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ABSTRACT

A new parameter of dynamical system predictability is introduced that measures the potential utility of
predictions. It is shown that this parameter satisfies a generalized second law of thermodynamics in that for
Markov processes utility declines monotonically to zero at very long forecast times. Expressions for the new
parameter in the case of Gaussian prediction ensembles are derived and a useful decomposition of utility into
dispersion (roughly equivalent to ensemble spread) and signal components is introduced. Earlier measures of
predictability have usually considered only the dispersion component of utility. A variety of simple dynamical
systems with relevance to climate and weather prediction is introduced, and the behavior of their potential utility
is analyzed in detail. For the climate systems examined here, the signal component is at least as important as
the dispersion in determining the utility of a particular set of initial conditions. The simple *‘weather” system
examined (the Lorenz system) exhibited different behavior with the dispersion being more important than the
signal at short prediction lags. For longer lags there appeared no relation between utility and either signal or
dispersion. On the other hand, there was a very strong relation at all lags between utility and the location of
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the initial conditions on the attractor.

1. Introduction

Fundamental limits to predictability have received
considerable attention in recent years due to the pio-
neering work of Lorenz (1963), who showed that ex-
treme sensitivity of weather predictions to the specifi-
cation of initial conditions means that detailed forecasts
are, in general, impossible beyond a certain time limit
(later found by many to be around 2 weeks). This pi-
oneering study led over the following decades to the
extensive study of chaotic dynamics (e.g., Ruelle and
Takens 1971; Grassberger 1983; Eckmann and Ruelle
1985).

Motivated by this fundamental atmospheric uncer-
tainty, the concept of statistical prediction involving an
ensemble of possible projections has become common-
place in weather and climate prediction (e.g., Leith
1974; Palmer et al. 1993; Toth and Kalnay 1993; Shukla
1998). From a theoretical perspective, interesting new
generalized methods for defining predictability involv-
ing information theory and chaotic dynamical concepts
have also been introduced (Carnevale and Holloway
1982; Smith 1996; Smith et a. 1999; Schneider and
Griffies 1999). A notable feature of predictability isthat
ensemble spread may vary considerably indicating that
certain predictions may be much more reliable than oth-
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ers. Some progress (Palmer et a. 1993; Toth and Kalhay
1993; Moore and Kleeman 1998; Palmer 2000) has oc-
curred in utilizing this measure as an indicator of fore-
cast skill. This notion has been formalized into a pa-
rameter of so-called “‘potential predictability.” This
measures ensemble spread relative to the equilibrium or
climatological spread. For the univariate case one may
write

ot

PP=1- —02 1)

where o2 and o2 are the ensemble and climatological
variances, respectively. Such a measure implies that po-
tential predictability declines through a forecast from a
near-perfect value of PP = 1.0 for well-observed initial
conditions through to the no-predictability case PP =
Measures similar to PP have seen extensive appli-
cation in analysis of various predictability scenarios
[see, however, Smith (1996) for alternative atmospheric
viewpoints]. As a measure of forecast utility however
PP is of somewhat less value since although it takes
into account uncertainty it does not reference it to any-
thing except the equilibrium dispersion. Interestingly in
climate prediction this is not the case. Here both in the
case of atmospheric (Madden 1981; Shukla 1998) and
ocean—-atmosphere El Nifio—Southern Oscillation
(ENSO) prediction (Kleeman and Moore 1999) other
forms of referencing are commonly employed. In the
first case, variance due to ensemble spread is compared
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to that due to (low frequency) boundary condition var-
iation. In the second case, the variance is compared to
the mean sguared value of the prediction and this is
found to be mathematically related to the widely used
correlation skill measure. Both these ideas essentially
boil down to determining a signal-to-noiseratio for pre-
dictions. A very simple example illustrates why this
concept is important for prediction utility:

Suppose one is interested in forecasting a single var-
iable with unit climatological variance. A particular en-
semble prediction for this variable may have mean value
+2.0 with ensembl e spread of 1.0. The ensemble spread
may be this large because of the increased instability of
theinitial conditions relative to the typical forecast. Ac-
cording to Eq. (1) we have PP = 0.0 and yet clearly
the prediction has considerable value simply because it
is forecasting a very large departure from normal con-
ditions. If the ensemble spread were referenced to the
mean-squared prediction on the other hand, we obtain
for the ““potential prediction utility” PPU*

W 4
PPU it o B 2

that is, showing considerable utility. This simple ex-
ample actually occurred in the prediction of the huge
1997 El Nifio (Moore and Kleeman 1999).

It is clear that in order to measure prediction utility
we need to consider the behavior of the total forecast
distribution relative to the equilibrium distribution not
simply a comparison of the second moments.

In the next section we formalize a new measure of
utility using information theoretic concepts and show
that is has a number of very desirable properties. In
section 3 we apply the new measure to a number of
interesting (simple) dynamical examples. Section 4 con-
tains a discussion, summary, and ideas for the practical
use of the measure proposed here.

2. Formal definition of utility

Consider the following (classical) perfect model sce-
nario: Due to uncertainty in the value of the initial con-
ditions their values are given by a particular probability
distribution p. This distribution evolves in time as a
(statistical) prediction progresses. Given a reasonable
dynamical system asymptotically this distribution ap-
proaches an equilibrium distribution g. If we assume
ergodicity (i.e., that the long-time behavior of the sys-
tem matches its equilibrium behavior), then this distri-
bution can be thought of as the climatological distri-
bution.

