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Psychophysics, as its metaphysical sounding name in-
dicates, is the scientific discipline that explores the con-
nectionbetween physical stimuli and subjective responses.
The psychometric function (PF) provides the fundamental
data for psychophysics, with the PF abscissa being the
stimulus strength and the ordinatemeasuring the observer’s
response. I shudder when I think about the many hours re-
searchers (including myself ) have wasted in using ineffi-
cient procedures to measure the PF, as well as when I see
procedures being used that do not reveal all that could be
extracted with the same expenditure of time—and, of
course, when I see erroneous conclusionsbeing drawn be-
cause of biased methodologies.The articles in this special
symposium issue of Perception & Psychophysicsdeal with
these and many more issues concerning the PF. I was a
reviewer on all but one of these articles and have watched
them mature. I have now been given the opportunity to
comment on them once more. This time I need not quibble
with minor items but rather can comment on several deeper
issues. My commentary is divided into three sections.

1. What is the PF and how is it specified? Inspired by
Strasburger’s article (Strasburger, 2001a) on a new defin-
ition of slope as applied to a wide variety of PF shapes, I
will comment on several items: the connections between

several forms of the psychometric function (Weibull, cu-
mulative normal, and d¢ ); the relationship between slope
of the PF with a linear versus a logarithmic abscissa; and
the connection between PFs and signal detection theory.

2. What are the best experimental techniques for mea-
suring the PF? In most of the articles in this symposium,
the two-alternative forced choice (2AFC) technique is used
to measure threshold. The emphasis on 2AFC is appropri-
ate; 2AFC seems to be the most common methodologyfor
this purpose. Yet for the same reason I shall raise questions
about the 2AFC technique. I shall argue that both its limited
ability to reveal underlying processes and its inefficiency
should demote it from being the method of choice. Kaern-
bach (2001b) introducesan “unforced choice” method that
offers an improvementover standard 2AFC. The article by
Linschoten,Harvey, Eller, and Jafek (2001) on measuring
thresholds for taste and smell is relevant here: Because
each of their trials takes a long time, an optimal method-
ology is needed.

3. What are the best analytic techniques for estimating
the properties of PFs once the data have been collected?
Many of the papers in this special issue are relevant to this
question.

The articles in this special issue can be divided into two
broad groups:Those that did not surprise me, and those that
did. Among the first group, Leek (2001) gives a fine his-
torical overview of adaptiveprocedures. She also provides
a fairly complete list of references in this field. For details
on modern statisticalmethods for analyzingdata, the pair of
papers by Wichmann and Hill (2001a, 2001b) offer an ex-
cellent tutorial. Linschoten et al. (2001) also provide a
good methodologicaloverview, comparingdifferent meth-
ods for obtainingdata. However, since these articles were
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nonsurprising and for the most part did not shake my pre-
vious view of the world, I feel comfortable with them and
feel no urge to shower them with words. On the other hand,
there were a number of articles in this issue whose re-
sults surprised me. They caused me to stop and consider
whether my previous thinkinghad been wrong or whether
the article was wrong. Among the present articles, six
contained surprises: (1) the Miller and Ulrich (2001) non-
parametric method for analyzing PFs, (2) the Strasburger
(2001b) finding of extremely steep psychometric func-
tions for letter discrimination,(3) the Strasburger (2001a)
newdefinitionof psychometricfunctionslope, (4) the Wich-
mann and Hill (2001a) analysis of biased goodness-of-fit
and bias due to lapses, (5) the Kaernbach (2001a) modifi-
cation to 2AFC, and (6) the Kaernbach (2001b) analysis
of why staircase methods produce slope estimates that are
too steep. The issues raised in these articles are instruc-
tive, and they constitute the focus of my commentary.
Item 3 is covered in Section I, Item 5 will be discussed in
Section II, and the remainder are discussed in Section III.
A detailed overview of the main conclusions will be pre-
sented in the summary at the end of this paper. That might
be a good place to begin.

When I began working on this article, more and more
threads captured my attention, causing the article to be-
come uncomfortably large and diffuse. In discussing this
situation with the editor, I decided to split my article into
two publications. The first of them is the present article,
focused on the nine articles of this special issue and in-
cluding a number of overview items useful for comparing
the different types of PFs that the present authors use. The
second paper will be submitted for publication in Percep-
tion & Psychophysics in the future (Klein, 2002).

The articles in this special issue of Perception& Psycho-
physics do not cover all facets of the PF. Here I should like
to single out four earlier articles for special mention:King-
Smith, Grigsby, Vingrys, Benes, and Supowit (1994)
provide one of the most thoughtful approaches to likeli-
hood methods, with important new insights. Treutwein’s
(1995) comprehensive, well-organized overview of adap-
tive methods should be required reading for anyone inter-
ested in the PF. Kontsevich and Tyler’s (1999) adaptive
method for estimating both threshold and slope is prob-
ably the best algorithmavailable for that task and shouldbe
looked at carefully. Finally, the paper with which I am
most familiar in this general area is McKee, Klein, and
Teller’s (1985) investigationof threshold confidence lim-
its in probit fits to 2AFC data. In lookingover these papers,
I have been struck by how Treutwein (1995), King-Smith
et al. (1994), and McKee et al. (1985) all point out prob-
lems with the 2AFC methodology, a theme I will con-
tinue to address in Section II of this commentary.

I. TYPES OF PSYCHOMETRIC FUNCTIONS

The Probability-Based (High-Threshold)
Correction for Guessing

The PF is commonly written as follows:

(1A)

where g 5 P(0) is the lower asymptote, 1 l is the upper
asymptote,p(x) is the PF that goes from 0% to 100%, and
P(x) is the PF representing the data that goes from g to
1 l. The stimulus strength, x, typically goes from 0 to a
large value for detection and from large negative to large
positive values for discrimination. For discrimination
tasks where P(x) can go from 0% (for negative stimulus
values) to 100% (for positive values), there is, typically,
symmetry between the negative and positive range so
that l 5 g. Unless otherwise stated, I will, for simplicity,
ignore lapses (errors made to perceptible stimuli) and
take l 5 0 so that P(x) becomes

(1B)

In the Section III commentary on Strasburger (2001b) and
Wichmann and Hill (2001a), I will discuss the benefit of
setting the lapse rate, l, to a small value (like l 5 1%)
rather than 0% (or the 0.01% value that Strasburger used)
to minimize slope bias.

When coupled with a high threshold assumption,Equa-
tion 1B is powerful in connectingdifferent methodologies.
The high thresholdassumption is that the observer is in one
of two states: detect or not detect. The detect state occurs
with probability p(x). If the stimulus is not detected then
one guesses with the guess rate, g. Given this assumption,
the percent correct will be

(1C)

which is identical to Equation 1B. The first term corre-
sponds to the occasionswhen one detects the stimulus, and
the second term corresponds to the occasions when one
does not.

Equation 1 is often called the correction for guessing
transformation. The correction for guessing is clearer if
Equation 1B is rewritten as:

(2)

The beauty of Equation 2 togetherwith the high threshold
assumption is that even though g 5 P(0) can change, the
fundamental PF, p(x), is unchanged.That is, one can alter
g by changing the number of alternatives in a forced
choice task [g 5 1/(number of alternatives)], or one can
alter the false alarm rate in a yes/no task; p(x) remains un-
changed and recoverable through Equation 2.

Unfortunately, when one looks at actual data, one will
discover that p(x) does change as g changes for both yes/
no and forced choice tasks. For this and other reasons, the
high threshold assumption has been discredited. A mod-
ern method, signal detection theory, for doing the cor-
rection for guessing is to do the correction after a z-score
transformation. I was surprised that signal detection the-
ory was barely mentioned in any of the articles constitut-
ing this special issue. I consider this to be sufficiently im-
portant that I want to clarify it at the outset. Before I can
introduce the newer approach to the correction for guess-
ing, the connection between probability and z-score is
needed.
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The Connection Between Probability and z-Score
The Gaussian distributionand its integral, the cumula-

tive normal function, play a fundamental role in many ap-
proaches to PFs. The cumulative normal function, F(z),
is the function that connects the z-score (z) to probability
(prob):

(3A)

The function F(z) and its inverse are available in programs
such as Excel, but not in Matlab.For Matlab, one must use:

(3B)

where the error function,

is a standard Matlab function.I usually check thatF( 1) 5
0.1587, F(0) 5 0.5, and F(1) 5 0.8413 in order to be sure
that I am using erf properly. The inverse cumulative nor-
mal function, used to go from prob to z is given by

(4)

Equations 3 and 4 do not specify whether one uses
prob 5 p or prob 5 P (see Equation 1 for the distinction
between the two). In this commentary, both definitions
will be used, with the choice depending on how one does
the correction for guessing—our next topic. The choice
prob 5 p(x), means that a cumulative normal function is
being used for the underlying PF and that the correction
for guessing is done as in Equations 1 and 2. On the other
hand, in a yes/no task, if we choose prob 5 P(x), then
one is doing the z-score transform of the PF data before
the correction for guessing. As is clarified in the next
section, this procedure is a signal detection “correction
for guessing” and the PF will be called the d¢ function.
The distinction between the two methods for correction
for guessing has generated confusion and is partly re-
sponsible for why many researchers do not appreciate
the simple connection between the PF and d¢.

