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Abstract

Given a high-dimensional data set, we often wish to find the strongest relationships within
it. A common strategy is to evaluate a measure of dependence on every variable pair and
retain the highest-scoring pairs for follow-up. This strategy works well if the statistic used
(a) has good power to detect non-trivial relationships, and (b) is equitable, meaning that
for some measure of noise it assigns similar scores to equally noisy relationships regardless
of relationship type (e.g., linear, exponential, periodic). In this paper, we define and
theoretically characterize two new statistics that together yield an efficient approach for
obtaining both power and equitability. To do this, we first introduce a new population
measure of dependence and show three equivalent ways that it can be viewed, including as a
canonical “smoothing” of mutual information. We then introduce an efficiently computable
consistent estimator of our population measure of dependence, and we empirically establish
its equitability on a large class of noisy functional relationships. This new statistic has
better bias/variance properties and better runtime complexity than a previous heuristic
approach. Next, we derive a second, related statistic whose computation is a trivial side-
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product of our algorithm and whose goal is powerful independence testing rather than
equitability. We prove that this statistic yields a consistent independence test and show in
simulations that the test has good power against independence. Taken together, our results
suggest that these two statistics are a valuable pair of tools for exploratory data analysis.

Keywords: maximal information coefficient, total information coefficient, equitability,
statistical power, mutual information

1. Introduction

The growing dimensionality of today’s data sets has popularized the idea of hypothesis-
generating science, whereby a data set is used not to test existing hypotheses but rather
to help a researcher formulate new ones. A common approach among practitioners is to
evaluate some statistic on many candidate variable pairs in a data set, sort the variable
pairs from highest-scoring to lowest, and manually examine all the pairs above a threshold
score (Storey and Tibshirani, 2003; Emilsson et al., 2008).

A popular class of statistics used for such analyses is measures of dependence, i.e., statis-
tics whose population value is zero in cases of statistical independence and non-zero oth-
erwise. Measures of dependence are attractive because they guarantee that asymptotically
no non-trivial relationship will erroneously be declared trivial. In the setting of continuous-
valued data, which is our focus, there is a long line of fruitful research on such statistics
including, e.g., Hoeffding (1948); Rényi (1959); Breiman and Friedman (1985); Paninski
(2003); Székely et al. (2007); Gretton et al. (2005); Reshef et al. (2011); Gretton et al.
(2012); Lopez-Paz et al. (2013); Heller et al. (2013); Jiang et al. (2015); Heller et al. (2016).

One way to measure the utility of a measure of dependence ϕ̂ is power against indepen-
dence, i.e., the power of independence testing based on ϕ̂ to detect various types of non-trivial
relationships. This is an important goal for data sets that have very few non-trivial relation-
ships, or only very weak relationships that are difficult to detect. Often, however, the number
of relationships declared statistically significant by a measure of dependence greatly exceeds
the number of relationships that can then be explored further. For example, biological data
sets often contain many non-trivial relationships, but further corroborating any one of them
may take extensive manual lab work or a study on human or animal subjects. In this case,
it is tempting to restrict follow-up to a few relationships with the highest values of ϕ̂, but
this can skew the direction of follow-up work: if ϕ̂ systematically assigns higher scores to,
say, linear relationships than to non-linear ones, relatively noisy linear relationships might
crowd out strong non-linear relationships from the top-scoring set.

Motivated by this problem, we previously introduced a second way of assessing a measure
of dependence, called equitability (Reshef et al., 2011). Informally, an equitable statistic is
one that, for some measure of relationship strength, assigns similar scores to equally strong
relationships regardless of relationship type. For instance, we may want our measure of
dependence to also have the property that on noisy functional relationships it assigns similar
scores to relationships with the same R2, i.e., the squared Pearson correlation between
the observed y-values and the x-values passed through the underlying function in question
(Reshef et al., 2011). Or, alternatively, we may want the value of our statistic to tell us about
the proportion of points coming from the deterministic component of a mixture containing
part signal and part uniform noise (Ding and Li, 2013). Defining measures of dependence
that achieve good equitability with respect to interesting measures of relationship strength
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is a new and challenging problem, with a number of different formalizations. (See, e.g.,
Reshef et al., 2015b and Ding and Li, 2013 cited above, as well as Kinney and Atwal, 2014
along with associated technical comments Reshef et al., 2014 and Murrell et al., 2014.) A
companion paper to this work (Reshef et al., 2015b) presents a general formalization that
unifies these.

In this paper, we introduce and theoretically characterize two new measures of depen-
dence that we empirically show to have good equitability with respect to R2 and power
against independence, respectively. We begin by introducing a new population measure
of dependence called MIC∗. Given a pair of jointly distributed random variables (X,Y ),
MIC∗(X,Y ) is the supremum, over all finite grids G imposed on the support of (X,Y ), of
the mutual information of the discrete distribution induced by (X,Y ) on the cells of G,
subject to a regularization based on the resolution of G. We prove three results, each of
which gives a different way that this population quantity can be viewed.

1. MIC∗ is the population value of the maximal information coefficient (MIC), a statistic
introduced in Reshef et al. (2011) that is empirically highly equitable with respect to
R2 on a large class of noisy functional relationships. Simple corollaries of this result
simplify and strengthen many of the theoretical results proven in Reshef et al. (2011)
about MIC.

2. MIC∗ is a minimal smoothing of mutual information, in the sense that the regulariza-
tion in the definition of MIC∗ renders it uniformly continuous as a function of random
variables with respect to statistical distance, and no “smaller” regularization achieves
continuity. This result yields as a corollary that mutual information by itself is not
continuous with respect to statistical distance.

3. MIC∗ is the supremum of an infinite sequence defined in terms of optimal (one-
dimensional) partitions of the marginal distributions of (X,Y ) rather than optimal
(two-dimensional) grids imposed on the joint distribution. This characterization greatly
simplifies computation.

After proving these three results, we leverage them to introduce efficient algorithms both
for approximating MIC∗ in practice and for estimating it consistently from a finite sample.
We first provide an efficient algorithm that in many cases allows for computation to arbitrary
precision of the MIC∗ of a pair of random variables whose joint density is known. We then
introduce a statistic, called MICe, that we prove is a consistent estimator of MIC∗. In
contrast to the MIC statistic from Reshef et al. (2011), for which no efficient algorithm is
known and a heuristic algorithm is used in practice, MICe is efficiently computable. It has
a better runtime complexity than the heuristic algorithm currently in use for computing the
original MIC statistic, and is orders of magnitude faster in practice.

With a consistent and fast estimator for MIC∗ in hand, we turn to empirical analysis of its
performance. Specifically, we show through simulation that MICe has better bias/variance
properties than the heuristic algorithm used in Reshef et al. (2011) for computing MIC,
which has no theoretical convergence guarantees. Our analysis also reveals that the main
parameter of MICe can be used to tune statistical performance toward either stronger or
weaker relationships in general. After studying the bias/variance properties of MICe, we
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then demonstrate via simulation that it outperforms currently available methods in terms
of equitability with respect to R2 on a broad set of noisy functional relationships. We show
this performance advantage both on the set of functional relationships analyzed in Reshef
et al. (2011) as well as on a large set of randomly chosen noisy functional relationships.

We choose in this paper to analyze equitability specifically with respect to R2, rather
than some other notion of relationship strength, because R2 on noisy functional relationships
is a simple measure with broad familiarity and intuitive interpretation among practitioners.
Of course, it is also important to develop measures of dependence that are equitable with
respect to notions of relationship strength besides R2 or on families of relationships besides
noisy functional relationships; however, our focus here remains on the “simple” case of R2

on noisy functional relationships.

Importantly, we note that although there are methods for directly estimating the R2 of a
noisy functional relationship via nonparametric regression (see, e.g., Cleveland and Devlin,
1988; Stone, 1977), those methods are not applicable in the context of equitability because
they are not measures of dependence. That is, because non-parametric regression methods
assume a functional form for the relationship in question, they can give trivial scores to
non-functional relationships, even in the large-sample limit. (A simple example of this is
a uniform distribution over a circle, whose regression function is constant.) In contrast, a
measure of dependence is guaranteed never to make this “mistake”. A measure of dependence
that is equitable with respect to R2 can therefore be viewed either as an “upgraded” measure
of dependence that also comes with some of the interpretability properties of non-parametric
regression, or as an “upgraded” approximate non-parametric regression method that also has
the robustness properties of a measure of dependence.

The main strength of MICe is equitability rather than power to reject a null hypothesis of
independence. In some settings, though, it may be more important to focus on good power
against independence. We therefore introduce here a statistic closely related to MICe called
the total information coefficient and denoted TICe. We prove the consistency of testing
for independence using TICe, and show via simulations that it achieves excellent power in
practice, performing comparably to or better than current methods on an index suite of
relationships from Simon and Tibshirani (2012). Because TICe arises naturally as a side-
product of the computation of MICe, it is available “for free” once MICe has been computed.
This leads us to propose a data analysis strategy consisting of first using TICe to filter out
non-significant relationships, and then ranking the remaining ones using the simultaneously
computed values of MICe.

In addition to the companion paper Reshef et al. (2015b), which focuses on the theory
behind equitability, this paper is accompanied by a second companion work (Reshef et al.,
2015a) that explores in detail the empirical performance of the methods introduced here.
That paper compares MICe and TICe to several leading measures of dependence (Kraskov
et al., 2004; Székely and Rizzo, 2009; Heller et al., 2013, 2016; Gretton et al., 2005; Breiman
and Friedman, 1985; Lopez-Paz et al., 2013) on a broad range of relationship types under
many different sampling and noise models, finding that the equitability with respect to R2

of MICe and the power of independence testing using TICe are both state-of-the-art on the
relationships examined. It also shows that these methods can be computed very fast in
practice.
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Taken together, our results shed significant light on the theory behind the maximal
information coefficient, and suggest that TICe and MICe are a useful pair of methods for
data exploration. Specifically, they point to joint use of these two statistics to filter and
then rank relationships as a fast, practical way to explore large data sets by measuring
dependence both powerfully and equitably.

2. Preliminaries

We work extensively in this paper with grids and discrete distributions over their cells.
Given a grid G and a point (x, y), we define the function rowG(y) to be the row of G
containing y and we define colG(x) analogously. For a pair (X,Y ) of jointly distributed
random variables, we write (X,Y )|G to denote (colG(X), rowG(Y )), and we use I((X,Y )|G)
to denote the discrete mutual information (Cover and Thomas, 2006; Csiszár and Shields,
2004; Csiszár, 2008) between colG(X) and rowG(Y ). Given a finite sample D from the
distribution of (X,Y ), we sometimes use D to refer both to the set of points in the sample
as well as to a point chosen uniformly at random from D. In the latter case, it will then
make sense to talk about, e.g., D|G and I(D|G).

For natural numbers k and ℓ, we use G(k, ℓ) to denote the set of all k-by-ℓ grids (possibly
with empty rows/columns). A grid G is an equipartition of (X,Y ) if all the rows of (X,Y )|G
have the same probability mass, and all the columns do as well. We also use the term
equipartition in the analogous way for one-dimensional partitions into just rows or columns.
For a one-dimensional partition P into rows and a one-dimensional partition Q into columns,
we write (P,Q) to refer to the grid constructed from these two partitions. When a partition
P can be obtained from a partition P ′ by addition of separators alone, we write P ′ ⊂ P .

Finally, let us establish some notation for infinite matrices. We use m∞ to denote the
space of infinite matrices equipped with the supremum norm. Given a matrix A ∈ m∞, we
often examine only the k, ℓ-th entries of A for which kℓ ≤ i for some i. Thus, for i ∈ Z+,
we define the projection ri : m

∞ → m∞ via

ri(A)k,ℓ =

{
Ak,ℓ kℓ ≤ i
0 kℓ > i

.

Unless noted otherwise, all logarithms are to base 2.

3. The Population Maximal Information Coefficient MIC∗

In this section, we define and characterize the population maximal information coefficient
MIC∗. We begin by defining the population quantity MIC∗(X,Y ) for a pair of jointly
distributed random variables (X,Y ). We then show three different ways to characterize this
population quantity: first, as the large-sample limit of the statistic MIC from Reshef et al.
(2011); second, as a minimally smoothed version of mutual information; and third, as the
supremum of an infinite sequence defined in terms of optimal one-dimensional partitions of
the marginal distributions of (X,Y ). We conclude the section by showing how the third
characterization leads to an efficient approach for approximating MIC∗ in practice from the
density of (X,Y ).
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3.1 Defining MIC∗

The population maximal information coefficient can be defined in several equivalent ways,
as we will see later. For now, we begin with the simplest definition.

Definition 1 Let (X,Y ) be jointly distributed random variables. The population maximal
information coefficient (MIC∗) of (X,Y ) is defined by

MIC∗(X,Y ) = sup
G

I((X,Y )|G)
log ‖G‖

where ‖G‖ denotes the minimum of the number of rows of G and the number of columns of
G.

Given that I(X,Y ) = supG I((X,Y )|G) (see, e.g., Chapter 8 of Cover and Thomas 2006),
this can be viewed as a regularized version of mutual information that penalizes complicated
grids and ensures that the result falls between zero and one.

Before we continue, we state one simple equivalent definition of MIC∗ that is useful for
the results in this section. This definition views MIC∗ as the supremum of a matrix called
the population characteristic matrix, defined below.

Definition 2 Let (X,Y ) be jointly distributed random variables. Let

I∗((X,Y ), k, ℓ) = max
G∈G(k,ℓ)

I((X,Y )|G).

The population characteristic matrix of (X,Y ), denoted by M(X,Y ), is defined by

M(X,Y )k,ℓ =
I∗((X,Y ), k, ℓ)

logmin{k, ℓ}

for k, ℓ > 1.

It is easy to see the following:

Proposition 3 Let (X,Y ) be jointly distributed random variables. We have

MIC∗(X,Y ) = supM(X,Y )

where M(X,Y ) is the population characteristic matrix of (X,Y ).

The population characteristic matrix is so named because just as MIC∗, the supremum of
this matrix, captures a sense of relationship strength, other properties of this matrix corre-
spond to different properties of relationships. For instance, later in this paper we introduce
an additional property of the characteristic matrix, the total information coefficient, that
is useful for testing for the presence or absence of a relationship rather than quantifying
relationship strength.
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3.2 First Alternate Characterization: MIC∗ Is the Population Value of MIC

With MIC∗ defined, we now state our first alternate characterization of it, as the large-
sample limit of the statistic MIC introduced in Reshef et al. (2011). We begin by first
reproducing a description of MIC from Reshef et al. (2011), via the two definitions below.

Definition 4 (Reshef et al., 2011) Let D ⊂ R2 be a set of ordered pairs. The sample

characteristic matrix M̂(D) of D is defined by

M̂(D)k,ℓ =
I∗(D, k, ℓ)

logmin{k, ℓ} .

Definition 5 (Reshef et al., 2011) Let D ⊂ R2 be a set of n ordered pairs, and let B :
Z+ → Z+. We define

MICB(D) = max
kℓ≤B(n)

M̂(D)k,ℓ.

where the function B(n) is specified by the user. In Reshef et al. (2011), it was suggested
that B(n) be chosen to be nα for some constant α in the range of 0.5 to 0.8. (The statistics
we introduce later will have an analogous parameter; see Section 4.4.1.)

We show the following result about convergence of functions of the sample characteristic
matrix to their population counterparts, a consequence of which is the convergence of MIC
to MIC∗. (In the theorem statement below, recall that m∞ is the space of infinite matrices
equipped with the supremum norm, and given a matrix A the projection ri zeros out all the
entries Ak,ℓ for which kℓ > i.)

Theorem 6 Let f : m∞ → R be uniformly continuous, and assume that f ◦ ri → f point-
wise. Then for every random variable (X,Y ), we have

(
f ◦ rB(n)

) (
M̂(Dn)

)
→ f(M(X,Y ))

in probability where Dn is a sample of size n from the distribution of (X,Y ), provided
ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

Proof See Appendix A.

Since the supremum of a matrix is uniformly continuous as a function on m∞ and can
be realized as the limit of maxima of larger and larger segments of the matrix, this theorem
yields our claim about MIC∗ as a corollary.

Corollary 7 MICB is a consistent estimator of MIC∗ provided ω(1) < B(n) ≤ O(n1−ε) for
some ε > 0.

Though Theorem 6 is proven in Appendix A, we provide here some intuition for why it
should hold as well as a description of the obstacles that must be overcome in the proof.

