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ABSTRACT

The cosmic proper distance dP is a fundamental distance in the Universe. Unlike the luminosity and angular diameter distances, which
correspond to the angular size, the proper distance is the length of light path from the source to observer. However, the proper distance
has not been measured before. The recent redshift measurement of a repeat fast radio burst (FRB) can shed light on the proper distance.
We show that the proper distance-redshift relation can indeed be derived from dispersion measures (DMs) of FRBs with measured
redshifts. From Monte Carlo simulations, we find that about 500 FRBs with DM and redshift measurements can tightly constrain
the proper distance-redshift relation. We also show that the curvature of our Universe can be constrained with a model-independent
method using this derived proper distance-redshift relation and the observed angular diameter distances. Owing to the high event rate
of FRBs, hundreds of FRBs can be discovered in the future by upcoming instruments. The proper distance will play an important role
in investigating the accelerating expansion and the geometry of the Universe.

Key words. cosmology: theory – radio continuum: general – cosmological parameters – distance scale –
large-scale structure of Universe

1. Introduction

In astronomy, a long-standing and intriguing question is the
measurement of distance. There are several distance definitions
in cosmology, such as the luminosity distance dL, the angu-
lar diameter distance dA, the transverse comoving distance dM,
and the proper distance dP (Weinberg 1972; Coles & Lucchin
2002; Hogg 1999). In the frame of the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric, the proper distance at the
present time t = t0, which is the same as the comoving distance,
is (Weinberg 1972; Coles & Lucchin 2002)

dP(r) = a0

∫ r

0

dr′
√

1 − Kr′2
= a0 f (r), (1)

where a0 is the present scale factor, r is the comoving coordinate
of the source, and f (r) is sin−1 r, r, and sinh−1 r for the curvature
parameter K = +1, K = 0, and K = −1, respectively. Using the
Hubble parameter H = ȧ/a, it can be calculated from

dP(z) =
c

H0

∫ z

0

dz′

E(z′)
, (2)

where z is the redshift, H0 is the Hubble constant, c is the speed
of light, and E(z) = H(z)/H0. Similarly, the transverse comoving
distance is (Hogg 1999)

dM(z) = a0r(z) =
c

H0
√
−ΩK

sin
[ √
−ΩK

∫ z

0

dz′

E(z′)

]
, (3)

where ΩK is the energy density fraction of cosmic curvature
(−i sin(ix) = sinh(x) if ΩK > 0). The direct relation of dM, dA,
and dL is dM = dL/(1 + z) = dA(1 + z).

Many methods have been proposed to determine the cosmic
distances. For example, type Ia supernovae (SNe Ia), which are

treated as standard candles, have been used to measure the lumi-
nosity distance dL (Riess et al. 1998; Perlmutter et al. 1999). The
standard ruler (the baryon acoustic oscillation) has been used to
derive the angular diameter distance dA (Eisenstein et al. 2005).
With the measurements of dL and dA, dM can be derived directly
using the relation among them. The luminosity and angular di-
ameter distances have been widely used in cosmology (for recent
reviews, see Weinberg et al. 2013; Wang et al. 2015). Instead,
the proper distance dP is seldom used in cosmology because it is
difficult to measure (Weinberg 1972; Coles & Lucchin 2002). In
a flat universe, the transverse comoving distance dM and proper
distance dP are same. However, they are different in a curved uni-
verse. Figure 1 shows the differences between them in a closed
universe. In this figure, AB is an object, and an observer at O
measures the distance of AB. When the size of AB and the angu-
lar size of ∆θ are known, the distance dA, which is the length of
OA′ or OB′, can be determined. Then, dM and dL of AB can also
be derived using the relations among them. However the length
of arc OA or OB is the physical distance between the source and
the observer, and it is the proper distance dP.