The z-Score Correction for Bias and
Signal Detection Theory: Yes/No

Equation 2 is a common approach to correction for
guessing in both yes/no and forced choice tasks, and it
will be found in many of the articles in this special issue.
In a yes/no method for detection, the lower asymptote,
P(0) 5 g, is the false alarm rate, the probability of say-
ing “yes” when a blank stimulus is present. In the past, one
instructed subjects to keep g low. A few blank catch tri-
als were included to encourage subjects to maintain their
low false alarm rate. Today, the correction is done using a
z-score ordinate and it is now called the correction for re-
sponse bias, or simply the bias correction. One uses as

many trials at the zero level as at other levels, one encour-
ages more false alarms, and the framework is called signal
detection theory.

The z-score (d¢ ) correction for bias providesa direct, but
not well appreciated, connection between the yes/no psy-
chometric functionand the signaldetectiond¢. The two steps
are as follows: (1) Convert the percent correct, P(x), to z
scores using Equation 4. (2) Do the correction for bias by
choosing the zero point of the ordinate to be the z score
for the point x 5 0. Finally, give the ordinate the name, d¢.
This procedure can be written as:

(5)

For a detection task, z(x) is called the z score of the hit rate
and z(0) is called the z score of the lower asymptote (g), or
the false alarm rate. It is the false alarm rate because the
stimulus at x 5 0 is the blank stimulus. In order to be able
to do this correction for bias accurately, one must put as
many trials at x 5 0 as one puts at the other levels. Note
the similarity of Equations 2 and 5. The main difference
between Equations 2 and 5 is whether one makes the cor-
rection in probabilityor in z score. In order to distinguish
this approach from the older yes/no approach associated
with high threshold theory, it is often called the objective
yes/no method, where “objective”means that the response
bias correction of Equation 5 is used.

Figure 1 and its associated Matlab Code 1 in the Appen-
dix illustrates the process represented in Equation2. Panel a
is a Weibull PF on a linear abscissa, to be introduced in
Equation 12. Panel b is the z score of panel a. The lower
asymptote is at z 5 1, corresponding to P 5 15.87%.
For now, the only important point is that in panel b, if one
measures the curve from the bottom of the plot (z 5 1),
then the ordinate becomes d¢ because d¢ 5 z z(0) 5
z 1 1. Panels d and e are the same as panels a and b, ex-
cept that instead of a linear abscissa they have natural log
abscissas. More will be said about these figures later.

I am ignoring for now the interesting question of what
happens to the shape of the psychometric function as one
changes the false alarm rate, g. If one uses multiple rat-
ings rather than the binary yes/no response, one ends up
with M 1 PFs for M rating categories, and each PF has
a different g. For simplicity, this paper assumes a unity
ROC slope, which guarantees that the d¢ function is inde-
pendent of g. The ROC slopes can be measured using an
objectiveyes/ no method as mentioned in Section II in the
list of advantages of the yes/no method over the forced
choice method.

I bring up the d¢ function (Equation 5) and signal de-
tection theory at the very beginning of this commentary
because it is an excellent methodology for measuring
thresholds efficiently; it can easily be extended to the
suprathreshold regime (it does not saturate at P 5 1), and
it has a solid theoretical underpinning. Yet it is barely
mentioned in any of the articles in this issue. So the
reader needs to keep in mind that there is an alternative
approach to PFs. I would strongly recommend the book
Detection Theory: A User’s Guide (Macmillan & Creel-
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man, 1991) for anyone interested in the signal detection
approach to psychophysical experiments (including the
effect of nonunity ROC slopes).

The z-Score Correction for Bias and
Signal Detection Theory: 2AFC

One might have thought that for 2AFC the connection
between the PF and d¢ is well established—namely (Green
& Swets, 1966),

(6)

where z(x) is the z score of the average of P1(x) for cor-
rect judgments in Interval 1 and P2(x) for correct judg-
ments in Interval 2. Typically this average P(x) is calcu-

lated by dividing the total number of correct trials by the
total number of trials. It is generally assumed that the
2AFC procedure eliminates the effect of response bias on
threshold. However, in this section I will argue that the d¢
as defined in Equation 6 is affected by an interval bias,
when one interval is selected more than the other.

I have been thinkinga lot about response bias in 2AFC
tasks because of my recent experience as a subject in a
temporal 2AFC contrast discrimination study, where con-
trast is defined as the change in luminance divided by
the backgroundluminance.In these experiments, I noticed
that I had a strong tendency to choose the second interval
more than the first. The second interval typically appears
subjectively to be about 5% higher in contrast than it re-
ally is. Whether this is a perceptual effect because the in-
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Figure 1. Six views of the Weibull function: Pweibull 5 1 (1 g )exp( x t
b ), where g 5 0.1587, b 5 2, and xt is the stimulus strength in

threshold units. Panels a–c have a linear abscissa, with xt 5 1 being the threshold. Panels d–f have a natural log abscissa, with yt 5 0
being the threshold. In panels a and d, the ordinate is probability. The asterisk in panel d at yt 5 0 is the point of maximum slope on a
logarithmic abscissa. In panels b and e, the ordinate is the z score of panels a and d. The lower asymptote is z 5 1. If the ordinate is
redefined so that the origin is at the lower asymptote, the new ordinate, shown on the right of panels b and e, is d¢(xt) 5 z(xt) z(0), cor-
responding to the signal detection d¢ for an objective yes/no task. In panels c and f, the ordinate is the log–log slope of d¢. At xt 5 0, the
log–log slope 5 b . The log–log slope falls rapidly as the stimulus strength approaches threshold. The Matlab program that generated this
figure is Appendix Code 1.
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tervals are too close together in time (800 msec) or a cog-
nitive effect does not matter for the present article. What
does matter is that this bias produces a downward bias in
d¢. With feedback, lots of practice, and lots of experience
being a subject, I was able to reduce this interval bias and
equalize the number of times I responded with each in-
terval. Naïve subjects may have a more difficult time re-
ducing the bias. In this section, I show that there is a very
simple method for removing the interval bias, by con-
verting the 2AFC data to a PF that goes from 0% to 100%.

The recognition of bias in 2AFC is not new. Green and
Swets (1966), in their Appendix III.3.4, point out that the
bias in choice of interval does result in a downward bias
in d¢. However, they imply that the effect of this bias is
small and can typically be ignored. I should like to ques-
tion that implication,by using one of their own examples
to show that the bias can be substantial.

In a run of 200 trials, the Green and Swets example
(Green & Swets, 1966, p. 410) has 95 out of 100 correct
when the test stimulus is in the second interval (z2 5
1.645) and 50 out of 100 correct (z1 5 0) when the stim-
ulus is in the first interval. The standard 2AFC way to an-
alyze these data would be to average the probabilities
(95% 1 50%)/ 2 5 72.5% correct (zcorrect 5 0.598), cor-
responding to d¢ 5 zÏ2 5 0.845. However, Green and
Swets (p. 410) point out that according to signal detec-
tion theory one should analyze this data by averaging the
z scores rather than averaging the probabilities, or

(7)

The ratio between these two ways of calculating d¢ is
1.163/0.845 5 1.376. Since d¢ is approximately linearly
related to signal strength in discrimination tasks, this 38%
reduction in d¢ corresponds to an erroneous 38% increase
in predicted contrast discrimination threshold, when one
calculates threshold the standard way. Note that if there
had been no bias, so that the responses would be approx-
imately equallydivided across the two intervals, then z2
z1 and Equation 7 would be identical to the more familiar
Equation 6. Since bias is fairly common, especiallyamong
new observers, the use of Equation 7 to calculated¢ seems
much more reasonable than using Equation 6. It is surpris-
ing that the bias correction in Equation 7 is rarely used.

Green and Swets (1966) present a different analysis. In-
stead of comparing d¢ values for the biased versus nonbi-
ased conditions, they convert the d¢s back to percent cor-
rect. The corrected percent correct (corresponding to d¢ 5
1.163) is 79.5%. In terms of percent correct, the bias seems
to be a small effect, shiftingpercent correct a mere 7% from
72.5% to 79.5%. However, the d¢ ratio of 1.38 is a better
measure of the bias since it is directly related to the error
in discrimination threshold estimates.

A further comment on the magnitude of the bias may be
useful. The preceding subsection discussed the criterion
bias of yes/no methods, which contributes linearly to d¢

(Equation 5). The present section discusses the 2AFC in-
terval bias that contributes quadratically to d¢. Thus, for
small amounts of bias, the decrease in d¢ is negligible.
However, as I havepointedout, the bias can be large enough
to make a significant contribution to d¢.

It is instructive to view the bias correction for the full
PF corresponding to this example. Cumulative normal
PFs are shown in the upper left panel of Figure 2. The
curves labeled C1 and C2 are the probability correct for
the first and second intervals, I1 and I2. The asterisks cor-
respond to the stimulus strength used in this example, at
50% and 95% correct. The dot–dashed line is the aver-
age of the two PFs for the individual intervals. The slope
of the PF is set by the dot–dashed line (the averaged
data) being at 50% (the lower asymptote) for zero stim-
ulus strength. The lower left panel is the z-score version of
the upper panel. The dashed line is the average of the two
solid lines for z scores in I1 and I2. This is the signal de-
tection method of averaging that Green and Swets (1966)
present as the proper way to do the averaging. The dot–
dashed line shown in the upper left panel is the z score of
the average probability.Notice that the z score for the av-
eraged probability is lower than the averaged z score, in-
dicating a downward bias in d¢ due to the interval bias, as
discussed at the beginning of this section. The right pair
of panels are the same as the left pair except that instead
of plotting C1, we plot 1 C1, the probability of re-
sponding I2 incorrectly. The dashed line is half the dif-
ference between the two solid lines. The other difference
is that in the lower right panel we have multiplied the
dashed and dash–dotted lines by Ï2 so that these lines
are d¢ values rather than z scores.

