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Abstract

Social media are used as main discussion channels by millions of individuals every day.
The content individuals produce in daily social-media-based micro-communications, and
the emotions therein expressed, may impact the emotional states of others. A recent experi-
ment performed on Facebook hypothesized that emotions spread online, even in absence
of non-verbal cues typical of in-person interactions, and that individuals are more likely to
adopt positive or negative emotions if these are over-expressed in their social network.
Experiments of this type, however, raise ethical concerns, as they require massive-scale
content manipulation with unknown consequences for the individuals therein involved.
Here, we study the dynamics of emotional contagion using a random sample of Twitter
users, whose activity (and the stimuli they were exposed to) was observed during a week of
September 2014. Rather than manipulating content, we devise a null model that discounts
some confounding factors (including the effect of emotional contagion). We measure the
emotional valence of content the users are exposed to before posting their own tweets. We
determine that on average a negative post follows an over-exposure to 4.34% more nega-
tive content than baseline, while positive posts occur after an average over-exposure to
4.50% more positive contents. We highlight the presence of a linear relationship between
the average emotional valence of the stimuli users are exposed to, and that of the
responses they produce. We also identify two different classes of individuals: highly and
scarcely susceptible to emotional contagion. Highly susceptible users are significantly less
inclined to adopt negative emotions than the scarcely susceptible ones, but equally likely to
adopt positive emotions. In general, the likelihood of adopting positive emotions is much
greater than that of negative emotions.

Introduction

The study of socio-technical systems, and their effects on our increasingly interconnected soci-
ety, is playing a significant role in the emerging field of computational social science [1-7].
Online social platforms like Facebook and Twitter provide millions of individuals with near-
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unlimited access to information and connectivity [8-10]. The content produced on such plat-
forms has proved to impact society at large: from social and political discussions [11-16], to
emergency and disaster response [17-19], social media conversation affects the offline, physical
world in tangible ways.

The central issue that inspires this work is how the content produced and consumed on
social media affects individuals emotional states and behaviors. We are concerned in particular
with the theory of emotional contagion [20]. Data from a 20-years longitudinal study suggest
that emotions can be passed via social networks, and have long-term effects [21]. Various
recent contributions advanced the hypothesis that emotions may be passed also via online
interactions [22-28]. A recent study performed by Facebook suggests that emotional contagion
occurs online even in absence of non-verbal cues typical of in-person interactions [29]. The
authors of such study performed a controlled experiment selecting a sample of users and, by
manipulating the content on their time-lines, exposed some to increased levels of positive or
negative emotions, as conveyed by the posts produced by their contacts. This experiment
revealed a small but significant correlation between the number of emotionally positive/nega-
tive words in users’ posts and that of the stream they have been exposed to.

The possibility to manipulate the information that users see is clearly well suited to address
questions about the existence and magnitude of emotional contagion, but raises ethical con-
cerns [30-32]: the consequences of massive-scale content manipulations are unknown, and
might include long-term effects on the mental and physical well-being of individuals.

In this study, we use Twitter as case study, and explore the hypothesis of emotional conta-
gion via the social stream. A reasonable expectation is that Twitter connections carry a smaller
emotional contagion power than Facebook ones: users generally adopt these platforms for dif-
ferent purposes —Twitter for information sharing [8], and Facebook to keep in touch with
family and friends (or other social internetworking activities) [33-35]. Yet, a recent neurosci-
ence study found that “reading a Twitter timeline generates 64 percent more activity in the parts
of the brain known to be active in emotion than normal Web use; tweeting and retweeting boosts
that to 75 percent more than a run-the-mill website (This is your brain on Twitter: https://
medium.com/backchannel/this-is-your-brain-on-twitter-cac0725cea2b). In our approach we
observe the Twitter stream without performing content manipulation or re-engineering of any
type (no information filtering, prioritization, ranking, etc.). We rather devise a clever null
model that tries to discounts for emotional contagion and other correlational biases, and a
method to reconstruct the stimuli (in terms of contents and their emotions) users were exposed
to before posting their tweets. This allows us to delve into the theory of emotional contagion
studying single individuals and their responses to different emotions: our analysis suggests a
significant presence of emotional contagion. We show that negative posts on average follow a
4.34% over-exposure to negative contents prior to their production, while positive tweets occur
on average after a 4.50% over-exposure to positive contents. We infer a linear relationship
between the emotional valence of the stimuli and the response for a sample of users whose
activity, and the activity of all their followees, has been monitored for an entire week during
September 2014. Our experiments highlight that different extents of emotional contagion may
occur: in particular, we identify two classes of individuals, namely those highly or scarcely sus-
ceptible to emotional contagion. These two classes respond differently to different stimuli:
highly susceptible individuals are less inclined to adopt negative emotions but equally likely to
adopt positive emotions than the scarcely susceptible ones. Also, the adoption rate of positive
emotions is in general greater than that of negative emotions.