How should one measure the utility of a particular
prediction? For the sake of clarity we will consider first
the case where a perfect model is available. A very ap-

1 The precise functional form of PPU is naturally unimportant. We
use that deployed by Kleeman and Moore (1999).
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pealing way of measuring the usefulness of a prediction
is to ask how much additional information is added to a
particular situation by its availability. Obviously in a
practical situation one already has information to hand
on the past or climatological behavior of the system so
a prediction should add to this. Information theory (e.g.,
Cover and Thomas 1991) providesavery natural measure
of precisely this known as relative entropy R. This gives
the information loss sustained by assuming climatology
when the prediction distribution is available. If adiscrete
set of states are being predicted this is given by

R=3p In(g), 3
where ¢; is the climatological distribution and p; is that
for the prediction. This parameter is also known as the
Kullback Leibler distance as it measures the distance
between the distribution p and g and only vanisheswhen
they are identical. Another very attractive property of
R is that if the dynamical process being modeled is
Markov (an excellent approximation for the case con-
sidered here of perfect geophysical dynamical models)
and G isthe equilibrium (or asymptotic) distribution then
R always decreases monotonically with time (Cover and
Thomas 1991, section 2.9). This property is often re-
ferred to asageneralized second law of thermodynamics
and interestingly only holds for relative entropy and not
absolute entropy. In our context it means that due to
chaos, prediction model utility always declines (mono-
tonically) with the length of the forecast. At a suffi-
ciently long lag utility approaches zero as the prediction
distribution approaches the equilibrium distribution.

Given the above discussion, in the present contri-
bution we shall use the terms relative entropy and pre-
diction utility interchangeably. We shall also distinguish
between prediction utility and the more general term
predictability. This latter term has a variety of defini-
tions in the literature and so we choose to coin a new
term ‘“‘utility” in order to distinguish our measure of
predictability from others.

a. Practical considerations

The definition of predictive utility given aboveiside-
alisticin the sensethat it takes no account of the physical
accuracy of the prediction model. In other words it is
a perfect model measure. In practical situations one
would like to take into account errors in the model as
well. In principle this could be achieved by also com-
puting the rel ative entropy between the model prediction
distribution and that appropriate to the real world. This
quantity measures the amount of information lost by
making the inaccurate model ensemble prediction. Ac-
tually determining the real world distribution is, how-
ever, achallenging task asin general only onerealization
actually occurs [see Smith (1996) for a careful and in-
teresting discussion on this point]. This practical prob-
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One realization from the simplest stochastic oscillator
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FiGc. 1. (a) A single realization from a simple stochastic oscillator.
The integration extends over many cycles of the oscillator. (b) The
spectrum of the oscillator calculated under the (true) assumption that
it isan AR(2) process.

lem will of course occur no matter what kind of measure
of predictability is deployed. Discussion of this rather
subtle issue is deferred to a future publication, our aim
here is try to understand how prediction utility may be
affected by dynamical effects and so a perfect model
scenario is considered appropriate.

3. Utility behavior for different dynamical systems
a. Gaussian distributions

In the case that the prediction and equilibrium dis-
tributions p and q are Gaussian of finite dimension n,
aclosed form analytical expression may be obtained for
the relative entropy. Let us assume that the first and
second moments of these distributions are denoted by

P, (02); and ud, (02);, respectively. Further let usin-
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troduce the continuous distribution form for relative en-
tropy (Cover and Thomas 1991, chapter 9):

sz dxlf dxz---f dxnplng. 4

Given the standard form of Gaussian distributions
(e.g., Gardiner 1985) it is straightforward to show that

det(o?
R = %{ln (a-q)

det(a?)
+ (&P = p9)' (o) H(mP — p9) — n}- ®)

+ trloz(c?)7Y]

Below we shall refer to the first two terms minus n
as the dispersion component and the third term as the
signal component of the relative entropy. It is worth
noting that the first term is the regular entropy measure
proposed and extensively analyzed by Schneider and
Griffies (1999). It is rather revealing to consider the
univariate specialization of this equation:

2 2 2
R:éln(ﬁ)+&+w_1,
2 o} o2 o2
where we are assuming without loss of generality that
the equilibrium distribution has zero mean. It is clear
now that for Gaussian distributions the effects of PP
and PPU expressed through Egs. (1) and (2) are both
incorporated into the relative entropy measure of utility.
Such aresult is hardly surprising since both the relative
dispersion of prediction and climatology as well as the
mean value of the prediction are important in measuring
how ‘‘different” the prediction and climatological dis-
tributions are from each other and hence determining
the information content of the prediction. For the con-
crete example considered in section 1, it is easily seen

that the dispersion part (as well as the first term) of the
relative entropy vanishes and we have

1 (ur)?
R:_(M) _ o
2 o}

b. Sochastically forced damped linear oscillator

This is an interesting first example to consider since
exact analytical solutions are possible and this simple
model has been proposed by several authors as a‘‘null
hypothesis” for a model of the El Nifio—Southern Os-
cillation (see, e.g., Kestin et a. 1998). Consider the
following two-dimensional stochastic differential equa-