The final step in dealing with the 2AFC bias is to flip
the 1 C1 curve horizontally to negative abscissa values
as in Figure 3. The ordinate is still the probability correct
in interval 2. The abscissa becomes the difference in
stimulus strengths between I2 and I1. The flipped branch
is the probability of responding I2 when the I2 stimulus
strength is less than that of I1 (an incorrect response).
Figure 3a with the ordinate going from 0 to 100% is the
proper way to represent 2AFC discrimination data. The
other item that I have changed is the scale on the abscissa
to show what might happen in a real experiment. The or-
dinate values of 50% and 95% for the Green and Swets
(1966) example have been placed at a contrast difference
of 5%. The negative 5% value corresponds to the case in
which the positive test pattern is in the f irst interval.
Threshold corresponds to the inverse of the PF slope.
The bottom panel shows the standard signal detection
representation of the signal in I1 and I2. d¢ is the distance
between these symmetric stimuli in standard deviation
units. The Gaussians are centered at 65%. The vertical
line at 5% is the criterion, such that 50% and 95% of
the area of the two Gaussians is above the criterion. The
z-score difference of 1.645 between the two Gaussians
must be divided by Ï2 to get d¢, because each trial had
two stimulus presentations with independent informa-
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tion for the judgment. This procedure, identical to Equa-
tion 7, gives the same d¢ as before.

Three Distinctions for Clarifying PFs
In dealing with PFs, three distinctionsneed to be made:

yes/no versus forced choice, detection versus discrimi-
nation, and constant stimuli versus adaptive methods.
These distinctions are usually clear, but I should like to
point out some subtleties.

For the forced choice versus yes/no distinction, there
are two sorts of forced choice tasks. The standard version
has multiple intervals, separated spatially or temporally,
and the stimulus is in only one of the intervals. In the other
version, one of N stimuli is shown and the observer re-

sponds with a number from 1 to N. For example, Strasburg-
er (2001b) presented 1 of 10 letters to the observer in a
10AFC task. Yes/no tasks have some similarity to the latter
type of forced choice task. Consider, for example, a detec-
tion experiment in which one of five contrasts (including
a blank) are presented to the observer and the observer re-
sponds with numbers from 1 to 5. This would be classified
as a rating scale, method of constant stimuli, yes/no task,
since only a single stimulus is presented and the rating is
based on a one-dimensional intensity.

The detection/discriminationdistinctionis usuallybased
on whether the reference stimulus is a natural zero point.
For example, suppose the task is to detect a high spatial fre-
quency test pattern added to a spatially identical reference
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Figure 2. 2AFC psychometric functions with a strong bias in favor of responding Interval 2 (I2). The bias is chosen from a
specific example presented by Green and Swets (1966), such that the observer has 50% and 95% correct when the test is in I1
and I2, respectively. These points are marked by asterisks. The psychometric function being plotted is a cumulative normal. In
all panels, the abscissa is xt, the stimulus strength. (a) The psychometric functions for probability correct in I1 and I2 are shown
and labeled C1 and C2. The average of the two probabilities, labeled average, is the dot–dashed line; it is the curve that is usu-
ally reported. The diamond is at 72.5% the average percent correct of the two asterisks. (b) Same as panel a, except that instead
of showing C1, we show 1–C1, the probability of saying I2 when the test was in I1. The abscissa is now labeled “probability of
I2 response.” (c) z scores of the three probabilities in panel a. An additional dashed line is shown that is the average of the C1
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asterisks. (d) The sign of the C2 curve in panel c is flipped, to correspond to panel b. The dashed and dot–dashed lines of panel c
have been multiplied by Ï2 in panel d so that they become d¢.
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pattern. If the reference pattern has zero contrast, the task
is detection.If the reference pattern has a high contrast, the
task is discrimination.Klein (1985) discusses these tasks in
terms of monopolar and bipolar cues. For discrimination,
a bipolarcue must be availablewhereby the test pattern can
be either positiveor negative in relation to the reference. If
one cannot discriminate the negativecue from the positive,
then it can be called a detection task.

Finally, the constant stimuli versus adaptivemethod dis-
tinction is based on the former’s having preassigned test
levels and the latter’s having levels that shift to a desired
placement. The output of the constant stimulus method is

a full PF and is thus fully entitled to be included in this spe-
cial issue. The outputof adaptivemethods is typicallyonly
a single number, the threshold, specifying the location,but
not the shape, of the PF. Two of the papers in this issue
(Kaernbach, 2001b; Strasburger, 2001b) explore the pos-
sibility of also extracting the slope from adaptivedata that
concentrates trials around one level. Even though adaptive
methods do not measure much about the PF, they are so
popular that they are well represented in this special issue.

The 10 rows of Table 1 present the articles in this special
issue (including the present article). Columns 2–5 corre-
spond to the four categories associated with the first two

Figure 3. 2AFC discrimination PF from Figure 2 has been extended to the 0% to 100% range without rescaling the or-
dinate. In panels a and b, the two right-hand panels of Figure 2 have been modified by flipping the sign of the abscissa of
the negative slope branch where the test is in Interval 1 (I1). The new abscissa is now the stimulus strength in I2 minus the
strength in I1. The abscissa scaling has been modified to be in stimulus units. In this example, the test stimulus has a con-
trast of 5%. The ordinate in panel a is the probability that the response is I2. The ordinate in panel b is the z score of the
panel a ordinate. The asterisks are at the same points as in Figure 2. Panel c is the standard signal detection picture when
noise is added to the signal. The abscissa has been modified to being the activity in I2 minus the activity in I1. The units
of activation have arbitrarily been chosen to be the same as the units of panels a and b. Activity distributions are shown
for stimuli of 5 and 15 units, corresponding to the asterisks of panels a and b. The subject’s criterion is at 5 units of
activation. The upper abscissa is in z-score units, where the Gaussians have unit variance. The area under the two distri-
butions above the criterion are 50% and 95% in agreement with the probabilities shown in panel a.
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distinctions.The last column classifies the articles accord-
ing to the adaptive versus constant stimuli distinction. In
order to open up the full variety of PFs for discussion and
to enable a deeper understandingof the relationshipamong
different types of PFs, I will now clarify the interrelation-
ship of the various categories of PFs and their connection
to the signal detection approach.

Lack of adaptive method for yes/no tasks with con-
trolled false alarm rate. In Section II, I will bring up a
number of advantages of the yes/no task in comparison
with to the 2AFC task (see also Kaernbach, 1990). Given
those yes/no advantages, one may wonder why the 2AFC
method is so popular. The usual answer is that 2AFC has
no response bias. However, as has been discussed, the yes/
no method allows an unbiased d¢ to be calculated, and the
2AFC method does allow an interval bias that affects d¢.
Another reason for the prevalence of 2AFC experiments
is that a multitude of adaptive methods are available for
2AFC but barely any available for an objective yes/no
task in which the false alarm rate is measured so that d¢
can be calculated. In Table 1, with one exception, the rows
with adaptive methods are associated with the forced
choice method. The exception is Leek (2001), who dis-
cusses adaptive yes/no methods in which no blank trials
are presented. In that case, the false alarm rate is not
measured, so d¢ cannot be calculated. This type of yes/no
method does not belong in the “objective”category of con-
cern for the present paper. The “1990” entries in Table 1
refer to Kaernbach’s (1990) description of a staircase
method for an objective yes/no task in which an equal
number of blanks are intermixed with the signal trials.
Since Kaernbach could have used that method for Kaern-
bach (2001b), I placed the “1990” entry in his slot.

Kaernbach’s (1990) yes/no staircase rules are simple.
The signal level changes according to a rule such as the
following: Move down one level for correct responses: a
hit, <yes|signal> or a correct rejection <no|blank>; move
up three levels for wrong responses: a miss <no|signal>
or a false alarm <yes|blank>. This rule, similar to the one
down–three up rule used in 2AFC, places the trials so that
the average of the hit rate and correct rejection rate is 75%.

What is now needed is a mechanism to get the observer to
establish an optimal criterion that equalizes the number of
“yes” and “no” responses (the ROC negative diagonal).
This situation is identical to the problem of getting 2AFC
observers to equalize the number of responses to Inter-
vals 1 and 2. The quadratic bias in d¢ is the same in both
cases. The simplest way to get subjects to equalize their
responses is to give them feedback about any bias in their
responses. With equal “yes” and “no” responses, the 75%
correct corresponds to a z score of 0.674 and a d¢ 5 2z 5
1.349. If the subject does not have equal numbers of “yes”
and “no” responses, then the d¢ would be calculated by
d¢ 5 zhit zfalse alarm. I do hope that Kaernbach’s clever yes/
no objective staircase will be explored by others. One
shouldbe able to enhance it with ratings and multiplestim-
uli (Klein, 2002).

Forced choice detection. As can be seen in the second
column of Table 1, a popular category in this special
issue is the forced choice method for detection. This
method is used by Strasburger (2001b), Kaernbach
(2001a), Linschoten et al. (2001), and Wichmann and Hill
(2001a, 2001b).These researchers use PFs based on prob-
ability ordinates. The connectionbetween P and d¢ is dif-
ferent from the yes/no case given by Equation 5. For
2AFC, signal detection theory provides a simple connec-
tion between d¢ and probability correct: d¢(x) 5 Ï2 z(x).
In the preceding section, I discussed the option of averag-
ing the probabilities and then taking the z score (high
threshold approach) or averaging the z scores and then cal-
culating the probability (signal detection approach). The
signal detection method is better, because it has a stronger
empirical basis and avoids bias.

