MEASURING DEPENDENCE OF DIFFUSION COEFFICIENT
OF WOOD ON MOISTURE CONCENTRATION BY
ADSORPTION EXPERIMENTS

William T. Simpson

Forest Products Technologist, Forest Products Laboratory,® Forest Service, U.S.
Department of Agriculture, Madison, WI 53705

(Received 14 December 1973)

ABSTRACT
The dependence of the diffusion coefficient on moisture concentration of aspen wood at
110 F was determined by using an experimental method that requires a series of adsorption
experiments and by applying a numerical method that includes using a finite difference tech-
nique to solve the diffusion equation with a diffusion coefficient that is dependent on con-
centration. The analysis showed that the diffusion coefficient increases with mosture content.
Between 2.5 and 18.0% moisture content, the diffusion coefficient increases by a factor of 8.

Additional keywords: Populus sp., seasoning, prediction, finite difference technique.

INTRODUCTION

The ability to predict moisture content of
wood while it is changing or, conversely,
the time required for a certain moisture con-
tent change to occur is a perennial desire
of many involved in wood utilization and
processing. It is further desirable to use a
prediction system that is as generalized as
possible. The mathematics of diffusion
offers a generalized system with potential
as a prediction tool for moisture changes
below the fiber saturation point.

Two important aspects of the mathe-
matics of diffusion and their application to
wood are the dependence of the diffusion
coefficient on moisturc concentration and
the use of numerical solutions to the dif-
tusion equation. The purpose of this paper
is to describe and to apply a method to
determine the dependence of the diffusion
coefficient of wood on moisture concen-
tration that, to the author’s knowledge, has
not been reported in the wood technology
literature and to apply a finite difference
technique of solving the diffusion equation
with a diffusion coefficient that is depen-
dent on concentration.

PREVIOUS WORK

Martley (1926) apparently was one of
the first to observe a dependence of the
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diffusion coefficient of wood on moisture
concentration. In steady-state diffusion he
found that the diffusion coefficient in-
creased parabolically with moisture con-
tent at the low-moisture-content surface of
the steady-state wood membrane. Skaar
(1958) used a numerical technique in which
he calculated the dependence of the dif-
fusion coefficient on moisture concentration
from the moisture content gradient at two
successive times during desorption. He
found that the logarithm of the diffusion
coefficient increased approximately linearly
with moisture content. Stamm (1959, 1960)
also found evidence that the diffusion coef-
ficient of wood increases with moisture con-
tent. Using steady-state, adsorption, and
desorption experiments, Comstock (1963)
also found that the diffusion coefficient of
wood increases with moisture content.
Choong (1965) used a steady-state experi-
mental method and a numerical technique
to determine that the diffusion coefficient
increased with moisture content. Martin
and Moschler (1970) measured the mois-
ture concentration dependence of the dif-
fusion coefficient with a technique that uses
concentration-distance curves. As Skaar
(1958) had found, Martin and Moschler
also found an approximately linear increase
of the logarithm of the diffusion coefficient
with moisture content.

Apparently little is in the literature on
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TasLe 1. Salt solutions used to control relative
humidity (RH) at 110 F and average equilibrium
moisture content attained by specimens

Salt RH Equilibrium

moisture

content

(%) (%)

Potassium acetate 19 2.66
Potassium carbonate 41 5.06
Sodium nitrite 65 7.49
Sodium chloride 75 9.89
Potassium chloride 81 12.16
Potassium nitrate 87 13.65
Potassium dichromate 98 16.19
Distilled water 99+ 17.90

applying numerical solutions to the dif-
fusion equation for sorption in wood. These
solutions become necessary when the dif-
fusion coefficient depends on moisture con-
centration because formal mathematical
solutions to the diffusion equation exist only
if the diffusion coefficient is constant or
has special other forms. Moschler and
Martin (1968) used a finite difference tech-
nique in an attempt to describe wood
drying. They took diffusion coefficients and
their concentration dependence from the
literature and used them in the finite dif-
ference analysis, but found that these did
not accurately describe the experimental
wood drying they conducted.