Ty e

where F is white with variance C and mean zero. With-
out the forcing, it is easily shown that damped oscil-
lations occur with period T and damping time = where
we have
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A realization of this stochastic differential equationwith
7= T = 36 monthsis displayed in Fig. 1 together with
a spectral analysis. Clearly the oscillation period T is
still noticeable but as the spectrum shows considerable
broadening has occurred due the forcing. The statistical
solution of these equations for the covariances and
means of u, and u, has been discussed by Gardiner
(1985). The covariance matrix at timet (given a deter-
ministic set of initial conditions at time 0) is given by

<ull u1> <ul! u2>
(U, Uy) (U, Uy)

I B | ¢

f dt exp[(t—t)A](o g) expl(t — t)A],

where
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Further the mean vector at time t is given by

(S:) = exp(tA)

Since the equations are linear it follows that all prob-
ability distribution functions will be Gaussian providing
that the stochastic forcing has this property that we as-
sume. In order to evaluate R we therefore require the
covariance and means of the transient and equilibrium
(i.e, ast - o) ensembles. Analytical solutions can be
obtained in a straightforward way by an evaluation? of
exp(sh)

u,(0)
u,(0)|

g 1 . 1 O
COSwS + — SINwS — Sinhws D
T w 21
exp(shA) = e ¥ 0 w=-—.
1 1 T
D— + w?] Sinws CcoswS — — smwsD
g @ 72 T 0

The equilibrium distribution is obtained easily from
this and the means of this distribution are zero as well
as the covariance between u, and u,. The equilibrium
variances are given by

B Crs
A1 + w?7?)

r
gz = —.

a? 2

Calculation now of the relative entropy or prediction
utility R for all prediction ensembles for this dynamical
system is straightforward.

A very important property of this dynamical system
is the fact that the covariance of transient distributions
is independent of the initial conditions for a particular
prediction. This means that only the signal component
of the prediction utility R shows any variation with ini-
tial conditions. Thisis a striking counterexample to the
widespread perception that ensemble spread isthe main
determinant of potential forecast skill. Here the ensem-
ble spread isidentical for all predictions of agiventime
and yet the prediction utility R can actually vary quite
markedly. Figure 2a shows how the utility can vary from
initial condition to initial condition: Utility at various
prediction lags is shown from a particular set of (ran-
domly chosen) 60 initial conditions drawn from the re-
alization of the stochastic system displayed in Fig. 1.
The probability distribution of utility at 12 months is
shown in Fig. 2b. This was constructed using 10 000

initial conditions drawn at random from the realization
of Fig. 1. Thus a prediction from this dynamical system
can be considerably more useful than normal simply
because (by chance) it has a particular set of initia
conditions that *‘contain a large signal.”

Viewing of Fig. 2ashows, as predicted in the previous
section, prediction utility drops monotonically with time
and obviously approaches zero as the ensemble relaxes
toward the equilibrium or climatological distribution. It
is important to note however that this property holds
only when the state vector for the entire dynamical sys-
tem isused to calculate utility. If only part of thisvector
is used, then this no longer holds since information can
flow from one part of the state space to another. For our
particular example one can calculate the utility of just

the variable u,:
2 2 m7.)2
r = L az(uz)] o) | (@ |
o?(U,)|  oEu)  od(u,)

Plotted in F|g. 3 is R, for the case that the initial
conditions have the form u,(0) = 0; u,(0) = ¢ and one
notes the short term rise in utility.

In terms of the damped oscillation of this system
the variables u, and u, are phase shifted by 90° and
so it followsthat information contained in thevariable

2This is obtained by diagonalizing A.
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Fic. 2. (&) The utility at various times of 60 randomly chosen
predictions from a simple stochastic oscillator. (b) The distribution
of utility at a given time for the simple stochastic oscillator.

u, can appear in the variable u, one-quarter of aperiod
later. This situation has practical application because
in the analogy to ENSO discussed above, the variable
u, can be considered to measure eastern Pacific sea
surface temperature (SST) anomaly and therefore be
a measure of the global atmospheric effects of this
phenomenon. The other variable u, is uncorrelated
with these effects and can dynamically be considered
to represent subsurface oceanic temperature pertur-
bations that do not influence SST such as those oc-
curring in the western Pacific. Thusinformation about
the ocean subsurface that has no immediate utility in
global climate prediction can be quite useful some
nine months later when it strongly influences eastern
Pacific SST (and hence global climatic phenomenon).
This fact forms much of the physical basis of current
ENSO prediction.

KLEEMAN
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Fic. 3. The utility at various times of one particular variable from
asimple stochastic oscillator. Note theincreasein utility for the short-
range prediction.

c. Linear oscillator with varying stability

Evidence from ENSO dynamical models (e.g., Moore
and Kleeman 1997; Chen et al. 1997) suggests that the
simple model of the previous subsection should be mod-
ified to take into account potentially large variationsin
the stability of the system caused by both the annual
and ENSO cycles. We modified the model then by al-
lowing the parameter 7 to vary periodically with time.
We chose periods P for this variation of T/3 and T and
assumed a sinusoidal variation in 1/7 of the form

i (1 +2 sin%)/T. (8)

Clearly for certain times the oscillator is now highly
unstable and so one might expect large variations in
ensembl e spread depending on the particular initial con-
ditions chosen. Despite the varying stability of our new
system all ensemble distributions are still Gaussian® and
we may still therefore use the expressions of Eq. (5) to
calculate utility. Completely analytical expressions are
now not easily obtained and so we rely on numerical
models of our equations to estimate the first and second
moments of the prediction ensembles. All results re-
ported here were checked for convergence with respect
to ensemble size.

