be used to test hypotheses about the extent to which biological matrices or communities are 410 

structured (Hui and McGeoch 2014). Power law and exponential parametric forms have been 411 

shown to most often best fit decline curves, although other distributions are possible (Hui and 412 

McGeoch 2014). Estimated using ALL site combinations (Fig. 1a, g), the parametric form of 413 

decline is interpreted as OTUs having the same (exponential) or unequal (power law) probability 414 

of being observed across cases.  415 

The ‘DNAm’ data were better fit by an exponential than power law (AIC -39.77 versus -416 

18.93), whereas the difference was marginal for ‘Crop pests’ (AIC -1.96 exponential versus -417 

1.47 power law) (Fig. 3c,d). This result shows, at least for the ‘DNAm’ data, a lack of structure 418 

in the matrix and that there are approximately equal probabilities of hypermethylation occurring 419 

at any nucleotide site. The two other datasets were better fit by a power law (AIC value 420 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/216580doi: bioRxiv preprint 

https://doi.org/10.1101/216580


19 

 

differences > 30) (Fig. 3c,d), demonstrating some structure in the ‘Bioregion birds’ and ‘Soil 421 

metagenome’ datasets and uneven probabilities in the occurrence of  OTUs across cases. 422 

Comparatively equal probabilities of the occurrence of species across sites (exponential 423 

form) has been suggested to be associated with stochastic assembly processes, whereas habitat 424 

heterogeneity and niche differentiation processes are more likely to produce a power law form of 425 

zeta decline in natural communities (Hui and McGeoch 2014, for comparable mechanistic beta-426 

diversity based interpretations see Munoz et al.  2008, Nekola and McGill 2014). The fit can also 427 

be used to test the scale dependence of OTU incidence in the community; exponential reflects 428 

scale independence of species retention, whereas the power law reflects non-independence across 429 

cases, and an increasing probability of retaining more common OTUs at finer scales (Hui and 430 

McGeoch 2008, McGlinn and Hurlbert 2012). The relationship between the parametric form of 431 

zeta decline and mechanistic process in biological systems requires further testing. As with any 432 

inference of process from pattern in ecology, clear hypothetical frameworks and strong inference 433 

approaches should be used to support the interpretation of the parametric form of zeta decline in 434 

this way.  435 

 436 

1.5 Within-system comparisons of zeta decline 437 

In the previous examples (Fig. 3) we contrasted datasets that would not normally be included in 438 

the same study, to illustrate the range of possibly forms of zeta diversity decline and retention 439 

rate. Here, using raw rather than normalised zeta, we use three examples to compare zeta 440 

diversity within individual datasets across different OTU (Fig. 5a, b) or case (Fig. 5c) groups 441 

(using ALL combinations (Fig. 1i)).  442 

 443 
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Example 1. An invaded plant community. -- Clear differences are apparent in compositional 444 

change between alien and native ‘Plants’ (95% CI = [1.74, 1.95] in a linear model, Fig. 5a, 445 

Appendix S4). Alien turnover declines more slowly than native plant composition. Here, 446 

although there are over half as many alien as native plant species on Banks Peninsula (Wilson 447 

2009), there were higher values of zeta diversity (more alien species in common than natives) 448 

and slower turnover in alien compared to native plant species composition. Alien turnover 449 

declines more slowly than native plant composition, and the zeta ratio shows that within the alien 450 

plant subset, common species are more likely to be retained across sites (by between ~40-70%) 451 

than in the native plant subset (~10-40%) (Fig. 5a). Both native (ΔAIC = 3.96) and alien (ΔAIC 452 

= 2.42) zeta decline are better fit by an exponential than power law, suggesting little structure in 453 

the plant community at the scale of this study, i.e. species on average have comparatively equal 454 

(albeit low) probabilities of being found across sites (Fig. 5a). 455 

 456 

Example 2. Insect herbivores on Acacia. -- Clear differences are apparent in compositional 457 

change between the two groups of ‘Acacia herbivores’ (95% CI = [1.81, 1.94] in a linear model, 458 