For concreteness, suppose f is the supremum function. To see why the theorem should
hold, fix a random variable (X,Y ) and let D be a sample of size n from its distribution. It
is known that for a fixed grid G I(D|G) is a consistent estimator of I((X,Y )|G) (Roulston,
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1999; Paninski, 2003). We might therefore expect I∗(D, k, ℓ) to be a consistent estimator of
I∗((X,Y ), k, ℓ) as well. And if I∗(D, k, ℓ) is a consistent estimator of I∗((X,Y ), k, ℓ), then
we might expect the maximum of the sample characteristic matrix (which just consists of
normalized I∗ terms) to be a consistent estimator of the supremum of the true characteristic
matrix.

These intuitions turn out to be true, but there are two reasons they are non-trivial
to prove. First, consistency for I∗ does not follow from abstract considerations since the
supremum of an infinite set of estimators is not necessarily a consistent estimator of the
supremum of the estimands.1 Second, consistency of I∗ alone does not suffice to show that
the maximum of the sample characteristic matrix converges to MIC∗. In particular, if B(n)
grows too quickly, and the convergence of I∗(D, k, ℓ) to I∗((X,Y ), k, ℓ) is slow, inflated
values of MIC can result. To see this, notice that if B(n) = ∞ then MIC = 1 for uniformly
generated noise at any finite sample size, even though each individual entry of the sample
characteristic matrix converges to its true value eventually.

The technical heart of the proof is overcoming these obstacles by using the dependencies
between the quantities I(D|G) for different grids G to not only show the consistency of
I∗(D, k, ℓ) but then to quantify how quickly I∗(D, k, ℓ) converges to I∗((X,Y ), k, ℓ).

3.3 Second Alternate Characterization: MIC∗ Is a Minimally Smoothed
Mutual Information

We now describe a second equivalent view of MIC∗. Recall that for a pair of jointly dis-
tributed random variables (X,Y ), we defined MIC∗(X,Y ) as

MIC∗(X,Y ) = sup
G

I((X,Y )|G)
log ‖G‖

where ‖G‖ denotes the minimum of the number of rows of G and the number of columns
of G. As we discussed in Section 3.1, the mutual information I(X,Y ) is also a supremum,
namely

I(X,Y ) = sup
G
I((X,Y )|G).

and so MIC∗ can be viewed as a regularized version of I. It is natural to ask whether the
regularization in the definition of MIC∗ has any smoothing effect on I. In this sub-section
we show first that it does, in the sense that MIC∗ is uniformly continuous as a function
of random variables with respect to the metric of statistical distance,2 and second that the
regularization by log ‖G‖ is in some sense the minimal one necessary for achieving any sort
of continuity. As a corollary, we obtain that I by itself is not continuous as a function of

1. If θ̂1, . . . , θ̂k is a finite set of estimators, then a union bound shows that the random variable

(θ̂1(D), . . . , θ̂k(D)) converges in probability to (θ1, . . . , θk) with respect to the supremum metric. The

continuous mapping theorem then gives the desired result. However, if the set of estimators is in-

finite, the union bound cannot be employed. And indeed, if we let θ1 = · · · = θk = 0, and

let θ̂i(Dn) = i/n deterministically, then each θ̂i is a consistent estimator of θi, but since the set

{θ̂1(Dn), θ̂2(Dn), . . .} = {1/n, 2/n, . . .} is unbounded, supi θ̂i(Dn) = ∞ for every n.

2. Recall that the statistical distance between random variables A and B is defined as

supT |P (A ∈ T )−P (B ∈ T )|. When A and B have probability density functions or probability mass

functions, this equals one-half of the L1 distance between those functions.
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random variables with respect to the metric of statistical distance. This provides a view of
MIC∗ as a canonical smoothing of I that yields continuity.

Formally, let P(R2) denote the space of random variables supported on R2 equipped with
the metric of statistical distance. Our first claim is that as a function defined on P(R2),
MIC∗ is uniformly continuous. We prove this claim by establishing a stronger result: the
uniform continuity of the characteristic matrix M(X,Y ). Specifically, by showing that
the family of maps corresponding to each individual entry of the characteristic matrix is
uniformly equicontinuous, we obtain the following result.

Theorem 8 The map from P(R2) to m∞ defined by (X,Y ) 7→ M(X,Y ) is uniformly
continuous.

Proof See Appendix B.

Since the supremum is a uniformly continuous function on m∞, Theorem 8 yields the
following corollary.

Corollary 9 The map (X,Y ) 7→ MIC∗(X,Y ) is uniformly continuous.

Similar corollaries exist for any uniformly continuous function of the characteristic matrix.
Interestingly, Theorem 8 relies crucially on the normalization in the definition of the

characteristic matrix. This is not a coincidence: as the following proposition shows, any
normalization that is meaningfully smaller than the one in the definition of the characteristic
matrix will cause the matrix to contain a discontinuity as a function on P(R2).

Proposition 10 For some function N(k, ℓ), let MN be the characteristic matrix with nor-
malization N , i.e.,

MN (X,Y )k,ℓ =
I∗((X,Y ), k, ℓ)

N(k, ℓ)
.

If N(k, ℓ) = o(logmin{k, ℓ}) along some infinite path in N× N, then MN and supMN are
not continuous as functions of P([0, 1]× [0, 1]) ⊂ P(R2).

Proof See Appendix C.

The above proposition implies that the “smoothing” that MIC∗ applies to mutual infor-
mation is necessary in some sense. In particular, one corollary of the proposition is that
mutual information with no smoothing will contain a disconuity.

Corollary 11 Mutual information is not continuous on P([0, 1]× [0, 1]) ⊂ P(R2).

Proof Mutual information is the supremum of MN with N ≡ 1.

The same result can also be shown for the squared Linfoot correlation (Speed, 2011; Linfoot,
1957), which equals 1 − 2−2I where I represents mutual information. Thus, though the
Linfoot correlation smoothes the mutual information enough to cause it to lie in the unit
interval, it does not smooth the mutual information sufficiently to cause it to be continuous.
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As we remarked previously, these results, when contrasted with the uniform continuity
of MIC∗, allow us to view the latter as a canonical “minimally smoothed” version of mutual
information that is uniformly continuous. This view gives a meaningful interpretation to
the normalization used in MIC∗. Understanding MIC∗ as having smoothness properties
not shared by mutual information also suggests that estimators of MIC∗ may have better
statistical properties than estimators of ordinary mutual information. This is consistent
with a recent hardness-of-estimation result for mutual information in Ding and Li (2013)
and is also borne out empirically in Reshef et al. (2015a).

3.4 Third Alternate Characterization: MIC∗ Is the Supremum of the
Boundary of the Characteristic Matrix

We now show the third alternate view of MIC∗: that it can be equivalently defined as the
supremum over a boundary of the characteristic matrix rather than as a supremum over all
of the entries of the matrix. This characterization of MIC∗ will serve as the foundation both
for our approach to approximating MIC∗(X,Y ) as well as the new estimator of MIC∗ that
we introduce later in this paper.

We begin by defining what we mean by the boundary of the characteristic matrix. Our
definition rests on the following observation.

Proposition 12 Let M be a population characteristic matrix. Then for ℓ ≥ k, Mk,ℓ ≤
Mk,ℓ+1.

Proof Let (X,Y ) be the random variable in question. Since we can always let a row/column
be empty, we know that I∗((X,Y ), k, ℓ) ≤ I∗((X,Y ), k, ℓ + 1). And since ℓ, ℓ + 1 ≥ k, we
know that Mk,ℓ = I∗((X,Y ), k, ℓ)/ log k ≤ I∗((X,Y ), k, ℓ+ 1)/ log k =Mk,ℓ+1.

Since the entries of the characteristic matrix are bounded, the monotone convergence
theorem then gives the following corollary. In the corollary and henceforth, we let Mk,↑ =
limℓ→∞Mk,ℓ and define M↑,ℓ similarly.

Corollary 13 Let M be a population characteristic matrix. Then Mk,↑ exists, is finite, and
equals supℓ≥kMk,ℓ. The same is true for M↑,ℓ.

The above corollary allows us to define the boundary of the characteristic matrix.

Definition 14 Let M be a population characteristic matrix. The boundary of M is the set

∂M = {Mk,↑ : 1 < k <∞}
⋃

{M↑,ℓ : 1 < ℓ <∞}.

The theorem below then gives a relationship between the boundary of the characteristic
matrix and MIC∗.

Theorem 15 Let (X,Y ) be a random variable. We have

MIC∗(X,Y ) = sup ∂M(X,Y )

where M(X,Y ) is the population characteristic matrix of (X,Y ).
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Proof The following argument shows that every entry of M is at most sup ∂M : fix a pair
(k, ℓ) and notice that either k ≤ ℓ, in which case Mk,ℓ ≤ Mk,↑, or ℓ ≤ k, in which case
Mk,ℓ ≤M↑,ℓ. Thus, MIC∗ ≤ sup{M↑,ℓ} ∪ {Mk,↑} = sup ∂M .

On the other hand, Corollary 13 shows that each element of ∂M is a supremum over
some elements of M . Therefore, sup ∂M , being a supremum over suprema of elements of
M , cannot exceed supM = MIC∗.

3.5 Approximating MIC∗ in Practice

The importance of the characterization in Theorem 15 from the previous sub-section is
computational. Specifically, elements of the boundary of the characteristic matrix can be
expressed in terms of a maximization over (one-dimensional) partitions rather than (two-
dimensional) grids, the former being much quicker to compute exactly. This is stated in the
theorem below.

Theorem 16 Let M be a population characteristic matrix. Then Mk,↑ equals

max
P∈P (k)

I(X,Y |P )
log k

where P (k) denotes the set of all partitions of size at most k.

Proof See Appendix D.

To formally state how this will help us from an algorithmic standpoint, we note that
Theorems 15 and 16 above together give the following corollary.

Corollary 17 Let (X,Y ) be a random variable, and let P be the set of finite-size partitions.
Then

MIC∗(X,Y ) = sup

{
I(X,Y |P )
log |P | : P ∈ P

}⋃{
I(X|P , Y )

log |P | : P ∈ P

}

where |P | is the number of bins in the partition P .

We can exploit the fact that the expressions in the above corollary involve maximization
only over one-dimensional partitions rather than two-dimensional grids to give an algorithm
for computing elements of the boundary of the characteristic matrix to arbitrary precision,
and by extension an approach to approximating MIC∗ in practice. To do so, we utilize as a
subroutine a dynamic programming algorithm from Reshef et al. (2011) called OptimizeX-

Axis. Before continuing, we therefore give a brief overview of that algorithm.
Overview of OptimizeXAxis algorithm from Reshef et al. (2011). The OptimizeX-

Axis algorithm takes as input a set D of n data points, a fixed partition into columns3 Q
of size ℓ, a “master” partition into rows Π, and a number k. The algorithm returns, for

3. Despite its name, the OptimizeXAxis algorithm can be used to optimize a partition of either axis. In

our description of the algorithm here, we choose to describe the algorithm as it would work for optimizing

a partition of the y-axis rather than the x-axis. This is for notational coherence of this paper only.
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2 ≤ i ≤ k, the partition into rows Pi ⊂ Π that maximizes the mutual information of D|(Pi,Q)

among all sub-partitions of Π of size at most i. The algorithm works by exploiting the fact
that, conditioned on the location y of the top-most line of Pi, the optimization of the rest of
Pi can be formulated as a sub-problem that depends only on the data points below y. The
algorithm uses dynamic programming to store and reuse solutions to these subproblems, re-
sulting in a runtime of O(|Π|2kℓ). If a black-box algorithm is used to compute each required
mutual information in time at most T , then the runtime of the algorithm can be shown to
be O(Tk|Π|).

The following theorem shows that the theory developed about the boundary of the char-
acteristic matrix, together with OptimizeXAxis, yields an efficient algorithm for computing
entries of the boundary to arbitrary precision.

Theorem 18 Given a random variable (X,Y ), Mk,↑ (resp. M↑,ℓ) is computable to within an
additive error of O(kε log(1/(kε))) + E (resp. O(ℓε log(1/(ℓε))) + E) in time O(kT (E)/ε)
(resp. O(ℓT (E)/ε)), where T (E) is the time required to numerically compute the mutual
information of a continuous distribution to within an additive error of E.

Proof See Appendix E.

The algorithm proposed in Theorem 18 gives us a polynomial-time method for computing
any finite subset of the boundary ∂M of the population characteristic matrix M(X,Y ) of
a random variable (X,Y ). Thus, if we have some k0, ℓ0 such that the maximum of the
finite subset {Mk,↑,M↑,ℓ : k ≤ k0, ℓ ≤ ℓ0} of ∂M will be ε-close to the supremum of the
entire set ∂M , we can compute MIC∗(X,Y ) to within an error of ε. Though we usually
do not have precise knowledge of k0 and ℓ0, for many distributions it is often easy to make
very conservative educated guesses for them, in which case this algorithm allows us to
approximate MIC∗(X,Y ) very well in practice.

Being able to compute MIC∗(X,Y ) to arbitrary precision in some cases has two main
advantages. The first advantage is that it allows us to assess in simulations the large-sample
properties of MIC∗ independent of any estimator. This is done in the companion paper
(Reshef et al., 2015a), which shows that MIC∗ achieves high equitability with respect to
R2 on a set of noisy functional relationships thereby confirming that statistically efficient
estimation of MIC∗ is a worthwhile goal.

The second advantage is that we can empirically assess the bias, variance, and expected
squared error of estimators of MIC∗ by taking a distribution, computing MIC∗, and then
comparing the result to estimates of it based on finite samples. In the next section, we
introduce a new estimator MICe of MIC∗ and carry out such an analysis to compare its
statistical properties to those of the statistic MIC from Reshef et al. (2011).

4. Estimating MIC∗ with MICe

As we have shown, MIC∗ is the population value of the statistic MIC introduced in Reshef
et al. (2011). However, though consistent, the statistic MIC is not known to be efficiently
computable and in Reshef et al. (2011) a heuristic approximation algorithm called Approx-

MIC was computed instead. In this section, we leverage the theory we have developed here
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to introduce a new estimator of MIC∗ that is both consistent and efficiently computable.
The new estimator, called MICe, has better runtime complexity even than the heuristic
Approx-MIC algorithm, and runs orders of magnitude faster in practice.

The estimator MICe is based on one of the alternate characterizations of MIC∗ proven in
the previous section. Namely, if MIC∗ can be viewed as the supremum of the boundary of the
characteristic matrix rather than of the entire matrix, then only the boundary of the matrix
must be accurately estimated in order to estimate MIC∗. This has the advantage that,
whereas computing individual entries of the sample characteristic matrix involves finding
optimal (two-dimensional) grids, estimating entries of the boundary requires us only to
find optimal (one-dimensional) partitions. While the former problem is computationally
difficult, the latter can be solved using the dynamic programming algorithm from Reshef
et al. (2011) that we also employed in Section 3.5 to compute MIC∗ to arbitrary precision
in the large-sample limit.

We formalize this idea via a new object called the equicharacteristic matrix, which we de-
note by [M ]. The difference between [M ] and the characteristic matrix M is as follows: while
the k, ℓ-th entry of M is computed from the maximal achievable mutual information using
any k-by-ℓ grid, the k, ℓ-th entry of [M ] is computed from the maximal achievable mutual in-
formation using any k-by-ℓ grid that equipartitions the dimension with more rows/columns.
(See Figure 1.) Despite this difference, as the equipartition in question gets finer and finer
it becomes indistinguishable from an optimal partition of the same size. This intuition can
be formalized to show that the boundary of [M ] equals the boundary of M , and therefore
that sup[M ] = supM = MIC∗. It will then follow that estimating [M ] and taking the
supremum—as we did with M in the case of MIC—yields a consistent estimate of MIC∗.

4.1 The Equicharacteristic Matrix

We now define the equicharacteristic matrix and show that its supremum is indeed MIC∗.
To do so, we first define a version of I∗ that equipartitions the dimension with more
rows/columns. Note that in the definition, brackets are used to indicate the presence of
an equipartition.

Definition 19 Let (X,Y ) be jointly distributed random variables. Define

I∗ ((X,Y ), k, [ℓ]) = max
G∈G(k,[ℓ])

I ((X,Y )|G)

where G(k, [ℓ]) is the set of k-by-ℓ grids whose y-axis partition is an equipartition of size ℓ.
Define I∗((X,Y ), [k], ℓ) analogously.

Define I [∗]((X,Y ), k, ℓ) to equal I∗((X,Y ), k, [ℓ]) if k < ℓ and I∗((X,Y ), [k], ℓ) otherwise.