It is interesting now to compare the relative impor-
tance of the dispersion and signal term in the relative
utility. This can be assessed by plotting the signal term
versus the total utility for a large number (10 000) of
randomly chosen initial conditions and this may be seen
in Fig. 4. Here the probability density for each point on

3 See Gardiner (1985, chapter 4). Note that prediction ensemble
distributions become non-Gaussian only when the operator A becomes
nonlinear.
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the plot is estimated using a ““ circle of influence’” mea-
sure, that is, the number of sample points lying within
a suitably small radius of parameter space* was calcu-
lated and used to estimate density. Results are shown
for prediction times of one-third of the oscillators period
(i.e., 12 months for the system displayed in Fig. 1).
Figure 4a shows the results when the stability varies
with period T/3 and while it is clear that dispersion has
some effect on utility it is still the signal term that ap-
pears more important overall. In Fig. 4b the case where
the stability varies with period T is depicted and now
it is apparent that dispersion becomes more important
to utility although it is clear that the signal term still
remains very important.

The robustness of these results was tested by varying
the stability parameters in Eq. (8) quite significantly.
The only parameter causing a relative change in the
importance of the dispersion and signal terms was the
period of the stability cycle.

d. A stochastically forced coupled ocean—atmosphere
model

The ENSO phenomenon has received considerable
attention in recent years from mathematical modelers
(see, e.g., Zebiak and Cane 1987; Ji et a. 1994; Kirtman
and Shukla 1998) and considerable success has been
obtained both in realistic dynamical simulation as well
as prediction. The phenomenon is broadband with a
spectral intensity peak of around 4 yr. Recently the caus-
es of the broadband (as opposed to oscillatory) behavior
of the phenomenon have received considerable atten-
tion. A leading candidate to explain this (see, e.g., Pen-
land and Sardeshmukh 1995; Kleeman and Moore 1997)
has been stochastic forcing of the low-frequency climate
system by climatically unpredictable atmospheric tran-
sients such as those prevalent in the deep Tropics. Mod-
els of this form are able to accurately reproduce the
observed irregularity of ENSO very robustly (see, e.g.,
Moore and Kleeman 1999; Thompson and Battisti
2000). In addition these models have considerable pre-
dictive skill (Kleeman et al. 1995), which adds credi-
bility to the stochastic scenario. The models are also
computationally inexpensive and so they are useful ve-
hicles for examining the nature of prediction utility in
the ENSO context (see, however, the discussion in sec-
tion 2a concerning imperfect practical models). Herewe
use the stochastic model of Moore and Kleeman (1999),
which consists of an intermediate coupled ocean—at-

4 This was chosen for convenience to be 0.1. Note the axes scale
in Fig. 4 for comparison.
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mospheric forced by stochastic input which has the spa-
tial structure of the first two stochastic optimals which
represent the most efficient ways to induce variance
growth within the stochastic dynamical system [see
Kleeman and Moore (1997) for details on this termi-
nology].

Examination of the ensemble behavior for a variety
of dynamically interesting variables from the model
shows that the short range (up to around 6-9 months)
ensembles are Gaussian to a reasonabl e approximation.
Beyond thisand certainly for the equilibrium probability
distribution, there is evidence of non-Gaussianicity in
the form of aweak bimodality. Whether thisis afeature
of the real system or not is unclear as thereis not really
a sufficiently reliable dataset available to decide this
property with confidence. In order then to calculate util-
ity efficiently for this system, we confine ourselves to
short range predictions and estimate the equilibrium dis-
tribution using a hypothesis of ergodicity for the system
and a very long (10 000 year) integration. Restriction
to short-range predictions is necessary to make this un-
dertaking feasible since only the variance and mean of
the ensembles need calculation rather than the entire
distribution, which would converge more slowly with
ensemble size. We took 100 sets of randomly chosen
initial conditions from the very long integration men-
tioned above and constructed 100 member ensembles
each of 6-month’s duration. This ensembl e size was suf-
ficient to ensure convergence of the second moments of
quantities examined. For the equilibrium distribution we
used the adaptive mixtures algorithm (Priebe 1994) to
estimate the distribution as a (positive) sum of Gaussian
distributions with different first and second moments.
The utility was calculated with respect to the variable
known as Nifio-3, which isthe generally accepted global
parameter of the ENSO state and measures the average
sea surface temperature anomaly in the eastern equa-
torial Pacific (values greater than say 1.0 are commonly
referred to as El Nifio while values less than around
—1.0 are called La Nifa). Since we are not calculating
the utility of the full state variable (this is typically of
order 2000 in dimension for this model), we may expect
that the utility of Nifio-3 predictionswill not universally
decline as indeed was noted.

Displayed in Fig. 5isaplot of utility against forecast
lag for a sample of 20 of the initial conditions. Note
that most of the time there is a monotonic decline but
not always as mentioned. Note also the large variation
in the value of the utility reflecting the apparently large
fluctuation in the potential usefulness of different ENSO
predictions.