Fig. 5b, Appendix S4). For ‘Acacia herbivores’, the decline in beetle species shared across the 459 

gradient is very rapid (exponential, ΔAIC = 20.01), reaching a zeta diversity of zero by order 10, 460 

in contrast to slower decline in compositional similarity in bugs across the same gradient (power 461 

law, ΔAIC = 26.49) (Fig. 5b). Whereas the species retention rate in bugs is increasing, for 462 

beetles the retention rate drops beyond zeta order 5 (Fig. 5b). The probability of retaining beetle 463 

species in the assemblage (zeta ratio) beyond order 4 declines rapidly, suggesting complete 464 

turnover in the composition of beetles on Acacia within the extent of this study (Fig. 5b). Low 465 

prevalence and abundance of beetles in samples (Andrew and Hughes 2005) is a plausible 466 
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explanation for the strong decline in species retention and lack of structure (i.e. exponential zeta 467 

decline) observed in these data. 468 

 469 

Example 3. Hypermethylation at nucleotide sites. -- There was little difference in compositional 470 

turnover of hypermethylation sites across patients with (parametric form not distinguishable, 471 

ΔAIC= 0.01) and without (exponential, ΔAIC = 3.99) a metabolic disorder evident from a 472 

comparison of their zeta decline and retention rate curves (Fig. 5c). Using disorder status 473 

(binary) and patient age as predictors for zeta order 2 to 4, status was not significant (supporting 474 

the multivariate analysis-based findings of Ginsberg et al.  2012), whereas age was a significant 475 

predictor of ζ3 (95% CI = [-66.07, -25.79]) and ζ4 (95% CI = [-58.19, -25.81]), but not ζ2 (95% 476 

CI = [-98.44, 8.47]). The general prevalence of a relationship between DNA methylation and age 477 

is well known (Horvath 2013), but was detected here only for orders of zeta greater than 2, i.e. 478 

not detected by beta diversity (ζ2). This demonstrates that examining the full spectrum of rare to 479 

intermediate and common OTUs as they contribute to driving compositional change is more 480 

information rich than quantifying pairwise compositional turnover alone. 481 

 482 

2. ZETA DECAY 483 

Zeta decay quantifies change in the number of OTUs shared with increasing distance between 484 

sites (or time between surveys) for different orders of zeta. Zeta decay is conceptually similar to 485 

distance decay (Nekola and McGill 2014), or species–time relationships and time decay (Shade 486 

et al.  2013), and provides information on the spatial or temporal extent of communities. It also 487 

provides information that can be used to design the spatial and temporal dimensions of sampling 488 

schemes to capture features of biodiversity change of interest. Zeta decay, or a plot of zeta 489 
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diversity across sets of cases that are different distances or times apart, is represented with each 490 

zeta order as a different decay curve. In temporal decay the curves represent the change in 491 

number of shared OTUs across subsequent surveys or time periods (this can vary with sampling 492 

scheme, see Fig. 1). Note that the ends of zeta decay curves, in particular the longer distance end, 493 

are usually associated with greater uncertainty because there are comparatively fewer cases this 494 

maximum distance apart than there are combinations of cases shorter distances apart (the same 495 

problem of unequal power across classes occurs in estimates of autocorrelation series, Legendre 496 

1993).  497 

For orders i > 2, the distances between pairs of n sites are combined using, for example, 498 

mean distance (other options are the extent of occurrence (EoO) by the cases under 499 

consideration, or the maximum distance of cases apart). This must be considered when 500 

interpreting the effect of distance on zeta diversity as the order increases (Latombe et al.  2017).  501 