We now define the equicharacteristic matrix in terms of I [∗]. In the definition below, we
continue our convention of using brackets to denote the presence of equipartitions.

Definition 20 Let (X,Y ) be jointly distributed random variables. The population equichar-
acteristic matrix of (X,Y ), denoted by [M ](X,Y ), is defined by

[M ](X,Y )k,ℓ =
I [∗]((X,Y ), k, ℓ)

logmin{k, ℓ}
for k, ℓ > 1.
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M(X,Y )2,3 [M ](X,Y )2,3
I∗ = 0.918 I [∗] = 0.613

M(X,Y )2,9 [M ](X,Y )2,9
I∗ = 0.918 I [∗] = 0.918

Figure 1: A schematic illustrating the difference between the characteristic matrix M and
the equicharacteristic matrix [M ]. (Top) When restricted to 2 rows and 3 columns,
the characteristic matrixM is computed from the optimal 2-by-3 grid. In contrast,
the equicharacteristic matrix [M ] still optimizes the smaller partition of size 2 but
is restricted to have the larger partition be an equipartition of size 3. This results
in a lower mutual information of 0.613. (Bottom) When 9 columns are allowed
instead of 3, the grid found by the characteristic matrix does not change, since
the grid with 3 columns was already optimal. However, now the equicharacteristic
matrix uses an equipartition into columns of size 9, whose resolution is able to
fully capture the dependence between X and Y .

The boundary of the equicharacteristic matrix can be defined via a limit in the same
way as the characteristic matrix. We then have the following theorem.

Theorem 21 Let (X,Y ) be jointly distributed random variables. Then ∂[M ] = ∂M .

Proof See Appendix F.

Since every entry of the equicharacteristic matrix is dominated by some entry on its
boundary, the equivalence of ∂[M ] and ∂M yields the following corollary as a simple conse-
quence.

Corollary 22 Let (X,Y ) be jointly distributed random variables. Then sup[M ](X,Y ) =
MIC∗(X,Y ).

14



Measuring Dependence Powerfully and Equitably

4.2 The Estimator MICe

With the equicharacteristic matrix defined, we can now define our new estimator MICe in
terms of the sample equicharacteristic matrix, analogously to the way we defined MIC in
terms of the sample characteristic matrix.

Definition 23 Let D ⊂ R2 be a set of ordered pairs. The sample equicharacteristic matrix

[̂M ](D) of D is defined by

[̂M ](D)k,ℓ =
I [∗](D, k, ℓ)
logmin{k, ℓ} .

Definition 24 Let D ⊂ R2 be a set of n ordered pairs, and let B : Z+ → Z+. We define

MICe,B(D) = max
kℓ≤B(n)

[̂M ](D)k,ℓ.

With the equivalence between the boundary of the characteristic matrix and that of the
equicharacteristic matrix established, it is straightforward to show that MICe is a consistent
estimator of MIC∗ via arguments similar to those we applied in the case of MIC. (See
Appendix G.) Specifically, we show the following theorem, an analogue of Theorem 6.

Theorem 25 Let f : m∞ → R be uniformly continuous, and assume that f ◦ ri → f
pointwise. Then for every random variable (X,Y ), we have

(
f ◦ rB(n)

) (
[̂M ](Dn)

)
→ f([M ](X,Y ))

in probability where Dn is a sample of size n from the distribution of (X,Y ), provided
ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

By setting f([M ]) = sup[M ], we then obtain as a corollary the consistency of MICe.

Corollary 26 MICe,B is a consistent estimator of MIC∗ provided ω(1) < B(n) ≤ O(n1−ε)
for some ε > 0.

As with the statistic MIC, the statistic MICe requires the user to specify a function B(n)
to use. While the theory suggests that any function of the form B(n) = nα suffices provided
0 < α < 1, different values of α may yield different finite-sample properties. We study the
empirical performance of MICe for different choices of B(n) in Section 4.4 and point the
reader to specific recommendations for practical use in Section 4.4.1.

4.3 Computing MICe

Both MIC and MICe are consistent estimators of MIC∗. The difference between them is
that while MIC can currently be computed efficiently only via a heuristic approximation,
MICe can be computed exactly, very efficiently, via an approach similar to the one used
for approximating MIC∗ involving the OptimizeXAxis subroutine. We now describe the
details of this approach.

Recall that, given a fixed x-axis partition Q into ℓ columns, a set of n data points, a
“master” y-axis partition Π, and a number k, the OptimizeXAxis subroutine finds, for
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every 2 ≤ i ≤ k, a y-axis partition Pi ⊂ Π of size at most i that maximizes the mutual
information induced by the grid (Pi, Q). The algorithm does this in time O(|Π|2kℓ). (For
more discussion of OptimizeXAxis, see Section 3.5)

In the pair of theorems below, we show two ways that OptimizeXAxis can be used to
compute MICe efficiently. In the proofs of both theorems, we neglect issues of divisibility,
e.g., we often write B/2 rather than ⌊B/2⌋. This does not affect the results.

Theorem 27 There exists an algorithm Equichar that, given a sample D of size n and

some B ∈ Z+, computes the portion rB(n)([̂M ](D)) of the sample equicharacteristic matrix
in time O(n2B2), which equals O(n4−2ε) for B(n) = O(n1−ε) with ε > 0.

Proof We describe the algorithm and simultaneously bound its runtime. We do so only

for the k, ℓ-th entries of [̂M ](D) satisfying k ≤ ℓ, kℓ ≤ B. This suffices, since by symmetry
computing the rest of the required entries at most doubles the runtime.

To compute [̂M ](D)k,ℓ with k ≤ ℓ, we must fix an equipartition into ℓ columns on
the x-axis and then find the optimal partition of the y-axis of size at most k. If we set
the master partition Π of the OptimizeXAxis algorithm to be an equipartition into rows
of size n, then it performs precisely the required optimization. Moreover, for fixed ℓ it
can carry out the optimization simultaneously for all of the pairs {(2, ℓ), . . . , (B/ℓ, ℓ)} in
time O(|Π|2(B/ℓ)ℓ) = O(n2B). For fixed ℓ, this set contains all the pairs (k, ℓ) satisfying

k ≤ ℓ, kl ≤ B. Therefore, to compute all the required entries of [̂M ](D) we need only apply
this algorithm for each ℓ = 2, . . . , B/2. Doing so gives a runtime of O(n2B2).

The algorithm above, while polynomial-time, is nonetheless not efficient enough for use
in practice. However, a simple modification solves this problem without affecting the consis-
tency of the resulting estimates. The modification hinges on the fact that OptimizeXAxis

can use master partitions Π besides the equipartition of size n that we used above. Spefi-
cally, setting Π in the above algorithm to be an equipartition into ck “clumps”, where k is the
size of the largest optimal partition being sought, speeds up the computation significantly.
This modification gives a slightly different statistic, but one that has all of the theoretical
properties of MICe—namely, consistent estimation of MIC∗ and efficient exact computation.
These properties are formalized in the following theorem.

Theorem 28 Let (X,Y ) be a pair of jointly distributed random variables, and let Dn be
a sample of size n from the distribution of (X,Y ). For every c ≥ 1, there exists a matrix

{M̂}c(Dn) such that

1. The function

M̃ICe,B(·) = max
kℓ≤B(n)

{M̂}c(·)k,ℓ

is a consistent estimator of MIC∗ provided ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

2. There exists an algorithm EquicharClump for computing rB({M̂}c(Dn)) in time
O(n+B5/2), which equals O(n+ n5(1−ε)/2) when B(n) = O(n1−ε).
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Proof See Appendix H.

For an analysis of the effect of the parameter c in the above theorem on the results of
the EquicharClump algorithm, see Appendix H.3.

Setting ε = 0.6 in the above theorem yields the following corollary.

Corollary 29 MIC∗ can be estimated consistently in linear time.

Of course, at low sample sizes, setting ε = 0.6 would be undesirable. However, our compan-
ion paper (Reshef et al., 2015a) shows empirically that at large sample sizes this strategy
works very well on typical relationships.

We remark that the EquicharClump algorithm given above is asymptotically faster
even than the heuristic Approx-MIC algorithm used to calculate MIC in practice, which
runs in time O(B(n)4). As demonstrated in our companion paper (Reshef et al., 2015a),
this difference translates into a substantial difference in runtimes for similar performance
at a range of realistic sample sizes, ranging from a 30-fold speedup at n = 500 to over a
350-fold speedup at n = 10, 000.

For readability, in the rest of this paper we do not distinguish between the two versions
of MICe computed by the Equichar and EquicharClump algorithms described above.
Wherever we present simulation data about MICe in simulations though, we use the version
of the statistic computed by EquicharClump.

4.4 Bias/Variance Characterization of MICe

The algorithm we presented in Section 3.5 for computing MIC∗ to arbitrary precision in some
cases allows us to examine the bias/variance properties of estimators of MIC∗. Here, we use
it to examine the bias and variance of both MIC as computed by the heuristic Approx-

MIC algorithm from Reshef et al. (2011), and MICe as computed by the EquicharClump

algorithm given above. To do this, we performed a simulation analysis on the following set
of relationships

Q = {(x+ εσ, f(x) + ε′σ) : x ∈ Xf , εσ, ε
′
σ ∼ N (0, σ2), f ∈ F, σ ∈ R≥0}

where εσ and ε′σ are i.i.d., F is the set of 16 functions analyzed in Reshef et al. (2011), and
Xf is the set of n x-values that result in the points (xi, f(xi)) being equally spaced along
the graph of f .

For each relationship Z ∈ Q that we examined, we used the algorithm from Theorem 18
with very conservative values of k0 and ℓ0 to compute MIC∗. We then simulated 500 in-
dependent samples from Z, each of size n = 500, and computed both Approx-MIC and
MICe on each one to obtain estimates of the sampling distributions of the two statistics.
From each of the two sampling distributions, we estimated the bias and variance of either
statistic on Z. We then analyzed the bias, variance, and expected squared error of the two
statistics as a function of relationship strength, which we quantified using the coefficient of
determination (R2) with respect to the generating function.

The results, presented in Figure 2, are interesting for two reasons. First, they demon-
strate that for a typical usage parameter of B(n) = n0.6, MICe performs substantially better
than Approx-MIC overall. Specifically, the median of the expected squared error of MICe
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across the set F of functions is uniformly lower across R2 values than that of Approx-MIC.
When average expected squared error is used instead of median, MICe still performs better
on all but the strongest of relationships (R2 above ∼0.9). The superior performance of MICe

is consistent with the fact that we have theoretical guarantees about its statistical properties
whereas Approx-MIC is a heuristic.

Second, the results show that different values of the exponent in B(n) = nα give good
performance in different signal-to-noise regimes due to a bias-variance trade-off represented
by this parameter. We expand on this phenomenon and discuss its implications for choosing
α in practice below.

4.4.1 Choosing B(n)

Large values of α lead to increased expected error in lower-signal regimes (low R2) through
both a positive bias in those regimes and a general increase in variance that predominantly
affects those regimes. On the other hand, small values of α lead to an increased expected
error in higher-signal regimes (high R2) by leading to a negative bias in those regimes and
by shifting the variance of the estimator toward those regimes. In other words, lower values
of α are better suited for detecting weaker signals, while higher values of α are better suited
for distinguishing among stronger signals. This is consistent with the results seen in our
companion paper (Reshef et al., 2015a), which show that low values of α cause MICe to
yield better powered independence tests while high values of α cause MICe to have better
equitability.

Reshef et al. (2015a) provides simple, empirical recommendations about appropriate
values of α for different settings. Those recommendations are formulated by choosing a
set of representative relationships (e.g., a set of noisy functional relationships), as well as a
“ground truth” population quantity Φ (e.g., R2) that can be used to quantify the strength of
each of those relationships, and then assessing which values of α maximize the equitability
of MICe with respect to Φ at a given sample size. This approach is applied to an analysis of
real data from the World Health Organization in Reshef et al. (2015a), and the parameters
chosen for that analysis are the ones used for all subsequent analyses in this paper.

We remark that if the goal of the user is only detection of non-trivial relationships rather
discovery of the strongest such relationships, α can also be chosen in a more straightforward
manner: the user can subsample a small random set of relationships on which to compare
the power of MICe for different values of α. Those relationships can then be discarded and
the rest of the relationships analyzed with the optimal value of α. However, if the user’s
primary goal is power against independence, the statistic TICe introduced in Section 5 of
this paper should be used with this strategy rather than MICe.

4.5 Equitability of MICe

As mentioned previously, one of the main motivations for the introduction of MIC was
equitability, the extent to which a measure of dependence usefully captures some notion
of relationship strength on some set of standard relationships. We therefore carried out
an empirical analysis of the equitability of MICe with respect to R2 and compared its
performance to distance correlation (Székely et al., 2007; Székely and Rizzo, 2009), mutual
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(a)

(b)

Figure 2: Bias/variance characterization of Approx-MIC and MICe. Each plot shows ex-
pected squared error, bias, or variance across the set of noisy functional relation-
ships described in Section 4.4 as a function of the R2 of the relationships. The
results are aggregated across the 16 function types analyzed by either the average,
median, or worst result at every value of R2. (a) A comparison between MICe

(light purple) and MIC as computed via the heuristic Approx-MIC algorithm
(black), at a typical usage parameter. (b) Performance of MICe with B(n) = nα

for various values of α.
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information estimation (Kraskov et al., 2004), and maximal correlation estimation (Breiman
and Friedman, 1985).

We began by assessing equitability on the set of relationships Q defined above, a set that
has been analyzed in previous work (Reshef et al., 2011, 2015a; Kinney and Atwal, 2014).
The results, shown in Figure 3, confirm the superior equitability of the new estimator MICe

on this set of relationships.

To assess equitability more objectively without relying on a manually curated set of
functions, we then analyzed 160 random functions drawn from a Gaussian process distri-
bution with a radial basis function kernel with one of eight possible bandwidths in the set
{0.01, 0.025, 0.05, 0.1, 0.2, 0.25, 0.5, 1} to represent a range of possible relationship complexi-
ties. The results, shown in Figure 4, show that MICe outperforms existing methods in terms
of equitability with respect to R2 on these functions as well. Appendix Figure J1 shows a
version of this analysis under a different noise model that yields the same conclusion. We also
examined the effect of outlier relationships on our results by repeatedly subsampling random
subsets of 20 functions from this large set of relationships and measuring the equitability of
each method on average over the subsets; results were similar.

One feature of the performance of MICe on these randomly chosen relationships that
is demonstrated in Figure 4 is that it appears minimally sensitive to the bandwidth of the
Gaussian process from which a given relationship is drawn. This puts it in contrast to, e.g.,
mutual information estimation, which shows a pronounced sensitivity to this parameter
that prevents it from being highly equitable when relationships with different bandwidths
are present in the same data set.

In our companion paper (Reshef et al., 2015a), we perform more in-depth analyses of
the equitability with respect to R2 of MICe, MIC, and the four measures of dependence de-
scribed above as well as the Hilbert-Schmidt independence criterion (HSIC) (Gretton et al.,
2005, 2007), the Heller-Heller-Gorfine (HHG) test (Heller et al., 2013), the data-derived par-
titions (DDP) test (Heller et al., 2016), and the randomized dependence coefficient (RDC)
(Lopez-Paz et al., 2013). These analyses consider a range of sample sizes, noise models,
marginal distributions, and parameter settings. They conclude that, in terms of equitability
with respect to R2 on the sets of noisy functional relationships studied, a) MICe uniformly
outperforms MIC, and b) MICe outperforms all the methods tested in the large major-
ity of settings examined. Appendix Figure I1 contains a reproduction of a representative
equitability analysis from that paper for the reader’s reference.

5. The Total Information Coefficient

So far we have presented results about estimators of the population maximal information
coefficient, a quantity for which equitability is the primary motivation. We now introduce
and analyze a new measure of dependence, the total information coefficient (TIC). In con-
trast to the maximal information coefficient, the total information coefficient is designed not
for equitability but rather as a test statistic for testing a null hypothesis of independence.