For an m-AFC task with m . 2, the connectionbetween
d¢ and P is more complicated than it is for m 5 2. The con-
nection,given by a fairly simple integral (Green & Swets,
1966; Macmillan & Creelman, 1991), has been tabulated
by Hacker and Ratcliff (1979) and by Macmillanand Creel-
man (1991). One problem with these tables is that they are
based on the assumption of unity ROC slope. It is known
that there are many cases in which the ROC slope is not
unity (Green & Swets, 1966), so these tables connecting

Table 1
Classification of the 10 Articles in This Special Issue

According to Three Distinctions: Forced Choice Versus Yes/No,
Detection Versus Discrimination, Adaptive Versus Constant Stimuli

Detection Discrimination Adaptive or
Source m-AFC Yes/No m-AFC Yes/No Constant Stimuli

Leek (2001) General loose g 3 loose g A
Wichmann & Hill (2001a) 2AFC (3) (3) (3) C
Wichmann & Hill (2001b) 2AFC (3) (3) (3) C
Linschoten et al. (2001) 2AFC A
Strasburger (2001a) General 3 3 C
Strasburger (2001b) 10AFC A
Kaernbach (2001a) General 3 A
Kaernbach (2001b) General (1990) 3 (1990) A
Miller & Ulrich (2001) for g 5 0 3 (for 0–100%) 3 C
Klein (present) General 3 3 3 Both
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d¢ and probability correct should be treated cautiously.
W. P. Banks and I (unpublished) investigatedthis topic and
found that near the P 5 50% correct point, the dependence
of d¢ on ROC slope is minimal. Away from the 50% point,
the dependence can be strong.

Yes/No detection. Linschoten et al. (2001) compare
three methods (limits, staircase, 2AFC likelihood)for mea-
suring thresholds with a small number of trials. In the
method of limits, one starts with a subthreshold stimulus
and gradually increases the strength.On each trial, the ob-
server says “yes” or “no” with respect to whether or not the
stimulus is detected. Although this is a classic yes/no de-
tection method, it will not be discussed in this article be-
cause there is no control of response bias. That is, blanks
were not intermixed with signals.

In Table 1, the Wichmann and Hill (2001a, 2001b) arti-
cles are marked with 3s in parentheses because although
these authors write only about 2AFC, they mention that all
their methods are equally applicable for yes/no or m-AFC
of any type (detection/discrimination). And their Matlab
implementationsare fully general. All the special issue ar-
ticles reporting experimental data used a forced choice
method. This bias in favor of the forced choice methodol-
ogy is found not only in this special issue, it is widespread
in the psychophysicscommunity.Given the advantagesof
the yes/no method (see discussion in Section II), I hope
that once yes/no adaptive methods are accepted, they will
become the method of choice.

m-AFC discrimination. It is common practice to rep-
resent 2AFC results as a plot of percent correct averaged
over all trials versus stimulus strength.This PF goes from
50% to 100%. The asymmetry between the lower and
upper asymptotes introduces some inefficiency in thresh-
old estimation, as will be discussed.Another problem with
the standard 50% to 100% plot is that a bias in choice of
interval will produce an underestimate of d¢ as has been
shown earlier. Researchers often use the 2AFC method be-
cause they believe that it avoidsbiased thresholdestimates.
It is therefore surprising that the relatively simple correc-
tion for 2AFC bias, discussed earlier, is rarely done.

The issue of bias in m-AFC also occurs when m . 2. In
Strasburger’s 10AFC letter discrimination task, it is com-
mon for subjects to have biases for responding with par-
ticular letters when guessing. Any imbalance in the re-
sponse bias for different letters will result in a reduction
of d¢ as it did in 2AFC.

There are several benefits of viewing the 2AFC dis-
crimination data in terms of a PF going from 0% to 100%.
Not only does it provide a simple way of viewing and cal-
culating the interval bias, it also enables new methods for
estimating the PF parameters such as those proposed by
Miller and Ulrich (2001), as will be discussed in Sec-
tion III. In my original comments on the Miller and Ulrich
paper, I pointed out that because their nonparametricpro-
cedure has uniform weighting of the different PF levels,
their method does not apply to 2AFC tasks. The asymmet-
ric binomial error bars near the 50% and 100% levels
cause the uniform weighting of the Miller and Ulrich ap-

proach to be nonoptimal. However, I now realize that the
2AFC discrimination task can be fit by a cumulative nor-
mal going from 0% to 100%. Because of that insight, I
have marked the discrimination forced choice column of
Table 1 for the Miller and Ulrich (2001) paper, with the
proviso that the PF goes from 0 to 100%. Owing to the
popularityof 2AFC, this modificationgreatly expands the
relevance of their nonparametric approach.

Yes/No discrimination. Kaernbach (2001b) and Miller
and Ulrich (2001) offer theoretical articles that examine
properties of PFs that go from P 5 0% to 100% (P 5 p
in Equation 1). In both cases, the PF is the cumulativenor-
mal (Equation 3). Although these PFs with g 5 0 could
be for a yes/no detection task with a zero false alarm rate
(not plausible)or a forced choice detection task with an in-
finite number of alternatives (not plausible either), I sus-
pect that the authors had in mind a yes/no discrimination
task (Table 1, col. 5). A typical discrimination task in vi-
sion is contrast discrimination, in which the observer re-
sponds to whether the presented contrast is greater than or
less than a memorized reference. Feedback reinforces the
stability of the reference. In a typical discrimination task,
the reference is one exemplar from a continuum of stimu-
lus strengths. If the reference is at a special zero point
rather than being an element of a smooth continuum, the
task is no longer a simple discrimination task. Zero con-
trast would be an example of a special reference. Klein
(1985) discusses several examples which illustrate how a
natural zero can complicate the analysis. One might won-
der how to connect the PF from the detection regime in
which the reference is zero contrast to the discrimination
regime in which the reference (pedestal) is at a high con-
trast. The d¢ function to be introduced in Equation 20 does
a reasonablygood job of fitting data across the full range of
pedestal strength, going from detection to discrimination.

The connection of the discrimination PF to the signal
detection PF is the same as that for yes/no detection given
in Equation 5: d¢(x) 5 z(x) z(0), where z is the z score
of the probability of a “greater than” judgment. In a dis-
crimination task, the bias, z(0), is the z score of the prob-
ability of saying “greater” when the reference stimulus is
presented. The stimulus strength, x, that gives z(x) 5 0 is
the point of subjective equality (x 5 PSE). If the cumu-
lative normal PF of Equation 3 is used, then the z score
is linearly proportional to the stimulus strength z(x) 5
(x PSE)/threshold, where threshold is defined to be the
point at which d¢ 5 1. I will come back to these distinc-
tions between detection and discriminationPFs after pre-
senting more groundwork regarding thresholds, log ab-
scissas, and PF shapes (see Equations 14 and 17).

Definition of Threshold
Threshold is often defined as the stimulus strength that

producesa probabilitycorrect halfway up the PF. If humans
operated according to a high-threshold assumption, this
definitionof thresholdwould be stable across different ex-
perimental methods. However, as I discussed following
Equation 2, high-threshold theory has been discredited.
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According to the more successful signal detection theory
(Green & Swets, 1966), the d¢ at the midpoint of the PF
changes according to the number of alternatives in a
forced choice method and according to the false alarm rate
in a yes/no method. This variability of d¢ with method is a
good reason not to define threshold as the halfway point
of the PF.

A definitionof threshold that is relatively independentof
the method used for its measurement is to define threshold
as the stimulus strength that gives a fixed value of d¢. The
stimulus strength that gives d¢ 5 1 (76% correct for 2AFC)
is a common definition of threshold. Although I will show
that higherd¢ levels have the advantageof givingmore pre-
cise threshold estimates, unless otherwise stated I will take
threshold to be at d¢ 5 1 for simplicity. This definition ap-
plies to both yes/no and m-AFC tasks and to both detection
and discrimination tasks.

As an example, consider the case shown in Figure 1,
where the lower asymptote (false alarm rate) in a yes/no
detection task is g 5 15.87%, corresponding to a z score of
z 5 –1. If threshold is defined to be at d¢ 5 1.0, then, from
Equation 5, the z score for threshold is z 5 0, correspond-
ing to a hit rate of 50% (not quite halfway up the PF). This
example with a 50% hit rate corresponds to defining d¢
along the horizontal ROC axis. If threshold had been de-
fined to be d¢ 5 2 in Figure 1, then the probability correct
at thresholdwould be 84.13%.This example, in which both
the hit rate and correct rejection rate are equal (both are
84.13%), corresponds to the ROC negative diagonal.

Strasburger’s Suggestion on Specifying Slope:
A Logarithmic Abscissa?

In many of the articles in this special issue, a logarithmic
abscissa such as decibels is used. Many shapes of PFs have
been used with a log abscissa. Most delightful, but frus-
trating, is Strasburger’s (2001a) paper on the PF maximum
slope. He compares the Weibull, logistic, Quick, cumula-
tive normal, hyperbolic tangent, and signal detection d¢
using a logarithmicabscissa. The present section is the out-
come of my struggles with a number of issues raised by
Strasburger (2001a) and my attempt to clarify them.

I will typically express stimulus strength, x, in thresh-
old units,

(8)

where a is the threshold. Stimulus strength will be ex-
pressed in natural logarithmic units, y, as well as in lin-
ear units, x.