Despite the equilibrium distribution not being Gauss-

—

FiG. 4. (a) The probability distribution of predictions from a stochastic oscillator as a function of signal and utility. The stochastic oscillator
has stability that varies with a period of one-third of the period of the oscillation. (b) The same as (a) but with the stability cycle period

extended to be equal to that of the oscillator.
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Fic. 5. The utility of Nifio-3 predictions at varying lags from a stochastically forced coupled ocean—atmosphere model of ENSO (see
text). There are 20 randomly chosen 6-month predictions displayed.

ian in this case, it is still interesting to see whether the
signal and/or dispersion are indicators of utility. Dis-
played in Figs. 6a and 6b are plots of ensemble signal
(the mean-squared value of Nifio-3 for the ensemble)
versus utility and dispersion versus utility. We see that
both these parameters show some relationship with utility
although the relationship with signal seems stronger. In-
terestingly in the case of this dynamical system (unlike
those simple systems considered previously) dispersion
and signal are not independent of each other which is an
indication of nonlinearity. Figure 6¢c shows how these
quantities are related to each other for the 100 ensemble
predictions. The reason for this (nonlinear) relationship
is as follows: The ensemble spread (or variance growth)
depends on the local stability of the initial conditions
used in predictions. Moore and Kleeman (1997) showed
that this stability can be strongly influenced by the par-
ticular phase of ENSO that the initial condition comes
from and in particular when the amplitude of the ENSO
islarge, theinstability isreduced mathematically because
of a nonlinearity in the ocean component of the model,

which restricts the magnitude of SST anomalies to being
smaller than a fixed upper bound.

e. Lorenz attractor

The models considered thus far may be taken as an-
alogs for the kind of behavior one might expect to en-
counter in climate prediction where thereisavery clear
separation between the slow scales (which are consid-
ered climate variables) and the fast scales, which are
considered to be essentially stochastic. For the case of
weather prediction this separation is less apparent (see,
however, e.g., Egger and Schilling 1984) and so one
may expect predictability to possibly have a different
nature. There are many simple dynamical systemsavail-
able that are analogs for weather dynamics and we plan
to investigate anumber of thesein more detail in afuture
publication. Here we confine our attention to perhaps
the best known of such systems, namely, the Lorenz
system (Lorenz 1963), which exhibits chaotic behavior
and has a noninteger dimensional attractor (Nayfeh and
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Balachandran 1995). It has three state variables satis-
fying
X=—-oX—-y) Vy=pXx—-y-xz
zZ=xy — Bz

In this study we chose o = 10, p = 8/3, and B =
28, which represent fairly typical values from the vast
literature on this system. For the numerical results to
be reported below a standard leapfrog method of inte-
gration was deployed to obtain solutions with a time
step of 0.001.

One of the difficulties in applying the formalism of
the previous section to the Lorenz system concerns de-
fining an appropriate formulafor relative entropy. Since
the dimensionality of both the prediction ensemblesand
the complete attractor are less than 3, one must proceed
with considerable caution. In principle, a rigorous for-
mulation is possible for the usual (absolute) entropy
involving Lebesgue measurable sets (Badii and Politi
1997, p285), which are required to define integrals on
noninteger dimension manifolds. Using such method-
ology the author was able to calculate the absolute en-
tropy of the attractor by using the technique of saturation
curves (Nayfeh and Baachandran 1995, section 7.9),
which have been typically used to estimate the so-called
information dimension of the attractor. By choosing suc-
cessively smaller spheres of radiusr to estimate the prob-
ability density of the attractor P(X), one calculates the
attractor expectation of the logarithm of this density:

E = —(In[PX)D)

and plots it against In(r). The slope of this curve be-
comes constant for small enough r and a sufficiently
large sample from the attractor {required to adequately
estimate In[P(X)]} and its value (~2.04) is the so-called
information dimension. It can be demonstrated (see ap-
pendix) then that the intercept (E ~ 3.38) of the linear
section of this curve serves as an adequate definition of
the absolute entropy. Practical problems, however, occur
in the calculation of the relative entropy because the
dimensionality of the prediction ensemble appears for
practical purposes to be less than that of the full at-
tractor.> This behavior is illustrated graphicaly in Fig.
7 where initial conditions from an arbitrarily chosen
point are perturbed along a plane lying approximately
within the attractor. An ensemble sample of 1000 is

5 The dimension of the prediction manifold will actually not change
from that at the initial time but the effects of the cascade to smaller
scales (effectively mixing) ensure that for practical purposes the di-
mension appears low (see Fig. 7 for intuitive insight on this point).

—

Fic. 6. (@) The relationship between the utility of 100 6-month
Nifo-3 predictions and the Gaussian signal of the predictions. (b)
Same as (a) but for the relationship with Gaussian dispersion. (c) The
relationship between Gaussian signal and dispersion.
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Fic. 7. The relaxation of an ensemble of predictions for the Lorenz model from a tight set of
initial conditions. Different colors show the ensemble behavior at different timeswith red showing
itatt = 2000; yellow at t = 4000; green at t = 6000; and black at t = 8000. The blue points
show the equilibrium distribution. Transient (as opposed to equilibrium) distributions are shown

as larger points for clarity.

chosen according to a Gaussian distribution lying in this
plane with a uniform (very small) standard deviation.
The figure shows the evolution of this sample back to-
ward the equilibrium attractor distribution with different
colors representing ensembles at different prediction
times. As can be seen (and has been commented on
often in the literature), the ensemble rapidly elongates
in a preferred direction and this “‘string” convolutes
slowly to fill the equilibrium attractor (represented by
blue points). In practical terms, it is difficult to estimate
the dimension (and then the intercept) of these predic-
tion manifolds because very large sample sizes are re-
quired to carry out the saturation curve technique.