We begin by giving some intuition. Recall that the maximal information coefficient is
the supremum of the characteristic matrix. While estimating the supremum of this matrix
has many advantages, this estimation involves taking a maximum over many estimates of
individual entries of the characteristic matrix. Since maxima of sets of random variables
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Figure 3: Equitability with respect to R2 on a set of noisy functional relationships of (a) the
Pearson correlation coefficient, (b) a hypothetical measure of dependence ϕ with
perfect equitability, (c) distance correlation, (d) MICe, (e) maximal correlation es-
timation, and (f) mutual information estimation. For each relationship, a shaded
region denotes estimated 5th and 95th percentile values of the sampling distribu-
tion of the statistic in question on that relationship at every R2. The resulting
plot shows which values of R2 correspond to a given value of each statistic. The
red interval on each plot indicates the widest range of R2 values corresponding to
any one value of the statistic; the narrower the red interval, the higher the equi-
tability. A red interval with width 0, as in (b), means that the statistic reflects
only R2 with no dependence on relationship type, as demonstrated by the pairs
of thumbnails of relationships of different types with identical R2 values.
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Figure 4: Equitability of methods examined on functions randomly drawn from a Gaussian
process distribution. Each method is assessed as in Figure 3, with a red interval
indicating the widest range of R2 values corresponding to any one value of the
statistic; the narrower the red interval, the higher the equitability. Each shaded re-
gion corresponds to one relationship, and the regions are colored by the bandwidth
of the Gaussian process from which they were sampled. Sample relationships for
each bandwidth are shown in the top right with matching colors.
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tend to become large as the number of variables grows, one can imagine that this procedure
may lead to an undesirable positive bias in the case of statistical independence, when the
population characteristic matrix equals 0. This might be detrimental for independence
testing, when the sampling distribution of a statistic under a null hypothesis of independence
is crucial.

The intuition behind the total information coefficient is that if we instead consider a
more stable property, such as the sum of the entries in the characteristic matrix, we might
expect to obtain a statistic with a smaller bias in the case of independence and therefore
better power. Stated differently, if our only goal is to distinguish any dependence at all
from complete noise, then disregarding all of the sample characteristic matrix except for its
maximal value may throw away useful signal, and the total information coefficient avoids
this by summing all the entries.

We remark that in Reshef et al. (2011) it is suggested that other properties of the
characteristic matrix may allow us to measure other aspects of a given relationship besides
its strength, and several such properties were defined. The total information coefficient fits
within this conceptual framework.

In this section we define the total information coefficient in the case of both the character-
istic matrix (TIC) and the equicharacteristic matrix (TICe). We then prove that both TIC
and TICe yield independence tests that are consistent against all dependent alternatives.
(As in the case of MIC and MICe, TICe is more easily computable than TIC.) Finally, we
present a simulation study of the power of independence testing based on TICe on an index
set of relationships chosen in Simon and Tibshirani (2012), showing that TICe outperforms
other common measures of dependence on many of the relationships and closely matches
their performance on the rest.

5.1 Definition and Consistency of the Total Information Coefficient

We begin by defining the two versions of the total information coefficient. In the definition

below, recall that M̂ denotes a sample characteristic matrix whereas [̂M ] denotes a sample
equicharacteristic matrix.

Definition 30 Let D ⊂ R2 be a set of n ordered pairs, and let B : Z+ → Z+. We define

TICB(D) =
∑

kℓ≤B(n)

M̂(D)k,ℓ

and

TICe,B(D) =
∑

kℓ≤B(n)

[̂M ](D)k,ℓ.

To show that these two statistics lead to consistent independence tests, we must take a
step back and analyze the behavior of the analogous population quantities.

Definition 31 For a matrix A and a positive number B, the B-partial sum of A, denoted
by SB(A), is

SB(A) =
∑

kℓ≤B

Ak,ℓ.
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When A is an (equi)characteristic matrix, SB(A) is the sum over all entries corresponding

to grids with at most B total cells. Thus, if M̂(D) is a sample characteristic matrix of a

sample D, SB(M̂(D)) = TICB(D), and the same holds for SB([̂M ](D)) and TICe,B(D).

It is clear that if X and Y are statistically independent random variables, then both the
characteristic matrix M(X,Y ) and the equicharacteristic matrix [M ](X,Y ) are identically
0, so that SB(M(X,Y )) = SB([M ](X,Y )) = 0 for all B. However, we are also interested in
how these quantities behave whenX and Y are dependent. The following pair of propositions
helps us understand this. The first proposition shows a lower bound on the values of entries
in both M(X,Y ) and [M ](X,Y ). The second proposition translates this into an asymptotic
characterization of how quickly SB(M) and SB([M ]) grow as functions of B. These two
propositions are the technical heart of why the total information coefficient yields a consistent
independence test.

Proposition 32 Let (X,Y ) be a pair of jointly distributed random variables. If X and Y
are statistically independent, then M(X,Y ) ≡ [M ](X,Y ) ≡ 0. If not, then there exists some
a > 0 and some integer ℓ0 ≥ 2 such that

M(X,Y )k,ℓ, [M ](X,Y )k,ℓ ≥
a

logmin{k, ℓ}

either for all k ≥ ℓ ≥ ℓ0, or for all ℓ ≥ k ≥ ℓ0.

Proof See Appendix K.1

Proposition 33 Let (X,Y ) be a pair of jointly distributed random variables. If X and Y
are statistically independent, then SB(M(X,Y )) = SB([M ](X,Y )) = 0 for all B > 0. If
not, then SB(M(X,Y )) and SB([M ](X,Y )) are both Ω(B log logB).

Proof See Appendix K.2

The propositions above, together with reasoning analogous to the convergence arguments
presented earlier, can be used to show the main result of this section, namely that the
statistics TIC and TICe yield consistent independence tests.

Theorem 34 The statistics TICB and TICe,B yield consistent right-tailed tests of indepen-
dence, provided ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

Proof See Appendix K.3.

In practice, we often use the EquicharClump algorithm (see Section 4.3) to compute
the equicharacteristic matrix from which we calculate TICe. This algorithm does not com-
pute the sample equicharacteristic matrix exactly. However, as in the case of MICe, the use
of the algorithm does not affect the theoretical properties of the statistic. This is proven in
Appendix H.
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5.2 Power of Independence Tests Based on TICe

With the consistency of independence tests based on TIC and TICe established, we turn now
to empirical evaluation of the power of independence testing based on TICe as computed
using the EquicharClump algorithm.

To evaluate the power of TICe-based tests, we reproduced the analysis performed in
Simon and Tibshirani (2012). Namely, we considered the set of relationships they analyzed,
defined by

Q =
{
(X, f(X) + ε′) : X ∼ Unif, f ∈ F, ε′ ∼ N (0, σ2), σ ∈ R≥0

}
.

where F is a set of functions specified in Simon and Tibshirani (2012). (NB: one of the
relationships is a circle, which we treat as a union of two half-circles.)

For each relationship Z in this set that we examined, we simulated a null hypothesis
of independence with the same marginal distributions, and generated 1, 000 independent
samples, each with a sample size of n = 500, from both Z and from the null distribution.
These were used to estimate the power of the size-α right-tailed independence test based on
each statistic being evaluated. Following Simon and Tibshirani, we compared TICe to the
distance correlation (Székely et al., 2007; Székely and Rizzo, 2009), the original maximal
information coefficient (Reshef et al., 2011) as approximated using Approx-MIC, and to
the Pearson correlation. (Though it is not a measure of dependence, the Pearson correlation
was presumably included by Simon and Tibshirani as an intuitive benchmark for what is
achievable under a linear model.) We also compared to MICe using identical parameters
to those of TICe to examine whether the summation performed by TICe is better than
maximization when all other things are equal. Note that we do not compare to methods of
analyzing contingency tables, such as Pearson’s chi-squared test. This is because our data
are real-valued rather than discrete, and so contingency-based methods are not applicable.
However, when data are discrete, those methods can be very well powered.

The results of our analysis are presented in Figure 5. First, the figure shows that TICe

compares quite favorably with distance correlation, a method considered to have state-of-the-
art power (Simon and Tibshirani, 2012). Specifically, TICe uniformly outperforms distance
correlation on 5 of the 8 relationship types examined, and performs comparably to it on the
other three relationship types. We remark that distance correlation has many advantages
over TICe, including the fact that it easily generalizes to higher-dimensional relationships
and comes with an elegant and comprehensive theoretical framework.

The analysis also shows that TICe outperforms the original maximal information co-
efficient by a very large margin, and outperforms MICe as well, supporting the intuition
that the summation performed by the former can indeed lead to substantial gains in power
against independence over the maximization performed by the latter. (We note that in
both Simon and Tibshirani’s analysis and in this one, the original maximal information
coefficient was run with default parameters that were optimized for equitability rather than
power against independence. When run with different parameters, its power improves sub-
stantially, though it still does not match the power of MICe. See Appendix Figure I2 and
the discussion in Reshef et al., 2015a.)

Our companion paper (Reshef et al., 2015a) expands on this analysis, conducting an in-
depth evaluation of the the power against independence of the tests described above as well
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Figure 5: Comparison of power of independence testing based on TICe (blue) to MIC with
default parameters (gray), MICe with the same parameters as TICe (black), dis-
tance correlation (purple), and the Pearson correlation coefficient (green) across
several alternative hypothesis relationship types chosen by Simon and Tibshirani
(2012). The relationships analyzed are described in Section 5.2.
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as tests based on mutual information estimation (Kraskov et al., 2004), maximal correlation
estimation (Breiman and Friedman, 1985), HSIC (Gretton et al., 2005, 2007), HHG (Heller
et al., 2013), DDP (Heller et al., 2016), and RDC (Lopez-Paz et al., 2013). These analyses
consider a range of sample sizes and parameter settings, as well as a variety of ways of
quantifying power across different alternative hypothesis relationship types and noise levels.
They conclude that in most settings TICe either outperforms all the methods tested or
performs comparably to the best ones. Appendix Figure I2 contains a reproduction of one
detailed set of power curves from the main analysis in that paper for the reader’s reference.

6. Conclusion

As high-dimensional data sets become increasingly common, data exploration requires not
only statistics that can accurately detect a large number of non-trivial relationships in a
data set, but also ones that can identify a smaller number of strongest relationships. The
former property is achieved by measures of dependence that yield independence tests with
high power; the latter is achieved by measures of dependence that are equitable with respect
to some measure of relationship strength. In this paper, we introduced two related measures
of dependence that achieve these two goals, respectively, through the following theoretical
contributions.

• A new population measure of dependence, MIC∗, that we proved can be viewed in
three different ways: as the population value of the maximal information coefficient
(MIC) from Reshef et al. (2011), as a “minimal smoothing” of mutual information that
makes it uniformly continuous, or as the supremum of an infinite sequence defined in
terms of optimal partitions of one marginal at a time of a given joint distribution.

• An efficient approach for approximating the MIC∗ of a given joint distribution.

• A statistic MICe that is a consistent estimator of MIC∗, is efficiently computable,
and has good equitability with respect to R2 both on a manually chosen set of noisy
functional relationships as well as on a set of randomly chosen noisy functional rela-
tionships.

• The total information coefficient (TICe), a statistic that arises as a trivial side-product
of the computation of MICe and yields a consistent and powerful independence test.

Though we presented here some empirical results for MIC∗, MICe, and TICe, our focus
was on theoretical considerations; the performance of these methods is analyzed in detail
in our companion paper (Reshef et al., 2015a). That paper shows that on a large set of
noisy functional relationships with varying noise and sampling properties, the asymptotic
equitability with respect to R2 of MIC∗ is quite high and the equitability with respect
to R2 of MICe is state-of-the-art. It also shows that the power of the independence test
based on TICe is state-of-the-art across a wide variety of dependent alternative hypotheses.
Finally, it demonstrates that the algorithms presented here allow for MICe and TICe to be
computed simultaneously very quickly, enabling analysis of extremely large data sets using
both statistics together.
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Our contributions are of both theoretical and practical importance for several reasons.
First, our characterization of MIC∗ as the large-sample limit of MIC sheds light on the
latter statistic. For example, while MIC is parametrized, MIC∗ is not. Knowing that MIC
converges in probability to MIC∗ tells us that this parametrization is statistical only: it
controls the bias/variance properties of the statistic, but not its asymptotic behavior.

Second, the normalization in the definition of MIC, while empirically seen to yield good
performance, had previously not been theoretically understood. Our result that this nor-
malization is the minimal smoothing necessary to make mutual information uniformly con-
tinuous provides for the first time a lens through which the normalization is canonical. In
doing so, it constitutes an initial step toward understanding the role of the normalization
in the performance of MIC∗ and MIC. The uniform continuity of MIC∗ and the lack of
continuity of ordinary mutual information also suggest that estimation of the former may
be easier in some sense than estimation of the latter. This is consonant with a recent result
concerning difficulty of estimation of mutual information shown in Ding and Li (2013). It
is also borne out empirically by the substantial finite-sample bias and variance observed in
Reshef et al. (2015a) of the Kraskov mutual information estimator (Kraskov et al., 2004)
compared to MICe.

Third, our alternate characterization of MIC∗ in terms of one-dimensional optimization
over partitions rather than two-dimensional optimization over grids enhances our under-
standing of how to efficiently compute it in the large-sample limit and estimate it from finite
samples using MICe. This is a significant improvement over the previous state of affairs, in
which the statistic MIC could only be approximated heuristically, with even the heuristic
approximation being orders of magnitude slower than the results in this paper now allow.

Finally, the introduction of the total information coefficient provides evidence that the
basic approach of considering the set of normalized mutual information values achievable
by applying different grids to a joint distribution is of fundamental value in characterizing
dependence. Interestingly, a statistic introduced in Heller et al. (2016) follows a similar
approach by considering the (non-normalized) sum of the mutual information values achieved
by all possible finite grids. Consistent with our demonstration here that an aggregative grid-
based approach works well, that statistic also achieves excellent power. (TICe is compared
to the statistic from Heller et al. 2016 in our companion paper, Reshef et al., 2015a.)

Taken together, our results point to joint use of the statistics MICe and TICe as a
theoretically grounded, computationally efficient, and highly practical approach to data ex-
ploration. Specifically, since the two statistics can be computed simultaneously with little
extra cost beyond that of computing either individually, we propose computing both of
them on all variable pairs in a data set, using TICe to filter out non-significant associa-
tions, and then using MICe to rank the remaining variable pairs. Such a strategy would
have the advantage of leveraging the state-of-the-art power of TICe to substantially reduce
the multiple-testing burden on MICe, while utilizing the latter statistic’s state-of-the-art
equitability to effectively rank relationships for follow-up by the practitioner.

Our results, while useful, nevertheless have limitations that warrant exploration in future
work. First, for a sample D from the distribution of some random (X,Y ), all of the sample
quantities we define here use the naive estimate I(D|G) of the quantity I((X,Y )|G) for
various grids G. There is a long and fruitful line of work on more sophisticated estimators of
the discrete mutual information Paninski (2003) whose use instead of I(D|G) could improve
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the statistics introduced here. Second, our approach to approximating the MIC∗ of a given
joint density consists of computing a finite subset of an infinite set whose supremum we
seek to calculate. However, the choice of how large a finite set we should compute in
order to approximate the supremum to a given precision remains heuristic. Finally, though
empirical characterization of the equitability of MICe on representative sets of relationships is
important and promising, we are still missing a theoretical characterization of its equitability
in the large-sample limit. A clear theoretical demarcation of the set of relationships on which
MIC∗ achieves good equitability with respect to R2, and an understanding of why that is,
would greatly advance our understanding of both MIC∗ and equitability.
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Appendix A. Proof of Theorem 6

This appendix is devoted to proving Theorem 6, restated below.

Theorem Let f : m∞ → R be uniformly continuous, and assume that f ◦ ri → f pointwise.
Then for every random variable (X,Y ), we have

(
f ◦ rB(n)

) (
M̂(Dn)

)
→ f(M(X,Y ))

in probability where Dn is a sample of size n from the distribution of (X,Y ), provided
ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

We prove the theorem by a sequence of lemmas that build on each other to bound the
bias of I∗(D, k, ℓ). The general strategy is to capture the dependencies between different
k-by-ℓ grids G by considering a “master grid” Γ that contains many more than kℓ cells.
Given this master grid, we first bound the difference between I(D|G) and I((X,Y )|G) only
for sub-grids G of Γ. The bound is in terms of the difference between D|Γ and (X,Y )|Γ.
We then show that this bound can be extended without too much loss to all k-by-ℓ grids.
This gives what we seek, because then the difference between I(D|G) and I((X,Y )|G) is
uniformly bounded for all grids G in terms of the same random variable: D|Γ. Once this is
done, standard arguments give the consistency we seek.
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In our argument we occasionally require technical facts about entropy and mutual in-
formation that are self-contained and unrelated to the central ideas. These lemmas are
consolidated in Appendix L.