(9)

where y 5 loge(x) is the natural log of the stimulus and Y
5 loge(a) is the threshold on the log abscissa.

The slope of the psychometric function P( yt) with a log-
arithmic abscissa is

and the maximum slope is called b¢ by Strasburger (2001a).
A very different definition of slope is sometimes used by
psychophysicists, the log–log slope of the d¢ function, a
slope that is constant at low stimulus strengths for many
PFs. The log–log d¢ slope of the Weibull function is shown
in the bottom pair of panels in Figure 1. The low-contrast
log–log slope is b for a Weibull PF (Equation 12) and b
for a d¢ PF (Equation 20). Strasburger (2001a) shows how
the maximum slope using a probability ordinate is con-
nected to the log–log slope, using a d¢ ordinate.

A frustrating aspect of Strasburger’s article is that the
slope units of P (probability correct per loge) are not fa-
miliar. Then it dawned on me that there is a simple con-
nection between slope with a loge abscissa, slopelog 5
[dP( yt)]/(dyt), and slope with a linear abscissa, slopelin 5
[dP(xt)]/(dxt), namely:

(11)

because dyt /dxt 5 [d loge(xt)] /(dxt) 5 1/xt . At threshold,
xt 5 1 ( yt 5 0), so at that point Strasburger’s slope with a
logarithmic axis is identical to my familiar slope plotted in
threshold units on a linear axis. The simple connectionbe-
tween slope on the log and linear abscissas convertedme to
being a strong supporter of using a natural log abscissa.

The Weibull and cumulative normal psychometric
functions. To provide a background for Strasburger’s ar-
ticle, I will discuss three PFs: Weibull, cumulative nor-
mal, and d¢, as well as their close connections. A com-
mon parameterization of the PF is given by the Weibull
function:

(12)

where pweib(xt), the PF that goes from 0% to 100%, is re-
lated to Pweib(xt), the probability of a correct response,
by Equation 1; b is the slope; and k controls the definition
of threshold. pweib(1) 5 1 k is the percent correct at
threshold (xt 5 1). One reason for the Weibull’s popular-
ity is that it does a good job of fitting actual data. In terms
of logarithmicunits, the Weibull function (Equation12) be-
comes:

(13)

Panel a of Figure 1 is a plotof Equation12 (Weibull func-
tion as a function of x on a linear abscissa) for the case b 5
2 and k 5 exp( 1) 5 0.368. The choice b 5 2 makes the
Weibull an upside-down Gaussian. Panel d is the same
function, this time plotted as a function of y corresponding
to a natural log abscissa. With this choice of k, the point of
maximum slope as a function of yt is the threshold point
( yt 5 0). The point of maximum slope, at yt 5 0, is marked
with an asterisk in panel d. The same point in panel a at
xt 5 1 is not the point of maximum slope on a linear ab-
scissa, because of Equation 11. When plotted as a d¢ func-
tion [a z-score transform of P(xt)] in panel b, the Weibull
accelerates below threshold and decelerates above thresh-
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old, in agreement with a wide range of experimental data.
The acceleration and deceleration are most clearly seen by
the slope of d¢ in the log–log coordinates of panel e. The
log–log d¢ slope is plotted in panels c and f. At xt 5 0, the
log–log slope is 2, corresponding to our choice of b 5 2.
The slope falls surprisingly rapidly as stimulus strength in-
creases, and the slope is near 1 at xt 5 2. If we had chosen
b 5 4 for the Weibull function, then the log–log d¢ slope
would have gone from 4 at xt 5 0, to near 2 at xt 5 2.
Equation 20 will present a d¢ function that captures this
behavior.

Another PF commonly used is based on the cumulative
normal (Equation 3):

(14A)

or

(14B)

where s is the standard error of the underlying Gaussian
function (its connection to b will be clarified later). Note
that the cumulative normal PF in Equation 14 should be
used only with a logarithmic abscissa, because y goes to

¥, needed for the 0% lower asymptote, whereas the
Weibull function can be used with both the linear (Equa-
tion 12) and the log (Equation 13) abscissa.

Two examples of Strasburger’s maximum slope (his
Equations 7 and 17) are

(15)

for the Weibull function (Equation 13), and

(16)

for the cumulative normal (Equation 14). In Equation 15, I
set k in Equation 12 to be k 5 exp( 1). This choice
amounts to defining threshold so that the maximum slope
occurs at threshold (yt 5 0). Note that Equations 12–16
are missing the (1 g) factor that are present in Strasburg-
er’s Equations 7 and 17 because we are dealing with p
rather than P. Equations 15 and 16 provide a clear, simple,
and close connectionbetween the slopes of the Weibull and
cumulative normal functions, so I am grateful to Stras-
burger for that insight.

An example might help in showing how Equation 16
works. Consider a 2AFC task (g 5 0.5) assuming a cumu-
lative normal PF with s 5 1.0. According to Equation 16,
b¢ 5 0.399. At threshold (assumed for now to be the point
of maximum slope), P(xt 5 1) 5 .75. At 10% above
threshold, P(xt 5 1.1) .75 1 0.1 b¢ 5 0.7899, which is
quite close to the exact value of .7896.This example shows
how b¢, defined with a natural log abscissa, yt , is relevant
to a linear abscissa, xt.

Now that the logarithmic abscissa has been introduced,
this is a good place to stop and point out that the log ab-
scissa is fine for detection but not for discrimination since

the x 5 0 point is often in the middle of the range. How-
ever, the cumulativenormal PF is especially relevant to dis-
crimination where the PF goes from 0% to 100% and
would be written as

(17A)

or

(17B)

where x 5 PSE is the point of subjective equality. The
parameter, a, is the threshold, since d¢(a) 5 zF(a)
zF(0) 5 1. The threshold, a, is also s standard deviations
of the Gaussian probability density function (pdf ). The
reciprocal of a is the PF slope. I tend to use the letter s
for a unitless standard deviation, as occurs for the loga-
rithmic variable, y. I use a for a standard deviation that
has the units of the stimulus x, (like percent contrast). The
comparison of Equation 14B for detection and Equation
17B for discrimination is useful. Although Equation 14
is used in most of the articles in this special issue, which
are concernedwith detection tasks, the techniquesthat I will
be discussing are also relevant to discrimination tasks for
which Equation 17 is used.

Threshold and the Weibull Function
To illustrate how a d¢ 5 1 definition of threshold works

for a Weibull function, let us start with a yes/no task in
which the false alarm rate is P(0) 5 15.87%,corresponding
to a z score of zFA 5 1, as in Figure 1. The z score at
threshold (d¢ 5 1) is zTh 5 zFA11 5 0, corresponding to a
probability of P(1) 5 50%. From Equations 1 and 12, the
k value for this definition of threshold is given by k 5
[1 P(1)]/[1 P(0)] 5 0.5943. The Weibull function be-
comes

(18A)

If I had defined d¢ 5 2 to be threshold then zTh 5 zFA12
5 1, leading to k 5 (1 0.8413)/(1 0.1587) 5 0.1886,
giving

(18B)

As another example, suppose the false alarm rate in a
yes/no task is at 50%, not uncommon in a signal detection
experiment with blanks and test stimuli intermixed. Then
threshold at d¢ 5 1 would occur at 84.13% and the PF
would be

(18C)

with Pweib(0) 5 50% and Pweib(1) 5 84.13%. This case
corresponds to defining d¢ on the ROC vertical intercept.

For 2AFC, the connectionbetween d¢ and z is z 5 d¢/20.5.
Thus, zTh 5 2 0.5 5 0.7071, corresponding to Pweib(1) 5
76.02%, leading to k 5 0.4795 in Equation 12. These con-
nectionswill beclarifiedwhen an explicit form (Equation20)
is given for the d¢ function, d¢(xt).

P xt
xt

weib ( ) = 1 0 5 0 3173. . ,
b

P xt
xt

weib ( ) = 1 1 0 1587 0 1886( . ) . .
b

P xt
xt

weib ( ) =1 1 0 1587 0 5943( . ) . .
b

z x x
tF ( ) = PSE

a ,

p x P x x
t tF F F( ) = ( ) = æ

è
ö
ø

PSE
a

¢ = =b
s p s

1
2

0 399.

¢ = =b b bexp( ) .1 0 368

z y
y y Y

t
t( ) = =s s ,

p y
y

t
t

F F( ) =
æ
èç

ö
ø÷s



1432 KLEIN

Complications With Strasburger’s
Advocacy of Maximum Slope

Here I will mention three complications implicated in
Strasburger’s suggestionof defining slope at the point of
maximum slope on a logarithmic abscissa.

1. As can be seen in Equation 11, the slopes on linear
and logarithmic abscissas are related by a factor of 1/xt.
Because of this extra factor, the maximum slope occurs
at a lower stimulus strength on linear as compared with
log axes. This makes the notion of maximum slope less
fundamental. However, since we are usually interested in
the percent error of threshold estimates, it turns out that
a logarithmic abscissa is the most relevant axis, support-
ing Strasburger’s log abscissa definition.

2. The maximum slope is not necessarily at threshold
(as Strasburger points out). For the Weibull functions de-
fined in Equation 13 with k 5 exp( 1) and the cumula-
tive normal function in Equation 14, the maximum slope
(on a log axis) does occur at threshold. However, the two
points are decoupled in the generalized Weibull function
defined in Equation 12. For the Quick version of the
Weibull function (Equation 13 with k 5 0.5, placing
threshold halfway up the PF), the threshold is below the
point of maximum slope; the derivative of P(xt) at
threshold is

which is slightly different from the maximum slope as
given by Equation 15. Similarly, when threshold is de-
fined at d¢ 5 1, the threshold is not at the point of max-
imum slope. People who fit psychometric functionswould
probably prefer reporting slopes at the detection thresh-
old rather than at the point of maximum slope.