Given these problems we chose to evaluate relative
entropy based on afixed (small) value of r for the eval-
uation of the probability density. This corresponds also
to the practical situation where knowledge of the prob-
ability density function (pdf) is subject to observational
uncertainty. Thus we define

_ (o
RE(n) = <'”Qr(>*<)>' ®)

where the subscript for the P (prediction) and Q (cli-
matology) distributions means that they are evaluated
with reference to a finite-resolution radius r. The ex-
pectation brackets are taken to mean with respect to the
prediction ensemble. This measure of information con-

tent for the prediction ensemble may be interpreted as
the information available at resolution r. The definition
given in Eq. (4) measures the information content of
the prediction at all resolutions.

A sample of 1000 randomly chosen initial conditions
from the attractor were chosen and ensembles of 100 000
members were then constructed for each initial condi-
tion using the (very tight) Gaussian distribution dis-
cussed above.® Climatological probability distributions
on the prediction ensembles [cf. Eq. (9)] were estimated
using 108 pointsfrom the complete attractor, which were
obtained by integrating the system for 5 X 10° time
units and sampling every 5000 time units. We are as-
suming that the system is ergodic, which allows us to
infer the equilibrium distribution from a long-time av-
erage. Values for RE(r) were estimated for r = 0.1,
which is reasonably high resolution for this attractor
from a practical viewpoint.” Values were calculated at
time intervals of 2000 up to alimit of 20 000 by which

6 The convergence of the relative entropy with respect to sample
size was carefully checked and a prediction ensemble of 100 000 was
found to be more than enough to ensure accuracy in the first decimal
place of the estimates presented below.

7 Since the attractor has *‘size”” around 10 units for all dimensions,
this value for r represents knowledge of the dynamical system two
orders of magnitude smaller than the typical excursion, i.e., good
accuracy.
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Utility for the Lorenz Attractor
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Fic. 8. Variation in utility at different times for 20 randomly chosen predictions from the Lorenz system. The units on the vertical axis
are in multiples of 1000.

stage there was typically little discernible difference be-
tween the prediction ensemble and the equilibrium at-
tractor.

The typical behavior of utility with time is shown in
Fig. 8, which displays results for 20 randomly chosen
initial conditions. At most time lags there was a no-
ticeable spread in the values of the utility for differing
initial conditions. Shown in Fig. 9 is the distribution in
values at t = 4000 and t = 8000. Also notable was the
fact that this spread in utility tends to follow the to-
pology of the attractor. In other words, initial conditions
drawn from certain regions of the attractor tend to have
higher prediction utility than those from others. More-
over this “regionalization” of utility was consistent
throughout the prediction time interval so that predic-
tions drawn from a particular part of the attractor tend
to maintain their high or low utility right throughout the
prediction. These effects areillustrated in Fig. 10 where
the utility of predictions at t = 4000 and t = 8000 are
displayed for the entire sample of 1000 initial condi-
tions. The degree of utility is color coded according to
a rainbow schema with high utility predictions having
a violet color and low utility predictions having a red
color. Thisdependence of utility on thelocation of initial
conditions on the attractor has al so been noted by Palmer
(1993) for other measures of predictability.

It isinteresting to consider how the utility here relates
to more traditional measures of predictability. This was
examined in two ways: first the prediction and equilib-
rium ensembles were assumed (for the sake of argument)
to be Gaussian® and the dispersion and signal components
calculated according to Eq. (5). Second the three-dimen-
sional ensemble spread (= Vo2 + o2 + 02), which is
ameasure of predictability often examined in atmospher-
ic contexts, was compared with utility to determine if it
has any skill in determining utility. For short-range pre-
dictions (t = 2000) it was found that the relative entropy
calculated according to a Gaussian assumption showed
a quite strong relation to the measure in Eq. (9). This
(nonlinear) scatter relation is shown in Fig. 11a and a

8 Ascan be seen from Fig. 7 thisisfar from areasonable assumption
for both the equilibrium and prediction ensembles.

decomposition of the Gaussian measure shows that most
of the relation is due to the dispersion (rather than sig-
nal) component (Fig. 11b). For longer lags, this rela-
tionship is no longer a very good one as we see in Fig.
11c, which applies at t = 8000. The three-dimensional
ensemble spread statistic was somewhat less skillful at
predicting utility than dispersion. Figure 12 shows the
scatterplot relation between spread and utility at t =
2000 and t = 4000. Clearly there is some relation at
the short lag but it is probably not as clear as that for
dispersion. For the longer lag the relation is poor (and
worse than that for dispersion). The good relationship
between dispersion and utility noted for short lags sug-
gests that a relatively straightforward generalization of
ensemble spread to a multidimensional environment
(see Schneider and Griffies 1999) could be productive.