NUMERICAL METHOD OF SUCCESSIVE
APPROXIMATIONS

There are a number of experimental and
numerical methods of determining the mois-
ture diffusion coefficient and its depen-
dence on concentration. Crank (1956) out-
lined a number of different methods, and
Skaar (1954) discussed some of the methods
and their application to wood. The method
used in this paper is one by Crank and
Park (1949) (also see Crank 1956, p. 242).
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The method is attractive because it is rela-
tively simple experimentally. Other methods
usually require either the construction of
a steady-state cell or a slicing technique to
determine moisture content gradients, both
of which introduce additional opportunities
for experimental error. The method used
here requires only a series of adsorption-
time curves. A disadvantage is that it re-
quires many numerical calculations and
without a high-speed digital computer, the
method becomes formidable.

The method is built around a series of
approximations. A formal mathematical so-
lution to the diffusion equation for a con-
stant diffusion coefficient is used to make
certain approximations to the concentration
dependent system. The formal mathe-
matical solution used is (Crank 1936)

_ 019763 )

D
.5

where

t,.; is time for one-half of the total adsorp-
tion to occur; §, one-half of the thickness;
and D, the diffusion coefficient that is
constant over the entire adsorption range.

This solution is based on the boundary con-
dition that both surfaces come to an imme-
diate equilibrium with the surrounding at-
mosphere. Application of Eq. (1) to some
adsorption interval in a system in which the
diffusion coefficient depends on concen-
tration yields some average value of the
diffusion coefficient over that concentration
range.

The integral diffusion coefficient in a
concentration dependent system is defined
as

0 pdc 2)

for the concentration range zero to C,. The
approximation involved is that the D value
determined from Eq. (1) is a reasonable ap-
proximation to D and thus to (1/C,)f DdC.
Differentiating Eq. (2) with respect to the
upper limit of integration yields an approxi-
mation to D as a function of concentration.
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Fre. 1. Family of adsorption-time curves for aspen at 110 F between zero percent moisture content and

final moisture content.
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Therefore, if the half times of adsorption
from zero concentration to a number of
different final concentrations C, are known,
the approximation to D can be calculated
from Eq. (1). These values are then multi-
plied by the corresponding values of C,,
and differentiating DC, with respect to
C, gives a first approximation to the value
of D at the corresponding value of C,.
The first approximation to D as a function
of concentration may or may not be good
enough. If it is not good enough, the ap-
proximations can be repeated any number
of times. The first approximation to D can
be used with a numerical solution to the
diffusion equation, and a new series of
adsorption-time curves can be calculated.
From the half times of these calculated
curves, a new set of D values are deter-
mined using Eq. (1), and further approxi-
mations are calculated in the same manner
as the first. The approximations are carried
out until the calculated values of D agree
with the original experimental values of

D as determined by Eq. (1).

FINITE DIFFERENCE TECHNIQUE

To carry out the series of approximations
necessary to relate D to concentration, it is

necessary to solve the diffusion equation
numerically so that a concentration depen-
dence of the diffusion coefficient can be in-
corporated. Crank (1956) has discussed a
number of methods of numerically solving
the diffusion equation, and the method used
in this analysis is generally the same as one
he discusses.

If the diffusion coefficient depends on
concentration according to the general rela-
tionship

D, = Dyf(C) (4)

where

D. is the diffusion coefficient at moisture
concentration C and D,, the diffusion
coefficient at zero moisture content,

then the diffusion equation to be solved is
Fick’s second law,

3C 3 3
Bt Ox (Dc ax) Bl

with the boundary conditions that the sur-
face (x =—f, x=4f) comes to immediate
equilibrium with the surrounding atmo-
sphere, and that the initial concentration is
uniform at time t=0. Nondimensional
variables are convenient to use and are
defined as follows:
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TasrLe 2. Value of upper adsorption limit C.,
half-time of adsorption t.s, integral diffusion coef-
ficient D, and product DC. necessary to determine
concentration dependence of diffusion coefficient