3. One of the most important considerationsin selecting
a point at which to measure threshold is the question of
how to minimize the bias and standard error of the thresh-
old estimate. The goal of adaptive methods is to place tri-
als at one level. In order to avoid a threshold bias due to a
improper estimate of PF slope, the test level should be at
the defined threshold. The variance of the threshold esti-
mate when the data are concentrated as a single level (as
with adaptive procedures) is given by Gourevitch and Gal-
anter (1967) as

(19)

If the binomial error factor of P(1 P)/N were not present,
the optimal placement of trials for measuring threshold
would be at the point of maximum slope. However, the
presence of the P(1 P) factor shifts the optimal point to
a higher level. Wichmann and Hill (2001b) consider how
trial placement affects threshold variance for the method
of constant stimuli. This topic will be considered in Sec-
tion II.

Connecting the Weibull and d¢ Functions
Figures 5–7 of Strasburger (2001a) compare the log–

log d¢ slope, b, with the Weibull PF slope, b. Strasburger’s
connection of b 5 0.88b is problematic, since the d¢ ver-
sion of the Weibull PF does not have a fixed log–log slope.
An improved d¢ representation of the Weibull function is
the topic of the present section. A useful parameterization
for d¢, which I shall refer to as the Stromeyer–Foley func-
tion, was introduced by Stromeyer and Klein (1974) and
used extensively by Foley (1994):

(20)

where xt is the stimulus strength in threshold units as in
Equation8. The factors with a in the denominatorare pres-
ent so that d¢ equals unity at threshold (xt 5 1 or x 5 a).
At low xt , d¢ x t

b/a. The exponent b (the log–log slope of
d¢ at very low contrasts) controls the amount of facilita-
tion near threshold. At high xt, Equation 20 becomes d¢
xt

1 w /(1 a). The parameter w is the log– log slope of the
test threshold versus pedestal contrast function (the tvc or
“dipper” function) at strong pedestals. One must be a bit
cautious, however, because in yes/no procedures the tvc
slope can be decoupledfrom w if the signal detectionROC
curve has nonunity slope (Stromeyer & Klein, 1974). The
parameter a controls the point at which the d¢ function be-
gins to saturate. Typical valuesof these unitless parameters
are b 5 2, w 5 0.5 and a 5 0.6 (Yu, Klein, & Levi, 2001).
The function in Equation 20 accelerates at low contrast
(log–log slope of b) and decelerates at high contrasts (log–
log slope of 1 w), in general agreement with a broad
range of data.

For 2AFC, z 5 d¢/Ï2, so from Equation 3, the connec-
tion between d¢ and probability correct is

(21)

To establish the connection between the PFs specified in
Equations12 and 20–21, one must first have the two agree
at threshold. For 2AFC with the d¢ 5 1, the threshold at
P 5 .7602 can be enforced by choosing k 5 0.4795 (see
the discussion following Equation 18C) so that Equa-
tions 1 and 12 become:

(22)

Modifying k as in Equation 22 leaves the Weibull shape
unchanged and shifts only the definition of threshold. If
b 5 1.06b, w 5 1 0.39b, and a 5 0.614, then for all
values of b, the Weibull and d¢ functions (Equations 21
and 22, vs. Equation 12) differ by less than 0.0004 for all
stimulus strengths. At very low stimulus strengths, b 5
b. The value b 5 1.06b is a compromise for getting an
overall optimal fit.

Strasburger (2001a) is concerned with the same issue.
In his Table 1, he reports d¢ log–log slopes of [.8847
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1.8379 3.131 4.421] for b 5 [1 2 3.5 5]. If the d¢ slope
is taken to be a measure of the d¢ exponent b, then the
ratio b/b is [0.8847 0.9190 0.8946 0.8842] for the four
b values. Our value of b/b 5 1.06 differs substantially
from 0.8 (Pelli, 1985) and 0.88 (Strasburger, 2001a). Pelli
(1985) and Strasburger (2001a) used d¢ functionswith a 5
1 in Equation 20. With a 5 0.614, our d¢ function (Equa-
tion 20) starts saturatingnear threshold, in agreement with
experimentaldata.The saturationlowers the effective value
of b. I was very surprised to find that the Stromeyer–
Foley d¢ function did such a good job in matching the
Weibull function across the whole range of b and x. For
a long time I had thought a different fit would be needed
for each value of b.

For the same Weibull function in a yes/no method (false
alarm rate 5 50%), the parameters b and w are identical
to the 2AFC case above. Only the value of a shifts from
a 5 0.614 (2AFC) to a 5 0.54 (yes/no). In order to make
xt 5 1 at d¢ 5 1, k becomes 0.3173 (see Equation 18C)
instead of 0.4795 (2AFC). As with 2AFC, the difference
between the Weibull and d¢ function is less than .0004
(<.04%) for all stimulus strengths and all values of b and
for both a linear and a logarithmic abscissa. These values
mean that for both the yes no and the 2AFC methods, the
d¢ function (Equation 20) corresponding to a Weibull
function with b 5 2 has a low-contrast log–log slope of
b 5 2.12 and a high-contrast log–log slope of 1 w 5
0.78. The high-contrast tvc (test contrast vs. pedestal con-
trast discrimination function, sometimes called the “dip-
per” function) log–log slope would be w 5 0.22.

I also carried out a similar analysis asking what cumu-
lative normal s is best matched to the Weibull. I found
s 5 1.1720/b. However, the match is poor, with errors of
.4% (rather than <0.04% in the preceding analysis). The
poor fit of the two functions makes the fitting procedure
sensitive to the weighting used in the fitting procedure. If
one uses a weighting factor of [P(1 P)/N], where P is the
PF, one will find a quite different value for s than if one
ignored the weighting or if one chose the weighting on the
basis of the data rather than the fitting function.

II. COMPARING EXPERIMENTAL
TECHNIQUES FOR MEASURING

THE PSYCHOMETRIC FUNCTION

This section, inspired by Linschoten et al. (2001), is an
examinationof various experimental methods for gather-
ing data to estimate thresholds. Linschoten et al. compare
three 2AFC methods for measuring smell and taste thresh-
olds: a maximum-likelihoodadaptivemethod, an up–down
staircase method, and an ascending method of limits. The
special aspect of their experiments was that in measuring
smell and taste each 2AFC trial takes between 40 and
60 sec (Lew Harvey, personal communication)because of
the long duration needed for the nostrils or mouth to re-
cover their sensitivity. The purpose of the Linschotenet al.
paper is to examine which of the three methods is most
accurate when the number of trials is low. Linschoten et al.

conclude that the 2AFC method is a good method for this
task. My prior experiencewith forced choice tasks and low
number of trials (Manny & Klein, 1985; McKee et al.,
1985)made me wonderwhether there might be better meth-
ods to use in circumstances in which the number of trials
is limited. This topic is considered in Section II.

Compare 2AFC to Yes/No
The commonly accepted framework for comparing

2AFC and yes/no threshold estimates is signal detection
theory. Initially, I will make the common assumption that
the d¢ function is a power function (Equation 20, with
a 5 1):

(23)

Later in this section, the experimentallymore accurate
form, Equation 20, with a , 1, will be used. The variance
of the threshold estimate will now be calculated for 2AFC
and yes/no for the simplest case of trials placed at a sin-
gle stimulus level, y, the goal of most adaptive methods.
The PF slope relates ordinate variance to abscissa vari-
ance (from Gourevitch & Galanter, 1967):

(24)

where Y 5 y yt is the threshold estimate for a natural log
abscissa as given in Equation 9. This formula for var(Y )
is called the asymptotic formula, in that it becomes exact
in the limit of large number of total trials, N. Wichmann
and Hill (2001b) show that for the method of constant
stimuli, a proper choice of testing levels brings one to the
asymptotic region for N , 120 (the smallest value that
they explored). Improper choice of testing levels requires
a larger N in order to get to the asymptotic region. Equa-
tion 24 is based on having the data at a single level, as oc-
curs asymptoticallyin adaptiveprocedures. In addition, the
definition of threshold must be at the point being tested.
If levels are tested away from threshold, there will be an
additional contribution to the threshold variance (Finney,
1971; McKee et al., 1985) if the slope is a variable param-
eter in the fitting procedure. Equation 24 reaches its as-
ymptoticvalue more rapidly for adaptive methods with fo-
cused placement of trials than with the constant stimulus
method when slope is a free parameter.

Equation 24 needs analytic expressions for the deriva-
tive and the variance of d¢. The derivative is obtained from
Equation 23:

(25)

The variance of d¢ for both yes/no (d¢ 5 zhit 1 zcorrect rejection)
and 2AFC (d¢ 5 Ï2zave) is
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For the yes /no case, Equation 26 is based on a unity
slope ROC curve with the subject’s criterion at the neg-
ative diagonal of the ROC curve where the hit rate equals
the correct rejection rate. This would be the most effi-
cient operating point. The variance for a nonunity slope
ROC curve was considered by Klein, Stromeyer, and
Ganz (1974). From binomial statistics,

(27)

with n 5 N for 2AFC and n 5 N/2 for yes/no since for
this binary yes/no task the number of signal and blank
trials is half the total number of trials.