We begin by using one of these technical lemmas to prove a bound on the difference
between I(D|G) and I((X,Y )|G) that is uniform over all grids G that are sub-grids of a
much denser grid Γ. The common structure imposed by Γ will allow us to capture the
dependence between the quantities |I(D|G)− I((X,Y )|G)| for different grids G.

Lemma 35 Let Π = (ΠX ,ΠY ) and Ψ = (ΨX ,ΨY ) be random variables distributed over the
cells of a grid Γ, and let (πi,j) and (ψi,j) be their respective distributions. Define

εi,j =
ψi,j − πi,j

πi,j
.

Let G be a sub-grid of Γ with B cells. Then for every fixed 0 < a < 1 we have

|I(Ψ|G)− I(Π|G)| ≤ O


(logB)

∑

i,j

|εi,j |




when |εi,j | ≤ 1− a for all i and j.

Proof Let P = Π|G and Q = Ψ|G be the random variables induced by Π and Ψ respectively
on the cells of G. Using the fact that I(X,Y ) = H(X) +H(Y )−H(X,Y ), we write

|I(Q)− I(P )| ≤ |H(QX)−H(PX)|+ |H(QY )−H(PY )|+ |H(Q)−H(P )|

where QX and PX denote the marginal distributions on the columns of G and QY and
PY denote the marginal distributions on the rows. We can bound each of the terms on the
right-hand side of the equation above using a Taylor expansion argument given in Lemma 51,
whose proof is found in Appendix L. Doing so gives

|I(Q)− I(P )| ≤ (lnB)


∑

i

O (|εi,∗|) +
∑

j

O (|ε∗,j |) +
∑

i,j

O (|εi,j |)




where

εi,∗ =

∑
j(ψi,j − πi,j)∑

j πi,j

and ε∗,j is defined analogously.
To obtain the result, we observe that

|εi,∗| =
∣∣∣∣∣

∑
j πi,jεi,j∑
j πi,j

∣∣∣∣∣ ≤
∑

j πi,j |εi,j |∑
j πi,j

≤
∑

j

|εi,j |

since πi,j/
∑

j πi,j ≤ 1, and the analogous bound holds for |ε∗,j |.
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We now extend Lemma 35 to all grids with B cells rather than just those that are
sub-grids of the master grid Γ. The proof of this lemma relies on an information-theoretic
result proven in Appendix B that bounds the difference in mutual information between two
distributions that can be obtained from each other by moving a small amount of probability
mass.

Lemma 36 Let Π = (ΠX ,ΠY ) and Ψ = (ΨX ,ΨY ) be random variables, and let Γ be a grid.
Define εi,j on Π|Γ and Ψ|Γ as in Lemma 35. Let G be any grid with B cells, and let δ (resp.
d) represent the total probability mass of Π|Γ (resp. Ψ|Γ) falling in cells of Γ that are not
contained in individual cells of G. We have that

|I(Ψ|G)− I(Π|G)| ≤ O




∑

i,j

|εi,j |+ δ + d


 logB + δ log(1/δ) + d log(1/d)




provided that the |εi,j | are bounded away from 1 and that d, δ ≤ 1/2.

Proof In the proof below, we use the convention that for any two grids G and G′ and any
random variable Z, the expression ∆Z(G,G′) denotes |I(Z|G)− I(Z|G′)|.

Consider the grid G′ obtained by replacing every horizontal or vertical line in G that is
not in Γ with a closest line in Γ. The grid G′ is clearly a sub-grid of Γ. Moreover, Π|G′ (resp.
Ψ|G′) can be obtained from Π|G (resp. Π|G) by moving at most δ (resp. d) probability mass.
This can be shown to imply that

∆Π(G,G′) ≤ O (δ log(1/δ) + δ logB) and ∆Ψ(G′, G) ≤ O (d log(1/d) + d logB) .

The proof of this information-theoretic fact is self-contained and so we defer it to Proposi-
tion 40 in Appendix B, as it is more central to the arguments presented there.

With ∆Φ(G,G′) and ∆Ψ(G′, G) bounded in terms of δ and d, we can bound |I(Ψ|G) −
I(Φ|G)| using the triangle inequality by comparing it with

∆Π(G,G′) + |I (Π|G′)− I (Ψ|G′)|+∆Ψ(G′, G)

and bounding the middle term using Lemma 35, since G′ ⊂ Γ.

We now use the fact that the variables εi,j defined in Lemma 35 are small with high
probability to give a concrete bound on the bias of I(D|G) that is uniform over all k-by-ℓ
grids G and that holds with high probability. It is useful at this point to recall that, given a
distribution (X,Y ), an equipartition of (X,Y ) is a grid G such that all the rows of (X,Y )|G
have the same probability mass, and all the columns do as well.

Lemma 37 Let Dn be a sample of size n from the distribution of a pair (X,Y ) of jointly
distributed random variables. For any α ≥ 0, any ε > 0, and any integers k, ℓ > 1, we have
that for all n

|I(Dn|G)− I((X,Y )|G)| ≤ O

(
log(kℓ)

C(n)α
+

log(kℓn)

nε/4

)

for every k-by-ℓ grid G with probability at least 1−C(n)e−Ω(n/C(n)1+2α), where C(n) = kℓnε/2.
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Proof Fix n, and let Γ be an equipartition of (X,Y ) into knε/4 rows and ℓnε/4 columns.
C(n) is now the number of cells in Γ. Lemma 36, with Π = (X,Y ) and Ψ = D, shows that
|I(D|G)− I((X,Y )|G)| is at most

O




∑

i,j

|εi,j |+ δ + d


 log(kℓ) + δ log(1/δ) + d log(1/d)




provided the εi,j have absolute value bounded away from 1, and provided that d, δ ≤ 1/2.

The remainder of the proof proceeds as follows. We first show that the εi,j are small
with high probability. This will both show that the lemma’s requirement on the εi,j holds
and allow us to bound the sum in the inequality above. We will then use our bound on the
εi,j to bound d in terms of δ. Finally, we will bound δ using the fact that the number of
rows and columns in Γ increases with n. This will give us that d, δ ≤ 1/2 and allow us to
bound the rest of the terms in the expression above.

Bounding the εi,j: We bound the εi,j using a multiplicative Chernoff bound. Let πi,j
and ψi,j represent the probability mass functions of (X,Y )|Γ and D|Γ respectively. We write

P (|εi,j | ≥ δ) = P (πi,j(1− δ) ≤ ψi,j ≤ πi,j(1 + δ))

≤ e−Ω(nπi,jδ
2)

since ψi,j is a sum of n i.i.d. Bernoulli random variables and E (ψi,j) = nπi,j . (See, e.g.,
Mitzenmacher and Upfal 2005.) Setting δ =

√
πi,j/C(n)

1/2+α yields

P

(
|εi,j | ≥

√
πi,j

C(n)1/2+α

)
≤ e−Ω(n/C(n)1+2α).

A union bound over the pairs (i, j) then gives that, with the desired probability, the above
bound on |εi,j | holds for all i, j.

Bounding
∑ |εi,j |: The bound on the εi,j implies that

∑

i

|εi,j | ≤ 1

C(n)1/2+α

∑

i,j

√
πi,j

≤ 1

C(n)1/2+α

√
C(n)

≤ 1

C(n)α

where the second line follows from the fact that the function
∑√

πi,j is symmetric and
concave and therefore, when restricted to the hyperplane

∑
πi,j = 1, must achieve its

maximum when πi,j = 1/C(n) for all i, j.

Bounding d in terms of δ: We use our bound on the εi,j to bound d. We do so by
observing that it implies

ψi,j ≤ πi,j

(
1 +

√
πi,j

C(n)1/2+α

)
= πi,j +

π
3/2
i,j

C(n)1/2+α
≤ πi,j +

πi,j

C(n)1/2+α
≤ 2πi,j
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since πi,j ≤ 1 and C(n) ≥ 1.
The connection to d comes from the fact that for any column j of Γ, this means that

ψ∗,j =
∑

i

ψi,j ≤ 2
∑

i

πi,j = 2π∗,j .

This also applies to the sums across rows. Since d is a sum of terms of the form ψ∗,j and
ψi,∗ for j in some index set J and i in an index set I, and δ is a sum of terms of the form
π∗,j and πi,∗ with the same index sets, we therefore get that d ≤ 2δ.

Bounding δ and obtaining the result: To bound δ, we observe that because G has at
most ℓ− 1 vertical lines and k − 1 horizontal lines, we have

δ ≤ ℓ

ℓnε/4
+

k

knε/4
≤ 2

nε/4
.

This bound on δ allows us to bound the terms involving d and δ by

δ + d ≤ O

(
1

nε/4

)
, δ log

(
1

δ

)
+ d log

(
1

d

)
≤ O

(
log n

nε/4

)
.

Combining all of the bounds gives the desired result.

Our final lemma shows that as long as B(n) doesn’t grow too fast, the bound from the
previous lemma yields a uniform bound on the entire sample characteristic matrix. This is
done by specifying an error threshold for which Lemma 37 yields a bound that holds with
high probability, and then invoking a union bound.

Lemma 38 Let Dn be a sample of size n from the distribution of a pair (X,Y ) of jointly
distributed random variables. For every B(n) = O

(
n1−ε

)
, there exists an a > 0 such that

for sufficiently large n,

∣∣∣M̂(Dn)k,ℓ −M(X,Y )k,ℓ

∣∣∣ ≤ O

(
1

na

)

holds for all kℓ ≤ B(n) with probability P (n) = 1−o(1), where M̂(Dn)k,ℓ is the k, ℓ-th entry
of the sample characteristic matrix and M(X,Y )k,ℓ is the k, ℓ-th entry of the population
characteristic matrix of (X,Y ).

Proof Fix k, ℓ, and any α satisfying 0 < α < ε/(4− 2ε). Lemma 37 implies that with high

probability the difference |M̂(Dn)k,ℓ −Mk,ℓ| is at most

O

(
log(kℓ)

C(n)α
+

log(kℓn)

nε/4

)
≤ O

(
log n

C(n)α
+

log n

nε/4

)

≤ O

(
log n

nαε/2
+

log n

nε/4

)

where the first inequality comes from kℓ ≤ B(n) and second is because C(n) = kℓnε/2 ≥ nε/2.
This bound is at most O (1/na) for every a < min{αε/2, ε/4}, as desired. It remains only
to show that the bound holds with high probability across all kℓ ≤ B(n).
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Lemma 37 states that the probability our bound holds for one fixed pair (k, ℓ) is at least

1− C(n)e−Ω(n/C(n)1+2α) ≥ 1−O (n) e−Ω(nu)

for some positive u. This is because C(n) ≤ B(n)nε/2 ≤ O
(
n1−ε/2

)
for large n, and so our

choice of α ensures that C(n)1+2α = O
(
n1−u

)
for some u > 0.

We can then perform a union bound over all pairs kℓ ≤ B(n): since the number of such
pairs can be bounded by a polynomial in n, we have that the desired condition is satisfied
for all kℓ ≤ B(n) with probability approaching 1.

We are now ready to prove the main result.

Theorem Let f : m∞ → R be uniformly continuous, and assume that f ◦ ri → f pointwise.
Then for every random variable (X,Y ), we have

(
f ◦ rB(n)

) (
M̂(Dn)

)
→ f(M(X,Y ))

in probability where Dn is a sample of size n from the distribution of (X,Y ), provided
ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

Proof Let N denote B(n), let MN = rN (M), and let M̂N (Dn) = rN (M̂(Dn)). We begin
by writing

∣∣∣f
(
M̂N (Dn)

)
− f(M)

∣∣∣ ≤
∣∣∣f

(
M̂N (Dn)

)
− f (MN )

∣∣∣+ |f (MN )− f(M)|

=
∣∣∣f

(
M̂N (Dn)

)
− f (MN )

∣∣∣+ |(f ◦ rN ) (M)− f(M)|

and observing that as n→ ∞, the second term vanishes by the pointwise convergence of f ◦ri
and the fact that B(n) > ω(1). It therefore suffices to show that the first term converges
to zero in probability. Since f is uniformly continuous, we can establish this via a simple
adaptation of the continuous mapping theorem, which says that if the sequence of random
variables Rn → R in probability, and g is continuous, then g(Rn) → g(R) in probability.
We replace R with a second sequence, and replace continuity with uniform continuity.

Let ‖ · ‖ denote the supremum norm on m∞, and fix any z > 0. Then, for any δ > 0,
define

Cδ =
{
A ∈ m∞ : ∃A′ ∈ m∞ s.t. ‖A−A′‖ < δ,

∣∣f(A)− fA′)
∣∣ > z

}
.

This is the set of matrices A ∈ m∞ for which it is possible to find, within a δ-neighborhood
of A, a second matrix that f maps to more than z away from f(A). Because f is uniformly
continuous, there exists a δ∗ sufficiently small so that Cδ∗ = ∅.

Suppose that |f(M̂N (Dn))−f(MN )| > z. This means that either ‖M̂N (Dn)−MN‖ > δ∗,
or MN ∈ Cδ∗ . The latter option is impossible since Cδ∗ = ∅, and Lemma 38 tells us that

P

(
‖M̂N (Dn)−MN‖ > δ∗

)
→ 0 as n grows. We therefore have that

∣∣∣f
(
M̂N (Dn)

)
− f(MN )

∣∣∣ → 0

in probability, as desired.
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Appendix B. Proof of Theorem 8

In this appendix we prove Theorem 8, reproduced below.

Theorem Let P(R2) denote the space of random variables supported on R2 equipped with
the metric of statistical distance. The map from P(R2) to m∞ defined by (X,Y ) 7→M(X,Y )
is uniformly continuous.

The proposition below begins our argument with the simple observation that the family
of maps consisting of applying any finite grid to some (X,Y ) ∈ P(R2) is uniformly equicon-
tinuous. The reason this holds is that (X,Y )|G is a deterministic function of (X,Y ), and
deterministic functions cannot increase statistical distance.

Proposition 39 Let G be the set of all finite grids. The family {(X,Y ) 7→ (X,Y )|G : G ∈
G} is uniformly equicontinuous on P(R2).

Proof To establish uniform equicontinuity, we need to show that, given some (X,Y ) ∈
P(R2) and some ε > 0, we can choose δ to satisfy the continuity condition in a way that
does not depend on G or on (X,Y ). But because deterministic functions cannot increase
statistical distance, we have that if (X,Y ), (X ′, Y ′) ∈ P are at most ε apart then

∆
(
(X,Y )|G, (X ′, Y ′)|G

)
≤ ∆

(
(X,Y ), (X ′, Y ′)

)
= ε

where ∆ denotes statistical distance. Choosing δ = ε therefore gives the result.

At this point it is tempting to try to use continuity properties of discrete mutual infor-
mation to obtain uniform continuity of the characteristic matrix. And indeed, this strategy
does yield that each individual entry of the characteristic matrix is a uniformly continuous
function. However, to obtain continuity of the entire (infinite) characteristic matrix we need
to make a statement about all grid resolutions simultaneously. This is not straightforward
because mutual information is only uniformly continuous for a fixed grid resolution, and the
family {(X,Y ) 7→ I((X,Y )|G) : G ∈ G} is in fact not even equicontinuous.

The normalization in the definition of MIC∗ is what allows us to establish the uniform
continuity of the characteristic matrix despite this problem. To see why, suppose we have
a distribution over a k-by-ℓ grid and we are allowed to move at most δ away in statistical
distance for some small δ. The largest change in discrete mutual information that this can
cause indeed increases as we increase k and ℓ. However, it turns out that we can bound the
extent of this “non-uniformity”: the proposition below shows that as we move away from a
distribution, the discrete mutual information can change only proportionally to the amount
of mass we move, with the proportionality constant bounded by logmin{k, ℓ}. Because
logmin{k, ℓ} is the quantity by which we regularize the entries of the characteristic matrix,
this is exactly enough to make the normalized matrix continuous. This proposition is the
technical heart of our continuity result. And as we show in Corollary 11 when we demon-
strate the non-continuity of the non-normalized characteristic matrix mutual information,
our bound is tight.
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Proposition 40 Let Ik,ℓ : P({1, . . . , k} × {1, . . . , ℓ}) → R denote the discrete mutual in-
formation function on k-by-ℓ grids. For 0 < δ ≤ 1/4, the maximal change in Ik,ℓ over any
subset of P({1, . . . , k} × {1, . . . , ℓ}) of diameter δ (in statistical distance) is

O

(
δ log

(
1

δ

)
+ δ logmin{k, ℓ}

)
.