Cy o5 D DC,
é}g?g%s?; (sef5 (cm2 sgc_] (cm2 seg—1 %
content) x 10 ) x 107) x 107)

2.66 1.59 0.436 1.16

5.06 1.16 0.605 3.06

7.49 0.857 0.824 6.16

9.89 0.703 1.00 9.91
12.16 0.574 1.23 15.0
13.65 0.570 1.26 17.3
16.19 0.458 1.58 25.4
17.90 0.390 1.85 33.0
where

C,, is maximum final concentration; X =
x/f; T=(Dy)/f; and D=D.D,.

The diffusion equation now becomes
ac . 2 [nac
Bl ax<Dﬁ> 4

with boundary conditions corresponding to
the equation in dimensional variables.
Crank (1956) introduces the variable s as
a means of dealing with the concentration
dependence of the diffusion coefficient. He
defines s as

s = (8}
Ddc
o]
and the equation to be solved becomes
2
as 3°s
e 9l
T T2 {

with the boundary conditions

s=1, X==1, T>0
s=0, -1<X<1, T=0.
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Fic. 2. Relationship between product DC, and
Co.

If D is known as a function of ¢, Eq. (8)
can be solved and it is possible to proceed
with a numerical solution to Eq. (9).

The finite difference method attributed to
Schmidt as discussed in Crank (1956) was
used to approximate the solution to Eq.
(9). The left side of Eq. (9) can be ap-
proximated by

s! -s
3s m m
RO RV | — ) (10)
<3T>m AT

and the right side by

2 Sy = 28, S
i)
where s,/ and s,, are the values of s at the
points X=m(aX) at T= (n+ 1)AT and
T = n(AT), respectively, and s,,.; and $,,-;
are the values of s at X=(m+ 1)(aX)
and X = (m-1)(aX) at T =n(AT).

Combining Eq. (10) and (11), the nu-
merical solution to Eq. (9) is
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Tasre 3. Successive approximations for determining moisture concentration dependence of diffusion coef-

ficient of aspen wood at 110 F

% ‘o - 1 CODdc % D = 2 ’
Cm experi- T D0 calc:
mental o “o
(%) (cm2 sec”! (cm2 sec”! (cm2 sec”! (cm2 sec”)
x 10%) x 10%) x 10%) x 10°%)
First approximation
0 0 0.172% 1
2.66 0.148 0.436 0.436 0.540 3.13 0.097
5.06 (.283 0.605 0.605 1.04 6.03 0.166
7.49 0.418 0.824 0.824 1.50 8.68 0.239
9.89 0.553 1.00 1.00 1.78 10.33 0.301
12.16 0.679 1.23 1.23 2.05 11.9 0.350
13.65 0.762 1.26 1.26 2.38 13.8 0.383
16.19 0.905 1.58 1.58 3.70 21.5 0.469
17.9 1.000 1.85 1.85 5.73 33.3 0.575
Second approximation
0 0 0.577° 1
2.66 0.148 1.44 1.77 3.06 0.318
5.06 0.283 1.96 2.71 4.70 0.535
7.49 0.418 2.64 4.70 8.15 0.763
9.89 0.553 3.20 5.63 9.77 0.957
12.16 0.679 3.91 6.52 11.3 1.1
13.65 0.762 4,01 7.59 13.2 1.22
16.19 0.905 5.02 12.0 20.7 1.50
17.9 1.000 5.89 18.8 32.5 1.83
Fifth approximation
0 0 0.820° 1
2.66 0.148 1.97 2.00 2.44 0.386
5.06 0.283 2.33 3.44 4.19 0.591
7.49 0.418 2.92 4.83 5.89 0.807
9.89 0.553 3.48 5.95 7.26 1.01
12.16 0.679 4.21 7.01 8.55 1.18
13.65 0.762 4.31 8.11 9.89 1.30
16.19 0.905 5.32 11.7 14.2 1.57
17.9 1.000 6.05 16.6 20.2 1.85
Eighth approximation
0 0 0.895% 1
2.66 0.148 2.14 2.09 2.33 0.406
5.06 0.283 2.45 3.47 3.87 0.607
7.49 0.418 2.99 4.80 5.36 0.817
9.89 0.553 3.52 5.90 6.59 1.01
12.16 0.679 4.24 7.01 7.83 1.18
13.65 0.762 4.34 8.09 9.03 1.30
16.19 0.905 5.35 11.6 13.0 1.57
17.9 1.000 6.08 16.3 18.2 1.86