Putting all of these factors together gives

(28)

for both the yes/no and the 2AFC cases. The only dif-
ference between the two cases is the definition of n and
the definition of d¢ (d¢2AFC 5 20.5z and d¢YN 5 2z for a
symmetric criterion). When this is expressed in terms of
N (number of trials) and z (z score of probability cor-
rect), we get

(29)

for both 2AFC and yes/no. That is, when the percent cor-
rects are all equal (P2AFC 5 Phit 5 Pcorrect rejection), the
threshold variance for 2AFC and yes/no are equal. The
minimum value of var(Y ) is 1.64/(Nb2), occurring at z 5
1.57 (P 5 94%). This value of 94% correct is the optimum
value at which to test for both 2AFC and yes/no tasks, in-
dependent of b.

This result, that the threshold variance is the same for
2AFC and yes/no methods, seems to disagreewith Figure 4
of McKee et al. (1985), where the standard errors of the
threshold estimates are plotted for 2AFC and yes/no as
a function of the number of trials. The 2AFC standard
error (their Figure 4) is twice that of yes/no, correspond-
ing to a factor of four in variance. However, the McKee
et al. analysis is misleading, since all they (we) did for the
yes/no task was to use Equation 2 to expand the PF to a 0
to 100% range, thereby doubling the PF slope. That
rescaling is not the way to convert a 2AFC detection task
to the yes/no task of the same detectability. A signal de-
tection methodology is needed for that conversion, as
was done in the present analysis.

One surprise is that the optimal testing probability is
independent of the PF slope, b. This finding is a general
property of PFs in which the dependence on the slope
parameter has the form xb. The 94% level corresponds to
d¢YN 5 3.15 and d¢2AFC 5 2.23. For the commonly used
P 5 75% (z 5 0.765, d¢YN 5 1.35, d¢2AFC 5 0.954)
var(Y ) 5 4.08/(Nb2), which is about 2.5 times the opti-
mal value, obtained by placing the stimuli at 94%. Green
(1990) had previously pointed out that the 94% and 92%
levels were the optimal points to test for the cumulative

normal and logit functions, respectively, because of the
minimum threshold estimate variability when one is test-
ing at that point on the PF. Other PFs can have optimal
points at slightly lower levels, but these are still above the
levels to which adaptive methods are normally directed.

It is also useful to compare the 2AFC and yes/no at the
same d¢ rather than at their optimal points. In that case, for
d¢ values fixed at [1, 2, 3], the ratio of the 2AFC variance
to the yes/no variance is [1.82, 1.36, 0.79]. At low d¢, there
is an advantage for the 2AFC method, and that reverses at
high d¢ as is expected from the optimal d¢ being higher for
yes/no than for 2AFC. In general, one should run the yes/
no method at d¢ levels above 2.0 (84% correct in the blank
and signal intervals corresponds to d¢ 5 2).

The equality of the optimal var(Y ) for 2AFC and yes/
no methods is not only surprising, it seems paradoxical—
as can be seen by the followinggedankenexperiment.Sup-
pose subjects close their eyes on the first interval of the
2AFC trial and base their judgments on just the second
interval, as if they were doing a yes/no task, since blanks
and stimuli are randomly intermixed. Instead of saying
“yes” or “no,” they would respond “Interval 2” or “Inter-
val 1,” respectively, so that the 2AFC task would become a
yes/no task. The paradox is that one would expect the vari-
ance to be worse than for the eyes open 2AFC case, since
one is ignoring information. However, Equation29 shows
that the 2AFC and yes/no methods have identical optimal
variance. I suspect that the resolutionof this paradox is that
in the yes/no method with a stable criterion, the optimal
variance occurs at a higher d¢ value (3.15) than the 2AFC
value (2.23). The d¢ power law function that I chose does
not saturate at large d¢ levels, giving a benefit to the yes/
no method.

In order to check whether the paradox still holds with
a more realistic PF (a d¢ function that saturates at large
d¢ ), I now compare the 2AFC and yes/no variance using
a Weibull function with a slope b. In order to connect
2AFC and yes/no I need to use signal detection theory
and the Stromeyer–Foley d¢ function (Equation 20) with
the “Weibull parameters” b 5 1.06b , a 5 0.614, and w 5
1 .39b. Following Equation 22, I pointed out that with
these parameter values, the difference between the 2AFC
Weibull function and the 2AFC d¢ function (converted to
a probability ordinate) is less than .0004. After the de-
rivative, Equation 25, is appropriately modified, we find
that the optimal 2AFC variance is 3.42/(Nb2). For the yes/
no case, the optimal variance is 4.02/(Nb2). This result re-
solves the paradox. The optimal 2AFC variance is about
18% lower than the yes/no variance, so closing one’s eyes
in one of the intervals does indeed hurt.

We shouldn’t forget that if one counts stimulus presen-
tationsNp rather than trials, N, the optimal 2AFC variance
becomes 6.84/(Npb2), as opposed to 4.02/(Npb2) for yes/no.
Thus for the Linschoten experiments with each stimulus
presentationbeing slow, the yes/no methodology is more
accurate for a given number of stimulus presentations,
even at low d¢ values. Kaernbach (1990) compares 2AFC
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and yes/no adaptive methods with simulations and ac-
tual experiments. His abscissa is number of presenta-
tions, and his results are compatible with our findings.

The objectiveyes/no method that I have been discussing
is inefficient, since 50% of the trials are blanks. Greater
efficiency is possible if several points on the PF are mea-
sured (methodof constantstimuli)with the number of blank
trials the same as at the other levels. For example, if five
levels of stimuli were measured, includingblanks, then the
blanks would be only 20% of the total rather than 50%. For
the 2AFC paradigm, the subject would still have to look at
50% of the presentations being blanks. The yes/no eff i-
ciency can be further improved by having the subject
respond to the multiple stimuli with multiple ratings rather
than a binary yes/no response. This rating scale, method
of constant stimuli, is my favorite method, and I have been
using it for 20 years (Klein & Stromeyer, 1980). The mul-
tiple ratings allow one to measure the psychometric func-
tion shape for d¢s as large as 4 (well into the dipper region
where stimuli are slightly above threshold). It also allows
one to measure the ROC slope (presence of multiplicative
noise). Simulations of its benefits will be presented in
Klein (2002).

Insight into how the number of responses affects thresh-
old variance can be obtained by using the cumulative nor-
mal PF (Equation 17) considered by Kaernbach (2001b)
and Miller and Ulrich (2001) with g 5 0. Typically, this is
the case of yes/no discrimination,but it can also be 2AFC
discrimination with an ordinate going from 0% to 100%,
as I have discussed in connection with Figure 3. For a cu-
mulative normal PF with a binary response and for a sin-
gle stimulus level being tested, the threshold variance is
(Equation 19) as follows:

(30)

from Equation 27 and forthcoming Equations 40 and 41.
The optimal level to test is at P 5 0.5, so the optimal vari-
ance becomes

(31)

If instead of a binary response the observer gives an ana-
log response (many, many rating categories), then the vari-
ance is the familiar connectionbetween standard deviation
and standard error:

(32)

With four response categories, the variance is 1.19s2/N,
which is closer to the analog than to the binary case. If
stimuli with multiple strengths are intermixed (method
of constant stimuli), then the benefit of going from a bi-
nary response to multiple responses is greater than that in-
dicated in Equations 31–32 (Klein, 2002).

A brief list of other problemswith the 2AFC method ap-
plied to detection comprises the following:

1. 2AFC requires the subject to memorize and then
compare the results of two subjective responses. It is cog-
nitively simpler to report each response as it arrives. Sub-
jects without much experience can easily make mistakes
(lapses), simply becoming confused about the order of the
stimuli. Klein (1985) discusses memory load issues rele-
vant to 2AFC.

2. The 2AFC methodology makes various types of
analysis and modeling more difficult, because it requires
that one average over all criteria. The response variable in
2AFC is the Interval 2 activationminus the Interval 1 ac-
tivation (see the abscissa in Figure 2). This variable goes
from minus infinity to plus infinity, whereas the yes/no
variable goes from zero to infinity. It therefore seems more
difficult to model the effects of probabilitysummation and
uncertainty for 2AFC than for yes/no.

3. Models that relate psychophysical performance to un-
derlyingprocesses require information about how the noise
varies with signal strength (multiplicativenoise). The rat-
ing scale method of constant stimuli not only measures d¢
as a function of contrast, it also is able to provide an esti-
mate of how the variance of the signal distribution (the
ROC slope) increases with contrast. The 2AFC method
lacks that information.

4. Both the yes/no and 2AFC methods are supposed to
eliminate the effects of bias. Earlier I pointedout that in my
recent 2AFC discrimination experiments, when the stim-
ulus is near threshold, I find I have a strong bias in favor of
responding “Stimulus 2.” Until I learned to compensate
for this bias (not typically done by naïve subjects) my d¢
was underestimated. As I have discussed, it is possible to
compensate for this bias, but that is rarely done.

Improving the Brownian (Up –Down) Staircase
Adaptive methods with a goal of placing trials at an

optimal point on the PF are efficient. Leek (2001) pro-
vides a nice overview of these methods. There are two
general categories of adaptive methods: those based on
maximum (or mean) likelihood and those based on sim-
pler staircase rules. The present section is concerned
with the older staircase methods, which I will call
Brownian methods. I used the name “Brownian” because
of the up–down staircase’s similarity to one-dimensional
Brownian motion in which the direction of each step is
random. The familiar up–down staircase is Brownian,
because at each trial the decision about whether to go up
or down is decided by a random factor governed by prob-
ability P(x). I want to make this connection to Brownian
motion, because I suspect that there are results in the
physics literature that are relevant to our psychophysical
staircases. I hope these connections get made.