It is worth noting upfront that the observational nature of the experiments, and the techni-
cal limits posed by sentiment analysis algorithms, make emotional contagion a plausible yet
not exclusive explanation: (i) the presence of confounding factors, including network effects
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like homophily and latent homophily, may effect the size of the observed effects; (ii) even the
state of the art among sentiment analysis algorithms, like SentiStrength here employed, is not
able to capture complex language nuances such as sarcasm or ironys; (iii) finally, emotional con-
tagion may be mixed to other emotional alignment effects, such as empathy or sympathy. In
the Discussion section we detail these issues.

Our work furthers the understanding of human emotions expressed via online interactions
while avoiding the inconveniences and ethically-problematic consequences of previous experi-
mental work carried out on other social platforms.

Materials and Methods
Sentiment Analysis

The analysis of the emotional valence of content can be leveraged to produce reliable forecasts
in a variety of different circumstances. [36-40]. There exists a variety of sentiment analysis
algorithms able to capture positive and negative sentiment, some specifically designed for
short, informal texts [41-43]. In this work, we use SentiStrength [44-46] to annotate the tweets
with positive and negative sentiment scores. Compared with other tools, SentiStrength pro-
vides several advantages: it is designed for short informal texts with abbreviations and slang
(features commonly observed in Twitter), and it employs linguistic rules for negations, amplifi-
cations, booster words, emoticons, spelling corrections, particularly well suited to process social
media data. SentiStrength was proven able to capture positive emotions with 60.6% accuracy
and negative emotions with 72.8% accuracy on MySpace [44-46].

SentiStrength assigns to each tweet ¢ a positive S*(¢) and negative S™(¢) sentiment score.
Both scores are on a scale ranging between 1 (neutral) and 5 (strongly positive or negative). To
capture in one single measure the sentiment expressed by each tweet, we define the polarity
score S(t) as the difference between positive and negative sentiment scores assigned to tweet :

S(t) = §*(t) — S (1). (1)

The polarity score S ranges between -4 (extremely negative: S'(f) = 1 and S (f) = 5) to +4
(extremely positive: S*(¢) = 5 and §™(¢) = 1). When positive and negative sentiment scores for
tweet ¢ are the same (S'(¢) = S(¢)), we say that the polarity of tweet ¢ is neutral (S(¢) = 0). The
choice of focusing on the polarity score rather than on both positive and negative sentiment
scores is justified by previous studies that showed how is preferable to measure the overall sen-
timent rather than the intensity of sentiment when dealing with short pieces of texts like tweets
[40, 44-46] —this is intuitively due to the paucity of information conveyed in 140 characters,
and the somewhat simplicity of the sentiment analysis tools adopted as opposed to the intrinsic
difficulty of the task. The distribution of polarity scores is peaked around neutral tweets, and
overall slightly skewed toward positiveness (see Fig 1 and the related discussion). We also
observed that extreme values of positive and negative tweets are comparably represented,
assessing that the algorithm is not producing systematically biased results. In such cases, we
observed that among the most recurring keywords in the tweets with negative polarities exhibit
have feelings like anger (hate, blame, bored, tired, annoyed, etc.), fear (scared, lonely, sadness,
etc.), and contain cussing (wtf, omfg, fuck, etc.), negative superlative adjectives (worst, weirdest,
nastiest, grossest, etc.); on the other hand, tweets annotated as positive intuitively exhibit feel-
ings like joy, excitement, happiness, love, etc.
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Fig 1. Average proportions of positive, neutral, and negative emotions prior to each observed tweet. The Baseline model (left) discounts for the effect
of emotional contagion by means of a reshuffling strategy. The three bars (Negative, Neutral, and Positive) respectively show the average proportions of
emotions prior to posting a negative, neutral, or positive tweet. For each negative tweet posted, on average its author was previously exposed to about 4.34%
more negative tweets than expected by the Baseline model. For each positive tweet posted, on average its author was previously exposed to about 4.50%
more positive content. Note how the distribution of emotions before posting a neutral tweet almost perfectly matches that of the Baseline model. The numbers
inside the columns represent the exact proportions + the standard errors. Error bars represent standard errors.