aExtrapo1ated values.
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Fic. 3. Sum of squared deviations of calculated D from original experimental D as function of approxi-

mation ﬂl]n]})(—‘l‘.

- o e 3
Sp = Syt D(AX)Z(SmH 25m * Sm-‘) {12)
The s, values are converted back to ¢

values with Eq. (8).
EXPERIMENTAL PROCEDURE

measuring the moisture adsorption between
zero percent moisture coptent and a series
of eight higher moisture contents. The
wood, aspen (Populus spl), was kiln-dried
to 12% wmoisture content; The specimens
were 3 by 5% inches by % inch thick.
Adsorption occurred into jthe %-inch thick-
ness plane (radial directian), and the edges

The experimental pr()cidure consisted of

of the specimens were coated with three
coats of a heavily pigmented aluminum
paint. Three replicates were included in
each adsorption experiment. Each specimen
was oven-dried at 220 F for 24 hr before
adsorption was started. The specimens were
then wrapped in aluminum foil and cooled
to the adsorption temperature (110 F) for
20 min in a desiccator over phosphorous
pentoxide. Thermocouples placed in the
center of similar specimens showed that the
temperature of the wood was within 1° of
110 F after 15 to 17 min of cooling.

The adsorption experiments were con-
ducted in small cabinets in which the rela-
tive humidity was controlled by saturated



DIFFUSION COEFFICIENT OF WOOD

salt solutions; the temperature was thermo-
statically controlled at 110 F. A fan pro-
vided air velocity at approximately 200 ft/
min through the rack that held the speci-
mens. The salts used, the approximate rela-
tive humidity, and the average equilibrium
moisture content of the three specimens in
each group are shown in Table 1. The
maximum final concentration C,, was 17.9%
moisture content.

RESULTS AND DISCUSSION

The eight adsorption-time curves are
shown in Fig. 1; the time for one-half of
adsorption to occur is marked on each
curve. Table 2 lists the time for one-half
of sorption to occur, the integral diffusion
coefficient D as calculated from Eq. (1),
and the product DC,. All data in Table 2
and in Fig. 1 are the averages of the three
replicates; all of the subsequent numerical
analysis is based on these averages.

As discussed, the first approximation to
D as a function of concentration is obtained
by differentiating DC, with respect to C,
(Eq. (3)). DC, is plotted as a function of
C, in Fig. 2, and the relationship can be
well represented by the following equation:

T 2 3
DC0 = exp(a + bC0 + dC- + fc0>

o (3)

where a, b, d, and f are constants.

Differentiating with respect to C,, the
first approximation to the diffusion coef-
ficient is

D, = (b + 2dC + 3fc?)exp(a + bC + dc? + £c3) (14)
or, in terms of reduced variables
D= D_C = De
DO b exp(a)
(15)

(10 s ﬁcgns)exp(bcmc v 4l s fcsnca)

Equations (13), (14), and (15) were
used throughout the series of approxima-
tions since the general shape of the curve
remained the same. The values of the con-
stants @, b, d, and f change with each ap-
proximation.