It is worth comparing the results found here to those
found by Smith et al. (1999). These authors found that
there was some return of predictability at longer pre-
diction lags for the Lorenz model. Their definition of
predictability was related to our Gaussian dispersion
[see Eq. (5) and the discussion following it] so adirect
comparison of results is not strictly possible, since our
measure clearly contains first (and higher) moments of
the pdf’s (the signal in the Gaussian context) as well as
second moments. It should be noted also that while the
generalized second law of thermodynamics will hold
for utility defined by Eq. (4) and for pdf’'s evolving
according to a time-stepping algorithm for the Lorenz
system [this has been rigorously demonstrated by Cover
and Thomas (1991)] it need not necessarily hold for the
coarse-grained version of relative entropy [Eg. (9)] since
the dynamical system may not necessarily be Markovian
at coarse scales even when it is for al scales. To check
this possibility we carefully examined our large (1000
member) sample for monotonicity of relative entropy
on the timescales examined by Smith et al. (1999). Very
occasionally, relative entropy showed a small increase
with time; however, the effect was probably not statis-
tically significant. Overwhelmingly, relative entropy
showed a decline for almost all 1000 initial conditions
and at all prediction times. This leads one to the initial
conclusion that it is the difference in the measures of
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Fic. 9. () The distribution of utility for the Lorenz system at t =
4000. (b) The same as (a) but at t = 8000.

predictability used here and in Smith et al. (1999) that
may account for the differing conclusions regarding the
predictability of the Lorenz system. These subtle issues
are currently being further investigated by the author
and coworkers.

4. Summary and conclusions

A natural new measure of prediction utility for dy-
namical systemsthat is derived from information theory
is introduced. It measures the additional information
provided by a prediction over that already available (and
usually well known) from the climatological or equi-
librium distribution. This measure is well known in in-
formation theory and is referred to there as relative en-
tropy. It has the intuitively very appealing property that
for Markov processes it declines monotonically to zero
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Fic. 10. (a) A three-dimensional view of utility as a function of
initial condition location for the Lorenz system at t = 4000. The five
colors (red, orange, yellow, green, and blue) show points with in-
creasing values of utility. The color selection of utility rangeischosen
to give roughly equal numbers of points for each category. (b) The
same as (@) but at t = 8000.

with increasingly long-range predictions. Thus asisin-
tuitively obvious, utility of predictions declines with
time until asymptotically they are of no use since they
contain no information that is not already known from
extensive historical observation. This property of en-
tropy (known as the generalized second law of ther-
modynamics) is only applicable to relative entropy and
in fact does not hold for absolute entropy (see Cover
and Thomas 1991). Another way of viewing this mea-
sure of utility is as the distance between the prediction
ensembl e probability distribution and the climatol ogical
distribution. It is also worth emphasizing that this law
holds only for state space as a whole. If a subset is
considered (e.g., asingle variable) there can beincreases
in utility since information can pass from one variable
to another within the system.

It is useful to consider precisely what utility or rel-
ative entropy measures from an information theoretical
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(a) Utility versus ensemble spread (t=2000)
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FiG. 12. (a) The calculated utility vs ensemble spread for the Lorenz
system at t = 2000. (b) The same as (a) but at t = 4000. It is worth
comparing this figure with Fig. 7.

perspective as this gives a concrete shape to this rather
abstract measure. Thus knowledge of the state variables
of a dynamical system before a prediction is made can
come from many sources. Climatological (equilibrium)
information is the prior knowledge we have chosen to
emphasize in this contribution (this is described by the
g distribution discussed previously) as this is typically
what is available in most practical situations. It may be
however that there are other situations where different
prior information might be available (such aswhen only
alimited amount of historical datais available) and then
a different q would be appropriate reflecting this dif-
ferent prior knowledge. The utility measure gives the

—

Fic. 11. (a) The calculated utility vs Gaussian utility for the Lorenz
system at t = 2000. (b) The same as (a) but for Gaussian dispersion.
(c) The same as (&) but for t = 8000.
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precise amount of additional information (measured in
bits) provided by the prediction over that available to
an observer before the prediction was made. If no prior
information was available, then the relative entropy re-
duces to (minus) the usual absolute entropy which then
effectively measures the uncertainty in the prediction
since obviously the mean of the prediction distribution
in this case has no intrinsic value since it cannot be
compared with anything. In high-dimensional systems
such as the atmosphere, specification of the climatolog-
ical distribution may prove challenging; however, the
present formalism allows for this situation as g simply
represents what prior knowledge is available.

Anexplicit analytical expression for utility ispossible
in the case that both the prediction and climatological
ensembles are Gaussian. This expression involves both
the first (mean) and second (covariance) moments of
the prediction ensemble. Such a result is hardly sur-
prising given the distance interpretation of relative en-
tropy and shows that this measure is different from the
often considered potential predictability, whichinvolves
only the second moments of the prediction ensemble.
Analytical expressions are also no doubt possible for
other fixed non-Gaussian distributions but we defer such
analysis to a future publication. For Gaussian distri-
butions a very convenient separation of utility into sig-
nal and dispersion components is possible. The former
issimply afunction of the mean vector of the prediction
ensemble whereas the latter is only a function of the
prediction ensemble covariances. In previous approach-
es the signal contribution to the *‘predictability’ of a
system has tended to be overlooked. Here the relation
between these two important contributors to utility is
made transparent.

A concrete situation where the utility defined hereis
a useful measure (as opposed to previously proposed
measures) can be found in ENSO prediction. Here en-
semble dispersion often does not vary much from one
prediction to another whereas the amplitude of the dom-
inant ENSO oscillation can vary significantly in differ-
ent initial conditions (compare the 1980s with the late
1970s or the early 1990s). In the Gaussian context this
means that the signal term will significantly contribute
to the usefulness of the prediction. The present for-
malism enables us to take into account this effect while
retaining a measure of the usefulness that comes from
a reduction in uncertainty. The generality of the ap-
proach as well as its clear formulation in terms of in-
formation thus makes relative entropy a very attractive
measure of predictability.