doi:10.1371/journal.pone.0142390.g001

Data

Our goal is to establish a relation between the sentiment of a tweet and that of the tweets that
its author may have seen in a short time period preceding its posting. To achieve that, we first
collected a set U consisting of a random sample of 3800 users who posted at least one tweet in
English (among those provided by the Twitter gardenhose) in the last week of September 2014.
Via the appropriate Twitter API we also collected the set F of followees of all users in U.

For each tweet ¢ produced by an user  in U in said last week of September 2014, we con-
structed h,, the set of tweets produced by any of u’s followees in a time span of one hour pre-
ceding the posting of t.

For the purpose of our analysis we considered only tweets ¢ such that |h,| > 20. Also, we
considered only tweets (i) in English, and (i) that do not contain URLs or media content (pho-
tos, videos, etc.). Finally, each tweet, both from the target set of users and their followees were
annotated by their sentiment score as discussed above.

It is worth to briefly justify some of the choice we made. The filter English + non-media was
applied to be able to unambiguously attribute a sentiment score to the tweets. The choice of
limiting ourselves to sampling from the last week of September was dictated by the technical
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limitations of the Twitter API to recover the 100% of tweets posted by any given user only to
one week prior to the query time. This precaution allows us to discount for possible sampling
issues, so to reconstruct the full exposures to contents prior to any posting from this established
set of users. Dealing with the 100% of the content excludes possible sampling biases common
to many social media studies [47]. The choice to focus on tweets for which the user was
exposed to at least 20 tweets within 1 hour from their posting allows us to obtain a significant
description of the stimuli the users were exposed to.

We finally separated all tweets in three classes of emotions: negative (polarity score S < -1),
neutral (S = 0), and positive (S > 1). Focusing on the classes of emotions rather than the inten-
sity of emotions will facilitate our analysis and also discount for possible inaccuracies of the
sentiment analysis procedure: several previous studies showed that it is much easier to capture
the overall emotion of a short piece of text, rather than emotion intensities [41-46]. We experi-
mented with other thresholds and the results presented later don’t vary, exhibiting the same
effects: the only differences are the proportions of tweets assigned to the different classes.

Results
Effect of emotional contagion

We here want to test the hypothesis that emotional contagion occurs among social media
users, as suggested by recent works on various social platforms [21, 29]. The idea is that emo-
tions can be passed via online interactions even in absence of non-verbal cues typical of in-per-
son interactions, which are deemed by traditional psychology to be an essential ingredient for
emotional contagion [20]. To test this hypothesis, we need to reconstruct the emotions con-
veyed by the tweets each user was exposed to before posting their own tweets: this will allow us
to determine whether the stimuli are correlated with the responses, namely the emotions subse-
quently expressed by the user.

Our study is purely observational, as we don’t perform any type of controlled experiment
differently from other works [29]. We aim to show that the average sentiment of tweets preced-
ing a positive, negative or neutral tweet are significantly different, and determine the effect size
which, even if small, at scale would have important implications.

To do so, we adopt the following reshuffling strategy aimed at determining the baseline dis-
tributions of positive, neutral, and negative contents independently of emotional contagion: for
each user u in the set of 3,800 users, and for each tweet , produced by u, we have the history
£(t,) of all tweets preceding ¢, in the 1 hour period prior to ¢,’s publication, and we record how
many such tweets se(, ) = |€(t,)| user u was exposed to. We then put all these tweets £(t,), that
represent the stimuli prior to the users’ activities, for all tweets, for all users, in one single
bucket.