Whether our Universe is entirely flat is still unknown, al-
though the latest constraint on the cosmic curvature |ΩK | is less
than 0.005 (Planck Collaboration XIII 2016). However, we must
keep in mind that this constraint is model dependent, since it
is derived in cold dark matter (CDM) background cosmology
(Planck Collaboration XIII 2016; Räsänen et al. 2015; Li et al.
2016). Because of the differences between the proper distance
and other distances, three important points encourage us to deter-
mine the proper distance dP. The first point is that the proper dis-
tance dP is the fundamental distance in the Universe. The second
point is that the proper distance dP can be used to constrain the
cosmic curvature (Yu & Wang 2016). The third point is to test
the cosmological principle, that is, the Universe is homogeneous
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Fig. 1. Illustration of the proper distance dP and transverse comoving
distance dM in a closed universe (ΩK < 0). The source is AB, and ob-
server is at O. It is obvious that the transverse comoving distance dM is
shorter than the proper distance dP. In a flat universe, they are the same,
however. The cosmic curvature can therefore be tested by comparing dP
and dM.

and isotropic at large scales. The basis of this idea is explained in
Fig. 1. The transverse distance and proper distance of AB can be
regarded as the lengths of the line OB′ and arc OB, respectively.
The ratios of the different parts of OB′ and OB can be used to
test whether the curvatures at different scales of the Universe are
the same. In addition, the cosmological principle is expected to
be valid in the proper distance space rather than in dA, dL , or dM
space if our Universe is not entirely flat. Therefore we should
test the cosmological principle in proper distance space unless
we can ensure that our Universe is entirely flat. With a similar
idea, Räsänen et al. (2015) tested the FLRW metric using the
distance sum rule method (Räsänen et al. 2015). However, the
current constraint obtained from this method is very loose.

In order to measure the proper distance, a probe should in
principle satisfy two conditions. First, it should change with red-
shift in a well-understood way and be independent of cosmic
curvature. Second, it should record the information on the expan-
sion of our Universe. Standard candles and standard rulers are
not able to measure dP since they depend on cosmic curvature.
Up to now, no practical method to measure the proper distance
has been found. Fortunately, the discovery of fast radio bursts
(FRBs; Lorimer et al. 2007; Thornton et al. 2013) and their red-
shifts (Chatterjee et al. 2017; Tendulkar et al. 2017) sheds light
on deriving the proper distance-redshift relation. A radio sig-
nal traveling through plasma exhibits a quadratic shift in its ar-
rival time as a function of frequency, which is known as the
dispersion measure (DM). The DM of radio signal is propor-
tional to the integrated column density of free electrons along
the line of sight (i.e., DM ∝

∫
nedl), which was widely used in

Galactic pulsar data (Taylor & Cordes 1993; Manchester et al.
2005) and gamma-ray bursts (Ioka 2003; Inoue 2004). In ad-
dition, the redshift measurement of the source gives informa-
tion on the expansion of the Universe. For an FRB, the DM can
be measured directly (Lorimer et al. 2007; Thornton et al. 2013),
which has been proposed for cosmological purposes (Zhou et al.
2014; Gao et al. 2014; Lorimer 2016). Its redshift can be esti-
mated by observing its host galaxy or afterglow (Lorimer 2016;
Tendulkar et al. 2017). Therefore, the dP − z relation can be de-
rived with the DM and redshift measurements of a large FRB
sample.

This paper is organized as follows. In Sect. 2 we introduce
the method used to determine the dP − z relation. In Sect. 3 we
use Monte Carlo simulations to test the validity and efficiency of
our method. We summarize our result in Sect. 4.

2. Method for determining the dP – z relation

2.1. Main idea

FRBs are millisecond-duration radio signals occurring at cos-
mological distances (Tendulkar et al. 2017). The DM of FRB
caused by the intergalactic medium (IGM) is

DMIGM = Ωb
3H0c

8πGmp

∫ z

0

F(z)
E(z′)

dz′, (4)

where

F(z) = (1 + z) fIGM(z) fe(z).