In some rough sense, this separation of utility into
signal and dispersion mirrors the two forecast statistics
(anomaly correlation and rms error) often used to eval-
uate the practical skill of both weather and climate pre-
dictions. Kleeman and Moore (1999) showed that anom-
aly correlation for a perfect model requires the first mo-
ments of the prediction ensemble while evidently rms
error is simply a function of the second moments.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLUME 59

The behavior of prediction utility is shown to strongly
depend on the nature of the dynamical system under
consideration. In stochastic modelsthat serve asanalogs
for important climatic dynamical systems (e.g., ENSO)
it is demonstrated that the signal component is often
more important than the dispersion component, a result
often not appreciated in analyzing climate predictability.
These models are very linear in nature (the ENSO cou-
pled model isweakly nonlinear in an amplitude limiting
sense) and it will be interesting to seeif the conclusions
regarding signal hold for more nonlinear stochastic sys-
tems (see below).

In simple models that might be considered analogs
for weather prediction such as the Lorenz system, the
description of prediction utility appears complex and of
aquite different character to the stochastic climate mod-
els. For short prediction lags it appears that there is a
reasonable relation between Gaussian dispersion and
utility whereas the Gaussian signal term isnot very well
related. There is also some relation with the conven-
tional ensemble spread statistic although it isnot asclear
as the dispersion relation. For longer lags there appear
no good relationships between utility and Gaussian
terms or ensemble spread. On the other hand, utility is
seen to be a strong function of the position of initial
conditions on the attractor of this dynamical system and
this relationship is consistent right throughout the pre-
dictions (useful predictions at a particular lag are useful
at all other lags and conversely). In other words, useful
and less useful predictions at all lags tend to come from
the same regions of the attractor. Such a robust result
suggests that considerably more analysis of predict-
ability for such systems and their generalizations to
higher-order systems should be a high priority. There
are clear potential benefits to ensemble weather predic-
tion in a better understanding of these kinds of behavior.
Systems exhibiting a more stochastic and Gaussian (as
opposed to chaotic) behavior have often been advocated
as models for the weather dynamical system (see, e.g.,
Carnevale and Fredriksen 1987; Majda and Timofeyev
2000) and clearly such systems deserve further inves-
tigation using the present formalism. All this work is
presently under way and will be reported on elsewhere;
however, preliminary results suggest that the signal is
more important than dispersion in such systems (see
Kleeman et al. 2001, submitted to Physica D).

The measure introduced here can be compared with
that recently advocated by Schneider and Griffies
(1999). Their measure is the arithmetic differencein the
absolute entropy of the prediction and climatological
(or prior) distributions. It therefore measures the re-
duction in uncertainty of the prediction state vector over
that of the climatological state vector. For Gaussian dis-
tributions their measure reduces to the first term in Eq.
(5).

Finally it is worth remembering that the approach
advocated here is based conceptually on a perfect model
approach (see section 2a). The author is currently ex-
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tending it to take into account model error using plau-
sible assumptions about the nature of this quantity and
this will be reported on elsewhere.
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APPENDIX

Defining Entropy on Noninteger Dimensional
Attractors

Here we derive a practical method for estimating en-
tropy for dynamical systems whose equilibrium (cli-
matological) probability distributions are strange at-
tractors and hence have noninteger dimensionality. Let
us assume that we have M data points available on the
equilibrium manifold and let us define a finite resolution
entropy as follows:

Eu() =~ > In[ ) (A1)

= [ Mrdf
where N,(r) is the number of data points within a Eu-
clidean distance r of data point i on the manifold and
d isthe information dimension of the attractor (see Nay-
feh and Balachandran 1995), which is defined as

d=lim
Mo o
r-0

In(r)

We now define the entropy for all scales as
E = lim E(r).

Moo
r-0

This definition may be compared with that used tra-
ditionally for integer dimension attractors, namely,

E—f dx, dxz---J

where p is the probability density function. The prob-
ability of pointsfrom the dynamical system being within
a sphere of radius r at a point i on the manifold one
may evidently estimate as [N, (r)]/M where the estimate
becomes precise in the limit that M - o. Further the
probability density at point i is evidently

T\ 1)
b= um Ma (n)rn’
r-0

dx,p Inp,

where «(n) is a constant depending only on the dimen-
sion n(r, 4, (4/3)m, . ..). Given that spheresin (Al)
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are implicitly weighted according to their likelihood on
the attractor, that is, by the probability function p, a(n)rn,
it follows in a straightforward manner that the two def-
initions are identical up to a constant that depends only
on n. Absolute entropy is only definable up to a constant
in any case (see Cover and Thomas 1991) so our def-
inition agrees adequately with the usual one in the case
of integer dimension. The usual method (Nayfeh and
Balachandran 1995, section 7.9) of calculating the in-
formation dimension also serves as a method for cal-
culating the entropy: one calculates S(r, M) = —1/M

M_In [N;(r)/M] and plots this against In(r) for suc-
cessively smaller values of r. For r sufficiently small
this relation is linear and since the definition (A1) im-
plies that

Eyu(r) = Sr, M) + d In(r),

it follows that the intercept of this linear relation with
the In(r) = 0 axis of the plot is a good estimate of E.
Clearly the above method could be extended to a def-
inition of relative entropy as well providing the dimen-
sionality of both the prediction ensemble and the equi-
librium ensemble are estimated. As was noted above,
however, this can pose practical problems.
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