To create our reshuffled null model that discounts for the effect of emotional contagion, we
therefore sample with replacement from bucket B, for each tweet ¢, of each user u, a number of
tweets equal to the size s, ). The results for sampling without replacement are substantially
identical. At the end of the procedure, we obtain a baseline distribution of positive, neutral, and
negative sentiment prior to the publication of any tweet, which discounts for the effect of expo-
sure and the possibility of emotional contagion. The baseline distribution of sentiment in the
null model is displayed in Fig 1: the proportion of positive, neutral, and negative sentiment
after the exposure reshuffling is equal to, respectively, 34.44% (+0.07), 48.27% (+0.06), and
17,29% (+0.08). These proportions reflect the three classes of emotions defined as follows: neg-
ative (§ < -1), neutral (§ = 0), and positive (S > 1).

To verify the hypothesis of emotional contagion, we divide all tweets t,, posted by each user
u, in three categories (positive, neutral, and negative) according to their sentiment. For each
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Fig 2. Distributions of positive and negative stimuli before positive and negative responses. The four quadrants show the probability distributions of a
negative response prior to a negative (bottom left) or positive (bottom right) stimulus, or a positive response prior to a negative (top left) or positive (top right)
stimulus.

doi:10.1371/journal.pone.0142390.9002

category, then, we generate the distribution of fraction of positive, neutral, and negative senti-
ments observed in the stimuli, the tweets produced by /s followees prior to the posting of each
t,. The results, displayed in Fig 1, are interpreted as follows: the three stacked-columns identify
the distributions of sentiment prior to posting (from left to right) a negative, neutral, or positive
tweet. For example, a user in our set prior to posting a negative tweet is exposed, on average, to
21.63% (£0.17) negative tweets, 45.02% (+0.11) neutral, and 33.35% (+0.13) positive ones. This
signifies an over-exposure to 4.34% more negative tweets, at the expenses of 1.09% less positive
ones, if compared with our null model of Fig 1. Similarly, prior to posting a positive tweet, a
user in our dataset is exposed, on average, to 16.00% (+0.12) negative tweets, 45.05% (+0.11)
neutral, and 38.94% (+0.14) positive ones. This amounts for an over-exposure of 4.50% more
positive tweets, at the expenses of 1.29% less negative ones, if compared with the null model.
Notably, the distribution of the sentiment of tweets before the posting of a neutral one matches
almost perfectly the distribution of the null model in Fig 1, suggesting that no emotional conta-
gion occurs in the case of neutral tweets. To prove the statistical significance of these differ-
ences, we run a Mann-Whitney U test between the observed distributions in presence of
emotional contagion, and the expected baseline of the null model. Both p values for negative
and positive emotional contagion tests are p < 10~° while no significant difference occurs for
the neutral case; the strength of the statistical significance is further illustrated by the narrow
error bars in Fig 1. The distributions of the positive and negative stimuli, respectively, before
positive and negative responses, are also reported in Fig 2.
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These results suggest the presence of emotional contagion for both negative and positive
sentiment, and seem to show that no emotional contagion occurs prior to posting neutral con-
tents. To verify that these findings were not strongly dependent on some particular conditions,
we performed additional experiments and observed consistent results across different compa-
rable datasets (not discussed here to avoid confusion) and sampling methods.

To further validate this hypothesis, and in particular to focus only on positive and negative
contagion, we here propose another measure, that we call valence, that can be computed on
any set (bucket) of tweets for which the sentiment is computed. Given a bucket of tweets b, its
valence V() is given by the following formula:

Py
V(b) =2 m— 1 (2)
where p;, and n, represent, respectively, the fraction of positive and negative tweets in bucket b.
This measure ranges between -1 and +1: the lower the score, the larger the disproportion
toward negative emotion, and vice-versa.

Since for each tweet t, produced by each user u we already obtained the history £(¢,) of all
tweets preceding t, in the 1 hour period prior to t,’s publication, we can compute the valence
scores V(£(t,)) for all histories. This allows us to represent the difference in intensity between
positive and negative stimuli each user u was exposed to prior to posting each tweet t,,.
Therefore, we calculate the valence scores V(£(t,)) for all tweets t, in our dataset. This gener-
ates a distribution of values between -1 and +1, each value representing the valence of the
stimulus of the associated tweet. We then bin these stimuli valence values, in 20 bins of length
0.05 (see the x-axis of Fig 3). Each bin x;, contains, again, a set of tweets (the responses) for
which we already calculated the sentiment (positive, negative, or neutral). We can calculate
also the valence of each x;. Such values will represent the response valence for a given value
(bin) of stimulus valence. The results, illustrated in Fig 3, show a very strong linear relation-
ship (R* = 0.975) between the valence of the stimulus and the valence of the response. For
example, a very strong negative stimulus with valence -1 generates a response valence of
about -0.8. Similarly, a very strong positive stimulus of valence +1 will trigger a response of
valence around +0.6. Other regression models have also been tried, on this and other similar
datasets: the linear model seems to best capture the stimulus-response dynamics without
over-fitting the data. These results suggest a common mechanism of contagion in both nega-
tive and positive contents: in general, a strongly negative stimulus is followed by negative
responses, while a strongly positive stimulus generates positive responses. Neutral stimuli
also trigger neutral responses.