Using zeta diversity decay, spatial and temporal compositional similarity for each order 502 

of zeta illustrates differences in the form of decay for the rare to more widespread OTUs in the 503 

community over time or distance (Fig. 6). Characteristics of interest are (i) the shape and rate of 504 

change (slope) of decay, and how this differs across orders of zeta, (ii) the absolute distance (or 505 

time) over which this decay in the similarity of OTU composition occurs, and (iii) the presence 506 

or absence of periodicity in the curves.  507 

 508 

2.1 Patterns of zeta decay 509 

Four general patterns of zeta diversity decay were apparent in the examples used (Fig. 6, 510 

Appendix S4). First, decay was shallow to absent in Fig. 6d,e across zeta orders 2 to 5. Second, 511 

in Fig. 6a,b decay was evident and monotonic for zeta 2 and to a lesser extent for zeta orders 3-5. 512 
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Third, decay was markedly periodic in Figs 6c and 6f. Finally, differences in the average value 513 

of zeta across zeta orders 3-5 ranged from comparatively large (e.g. Fig. 6b) to small (e.g. Fig. 514 

6a). These patterns are interpreted in the context of their datasets below. 515 

The patterns of distance decay for alien and native ‘Plants’ (Fig. 6a,b) confirm the 516 

interpretation of zeta decline for this data set in Fig. 5, i.e. more shallow compositional turnover 517 

in aliens than natives. Here, however, the difference in rates of decline are calibrated against 518 

distance, enabling scale-specific comparisons of distance decay across species groups. Over 519 

distances of 20 km, on average there are 2 - 6 alien species shared (across zeta orders), whereas 520 

there are fewer than 1 to just over one native species shared by sites this far apart (Fig. 6a,b). The 521 

relative distances in zeta values across orders 3-5, especially at larger distances in Fig. 6b, 522 

illustrate that there are more ubiquitous species (both locally and regionally widespread) in the 523 

alien than the native community. If on-ground surveys were to extend beyond the current sample 524 

extent, one might expect therefore to discover new rare species at a faster rate than new alien 525 

species (with the assumption that local species richness remains similar in the newly surveyed 526 

sites). These difference in decay slope between native (steep) and alien (shallow) ‘Plants’ is in 527 

the direction that one might expect given the tendency for alien and invasive plant species to 528 

have broader niches and geographic ranges (Lockwood et al.  2005). 529 

Patterns of distance decay for ‘kelp microbes’ differed markedly at the scale examined 530 

across the eastern and western bioregions of Australia (Fig. 6c,d). The steep decline in average 531 

numbers of shared OTUs (both rare to more widespread, i.e. from zeta order 2 upwards) over 532 

distances of 150-300 km along the coast of NSW suggests marked patchiness in community 533 

structure at this scale. By contrast, the rate of distance decay in the WA community was shallow 534 

and consistent across the different orders, in spite of high total and average OTU richness in the 535 
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region (Fig. 6d). On average, the number of shared OTUs was higher and more consistent with 536 

distance in Western Australia (total richness 550 OTUs, mean±s.d. = 346.88±23.49) compared 537 

with New South Wales (518 OTUs, 288.33±60.02). Compositional change in higher orders of 538 

zeta tended to mimic decay in ζ2, although over a more narrow range of distances as a 539 

consequence of plotting decay against the mean distance across the i samples (Fig. 6c,d). Curves 540 

with a clear shift or periodicity (where the width of the error intervals should broadly not exceed 541 

the amplitude of the shift or period) suggest the presence of a dispersal barrier, a shift in 542 

environmental conditions, patchiness or temporal periodicity of some form (Nekola and White 543 

1999). For example, the striking difference between decay curves for kelp microbes between 544 

NSW and WA can be explained by distinctly different current systems between the coasts that 545 

drive the dispersion of kelp microbes in different ways (Thompson et al. 2011) (differences in 546 

the relative distances across sites may also play a role, Appendix S6).  547 

Although the average number (±s.d.) of bird species shared over time (‘Temporal birds’) 548 

was similar at the two catchments in the drought-affected river basin in Australia (12.18±3.31 at 549 