Ωb is the baryon mass density fraction of the universe, G is the
gravitational constant, mp is the rest mass of protons, fIGM is the
fraction of baryon mass in the intergalactic medium (IGM), fe =
YHXe,H(z) + 1

2 YHeXe,He(z) represents the average count of elec-
trons contributed by each baryon, YH = 3/4 and YHe = 1/4 are
the mass fractions of hydrogen and helium, and Xe,H and Xe,He
are the ionization fractions of intergalactic hydrogen and he-
lium, respectively. The parameters in F(z) are extensively inves-
tigated in previous works (Fan et al. 2006; McQuinn et al. 2009;
Meiksin 2009; Becker et al. 2011). According to their results,
intergalactic hydrogen and helium are fully ionized at z < 3.
Therefore we chose Xe,H = Xe,He = 1 at z < 3,which corresponds
to fe = 0.875. The values of fIGM are 0.82 and 0.9 at z < 0.4 and
z > 1.5, respectively (Meiksin 2009; Shull et al. 2012). To de-
scribe the slow evolving of fIGM in the range 0.4 < z < 1.5, we
assumed that it increases linearly at 0.4 < z < 1.5 (Zhou et al.
2014). If FRBs can be detected in a wide range of redshifts, we
can therefore use the observed DMIGM − z relation to determine
the dP − z relation by removing the effect of F(z).

When an FRB signal travels through the plasma from the
source to the observer, its DM can be measured with high accu-
racy. However, this DMobs includes several components that are
caused by the plasma in the IGM, the Milky Way, the host galaxy
of the FRB, and even the source itself. It has

DMIGM = DMobs − DMMW −
DMhost + DMsource

1 + z
· (5)

Only the DMIGM contains the information of the proper dis-
tance. Other components therefore need to be subtracted from
the DMobs. Since the DMMW is well understood through pul-
sar data (Taylor & Cordes 1993; Manchester et al. 2005), it can
be subtracted. Alternatively, we can only use those FRBs at
high galactic latitude that have low DMMW (Zhou et al. 2014;
Gao et al. 2014). For the local DMloc, which contains the DMhost
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and DMsource, the recent finding of the host galaxy of the
repeating FRB 121102 suggests a low value .324 pc cm−3

and it is probably even lower depending on geometrical fac-
tors (Tendulkar et al. 2017). The variation in total DM for
FRB 121102 is very small (Spitler et al. 2016; Chatterjee et al.
2017), which indicates that the DMloc is almost constant. More-
over, Yang & Zhang (2016) proposed a method to determine it
based on the assumption that DMloc does not evolve with red-
shift. More fortunately, the DMloc should be decreased by divid-
ing a 1+z factor since the cosmological time delay and frequency
shift. While DMIGM increases with redshift, DMloc is not impor-
tant at high redshifts. Therefore we can subtract the DMloc from
DMobs and leave its uncertainty into the total uncertainty σtot
which is the uncertainty of DMIGM extracted from DMobs. It has

σ2
tot = σ2

obs + σ2
MW +

σ2
DMloc

(1 + z)2 + σ2
DMIGM(z)· (6)

Since the accurate measurement of DM and the well-understood
measurement of DMGW, σobs, and σMW can be omitted com-
pared with the much larger σDMloc and σDMIGM . Following
Thornton et al. (2013) and numerical simulations of McQuinn
(2014), we chose σDMloc = 100 pc/cm3 and σDMIGM =
200 pc/cm3 in the following analysis. These uncertainties are
nuisance parameters in an analysis. Fortunately, they can be de-
creased by using the average DMIGM when there are tens of
FRBs in a narrow redshift bin (Zhou et al. 2014; for example,
∆z ∼ 0.06).

Recently, the host galaxy of FRB 121102 was identified,
which can give accurate redshift information (Chatterjee et al.
2017; Tendulkar et al. 2017). When enough FRBs with red-
shifts are observed, the dP − z relation can be derived from the
DMIGM− z relation. Based on the high FRB rate 104 sky−1 day−1

(Thornton et al. 2013), a large sample of FRBs may be collected
in the future, which will become the basis of FRB cosmology.