Extent of emotional contagion and individuals’ susceptibility

Using data collected for the previous experiment, we can also explore if different users have dif-
ferent susceptibility to emotional contagion, for example by measuring how many of their
tweets reflect the over-represented stimulus prior to the postings. We now focus our attention
on the tweets posted by each of the 3,800 users in our dataset and all tweets produced by their
followees.

To determine whether user u was susceptible to emotional contagion prior to posting any of
her/his tweets, for each tweet t, posted by u we calculate the proportions of positive p*, neutral
p°, and negative p~ polarities computed from the distribution of all tweets produced by /s fol-
lowees in the 1 hour prior to t,’s posting time. This triplet O = {p*, p°, p"} has three entries that
indicate the proportion of each of the three sentiment states {+, °, —}. These tweets are consid-
ered as the stimulus to which user u was exposed prior to posting tweet ,,.
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Fig 3. Relationship between stimulus and response valence in Twitter. The emerging linear relationship (R® = 0.975) suggests that there is a strong
correlation between stimuli and responses in terms of valence (difference between positive and negative sentiments in the set of tweets).

doi:10.1371/journal.pone.0142390.g003

The following baseline proportions are derived by the previous experiment (Fig 3):

B~ = {21.63,45.02,33.35)
B = {16.49,48.95,34.56}
B* = {16.00,45.05,38.94}.

We therefore determine the smallest Euclidean distance L, (O, B°) among the distances
between the observed distribution O, and any of the three baseline sentiment proportions B~, B
°,and B". This to determine the nature of the stimulus to which u is exposed prior to posting
(over-exposure to negative, neutral, or positive):

(0, - B’ (3)

ie{+,°,—}

L,(0,B°) = min

se{+,°,—}

If the smallest distance is, say, L, (O, B™) it means that, in presence of emotional contagion,
u would be expected to post a negative tweet given the over-exposure to negative content. Simi-
larly, if the smallest distance is L, (O, B"), then u is expected to post a positive tweet, in case s/
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doi:10.1371/journal.pone.0142390.9004

he being affected by emotional contagion. If u were to tweet according to the stimuli (s)he is
exposed to, then we consider ¢, to be outcome of susceptibility to emotional contagion; vice-
versa, t,, is counted as instance of u being insusceptible to emotional contagion given the
stimuli.

We perform this analysis for all tweets of all users, and characterize each user u with a frac-
tion summarizing the proportion of tweets affected by emotional contagion. Fig 4 shows the
distribution of this measure for all users (the inset of Fig 4 illustrates the cumulative distribu-
tion): it is evident that about 80% of the users have up to 50% of their tweets affected by emo-
tional contagion, while the remainder 20% exhibits very high susceptibility and demonstrate
that more than 50% of the content they post suggests the presence of emotional contagion.

We further divide the users in two categories, highly and scarcely susceptible to emotional
contagion, by selecting the top and bottom 15% of the distribution, respectively. For these two
classes independently we compute the fraction of susceptible tweets that are positively or nega-
tively affected by emotional contagion, we average these fractions across users, and we plot the
results in Fig 5. We can note that two very different emotional contagion dynamics exist: the
group of users who are more susceptible to emotional contagion, are significantly more
inclined to adopt positive emotions rather than negative. The vice-versa happens for users
scarcely susceptible to emotional contagion: they adopt much more frequently negative
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adopting positive emotions is much greater than that of negative emotions.

doi:10.1371/journal.pone.0142390.9005

emotions in the uncommon occurrences when they are susceptible to emotional contagion.
However, the probability of a contagion of positive emotions is much greater than the negative
case in both susceptibility classes: the low- and high-susceptibility groups are, respectively, 1.6
times and 3.96 times more likely to adopt positive emotions, with respect to negative ones.