Proof Without loss of generality, assume k ≤ ℓ, so that logmin{k, ℓ} = log k. Let (X,Y )
and (X ′, Y ′) be two random variables distributed over {1, . . . , k} × {1, . . . , ℓ} that are at
most δ apart in statistical distance. Using I(X,Y ) = H(Y )−H(Y |X), we can express the
difference between the mutual information of these two pairs of random variables as

∣∣I(X,Y )− I(X ′, Y ′)
∣∣ ≤

∣∣H(Y )−H(Y ′)
∣∣+

∣∣H(Y |X)−H(Y ′|X ′)
∣∣ .

We now use Lemma 55, which relates movement of probability mass to changes in entropy
and is proven in Appendix L, to separately bound each of the terms on the right hand
side. Straightforward application of the lemma to |H(Y )−H(Y ′)| shows that it is at most
2Hb(2δ)+3δ log k, where Hb(·) is the binary entropy function. Since Hb(x) ≤ O(x log(1/x))
for x small, this is O(δ log(1/δ) + δ log k).

Bounding the term with the conditional entropies is more involved. Let px = P (X = x),
and let p′x = P (X ′ = x). We have

∣∣H(Y |X)−H(Y ′|X ′)
∣∣ =

∑

x

∣∣pxH(Y |X = x)− p′xH(Y ′|X ′ = x)
∣∣

≤
∑

x

(
px

∣∣H(Y |X = x)−H(Y ′|X ′ = x)
∣∣+ (1)

∣∣p′x − px
∣∣H(Y ′|X ′ = x)

)

=
∑

x

px
∣∣H(Y |X = x)−H(Y ′|X ′ = x)

∣∣+
∑

x

∣∣p′x − px
∣∣ log k

≤
∑

x

px
∣∣H(Y |X = x)−H(Y ′|X ′ = x)

∣∣+ δ log k (2)

where the last line is because
∑

x |px − p′x| ≤ δ and H(Y ′|X ′ = x) ≤ log k.

Now let δx+ be the magnitude of all the probability mass entering any cell in column x,
let δx− be the magnitude of all the probability mass leaving any cell in column x, and let
δx = δx+ + δx−. Using this notation, we can again apply Lemma 55 to obtain

∑

x

px
∣∣H(Y |X = x)−H(Y ′|X ′ = x)

∣∣ ≤
∑

x

px

(
2Hb

(
2δx
px

)
+ 3

δx
px

log k

)

= 2
∑

x

pxHb

(
2δx
px

)
+ 3

∑

x

δx log k

≤ 2
∑

x

pxHb

(
2δx
px

)
+ 3δ log k

≤ 2Hb(2δ) + 3δ log k
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where the last line is by application of Lemma 52 from the appendix, which bounds weighted
sums of binary entropies.

Combining this with Line (2) gives that

∣∣H(Y |X)−H(Y ′|X ′)
∣∣ ≤ 2Hb(2δ) + 4δ log k

which, together with the bound on |H(Y )−H(Y ′)| and the fact thatHb(X) ≤ O(x log(1/x))
for x small, gives the result.

Having bounded the extent to which variation in mutual information depends on grid
resolution, we are now ready to show the uniform continuity of the characteristic matrix.

Theorem Let P(R2) denote the space of random variables supported on R2 equipped with
the metric of statistical distance. The map from P(R2) to m∞ defined by (X,Y ) 7→M(X,Y )
is uniformly continuous.

Proof We complete the proof in three steps. First, we show that a certain family of
functions F is uniformly equicontinuous. Second, we use this to show that a different family
F ′ consisting of functions of the form supg∈A g with A ⊂ F is uniformly equicontinuous.
Finally, we argue that since the entries of M(X,Y ) consist of the functions in F ′, this is
sufficient to establish the result.

Define

F =

{
(X,Y ) 7→ Ik,ℓ((X,Y )|G)

logmin{k, ℓ} : k, ℓ ∈ Z>1, G ∈ G(k, ℓ)

}
.

F is uniformly equicontinuous by the following argument. Given some ε > 0, we know
(Proposition 39) that for any (X ′, Y ′) in an ε-ball around (X,Y ), (X ′, Y ′)|G will remain
within ε of (X,Y )|G for any G. Proposition 40 then tells us that if ε is sufficiently small
then the distance between Ik,ℓ((X

′, Y ′)|G) and Ik,ℓ((X,Y )|G) will be at most

O (ε log(1/ε) + ε logmin{k, ℓ}) .

After the normalization, this becomes at most O(ε(log(1/ε) + 1)), which goes to zero (uni-
formly with respect to (X,Y )) as ε approaches zero, as desired.

Next, define

F ′ = {(X,Y ) 7→M(X,Y )k,ℓ : k, ℓ ∈ Z>1} .
Each map in F ′ is of the form supg∈A g for some A ⊂ F . Therefore, for a given ε > 0,
whatever δ establishes the uniform equicontinuity for F can be used to establish continuity
of all the functions in F ′. (To see this: supg∈A g can’t increase by more than ε if no g
increases by more than ε, and supg∈A g is also lower bounded by any of the g’s, so it can’t
decrease by more than ε either.) Since we can use the same δ for all of the maps in F ′, they
therefore form a uniformly equicontinuous family.

Finally, the δ provided by the uniform equicontinuity of F ′ also ensures that M(X ′, Y ′)
is within ε of M(X,Y ) in the supremum norm, thus giving the uniform continuity of
(X,Y ) 7→M(X,Y ).
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Appendix C. Proof of Proposition 10

Theorem For some function N(k, ℓ), let MN be the characteristic matrix with normaliza-
tion N , i.e.,

MN (X,Y ) =
I∗((X,Y ), k, ℓ)

N(k, ℓ)
.

If N(k, ℓ) = o(logmin{k, ℓ}) along some infinite path in N× N, then MN and supMN are
not continuous as functions of P([0, 1]× [0, 1]) ⊂ P(R2).

Proof Consider a random variable Z uniformly distributed on [0, 1/2]2. Because Z ex-
hibits statistical independence, I∗(Z, k, ℓ) is zero for all k, ℓ. Now define Zε to be uniformly
distributed on [0, 1/2]2 with probability 1 − ε and uniformly distributed on the line from
(1/2, 1/2) to (1, 1) with probability ε.

We lower-bound I∗(Zε, k, ℓ). Without loss of generality suppose that k ≤ ℓ, and consider
a grid that places all of [0, 1/2]2 into one cell and uniformly partitions the set [1/2, 1]2 into
k − 1 rows and k − 1 columns. By considering just the rows/columns in the set [1/2, 1]2 we
see that this grid gives a mutual information of at least ε log(k− 1). Thus, we have that for
all k, ℓ,

I∗(Zε, k, ℓ) ≥ ε logmin{k − 1, ℓ− 1}.
This implies that the limit of MN (Zε) along P is ∞, and so the distance between MN (Z)

and MN (Zε) in the supremum norm is infinite.

Appendix D. Proof of Theorem 16

Theorem Let M be a population characteristic matrix. Then Mk,↑ equals

max
P∈P (k)

I(X,Y |P )
log k

where P (k) denotes the set of all partitions of size at most k.

Proof Define

M∗
k,↑ = max

P∈P (k)

I(X,Y |P )
log k

.

We wish to show that M∗
k,↑ is in fact equal to Mk,↑. To show that Mk,↑ ≤ M∗

k,↑, we
observe that for every k-by-ℓ grid G = (P,Q), where P is a partition into rows and Q is a
partition into columns, the data processing inequality gives I((X,Y )|G) ≤ I(X,Y |P ). Thus
Mk,ℓ ≤M∗

k,↑ for ℓ ≥ k, implying that

Mk,↑ = lim
ℓ→∞

Mk,ℓ ≤M∗
k,↑.

It remains to show that M∗
k,↑ ≤Mk,↑. To do this, we let P be any partition into k rows,

and we define Qℓ to be an equipartition into ℓ columns. We let

M∗
k,ℓ,P =

I(X|Qℓ
, Y |P )

log k
.
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Since M∗
k,ℓ,P ≤Mk,ℓ when ℓ ≥ k, we have that for all P

I(X,Y |P )
log k

= lim
ℓ→∞

M∗
k,ℓ,P ≤ lim

ℓ→∞
Mk,ℓ =Mk,↑

which gives that

M∗
k,↑ = sup

P

I(X,Y |P )
log k

≤Mk,↑

as desired.

Appendix E. Proof of Theorem 18

Theorem Given a random variable (X,Y ), Mk,↑ (resp. M↑,ℓ) is computable to within an
additive error of O(kε log(1/(kε))) + E (resp. O(ℓε log(1/(ℓε))) + E) in time O(kT (E)/ε)
(resp. O(ℓT (E)/ε)), where T (E) is the time required to numerically compute the mutual
information of a continuous distribution to within an additive error of E.

Proof Without loss of generality we prove the claim only for Mk,↑. Given 0 < ε < 1,
we would like a partition into rows P of size at most k such that I(X,Y |P ) is maximized.
We would like to use OptimizeXAxis for this purpose, but while our search problem is
continuous, OptimizeXAxis can only perform a discrete search over sub-partitions of some
master partition Π. We therefore set Π to be an equipartition into 1/ε rows and show that
this gets us close enough to achieve the desired result.

With Π as described, the OptimizeXAxis provides in time O(kT (E)/ε) a partition
P0 into at most k rows such that I (X,Y |P0

) is maximized, subject to P0 ⊂ Π, to within
an additive error of E. To prove the claim then, we must show that the loss we incur by
restricting to sub-partitions of Π costs us at most O(kε log(1/(kε))). In other words, we
must show that

I (X,Y |P )− I (X,Y |P0
) ≤ O(kε)

where P is an optimal partition into rows. Note that we have omitted the absolute value
above, since by the optimality of P , I (X,Y |P ) ≥ I (X,Y |P0

) always.
We prove the desired bound by showing that there exists some P ′ ⊂ Π such that the

mutual information of (X,Y |P ′) is O(kε log(1/(kε)))-close to that achieved with (X,Y |P ).
Since P ′ ⊂ Π gives us that I (X,Y |P0

) ≥ I (X,Y |P ′), we may then conclude that I (X,Y |P )−
I (X,Y |P0

) is at most O(kε log(1/(kε))).
We construct P ′ by simply replacing every horizontal line in P with a horizontal line in

Π closest to it. Since there are at most k − 1 horizontal lines in P , and each such line is
contained in a row of Π containing 1/ε probability mass, performing this operation moves
at most (k−1)ε probability mass. In other words, the statistical distance between (X,Y |P ′)
and (X,Y |P ) is at most (k− 1)ε ≤ kε. Thus, for sufficiently small ε, Proposition 40, proven
in Appendix B, can be used to show that

|I (X,Y |P ′)− I (X,Y |P )| ≤ O

(
kε log

(
1

kε

)
+ kε log

(
1

ε

))
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which yields the desired result.

Remark 41 We do not explore here the details of the numerical integration associated with
the above theorem, since the error introduced by the numerical integration is independent of
the algorithm being proposed. However, standard numerical integration methods can be used
to make this error arbitrarily small with an understood complexity tradeoff (see, e.g., Stoer
and Bulirsch 1980).

Appendix F. Proof of Theorem 21

Theorem Let (X,Y ) be jointly distributed random variables. Then ∂[M ] = ∂M .

Proof Without loss of generality, we show that [M ]k,↑ =Mk,↑. Fix any partition into rows
P . If Qℓ is an equipartition into ℓ columns then

lim
ℓ→∞

I(X|Qℓ
, Y |P ) = I(X,Y |P ),

because the continuous mutual information equals the limit of the discrete mutual informa-
tion with increasingly fine partitions. (See, e.g., Chapter 8 of Cover and Thomas 2006 for a
proof of this.) This means that, letting P (k) denote the set of all partitions of size at most
k, we have

[M ]k,↑ = max
P∈P (k)

I(X,Y |P )
log k

=Mk,↑

where the second equality follows from Proposition 16.

Appendix G. Consistency of MICe in Estimating MIC∗

The consistency of MICe for estimating MIC∗ can be established using the same technical
lemmas that we used to show that MIC → MIC∗. Specifically, we can use Lemma 37, which
bounds the difference, for all k-by-ℓ grids G, between the sample quantity I(Dn|G) and the
population quantity I((X,Y )|G) with high probability, where Dn is a sample of size n from
(X,Y ). That lemma yields the following fact about the sample equicharacteristic matrix,
whose proof is similar to that of Lemma 38.

Lemma 42 Let Dn be a sample of size n from the distribution of a pair (X,Y ) of jointly
distributed random variables. For every B(n) = O

(
n1−ε

)
, there exists an a > 0 such that

for sufficiently large n,

∣∣∣[̂M ](Dn)k,ℓ − [M ](X,Y )k,ℓ

∣∣∣ ≤ O

(
1

na

)

holds for all kℓ ≤ B(n) with probability P (n) = 1 − o(1), where [̂M ](Dn)k,ℓ is the k, ℓ-th
entry of the sample equicharacteristic matrix and [M ](X,Y )k,ℓ is the k, ℓ-th entry of the
population equicharacteristic matrix of (X,Y ).
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In the case of MIC, we proceeded to apply abstract continuity considerations to obtain
our consistency theorem (Theorem 6) from a result analogous to the above lemma. A
similar argument shows us that, in the case of the equicharacteristic matrix as well, we can
estimate a large class of functions of the matrix in the same way. This is stated formally in
the theorem below. As before, we let m∞ be the space of infinite matrices equipped with
the supremum norm, and given a matrix A the projection ri zeros out all the entries Ak,ℓ

for which kℓ > i.

Theorem Let f : m∞ → R be uniformly continuous, and assume that f ◦ ri → f pointwise.
Then for every random variable (X,Y ), we have

(
f ◦ rB(n)

) (
[̂M ](Dn)

)
→ f([M ](X,Y ))

in probability where Dn is a sample of size n from the distribution of (X,Y ), provided
ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

Appendix H. The EquicharClump Algorithm

In Theorem 28, we sketched an algorithm called EquicharClump for approximating the
sample equicharacteristic matrix that is more efficient than the naive computation. In
this appendix, we describe the algorithm in detail, bound its runtime, and show that it
indeed yields a consistent estimator of MIC∗ from finite samples as well as a consistent
independence test when used to compute the total information coefficient. We then present
some empirical results characterizing the sensitivity of the algorithm to its speed-versus-
optimality parameter c.

The results in this section can be summarized as follows: let (X,Y ) be a pair of jointly
distributed random variables, and let Dn be a sample of size n from the distribution of
(X,Y ). For every c ≥ 1, there exists a matrix {M̂}c(Dn) such that

1. There exists an algorithm EquicharClump for computing rB({M̂}c(Dn)) in time
O(n+B5/2), which equals O(n+ n5(1−ε)/2) when B(n) = O(n1−ε).

2. The function

M̃ICe,B(·) = max
kℓ≤B(n)

{M̂}c(·)k,ℓ

is a consistent estimator of MIC∗ provided ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.

3. The function

T̃ICe,B(·) =
∑

kℓ≤B(n)

{M̂}c(·)k,ℓ

yields a consistent right-tailed test of independence provided ω(1) < B(n) ≤ O(n1−ε)
for some ε > 0

We will prove these results in order.
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H.1 Algorithm Description and Analysis of Runtime

We begin by describing the algorithm and bounding its runtime simultaneously. As in the
proof of Theorem 27, we bound the runtime required to approximately compute only the
k, ℓ-th entries of {M̂}c(Dn) satisfying k ≤ ℓ, kℓ ≤ B. To do this, we analyze two portions

of {M̂}c(Dn) separately: we first consider the case ℓ ≥
√
B, in which we must compute

the entries corresponding to all the pairs {(2, ℓ), . . . , (B/ℓ, ℓ)}. We then consider ℓ <
√
B,

in which case we need only compute the entries {(2, ℓ), . . . , (ℓ, ℓ)} since the additional pairs
would all have k > ℓ.

For the case of ℓ ≥
√
B, as in the previous theorem we can simultaneously compute

using OptimizeXAxis the entries corresponding to all the pairs {(2, ℓ), . . . , (B/ℓ, ℓ)} in time
O(|Π|2(B/ℓ)ℓ) = O(|Π|2B), which equals O(c2B3/ℓ2) when we set Π to be an equipartition
of size cB/ℓ. Doing this for ℓ =

√
B, . . . , B/2 gives a contribution of the following order to

the runtime.