The finite difference technique is basi-

305

T T T T T T ]

/6
/4
/2

10

D (cM?sECx 109

c

% AN N N S S AN N
o 2 4 6 8 0 12 I 6

C (PERCENT MOISTURE CONTENT)

/8

Fic. 4. Moisture concentration dependence of
diffusion coefficient of aspen wood at 110 F.

cally the repetition of three calculations.
The diffusion coefficient is calculated; it is
substituted into the finite difference for-
mula (Eq. (12)); and finally the s value
is converted to a ¢ value. The correct D
value is calculated from Eq. (8) and (15).
Substituting Eq. (15) in Eq. (8) and inte-
grating yields:

2

u

where p is exp(b+d+1f) -1

Equation (16) can be manipulated so
that D can be substituted and then solved
for D as follows:

_ exp(bc + dc” + fc3) -1 (16)

S

D=1 e X2 (s ) (17}

To convert the s values to ¢ values, Eq. (16)
is solved for ¢, ie.,

3

fcd 4 dc? ¥ be - msu+1) =0 {18)

With the range of ¢ values used here, Eq.
(18) has only one real root and can be
solved for ¢ with the formulas of the alge-
bra of cubic equations. Equations (17),
(12), and the solution of (18) are therefore
the three basic formulas that are applied
again and again for each point and time.

The choice of AT/(AX)? in Eq. (12) is



306

important. Ideally it is desirable to take
these time and distance increments as small
as possible to make the approximate nu-
merical solution as accurate as possible.
Conversely, for practical reasons, it is de-
sirable to use large increments so that the
number of calculations is minimized. In
addition to becoming less accurate as the
size of the increments is increased, the solu-
tion sometimes becomes unstable, i.c., solu-
tions at successive times oscillate. Oscil-
lations were observed for AT/(AX)* as low
as 0.04. In this analysis the increments
chosen were AT = 0.00005 and AX = 0.05,
or AT/(AX)?2=10.02. These were small
enough to avoid oscillations and hopefully
small enough to give a good approximation
to the solution. In rcal time and space the
solutions were calculated at space incre-
ments of 0.03 em through the thickness of
the wood at about every 2 min throughout
the adsorption process.

The analysis was carried through eight
approximations until the calculated D
agreed closely with the original experi-
mental D. The first, second, fifth, and
eighth approximations are summarized in
Table 3. It is apparent from Table 3 that
the second approximation accomplishes
most of the adjustment. The sum of the
squared deviations of the calculated D from
the original experimental D is plotted as a
function of the approximation number in
Fig. 3, and it is apparent that little im-
provement occurs after the fifth approxi-
mation.

D.. of the eighth approximation is plotted
as a function of C in Fig. 4, and it shows
that the diffusion coefficient increases rap-
idly with moisture content in the high
range of moisture contents. At about 14%
moisture content, it begins to increase very
rapidly with moisture content.

The values of the constants a, D, d, and f
of Egs. (14) and (15) for the eighth ap-
proximation are: a=-13.198, b = 0.4827,
d = -0.02417, and f = 0.0005546.

When these values of the constants are
used in the finite difference analysis to try
to reproduce the experimental sorption-time
curves, the calculated curves never differ
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from the experimental curves by more than
0.5% moisture content. At the beginning
and the end of each sorption range, the
calculated curves give a slightly higher
moisture content than do the experimental
curves at a given time.

SUMMARY

The purpose of this study was to deter-
mine the dependence of the diffusion coef-
ficient of aspen wood on moisture concen-
tration, to assess the feasibility of applying
a particular experimental and numerical
technique to accomplish this, and to test
the use of a particular finite difference
technique to solve the diffusion equation
with a diffusion coefficient that is con-
centration-dependent. Experimentally, the
method requires only a series of simple
adsorption experiments. The numerical
technique consists of a series of approx-
imations that are repeated until certain
experimental and calculated values agree.
The finite difference technique is a part
of each approximation.

The results showed that the moisture dif-
fusion coefficient of aspen wood at 110 F
increases with moisture content. The dif-
fusion coefficient increases by a factor of
approximately 8 between 2.5 and 18% mois-
ture content. The numerical method of ap-
proximations and the finite difference tech-
nique worked well; no difficulties were
encountered. At the end of the analysis the
experimental sorption-time curves could be
reproduced very closely by the mathematics
involved. The greatest disadvantage of the
technique was the large number of suc-
cessive approximations, which means that
a high-speed computer is necessary to apply
the method.
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