Discussion

In this study we performed an extensive observational analysis of the patterns of emotional
contagion on a sample of Twitter users. Differently from a study carried out on Facebook [29],
where controlled experiments were performed to manipulate the exposure to arbitrary emo-
tions, in this study we observe and measure emotional contagion without interacting with the
users. The design of a clever null model, which discounts some confounding factors including
contagion, allows us to highlight the effect of emotional contagion on a sample of 3,800 users
whose activity comprehending the entire history of stimuli they were exposed to and responses
they produced has been observed throughout a week during the end of September 2014. Our
results suggest a number of insights: we can hypothesize the presence of emotional contagion
even without the hassle (and ethical concerns) of manipulating users time-lines. We observed
that, on average, on our sample of Twitter users a negative tweet follows an over-exposure to
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4.34% more negative stimuli, whereas a positive one follows an over-exposure to 4.50% more
positive tweets. A strong linear relation emerges between the valence of the stimuli and that of
the responses, suggesting that a common mechanism of contagion exists regulating both nega-
tive and positive emotions. Finally, by dividing the users in two categories (highly and scarcely
susceptible), we observed how, in general, positive emotions are more prone to contagion, and
that highly-susceptible users are significantly more inclined to adopt positive emotions.

Due to the observational nature of our experiment, our study is certainly not immune of
possible shortcomings: emotional contagion may not be the only observed phenomenon, but it
might co-occur with other network effects. For example, theoretical work by Shalizi and
Thomas [48] suggests that in observational studies like ours it is not possible to separate conta-
gion from homophily. In a world entirely dominated by homophily, our observation would not
imply an effect: users prone to produce negative contents would link only to others with same
emotional alignment (and vice-versa for positive-inclined ones).

However, in the real world it makes sense to assume a mixture of contagion and homophily
dynamics, as illustrated by some recent studies [49-52]. In such a scenario, our observations
suggest the presence and the extent of emotional contagion, while further work will be needed
to understand the effect of homophily and how that intertwines with emotional contagion. To
this end, we suggest the possibility of designing an in-silico experiment in which homophily is
arbitrarily tuned by artificially affecting the social network structure, for example by introduc-
ing an ad-hoc community structure [53-55], and contagion is thus analyzed in light of the con-
trolled homophily mechanism.

Another interesting aspect worth mentioning is that, in absence of non-verbal cues, disen-
tangling some nuances of the dynamics behind emotions and contagion may be challenging:
for example, it is quite hard to tell apart contagion from empathy; in some instances, users
might also pretend to sympathize (without necessarily doing so) by aligning their expressions
with others’ contents; yet, parts of emotional contents may be picked up within conversations
as responses but without actually being indications of one’s emotions. Interestingly, these limi-
tations are not due to the observational nature of the study —the above challenges would hold
true also for the most carefully designed controlled experiments— and we point the interested
readers to social and cognitive psychology literature for further investigations of such phenom-
ena [56-59].

Other fundamental limits arise from the current state of the art in sentiment analysis algo-
rithms: modern approaches, like SentiStrength here employed, although more robust and pre-
cise than ever before, still produce crude heuristics and hardly capture the many nuanced
expressions that human language is able to convey. The inability to capture complex contexts
triggering expressions like sarcasm or irony, the attribution of equal weights to all emotions,
the suppression of multiple emotions, the presence of ambiguity (i.e., tweets that include at the
same time positive and negative emotions), etc., are only few examples of the sources of poten-
tial noisy outputs of such methods. It is however worth noting that such limits apply to all stud-
ies that make usage of sentiment analysis tools, and don’t inherently affect the validity of the
presented findings.

Concluding, our study relies on an idealized world in which each user reads all contents (sti-
muli tweets) he/she is exposed to during one hour prior to the production of one of his/her
own tweets. Certainly, this oftentimes might not correspond to the reality: recent studies
explored the effects of limited cognitive capacity on social media users, unveiling that memory
and limited attention play a crucial role in the dynamics of information production and con-
sumption [60-62]. In the future, it would be interesting to perform controlled experiments in
which these dynamics are intermingled with contagion effects.
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