O(c2B3)

B/2∑

ℓ=
√
B

1

ℓ2
= O

(
c2B3

)
O

(
1√
B

)

= O(c2B5/2)

For the case of ℓ <
√
B, we can simultaneously compute using OptimizeXAxis the

entries corresponding to all the pairs {(2, ℓ), . . . , (ℓ, ℓ)} in time O(|Π|2ℓ2) which equals
O(c2ℓ4) ≤ O(c2B2) when we set Π to be an equipartition of size cℓ. Summing over the
O(

√
B) possible values of ℓ with ℓ <

√
B gives an upper bound of O(c2B5/2).

H.2 Consistency

Let (X,Y ) be a pair of jointly distributed random variables. For a sample Dn of size
n from the distribution of (X,Y ) and a speed-versus-optimality parameter c ≥ 1, let

{M̂}c(Dn) denote the matrix computed by EquicharClump. (Notice the use of curly

braces to differentiate this from the sample equicharacteristic matrix [̂M ].) We show here

that maxkℓ≤B(n){M̂}c(Dn)k,ℓ is a consistent estimator of MIC∗(X,Y ), and correspondingly

that
∑

kℓ≤B(n){M̂}c(Dn)k,ℓ yields a consistent independence test.

The key to both consistency results is that, though in calculating the k, ℓ-th entry of
{M̂}c(Dn) the algorithm only searches for optimal partitions that are sub-partitions of
some equipartition, the size of the equipartition used always grows as n, k, and ℓ grow large.
Therefore, in the limit this additional restriction does not hinder the optimization. We
present this argument by introducing a population object called the clumped equicharacter-
istic matrix. We observe that this matrix is the limit of the EquicharClump procedure as
sample size grows, and then show that the supremum and partial sums of this matrix have
the necessary properties.

Definition 43 Let (X,Y ) be jointly distributed random variables and fix some c ≥ 1. Let

I{c∗}((X,Y ), k, ℓ) = max
G

I((X,Y )|G)
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where the maximum is over k-by-ℓ grids whose larger partition is an equipartition and whose
smaller partition must be contained in an equipartition of size c ·max{k, ℓ}. The clumped
equicharacteristic matrix of (X,Y ), denoted by {M}c(X,Y ), is defined by

{M}c(X,Y )k,ℓ =
I{c∗}((X,Y ), k, ℓ)

logmin{k, ℓ}

Notice that curly braces differentiate the quantities I{c∗} and {M}c defined above from the
corresponding equicharacteristic matrix quantities I [∗] and [M ].

The following two results, which we state without proof, characterize the convergence of
the output of EquicharClump to the clumped equicharacteristic matrix. These lemmas
can be shown using Lemma 37, which simultaneously bounds the difference, for all k-by-ℓ
grids G, between the sample quantity I(Dn|G) and the population quantity I((X,Y )|G)
with high probability over the sample Dn of size n from (X,Y ).

Lemma 44 Let Dn be a sample of size n from the distribution of a pair (X,Y ) of jointly
distributed random variables. For every B(n) = O

(
n1−ε

)
, there exists an a > 0 such that

for sufficiently large n,

∣∣∣{M̂}c(Dn)k,ℓ − {M}c(X,Y )k,ℓ

∣∣∣ ≤ O

(
1

na

)

holds for all k, ℓ ≤
√
B(n) with probability P (n) = 1 − o(1), where {M̂}c(Dn) denotes the

matrix computed by the EquicharClump algorithm with parameter c on the sample Dn.

Notice that the error bound provided by the above lemma holds not for kℓ ≤ B(n) as
in the analogous Lemma 38 and Lemma 42, but rather for the smaller region defined by
k, ℓ ≤

√
B(n). However, though we do not have uniform convergence outside the region

k, ℓ ≤
√
B(n), we do nevertheless have pointwise convergence there, as stated below.

Lemma 45 Fix k, ℓ ≥ 2. Let Dn be a sample of size n from the distribution of a pair (X,Y )
of jointly distributed random variables. For every B(n) > ω(1), we have that

{M̂}c(Dn)k,ℓ → {M}c(X,Y )k,ℓ

in probability as n grows, where {M̂}c(Dn) denotes the matrix computed by the Equichar-

Clump algorithm with parameter c on the sample Dn.

H.2.1 Consistency for Estimating MIC∗

The consistency of {M̂}c(Dn) for estimating MIC∗ follows from the following property of
the clumped equicharacteristic matrix {M}c, for which we state a proof sketch.

Proposition 46 Let (X,Y ) be a pair of jointly distributed random variables. Then we have
sup{M}c(X,Y ) = MIC∗(X,Y ).
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Proof (Sketch) Let {M}c = {M}c(X,Y ), and let M = M(X,Y ) be the characteristic
matrix. Fix k, and consider the limit {M}ck,ℓ as ℓ grows. The grid chosen for the k, ℓ-th
entry when ℓ > k will contain an equipartition Pℓ of size ℓ on the x-axis, and a partition Qℓ

of size k on the y-axis that is optimal subject to the restriction that Qℓ be contained in an
equipartition of size cℓ. As ℓ grows large, the equipartition Pℓ on the first axis will become
finer and finer until in the limit X|Pℓ

→ X. And the partition Qℓ will be chosen from a
finer and finer equipartition, so that in the limit it approaches an unconditionally optimal
partition Q of size k. The convergence of Qℓ to the optimal partition Q of size k can be
shown to be uniform using Proposition 40. This implies that

{M}ck,↑ = lim
ℓ→∞

{M}ck,ℓ = max
P∈P (k)

I(X,Y |P )
log k

where P (k) denotes the set of all partitions of size at most k. Therefore, the boundary ∂{M}c
of {M}c equals the boundary ∂M of M . Since MIC∗(X,Y ) = sup ∂M (Theorem 15), this
implies that

sup{M}c ≥ sup ∂{M}c = sup ∂M = MIC∗(X,Y ).

On the other hand, {M}c ≤ M element-wise since the optimization for the k, ℓ-th entry
of {M}c is performed over a subset of the grids searched for the k, ℓ-th entry of M . This
means that sup{M}c ≤ supM = MIC∗(X,Y ).

This fact, together with the pointwise convergence of {M̂}c(Dn) to {M}c, suffices to
establish the consistency we seek via standard continuity arguments, which we give in the
abstract lemma below. The lemma applies to a double-indexed sequence indexed by i and
j; in our argument, the index i corresponds to position in the equicharacteristic matrix, and
the index j corresponds to sample size. The sequence A corresponds to the output of the
EquicharClump algorithm, the sequence a corresponds to the clumped equicharacteristic
matrix, and the sequence B corresponds to the sample equicharacteristic matrix.

Lemma 47 Let {Aij}∞i,j=1 and {Bij}∞i,j=1 be sequences of random variables, and let {ai}∞i=1

be a non-stochastic sequence. Assume that the following conditions hold.

1. Aij ≤ Bij almost surely

2. For every i, Aij → ai in probability

3. B′
j = maxi≤j Bij satisfies B′

j → sup{ai} in probability

Then A′
j = maxi≤j Aij converges in probability to sup{ai} as well.

Proof Let a = sup{ai}. We give the proof for the case that a < ∞. However, it is easily
adapted to the infinite case. We must show that for every ε > 0 and every 0 < p ≤ 1,
there exists some N such that P(|A′

j − a| < ε) > p for all j ≥ N . By the definition of a, we
know that there exists some k such that |ak − a| < ε/2. Also, by the convergence of Akj to
ak, there exists some m such that P(|Akj − ak| < ε/2) > 1 − p for all j ≥ m. Thus, with
probability at least 1− p, we have

|Akj − a| ≤ |Akj − ak|+ |ak − a|
≤ ε
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for all j ≥ m.
Next, we observe that since A′

j ≥ Akj for j ≥ k, the above inequality implies that for
j ≥ max{m, k} we have P(A′

j > a− ε) > 1−p. It remains only to show that A′
j doesn’t get

too large, but this follows from the fact that A′
j ≤ B′

j and B′
j → a in probability. Specifically,

we are guaranteed some N ≥ max{m, k} such that P(B′
j < a+ ε) > 1− p for j ≥ N . Since

B′
j < a+ε implies A′

j < a+ε, we have that P(|A′
j − a| < ε) > 1−p for j ≥ N , as desired.

Proposition 48 The function

M̃ICe,B(·) = max
kℓ≤B(n)

{M̂}c(·)k,ℓ

is a consistent estimator of MIC∗ provided ω(1) < B(n) ≤ O(n1−ε) for some ε > 0, where

{M̂}c(·) is the output of the the EquicharClump algorithm.

Proof Let (X,Y ) be a pair of jointly distributed random variables, and let Dn be a sample
of size n from the distribution of (X,Y ). Let {(ki, ℓi)}∞i=1 ⊂ Z+ × Z+ be a sequence of
coordinates with the property that for every number B there exists an index q(B) such that

{(ki, ℓi) : i ≤ q(B)} = {(k, ℓ) : kℓ ≤ B} .

We define Bij = [̂M ](Dj)ki,ℓi , i.e., Bij is the ki, ℓi-th entry of the sample characteristic

matrix evaluated on a sample of size j. We analogously define Aij = {M̂}c(Dj)ki,ℓi , and we
define ai = {M}c(X,Y )ki,ℓi . We observe that by Proposition 46, sup ai = sup{M}c(X,Y ) =
MIC∗.

It is straightforward to see that Aij ≤ Bij . Additionally, Lemma 45 shows that Aij → ai
in probability, and Corollary 26, which states that MICe is a consistent estimator of MIC∗,
shows that B′

j = maxi≤j Bij → MIC∗(X,Y ). In the notation of the lemma, it therefore
follows that A′

j = maxi≤j Aij converges in probability to MIC∗(X,Y ) as well. But this
means that the sub-sequence

A′
q(B(n)) = max

i≤q(B(n))
{M̂}c(Dq(B(n)))ki,ℓi = max

kℓ≤B(n)
{M̂}c(Dq(B(n)))k,ℓ

converges in probability to MIC∗(X,Y ), which implies the result since the sequence A′
j is

monotone.

H.2.2 Consistency for Total Information Coefficient

Similarly to the consistency argument for MIC∗, we begin by exhibiting the relevant property
of the population clumped equicharacteristic matrix.

Proposition 49 Let (X,Y ) be a pair of jointly distributed random variables. If X and Y
are statistically independent, then {M}c(X,Y ) ≡ 0. If not, then there exists some a > 0
and some integer ℓ0 ≥ 2 such that

{M}c(X,Y )k,ℓ ≥
a

logmin{k, ℓ}
either for all k ≥ ℓ ≥ ℓ0, or for all ℓ ≥ k ≥ ℓ0.
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Proof (Sketch) Let {M}c = {M̂}c(X,Y ). Under independence, every entry of {M}c is zero
since I((X,Y )|G) = 0 for any grid G. For the case of dependence, the argument is identical
to that given in the proof of Proposition 32. Specifically, it can be shown that there exists
some index ℓ0, taken without loss of generality to be a column index, and some r > 0 such
that all but finitely many of the entries in the ℓ0-column are at least r. It can then be shown
that for large k, the entries (k, ℓ0), (k, ℓ0 + 1), . . . , (k, k) have non-decreasing values of I [c∗].
This establishes the claim for a = r log ℓ0.

We now show that the above result, together with the uniform convergence of {M̂}c(Dn)
to {M}c(X,Y ), implies the consistency we seek.

Proposition 50 The function

T̃ICe,B(·) =
∑

kℓ≤B(n)

{M̂}c(·)k,ℓ

yields a consistent right-tailed test of independence provided ω(1) < B(n) ≤ O(n1−ε) for

some ε > 0, where {M̂}c(·) is the output of the the EquicharClump algorithm.

Proof Let (X,Y ) a pair of jointly distributed random variables, and let Dn be a sample
of size n from the distribution of (X,Y ). It suffices to show consistency for any deter-
ministic monotonic function of the statistic in question. We therefore choose to analyze

T̃ICe,B(Dn) log(B(n))/B(n).

For the null hypothesis in which X and Y are independent, we observe that since

{M̂}c(Dn) ≤ [̂M ](Dn) element-wise, 0 ≤ T̃ICe,B(Dn) ≤ TICe,B(Dn) as well. Moreover, the
argument given in Appendix K, which shows that TICe,B(Dn)/B(n) converges to 0 in proba-
bility under the null hypothesis, can be adapted to show that TICe,B(Dn) log(B(n))/B(n) →
0 as well. Thus, T̃ICe,B(Dn) log(B(n))/B(n) converges to zero in probability, as required.

For the case that X and Y are dependent, the proof is analogous to the argument given
in Appendix K for TICe. The only difference is that Lemma 44, which guarantees the
uniform convergence of {M̂}c(Dn) to {M}c(X,Y ), applies only to the k, ℓ-th entries for
which k, ℓ ≤

√
B(n), rather than the entries over which we are summing, which are those

for which kℓ ≤ B(n). However, since we require only a lower bound on T̃ICe,B(Dn), we may
neglect these entries because

T̃ICe,B(Dn) =
∑

kℓ≤B(n)

{M̂}c(Dn)k,ℓ ≥
∑

k,ℓ≤
√

B(n)

{M̂}c(Dn)k,ℓ.

It can then be shown, following the argument from Appendix K, that there exists some
a > 0 depending only on B such that, with probability 1− o(1),

logB(n)

B(n)




∑

k,ℓ≤
√

B(n)

{M̂}c(X,Y )k,ℓ − T̃ICe,B(Dn)


 ≤ O

(
#n logB(n)

B(n)na

)
= O

(
logB(n)

na

)
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where #n = B(n) represents the number of pairs (k, ℓ) such that k, ℓ ≤
√
B(n). To obtain

the result, we note that this means that

logB(n)

B(n)
T̃ICe,B(Dn) ≥

logB(n)

B(n)

∑

k,ℓ≤
√

B(n)

{M̂}c(X,Y )k,ℓ −O

(
logB(n)

na

)

and then invoke Proposition 49, which implies that for large n

∑

k,ℓ≤
√

B(n)

{M}c(X,Y ) ≥ Ω

(
B(n)

logB(n)

)
.

H.3 Empirical Characterization of the Performance of EquicharClump

The EquicharClump algorithm has a parameter c that controls the fineness of the equipar-
tition whose sub-partitions are searched over by the algorithm. To gain an empirical un-
derstanding of the effect of c on performance, we computed MICe on the set of relation-
ships described in Section 4.4 using EquicharClump with different values of c. For each
relationship, we compared the average MICe across all 500 independent samples from that
relationship with different values of c. We performed this analysis at sample sizes of n = 250
(Figure H1), n = 500 (Figure H2), and 5, 000 (Figure H3).

We summarize our findings as follows.

• At low (n = 250) and medium (n = 500) sample sizes, using c = 1 introduces a
downward bias for more complex relationships when B(n) = n0.6 is used but not when
B(n) = n0.8 is used. This makes sense since the low sample size and low setting of
B(n) mean that the algorithm is searching over grids with relatively few cells, and so
setting c = 1 hinders its ability to find good grids in this limited search space. This
bias is almost entirely alleviated by setting c ≥ 2.

• At high sample size (n = 5, 000), this effect is still observable but much reduced. This
makes sense since when n is large, B(n) is large as well, and so the number of cells
allowed in the grids being searched over is already large regardless of the exponent α
used in B(n) = nα. Thus, there is less need for the robustness provided by searching
for an optimal grid.

Appendix I. Equitability and Power Analyses from Reshef et al. (2015a)

Figure I1 contains a representative equitability analysis from Reshef et al. (2015a). Figure I2
contains power curves from Reshef et al. (2015a) for a large set of leading methods.
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Figure H1: The effect of the parameter c on the performance of EquicharClump, at n =
250. See Section H.3 for details.
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Figure H2: The effect of the parameter c on the performance of EquicharClump, at n =
500. See Section H.3 for details.
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Figure H3: The effect of the parameter c on the performance of EquicharClump, at n =
5, 000. See Section H.3 for details.
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Figure I1: (Reproduced from Reshef et al., 2015a.) The equitability of measures of depen-
dence on a set of noisy functional relationships, reproduced from Reshef et al.
(2015a). [Narrower is more equitable.] The plots were constructed as in Figure 3.
Mutual information, estimated using the Kraskov estimator, is represented using
the squared Linfoot correlation.
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Figure I2: (Reproduced from Reshef et al., 2015a.) Power of independence testing using
several leading measures of dependence, on the relationships chosen by Simon
and Tibshirani (2012), at 50 noise levels with linearly increasing magnitude for
each relationship and n = 500. To enable comparison of power regimes across
relationships, the x-axis of each plot lists R2 rather than noise magnitude.
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Appendix J. Equitability Analysis of Randomly Chosen Functions with
Additional Noise Model

Figure J1 contains a version of the main text Figure 4, but where noise has been added only
to the dependent variable in each functional relationship, rather to both the independent
and dependent variables.