Castlereagh, 14.81±3.14 at Loddon), compositional similarity was lower (i.e. fewer shared 550 

species across years) at Castlereagh than at Loddon River (Fig. 6e, f). Turnover in assemblage 551 

composition was comparatively stable over the course of the drought at Castlereagh (shallow 552 

decline in zeta diversity), whereas the temporal decay in similarity was more marked at Loddon, 553 

particularly in the first year of the drought (1998-1999, over the first ~ 356 days, Fig. 6f, 554 

Appendix S6). After ~3.5 years at Loddon, the average number of species in common with the 555 

assemblage at the start of the drought started to decline again (this is particularly apparent for 556 

zeta orders 3-5). Periodicity in the zeta decay of the more drought affected Loddon bird 557 

community suggests some resistance after an initial perturbation during the early stages of the 558 
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drought (see Selwood et al. 2015), with higher turnover (fewer shared species) over time further 559 

into the drought period. The drought was not as severe at Castlereagh, and here the bird 560 

community appeared to be comparatively resistant, with very little temporal decay (Selwood et 561 

al. 2015).  562 

The differences in zeta decay across zeta orders in these examples illustrates the relative 563 

differences in the contributions of rare to more common OTUs to turnover with distance and 564 

time. The examples revealed shallow to steep decay slopes, as well as monotonic versus periodic 565 

patterns of decay. Although here we speculate on what may be driving the patterns found, drivers 566 

of patterns in zeta diversity decay can be formally tested using multi-site generalised 567 

dissimilarity modelling, a form of direct gradient analysis, in which zeta diversity is regressed 568 

against environmental differences and distance (Latombe et al. 2017). Direct gradient analysis on 569 

species composition is traditionally performed using Redundancy Analysis or Canonical 570 

Correspondence Analysis (Legendre and Legendre 2008), and relies on linear regression 571 

approaches. More recently, Ferrier et al. (2007) proposed a flexible, non-linear version of direct 572 

gradient analysis named Generalised Dissimilarity Modelling (GDM). GDM predicts pairwise 573 

beta diversity (e.g. Bray-Curtis Dissimilarity) from environmental difference between sites, 574 

while accounting for the impact of the environmental gradient on the effect of the environmental 575 

difference on compositional turnover. However, since this approach relies on pairwise 576 

comparisons of sites, the outputs remain mainly driven by rare species. Extending GDM to zeta 577 

diversity to create Multi-Site Generalised Dissimilarity Modelling (MS-GDM, Latombe et al. 578 

2017) enables the identification of differences in the abiotic variables structuring compositional 579 

change in rare to common OTUs. Being able to disentangle spatial and temporal trends in rare to 580 
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common species has significant potential value, given the important role of common species in 581 

delivering ecosystem services (McGeoch and Latombe 2016).  582 

 583 

CONCLUSION 584 

When a new approach is proposed that for the first time quantifies, or quantifies differently, a 585 

component of biodiversity, the outcome of its application to a range of biological or ecological 586 

scenarios becomes of interest, because of the potential that it may reveal new insights about 587 

biodiversity. Here we have shown using a diverse range of empirical examples that zeta decline, 588 

the zeta ratio and retention rate, the parametric form of zeta decline and zeta decay provide a 589 

range of insights on the nature of continuous compositional turnover and the scaling of 590 

biodiversity structure. We have also shown how its application reveals patterns of turnover that 591 

are not apparent using measures of compositional change for a fixed number of, usually pairwise, 592 

cases. The broad range of applications and insights that can be derived using zeta diversity on 593 

any incidence matrix will, we hope, also contribute to further development of general theory on 594 

the scaling of biotic heterogeneity. 595 

In spite of substantial focus on biodiversity change over the recent period (Butchart et al. 596 

2010), trends in spatial and temporal turnover across scales, from local to global, remain poorly 597 

supported by empirical studies (Dornelas et al. 2013, McGill et al. 2015). Our intention here was 598 

to show how zeta diversity can contribute to filling this gap when used to study trends in 599 

turnover across multiple cases and levels of biological organisation. Along with insights 600 

provided by decomposing compositional change into richness and replacement components (e.g. 601 