The DMIGM contains the dP information and mixes it with
F(z), which corresponds to the anisotropic distribution of free
electrons in the Universe. When the effect of F(z) is removed,
the dP − z relation can be derived from the DMIGM − z relation.
The first step therefore is to reconstruct the DMIGM(z) function
of the FRB. The Gaussian process (GP) is a model-independent
method to solve this type of problem. The advantage of the GP is
that it can reconstruct a function from data without assuming any
function form (for more details about the GP, see the next sub-
section and Rasmussen & Williams 2006). With the GP method,
we can therefore obtain the DMIGM− z relation from FRB obser-
vational data without any cosmological model assumption. Then
we remove the effect of F(z) to obtain the model-independent
dP − z relation. In this work, we used the python code package
GaPP developed by Seikel et al. (2012). GaPP can reconstruct
the function of given data as well as its first, second, and third
derivative functions (see Seikel et al. 2012 for more details about
GaPP).

With the data set (z, DMobs) of a future sample of observed
FRBs, we can use the steps as follows to derive the dP(z).

– Subtracting the DMMW and DMloc to obtain the data set (z,
DMIGM).

– Dividing the data set (z, DMIGM) into several redshift bins,
each of which contains tens of FRBs, and then calculating the
average redshift and DMIGM and the standard deviation of
DMIGM. Then we have a data set 〈z〉, 〈DMIGM〉, and σ〈DMIGM〉.

– Using the GP method to reconstruct the function DMIGM(z)
and its first derivative function G(z) = dDMIGM(z)/dz.

– Reintegrating the function I(z) =
G(z)

AF(z) , which should be
c/H(z), to obtain dP(z), where A = ΩbH2

0
3c

8πGmp
, and ΩbH2

0
can be given by other observations.

2.2. Gaussian process

The GP is a statistical model to smooth a continued function
from discrete data. In this model, the value of the function f (x)
at any point x is assumed to be a random variable with normal
distribution. The mean and Gaussian error value, µ(x) and σ(x),
are determined by all of the observed data through a covariance
function (or kernel function) K(x, x̃), f (x̃), and σx̃ , where x̃s are
the points with observed data and σx̃s are their errors. It has

µ(x) = K(x, x̃)(K(x̃, x̃) + σ2
x̃I)−1 f (x̃) (7)

and

σ(x) = K(x, x) − K(x, x̃)(K(x̃, x̃) + σ2
x̃I)−1K(x̃, x). (8)

When the kernel function is given, we can use the GP to derive
the distribution of the continued function f (x).

As we described above, we used the open-source Python
package Gapp to apply the GP. This code is widely used
(Cai et al. 2016; Yu & Wang 2016). The kernel function in this
code is

K(x, x′) = σ2
f exp(−

(x − x′)2

2l2
), (9)

where σ f and l are two parameters to describe the amplitude and
length of the correlation in the function value and x directions,
respectively. These two parameters can be optimized by the GP
with the observational data f (x̃) through maximizing their log
marginal likelihood function (Seikel et al. 2012),

lnL = ln p( f (x̃)|x̃, σ f , l) (10)

= −
1
2

( f (x̃) − µ(x̃))T [K(x̃, x̃) + σ2
x̃I]−1( f (x̃) − µx̃)

−
1
2

ln |K(x̃, x̃) + σ2
x̃I| −

N
2

ln 2π,

where N is the number of observed data. In the Gapp package,
all of this can be calculated automatically.

3. Simulations and results

We tested the efficiency of our method using Monte Carlo simu-
lations. First we used Eqs. (4) and (6) to create a mock data set (z,
DMIGM, σtot) under a background cosmology. Then we used the
above method to derive the dP(z) function and compare it with
theoretical dP(z). A flat ΛCDM cosmology with parameters Ωb =
0.049, Ωm = 0.308, ΩΛ = 1 − Ωm, and H0 = 67.8 km s−1 Mpc−1

was assumed (Planck Collaboration XIII 2016). The redshift dis-
tribution of the FRBs was assumed as f (z) ∝ ze−z in the redshift
range 0 < z < 3, which is similar as the redshift distribution of
long gamma-ray bursts (Zhou et al. 2014; Shao et al. 2011). In
order to avoid random uncertainty, we simulated 104 times. In
each simulation are 500 mock DMIGM, which are equally sepa-
rated into 50 bins in redshift space.