Appendix K. Consistency of Independence Testing Based on TICe

Here we prove Propositions 32 and 33 and then use those propositions to prove Theorem 34,
which shows that TICe can be used for independence testing.

K.1 Proof of Proposition 32

Proposition Let (X,Y ) be a pair of jointly distributed random variables. If X and Y are
statistically independent, then M(X,Y ) ≡ [M ](X,Y ) ≡ 0. If not, then there exists some
a > 0 and some integer ℓ0 ≥ 2 such that

M(X,Y )k,ℓ, [M ](X,Y )k,ℓ ≥
a

logmin{k, ℓ}

either for all k ≥ ℓ ≥ ℓ0, or for all ℓ ≥ k ≥ ℓ0.

Proof We give the proof only for [M ] = [M ](X,Y ), with the understanding that all parts of
the argument are either identical or similar for M(X,Y ). When X and Y are independent,
then for any grid G, (X,Y )|G exhibits independence as well. Therefore I((X,Y )|G) = 0 for
all grids G, and so every entry of [M ], being a supremum over such quantities, is 0.

For the case that X and Y are dependent, our strategy is to first find, without loss of
generality, a column of [M ] almost all of whose values are bounded away from zero, and
then argue that this suffices.

The dependence of X and Y implies that MIC∗(X,Y ) > 0. By Corollary 22, which
states that sup ∂[M ] = MIC∗(X,Y ), we therefore know that there is at least one non-zero
element of the boundary of [M ], as defined in Definition 14. Without loss of generality,
suppose that this element is [M ]↑,ℓ0 = limk→∞[M ]k,ℓ0 . The fact that this limit is strictly
positive implies that there exists some k0 ≥ ℓ0 and some r > 0 such that [M ]k,ℓ0 ≥ r for all
k ≥ k0. That is, all but finitely many of the entries in the ℓ0-th column of [M ] are at least
r.

We now show that the existence of such a column suffices to prove the claim. Fix some
k > k0 and note that this implies that k > ℓ0. We argue that for all ℓ in {ℓ0, . . . , k}, the
desired condition holds. Since k > ℓ0, the term I [∗]((X,Y ), k, ℓ0) in the definition of [M ]k,ℓ0
is a maximization over grids that have an equipartition of size k on one axis and an optimal
partition of size ℓ0 on the other. Since we allow empty rows/columns in the maximization,
substituting any ℓ satisfying ℓ0 ≤ ℓ ≤ k therefore does not constrain the maximization in
any way and so it cannot decrease I [∗]. In other words, for ℓ satisfying ℓ0 ≤ ℓ ≤ k, we have

I [∗]((X,Y ), k, ℓ) ≥ I [∗]((X,Y ), k, ℓ0).
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Figure J1: Equitability of methods examined on functions randomly drawn from a Gaus-
sian process distribution, using a different noise model. This figure is identical
to Figure 4, but with noise added only to the dependent variable in each rela-
tionship. Each method is assessed as in Figure 4, with a red interval indicating
the widest range of R2 values corresponding to any one value of the statistic;
the narrower the red interval, the higher the equitability. Sample relationships
for each Gaussian process bandwidth are shown in the top right with matching
colors.
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Since k ≥ ℓ, ℓ0, the normalizations in the definition of [M ]k,ℓ and [M ]k,ℓ0 are log ℓ and log ℓ0
respectively. Therefore, we have that

[M ]k,ℓ ≥ [M ]k,ℓ0
log ℓ0
log ℓ

≥ r log ℓ0
log ℓ

where the last inequality is because k > k0. Setting a = r log ℓ0 then gives the result.

K.2 Proof of Proposition 33

Proposition Let (X,Y ) be a pair of jointly distributed random variables. If X and Y are
statistically independent, then SB(M(X,Y )) = SB([M ](X,Y )) = 0 for all B > 0. If not,
then SB(M(X,Y )) and SB([M ](X,Y )) are both Ω(B log logB).

Proof We give the argument for M =M(X,Y ) only, but the argument holds as stated for
[M ](X,Y ) as well.

The result follows from the guarantee given by the Proposition 32 above. In the case of
independence, the proposition tells us that M ≡ 0, which immediately gives that SB(M) = 0
for all B > 0. For the case of dependence, the proposition implies that there is some
a > 0 and some integer ℓ0 ≥ 2 such that, without loss of generality, Mk,ℓ ≥ a/ log ℓ for all
k ≥ ℓ ≥ ℓ0. We convert this into a lower bound on SB(M).

The key is to write the sum one column at a time, counting how many entries in each
column both satisfy k ≥ ℓ ≥ ℓ0 and kℓ ≤ B. For any ℓ satisfying ℓ0 ≤ ℓ ≤

√
B, the entries

(ℓ, ℓ), . . . , (B/ℓ, ℓ) meet this criterion, and there are B/ℓ0−(ℓ0−1) of them. Moreover, since
the guarantee of Proposition 32 tells us that all of these entries are at least a/ log ℓ, we can
lower-bound SB(M) as follows.

SB(A) ≥
√
B∑

ℓ=ℓ0

a

log ℓ

(
B

ℓ
− (ℓ− 1)

)

= aB

√
B∑

ℓ=ℓ0

1

ℓ log ℓ
− a

√
B∑

ℓ=ℓ0

ℓ− 1

log ℓ

= a


B

√
B∑

ℓ=ℓ0

1

ℓ log ℓ
−O(B)




= Ω(B log logB)

where the second-to-last equality is because (ℓ−1)/ log ℓ ≤ ℓ, and the last equality is because∑n
i=i0

1/(i log i) grows like log log n.

K.3 Proof of Theorem 34

Theorem The statistics TICB and TICe,B yield consistent right-tailed tests of indepen-
dence, provided ω(1) < B(n) ≤ O(n1−ε) for some ε > 0.
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Proof We give the proof for TIC only; however, the argument holds as stated for TICe as
well.

Let (X,Y ) be jointly distributed random variables, and let Dn be a sample of size n from
the distribution of (X,Y ). Let M =M(X,Y ) be the characteristic matrix of (X,Y ) and let

M̂(Dn) be the sample characteristic matrix. It suffices to establish the result for a determin-
istic monotonic function of TICB(Dn). We therefore show convergence of TICB(Dn)/B(n)
to zero under the null hypothesis of independence and to ∞ under any alternative. Our
general strategy for doing so is to translate known bounds on our error at estimating en-
tries of M into bounds on the difference between TICB(Dn)/B(n) = SB(n)(M̂(Dn))/B(n)
and SB(M)/B(n). We then obtain the result by invoking Proposition 33, which implies
that SB(M)/B(n) is zero under the null hypothesis but grows without bound under the
alternative.

We know from Lemma 38 (Lemma 42 for the equicharacteristic matrix) that there exists
some a > 0 depending only on B such that

∣∣∣M̂(Dn)k,ℓ −Mk,ℓ

∣∣∣ ≤ O

(
1

na

)

for all kℓ ≤ B(n) with probability 1 − o(1). This means that with probability 1 − o(1) we
have

1

B(n)

∣∣TICB(Dn)− SB(n)(M)
∣∣ ≤ O

(
#n

B(n)na

)

where #n is the number of pairs (k, ℓ) such that kℓ ≤ B(n). It can be shown by taking the
integral of B/x with respect to x that #n = O(B(n) logB(n)). Therefore, the error in the
above bound is at most O(logB(n)/na) = O(1/poly(n)) for our choice of B(n).

We now use Proposition 33 to show that this bound gives the desired result. Under the
null hypothesis of independence, the proposition says that SB(n)(M) = 0 always, and so
since B is a growing function the bound implies that TICB(Dn)/B(n) → 0 in probability.
Under the alternative hypothesis in which (X,Y ) exhibit a dependence, the proposition im-
plies that SB(n)(M)/B(n) > ω(1). Since B is a growing function of n, this means that for
any r > 0, the probability that SB(n)(M)/B(n) > r goes to 1 as n grows. In other words,
TICB(Dn)/B(n) → ∞ in probability.

Appendix L. Information-Theoretic Lemmas

Lemma 51 Let Π and Ψ be random variables distributed over a discrete set of states Γ,
and let (πi) and (ψi) be their respective distributions. Let P = f(Π) and Q = f(Ψ) for some
function f whose image is of size B. Define

εi =
ψi − πi
πi

.

Then for every 0 < a < 1 there exists some A > 0 such that

|H(Q)−H(P )| ≤ (logB)A
∑

i

|εi|

when |εi| ≤ 1− a for all i.
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Proof We prove the claim with entropy measured in nats. A rescaling then gives the
general result.

Let (pi) and (qi) be the distributions of P and Q respectively, and define

ei =
qi − pi
pi

analogously to εi. Before proceeding, we observe that

ei =
∑

j∈f−1(i)

πj
pi
εj .

We now proceed with the argument. We have from Roulston (1999) that

|H(Q)−H(P )| ≤
∣∣∣∣∣
∑

i

(
eipi(1 + ln pi) +

1

2
e2i pi +O

(
e3i
))

∣∣∣∣∣ (3)

≤
∣∣∣∣∣
∑

i

eipi

∣∣∣∣∣+
∣∣∣∣∣
∑

i

eipi ln pi

∣∣∣∣∣+
1

2

∣∣∣∣∣
∑

i

e2i pi

∣∣∣∣∣+
∣∣∣∣∣
∑

i

O
(
e3i
)
∣∣∣∣∣ (4)

=

∣∣∣∣∣
∑

i

eipi ln pi

∣∣∣∣∣+
1

2

∑

i

e2i pi +

∣∣∣∣∣
∑

i

O
(
e3i
)
∣∣∣∣∣ (5)

where the final equality is because
∑

i eipi =
∑

i qi −
∑

i pi = 0. We proceed by bounding
each of the terms in Equation 5 separately.

To bound the first term, we write
∣∣∣∣∣
∑

i

eipi ln pi

∣∣∣∣∣ ≤ −
∑

i

|ei|pi ln pi.

We then note that −∑
i pi ln pi ≤ lnB, and since each of the summands has the same sign

this means that −pi ln pi ≤ lnB. We also observe that

|ei| ≤

∣∣∣∣∣∣
∑

j∈f−1(i)

πj
pi
εj

∣∣∣∣∣∣
≤

∑

j

πj
pi

|εj | ≤
∑

j

|εj |

since πj/pi ≤ 1. Together, these two facts give

−
∑

i

|ei|pi ln pi ≤ (lnB)
∑

i

|ei|

≤ (lnB)
∑

i

|εi|

The second inequality is because each ei is a weighted average of a set of εi and each εi
enters into the expression of exactly one ei.

To bound the second term, we use the fact that pi ≤ 1 for all i, and so
∑

i

e2i pi ≤
∑

i

e2i .
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We then write

∑

i

e2i =
∑

i


 ∑

j∈f−1(i)

πj
pi
εj




2

≤
∑

i

∑

j∈f−1(i)

πj
pi
ε2j

≤
∑

j

ε2j

=
∑

j

O (|εj |)

where the second line is a consequence of the convexity of f(x) = x2 and the third line is
because the sets f−1(i) partition Γ.

To bound the third term, we write
∣∣∣∣∣
∑

i

O
(
e3i
)
∣∣∣∣∣ ≤

∑

i

O
(
|ei|3

)

and then proceed as we did with the second term, using the fact that f(x) = x3 is convex
for x ≥ 0. This gives

∑

i

O
(
|ei|3

)
≤

∑

i

O
(
|εi|3

)
=

∑

i

O (|εi|)

completing the proof.

Lemma 52 Let {wi} ⊂ [0, 1] be a set of size n with
∑

iwi ≤ 1, and let {ui} be a set of n
non-negative numbers satisfying

∑
i ui = a and ui ≤ wi. Then

n∑

i=1

wiHb

(
ui
wi

)
≤ Hb (a)

where Hb is the binary entropy function.

Proof Consider the random variable X taking values in {0, . . . , n} that equals zero with
probability 1 − ∑

iwi and equals i with probability wi for 0 < i ≤ n. Define the random
variable Y taking values in {0, 1} by

P (Y = 0|X = i) =

{
0 i = 0
ui/wi 0 < i ≤ n

.

The function we wish to bound equals H(Y |X) ≤ H(Y ). We therefore observe that

n∑

i=1

wiHb

(
ui
wi

)
≤ H(Y ).
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The result follows from the observation that

P (Y = 0) =
∑

i

P (X = i)
ui
wi

=
∑

i

ui ≤ a.

Lemma 53 Let X be a random variable distributed over k states, with P (X = x) = px.
Let αx ≥ 0 be such that

∑
αx = δ, and define the random variable X ′ by P (X ′ = x) =

(px + αx)/(1 + δ). We have

∣∣H(X ′)−H(X)
∣∣ ≤ Hb(δ) + δ log k

where Hb is the binary entropy function.

Proof Define a new random variable Z by

P
(
Z = 0|X ′ = x

)
=

px
px + αx

, P
(
Z = 1|X ′ = x

)
=

αx

px + αx
.

We will use the fact that H(X ′|Z = 0) = H(X) to obtain the required bound.

To upper bound H(X ′)−H(X), we write

H(X ′)−H(X) ≤ H(X ′, Z)−H(X)

= H(Z) +P (Z = 0)H(X ′|Z = 0) +P (Z = 1)H(X ′|Z = 1)−H(X)

≤ Hb(δ) + (1− δ)H(X) + δH(X ′|Z = 1)−H(X)

= Hb(δ)− δH(X) + δ log k

≤ Hb(δ) + δ log k

where in the fourth line we have used that H(X ′|Z = 1) ≤ log k.

To upper bound H(X)−H(X ′), we write

H(X ′) +H(Z) ≥ H(X ′, Z)

≥ P (Z = 0)H(X ′|Z = 0)

= (1− δ)H(X)

which yields

H(X ′) ≥ (1− δ)H(X)−Hb(δ)

since H(Z) = Hb(δ). Thus, we have

H(X)−H(X ′) ≤ δH(X) +Hb(δ) ≤ δ log k +Hb(δ).
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Lemma 54 Let X be a random variable distributed over k states, with P (X = x) = px.
Let αx ≤ 0 be such that

∑ |αx| = δ, and define the random variable X ′ by P (X ′ = x) =
(px + αx)/(1− δ). We have

∣∣H(X ′)−H(X)
∣∣ ≤ Hb

(
δ

1− δ

)
+

δ

1− δ
log k

where Hb is the binary entropy function. In particular, when δ ≤ 1/3 we have

∣∣H(X ′)−H(X)
∣∣ ≤ Hb(2δ) + 2δ log k.

Proof We observe that we can get from X ′ to X by adding δ/(1− δ) probability mass and
rescaling. The previous lemma then gives the result.

Lemma 55 Let X be a random variable distributed over k states, with P (X = x) = px.
Let αx be such that

∑ |αx| = δ, and define the random variable X ′ by P (X ′ = x) = (px +
αx)/(1 −

∑
αx). That is, X ′ is the result of changing the probability of state x by αx and

then re-normalizing to obtain a valid distribution. If δ ≤ 1/4, we have

∣∣H(X ′)−H(X)
∣∣ ≤ 2Hb(2δ) + 3δ log k

where Hb is the binary entropy function.

Proof Let δ+ be the total magnitude of all the positive αx, and let δ− be the total magnitude
of all the negative αx. We first add all the mass we’re going to add, and apply the first of
the previous two lemmas. Then we remove all the mass we are going to remove, and apply
the second of the two previous lemmas. This yields a bound of

Hb(δ+) + δ+ log k +Hb

(
2

δ−
1 + δ+

)
+ 2

δ−
1 + δ+

log k

≤ Hb(δ+) + δ+ log k +Hb(2δ−) + 2δ− log k

≤ Hb(2δ) + δ log k +Hb(2δ) + 2δ log k

≤ 2Hb(2δ) + 3δ log k

where the first inequality is because 1+ δ+ ≤ 1+ δ < 2 and 2δ− ≤ 2δ ≤ 1/2, and the second
inequality is because δ+ ≤ δ < 2δ ≤ 1/2.
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