Baselga 2010, 2013), future progress in modelling and hypothesis testing using zeta diversity 602 

will be made using combinations of empirical and simulation modelling. With the growing 603 
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interest in biodiversity turnover and the importance of common species in an increasingly 604 

homogenised world (McGeoch and Latombe 2016), advances in ways to measure compositional 605 

change and the dynamics of common species, such as zeta diversity, are timely.  606 
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TABLE 1. Properties of the ten datasets used to illustrate the application of zeta diversity (in the 754 

form of OTU (operational taxonomic unit) by case matrices, see Appendix S2-S5 for further 755 

details). 756 

Dataset 

(realm) 

No. 

OTUs 

No. 

cases

# 

Case 

(OUT) 

groups 

Grain Spatial 

extent 

Data structure 

and sub-

sampling scheme 

(Fig. 1) 

1. ‘Trees’1 39 11 x 120 m elevational 

bands 

Landscape 1D (vii, ix, x) 

ALL, DIR and 

FPO 

2. ‘Sydney 

birds’2 

(terrestrial) 

145 22 x 25 x 25 km 

 

Regional 2D (i, iii, iv) 

ALL, DIR and 

FPO 

3. ‘Crop pests’3 

(terrestrial) 

868 373 x ‘region’ 

represented by a 

country or state 

Global 2D (i) ALL 

4. ‘DNAm’4 

(human donor) 

1545  16 2  tissue from 

human 

individuals 

Donor/Host 

(n/a) 

Non-dimensional 

(i) ALL 

5. ‘Bioregion 

birds’5 

(terrestrial) 

641 85 x bioregions Continental 

(biogeograp

hic) 

2D (i) ALL 

6. ‘Soil 

metagenome’6 

(terrestrial) 

451 12 x 5 ml soil sample Micro 

(local) 

2D (i) ALL 

7. ‘Plants’, alien 

and native7 

(terrestrial) 

910 

(316, 

594) 

1281 (2) 20 x 20 m plots Regional   2D (i) ALL 

8. ‘Acacia 

herbivores’, 

beetles and bugs8 

184 

(74, 

110) 

12 (2) groups of trees Regional 

(biogeograp

hic) 

2D (ii) ALL 
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(terrestrial) 

9. ‘Kelp 

microbes’, New 

South Wales and 

Western 

Australia9 

(marine) 

903 

(518, 

550) 

17 2 Kelp blades 

within regions 

and sites in each 

Biogeographic 

Province 

Seascape 

(biogeograp

hic) 

2D (i) ALL 

10. ‘Temporal 

birds’10 

(terrestrial) 

71 

and 

56 

6 

(1998

-

2003). 

2 2 ha plots 

surveyed multiple 

times a year 

Local   1D (x) FPO 

#Sites, hosts or temporally repeated surveys in the case of dataset10. References describing the data set and/or the 757 

system context: 1. Whittaker (1956), 2. Barrett et al. (2003), 3. Roige et al.  (2017), 4. Horvath (2013), 5. Ebach et 758 

al.  (2013), 6. Michael et al.  (2004), 7. Hurst and Allen (2007), 8. Andrew and Hughes (2005), 9. Marzinelli et al.  759 