Figures 2 and 3 show an example of 104 simulations in the
ΩK = 0 case. The top panel of Fig. 2 shows the binned DMIGM
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Fig. 2. Top panel: binned mock DMIGM data with 1σ errors, the GP
reconstructed DMIGM(z) function with its 1σ confidence region, and its
theoretical function. Bottom panel: G(z) function with its 1σ confidence
region derived from the GP method and its theoretical function. ΩK = 0
is assumed.

data (green dots), the reconstructed DMIGM(z) function derived
with the GP method (red line), and the theoretical function (blue
line). The bottom panel gives the derived and theoretical function
G(z). Similar as Fig. 2, Fig. 3 shows the derived and theoretical
I(z) and dP(z) function. These figures show that the reconstructed
DMIGM(z) function and the final derived dP(z) function are well
consistent with theoretical functions, although the G(z) and I(z)
functions in middle steps are slightly biased. This shows that
the dP(z) function derived from mock DMIGM data with the GP
method is reliable.

We also tested the validity and efficiency of our method using
the equation

H0dM

c

√
−ΩK = sin

(
H0dP

c

√
−ΩK

)
, (11)

which can constrain ΩK independently of the cosmological
model (Yu & Wang 2016). First, 20 mock transverse comoving
distance dM data were uniformly simulated from Eq. (3) in the
redshift range 1.0 < z < 3.0. Then we performed the same sim-
ulations as introduced above in three different fiducial ΩK cases,
−0.1, 0, and 0.1. Next, we compared the simulated dM data with
the dP(z) function derived with the GP method and used Eq. (11)
to solve ΩK . Finally, we took the average value of them and
compared it with the fiducial value. To avoid the randomness
of simulation, we also simulated this 104 times for each case
and drew the posterior probability distributions of the mean ΩK .
The top panel of the Fig. 4 shows the posterior probability dis-
tributions of ΩK in three different fiducial ΩK cases, −0.1, 0,
and 0.1. The assumed cosmic curvatures can be well recovered
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Fig. 3. Top panel: I(z) function with its 1σ confidence region derived
from the GP method and its theoretical function. Bottom panel: same as
the top panel, but for the derived dP(z) function. ΩK = 0 is assumed.

with errors σ ≈ 0.05 using 500 FRBs data, which also means
that the dP(z) function derived from mock DMIGM data with the
GP method is reliable and can be used to constrain the cosmic
curvature. The bottom two panels show that the errors will de-
crease to σ ≈ 0.034 and 0.025 when the FRB sample contains
1000 and 2000 FRBs, respectively (the blue histograms in the
bottom panels of Fig. 4).

When deriving the function dP(z), it must be noted that the
prior of Ωbh2

0 with h0 = H0/100 km s−1 Mpc−1, and the func-
tion F(z) in Eq. (4) will introduce some uncertainties into the
derived dP(z) function. For the F(z) function, which describes
the distribution of free electrons in the Universe, we can include
its contribution to the σDMIGM . We chose σDMIGM = 200 pc/cm3

here, which includes the potential effects of the uncertainty of
the function F(z). The more important and nuisance point is the
systematic uncertainty caused by the choice of the prior of Ωbh2

0.
From the expression of I(z), it is easy to find that the value of
Ωbh2

0 will directly affect the derived dP(z). In order to evalu-
ate the effect of Ωbh2

0, we considered a Gaussian uncertainty for
Ωbh2

0 and repeated the Monte Carlo simulations. Since the uncer-
tainty of Ωbh2

0 is about 1% (Planck Collaboration XIII 2016), we
chose the value of the systematic uncertainty as 1%. The results
are shown as the green histograms in the bottom panels of Fig. 4.
For 1000 FRBs with redshift measurements, the uncertainty of
the ΩK is about 0.05, which is acceptable. However, the exact
value of H0 is still unknown. For the value of H0, the value from
Cepheid+SNe Ia and the cosmic microwave background (CMB)
differs. For example, Riess et al. (2016) derived the best estimate
of H0 = 73.24 ± 1.74 km s−1 Mpc−1 using Cepheids, which is
about 3.4σ higher than the value from Planck Collaboration XIII
(2016). However, Aubourg et al. (2015) used the 2013 Planck
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Fig. 4. Top panel: posterior distributions of ΩK
in three different ΩK cases with 500 mock FRBs
data. The derived ΩK value are clearly well
consistent with the assumed values. The bot-
tom two panels show the ability of our method
when the sample includes 1000 and 2000 FRBs.
The blue and green histograms show the re-
sults without and with the systematic uncer-
tainty, respectively.

data in combination with BAO and the JLA SNe data to find
H0 = 67.3 ± 1.1 km s−1 Mpc−1, in excellent agreement with the
2015 Planck value. Moreover, H0 = 62.3 ± 6.3 km s−1 Mpc−1

is derived from the Cepheid-calibrated luminosity of SNe Ia
(Sandage et al. 2006), which agrees with the 2015 Planck value.
Therefore we used the best constraint on Ωbh2

0 from Planck CMB
data.

The systematic uncertainty is always a nuisance problem in
all cosmology probes, such as SNe Ia as the probe of the lu-
minosity distances and BAO as the probe of the angular diam-
eter distances. SNe Ia are widely accepted to be excellent stan-
dard candles at optical wavelengths. The luminosity distances
could be derived from SNe Ia. However, the exact nature of
the binary progenitor system (a single white dwarf accreting
mass from a companion, or the merger of two white dwarfs)
still is an open question. Systematic errors, including calibration,
Malmquist bias, K-correction, and dust extinction, degrade the
quality of SNe Ia as standard candles (Riess et al. 2004). More-
over, the derived luminosity distances are not fully model inde-
pendent (Suzuki et al. 2012). The derived cosmological param-
eters from SNe Ia are significantly biased by systematic errors
(see Fig. 5 of Suzuki et al. 2012, for details). The angular diam-
eter distances for galaxy clusters can be obtained by combining
the Sunyaev-Zeldovich temperature decrements and X-ray sur-
face brightness observations. The error of the angular diameter
distance can be up to 20% (Bonamente et al. 2006), however.

Therefore the dP(z) derived from FRBs can be a supplementary
tool, although greater efforts are required on its systematic error.

4. Summary

In cosmology, the proper distance dP corresponds to the length
of the light path between two objects. It is a potentially useful
tool to test the cosmic curvature and cosmological principle. In
the past, the proper distance was seldom used to investigate our
Universe since it is difficult to measure. We proposed a model-
independent method to derive the proper distance-redshift rela-
tion dP(z) from DM and redshift measurements of FRBs. The
basis of our method is that many FRBs with measured red-
shifts and DMs may be observed in a wide redshift range (i.e.,
0 < z < 3) in the future. This is possible because of the high rate
of FRBs, which is about 104 sky−1 day−1 (Thornton et al. 2013).
Although some authors have used FRBs as cosmological probes
(Zhou et al. 2014; Gao et al. 2014), they only considered DMs.
The most important point is that the distance information con-
tained in DMs is the proper distance dP, whose difference with
other distances is important in understanding the fundamental
properties of our Universe.

In the near future, several facilities such as the Canadian
Hydrogen Intensity Mapping Experiment (CHIME) radio tele-
scope, the Five-hundred-meter Aperture Spherical Telescope
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(FAST) in China, and the Square Kilometer Array will com-
mence working. Interestingly, the CHIME might detect dozens
of FRBs per day (Kaspi 2016). A large sample of FRBs with
redshift measurements is therefore expected in next decade
(Lorimer 2016). With a large sample of FRBs, the proper
distance derived from FRBs will be a new powerful cosmologi-
cal probe.
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