(2015), 10. Selwood et al. (2015).   760 
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FIG. 1. One- and two- dimensional data structures and alternative data sub-sampling schemes for 762 

estimating compositional turnover using zeta diversity (jointly referred to as the pathway for 763 

expressing zeta diversity). Data may include broad geographic regions encompassing spatially 764 

homogenous or heterogeneous environments (which may include multiple complex gradients as 765 

in (a,b)), independent units hosting a community (e.g. islands, hosts of parasite or bacterial 766 

communities or genomes) or linear habitats (e.g. coastlines or ecotones (a,b). The lines between 767 

sites are not comprehensive and simply show how sites may be combined for the calculation of 768 

zeta diversity. Directional structures are those where there are known or designed directional 769 

gradients of interest (c-f,i,j), e.g. a one or two dimensional change in environmental condition 770 

away from a point source (d), gradients perpendicular to an edge or ecotone (f), or a time series 771 

or transect along an environmental gradient (i,j). Non-dimensional schemes are those where no, 772 

or no single, environmental or spatial gradient is of concern or interest (sample units may also be 773 

discrete with their relative spatial position of no interest). 774 

  775 
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 776 

FIG. 2. Compositional change in tree species along an elevation gradient in the Great Smoky 777 

Mountains, quantified using pair-wise Jaccard similarity as used by Whittaker (1967). Tis is 778 

compared with normalised, n-wise zeta diversity decline. Both elevational bands (equivalent to 779 

the zeta order in this case) and the distance along the elevational transect (m) can be shown on 780 

the x-axis in this case. 781 

782 
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 783 

FIG. 3. Normalised zeta diversity decline (a) for four data sets (see Table 2) showing how the 784 

number of shared OTUs decreases with the zeta order. (b) The species retention rate using the 785 

zeta ratio, which shows the degree to which common OTUs are more likely to be retained in 786 

additional cases or samples than rare ones with an increase in zeta order. (c,d) The form of 787 

decline against exponential (comparatively equal probability of OTUs across cases) or power law 788 

fits (comparatively unequal probabilities of the occurrence of OTUs across cases) (shown on log 789 

axes using normalised zeta). [Crop pests (circles), DNAm disorder (squares), bioregion birds 790 

(triangles), soil metagenome (diamonds)] 791 
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 792 

 793 

FIG. 4. Patterns of compositional change with different data sub-sampling schemes (All, DNN, 794 

FPO) are shown for directional data structures (Fig. 1) using zeta diversity decline (a, b) and the 795 

zeta ratio plotted as species retention rate (c, d). Data sets used are trees along an elevation 796 

transect (a, c; ‘Trees’ Table 1) and bird communities radiating inland from central Sydney (b, d; 797 

‘Sydney birds’ Table 1). Data combination schemes: ALL, all combinations of n sites, DIR, 798 

directional nearest neighbour, FPO, fixed point origin (see Fig. 1). The legend in panel d relates 799 

to panels a to c.  800 
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 801 

FIG. 5. Comparisons of zeta diversity decline between OTU or case groups in three data sets, 802 

along with species retention rate using the zeta ratio, and exponential versus power law fit (on 803 

log axes): a. alien and native plants on Banks Peninsula; (b) Acacia herbivores (beetles and bugs) 804 

across a latitudinal gradient, and (c) DNA hypermethylation sites in patients with and without a 805 

disorder. The data sub-sampling scheme in all cases is ‘ALL combinations’ (Fig. 1i).  806 
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 807 

FIG. 6. Zeta diversity decay over space and time, for zeta orders 2 to 5, showing change in 808 

number of OTUs shared with increasing distance between sites (or time between surveys). (a-b) 809 

Alien and native plant species on Banks Peninsula (New Zealand); (c,d) microbial communities 810 

associated with kelp in two Australian marine biogeographic regions (New South Wales (east) 811 

and Western Australia (west)) using ALL combinations (see Fig. 1i); (e,f) temporal decay in bird 812 

communities in two catchments (Castlereagh River, 5% below average rainfall; Loddon River, 813 

10% below average rainfall) over the course of a regional drought (1998-2003) (turnover relative 814 

to first year of the drought, i.e. fixed point origin scheme FPO, Fig. 1j)). Note that using mean 815 

distance for higher orders (i > 2) of zeta (c,d) results in the increasingly narrow decay curve with 816 

increasing distance or time (see text). 817 
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SUPPORTING INFORMATION 820 

Additional Supporting Information may be found. 821 
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