A Brownian staircase has a minimal memory of the run
history; it needs to remember the previous step (including
direction)and the previousnumber of reversals or number
of trials (used for when to stop and for when to decrease
step size). A typical Brownian rule is to decrease signal
strength by one step (like 1 dB) after a correct response
and to increase it three steps after an incorrect response (a
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one down–three up rule). I was pleased to learn recently
that his rule works nicely for an objective yes/no task
(Kaernbach, 1990) as well as 2AFC, as discussed earlier.

In recent years, likelihood methods (Pentland, 1980;
Watson & Pelli, 1983) have become popular and have
somewhat displaced Brownian methods. There is a wide-
spread feeling that likelihoodmethods have substantially
smaller threshold variance than do staircases in which
thresholds are obtained by simply averaging the levels
tested. Given the importance of this issue for informing
researchers about how best to measure thresholds, it is
surprising that there have been so few simulations com-
paring staircases and optimal methods. Pentland’s (1980)
results, showing very large threshold variance for a stair-
case method, are so dramatically different from the re-
sults of my simulations that I am skeptical. The best pre-
vious simulationsof which I am aware are those of Green
(1990), who compared the threshold variance from sev-
eral 2AFC staircase methods with the ideal variance
(Equation 24). He found that as long as the staircase rule
placed trials above 80% correct, the ratio of observed to
ideal threshold variance was about 1.4. This value is the
square of the inverse of Green’s finding that the ratio of
the expected to the observed sigma is about .85.

In my own simulations (Klein, 2002), I found that as
long as the final step size was less than 0.2s, the thresh-
old variance from simply averaging over levels was close
to the optimal value. Thus, the staircase thresholdvariance
is about the same as the variance found by other optimal
methods. One especially interesting finding was that the
common method of averaging an even number of rever-
sal points gave a variance that was about 10% higher than
averaging over all levels. This result made me wonder
how the common practice of averaging reversals ever got
started. Since Green (1990) averaged over just the reversal
points, I suspect that his results are an overestimate of the
staircase variance. In addition,since Green specifies step
size in decibels, it is difficult for me to determine whether
his final step size was small enough. Since the threshold
variance is inversely related to slope, it is important to re-
late step size to slope rather than to decibels.The most nat-
ural reference unit is s, the standard deviationassociated
with the cumulativenormal. In summary, I suggest that this
general feeling of distrust of the simple Brownian staircase
is misguided, and that simple staircases are often as good
as likelihoodmethods. In the section Summary of Advan-
tages of Brownian Staircase, I point out several advantages
of the simple staircase over the likelihood methods.

A qualification should be made to the claim above that
averaging levels of a simple staircase is as good as a fancy
likelihoodmethod. If the staircase method uses a too small
step size at the beginning and if the starting point is far
from threshold, then the simple staircase can be inefficient
in reaching the threshold region. However, at the end of
that run, the astute experimenter should notice the large
discrepancy between the starting point and the threshold,
and the run should be redone with an improved starting
point or with a larger initial step size that will be reduced
as the staircase proceeds.

Increase number of 2AFC response categories. In-
dependent of the type of adaptive method used, the 2AFC
task has a flaw whereby a series of lucky guesses at low
stimulus levels can erroneously drive adaptive methods to
levels that are too low. Some adaptivemethodswith a small
number of trials are unable to fully recover from a string of
lucky guesses early in the run. One solution is to allow the
subject to have more than two responses. For reasons that
I have never understood, people like to have only two re-
sponse categories in a 2AFC task. Just as I am reluctant to
take part in 2AFC experiments, I am even more reluctant
to take part in two response experiments. The reason is
simple. I always feel that I have within me more than one
bit of informationafter lookingat a stimulus. I usuallyhave
at least four or more subjective states (2 bits) for a yes/no
task: HN, LN, LY, HY, where H and L are high and low
confidence and N and Y are did not and did see it. For a
2AFC, my internal states are H1, L1, L2, H2 for high and
low confidenceon Intervals 1 and 2. Kaernbach (2001a) in
this special issue does an excellent job of justifying the
low-confidence response category. He provides solid ar-
guments, simulations, and experimental data on how a
low-confidence category can minimize the “lucky guess”
problem.

Kaernbach (2001a) groups the L1 and L2 categories
together into a “don’t know” category and argues per-
suasively that the inclusion of this third response can in-
crease the precision and accuracy of threshold estimates,
while also leaving the subject a happier person. He calls
it the “unforced choice” method. Most of his article con-
cerns the understandable fear of introducing a response
bias, exactly what 2AFC was invented to avoid. He has de-
veloped an intelligent rule for what stimulus level should
follow a “don’ t know” response. Kaernbach shows with
both simulations and real data that with his method this
potential response bias problem has only a second-order
effect on threshold estimates (similar to the 2AFC inter-
val bias discussed around Equation 7), and its advantages
outweigh the disadvantages.I urge anyoneusing the 2AFC
method to read it. I conjecture that Kaernbach’s method is
especially useful in trimming the lower tail of the distri-
bution of threshold estimates and also in reducing the in-
terval bias of 2AFC tasks since the low confidence rating
would tend to be used for trials on which there is the most
uncertainty.

Although Kaernbach has managed to convince me of
the usefulness of his three-responsemethod,he might have
trouble convincing others because of the response bias
question. I should like to offer a solution that might quell
the response bias fears. Rather than using 2AFC with three
responses, one can increase the number of responses to
four—H1, L1, L2, H2—as discussed two paragraphs
above. The L rating can be used when subjects feel they
are guessing.

To illustrate how this staircase would work, consider
the case in which we would like the 2AFC staircase to con-
verge to about 84% correct. A 5 up–1 down staircase
(5 levels up for a wrong response, and 1 level down for a
correct response) leads to an average probability correct
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of 5/6 5 83.33%. If one had zero information about the
trial and guessed, then one would be correct half the time
and the staircase would shift an average of (5 1)/2 5
12 levels. Thus, in his scheme with a single “don’t know”
response, Kaernbach would have the staircase move up
2 levels following a “don’t know” response. One might
worry that continued use of the “don’t know” response
would continuously increase the level so that one would
get an upward bias. But Kaernbach points out that the
“don’t know” response replaces incorrect responses to a
greater extent than it replaces correct responses, so that
the 12 level shift is actually a more negative shift than the
15 shift associated with a wrong response. For my sug-
gestion of four responses, the step shifts would be –1, 11,
13, and 15 levels for responses HC, LC, LI, and HI,
where H and L stand for high and low confidence and C
and I stand for correct and incorrect. A slightly more con-
servative set of responses would be –1, 0, 14, 15, in
which case the low-confidencecorrect judgment leaves the
level unchanged. In all these examples, including Kaern-
bach’s three-response method, the low-confidence re-
sponse has an average level shift of 12 when one is guess-
ing. The most important feature of the low confidence
rating is that when one is below threshold, giving a low
confidence rating will prevent one from long strings of
lucky guesses that bring one to an inappropriately low
level. This is the situation that can be difficult to overcome
if it occurs in the early phase of a staircase when the step
size can be large. The use of the confidence rating would
be especially important for short runs, where the extra bit
of information from the subject is useful for minimizing
erroneous estimates of threshold.

Another reason not to be fearful of the multiple-response
2AFC method is that after the run is finished, one can es-
timate threshold by using a maximum likelihood proce-
dure rather than by averaging the run locations. Standard
likelihoodanalysis would have to be modified for Kaern-
bach’s three-response method in order to deal with the
“don’t know” category. For the suggested four-response
method,one could simply ignore the confidence ratings for
the likelihoodanalysis. My simulations,discussed earlier
in this section, and Green’s (1990) reveal that averaging
over the levels (excluding a number of initial levels to
avoid the starting point bias) has about as good a preci-
sion and accuracy as the best of the likelihood methods.
If the threshold estimates from the likelihoodmethod and
from the averaging levels method disagree, that run could
be thrown out.

Summary of advantages of Brownian staircase.
Since there is no substantial variance advantage to the
fancier likelihoodmethods, one can pay more attention to
a number of advantagesassociated with simple staircases.

1. At the beginning of a run, likelihood methods may
have too little inertia (the sequential stimulus levels jump
around easily), unless a “stiff ” prior is carefully chosen.
By inertia, I refer to how difficult it is for the next level to
deviate from the present level. At the beginning of a run,
one would like to familiarize the subject with the stimu-

lus by presentinga series of stimuli that gradually increase
in difficulty. This natural feature of the Brownian stair-
case is usually missing in QUEST-like methods. The
slightly inefficient first few trials of a simple staircase
may actually be a benefit, since it gives the subject some
practice with slightly visible stimuli.

2. Toward the end of a maximum likelihoodrun, one can
have the opposite problem of excessive inertia, whereby
it is difficult to have substantial shifts of test contrast.
This can be a problem if nonstationaryeffects are present.
For example, thresholds can increase in mid-run, owing
to fatigue or to adaptation if a suprathreshold pedestal or
mask is present. In an old-fashioned Brownian staircase,
with moderate inertia, a quick look at the staircase track
shows the change of threshold in mid-run. That observa-
tion can provide an important clue to possible problems
with the current procedures. A method that reveals non-
stationarity is especially important for difficult subjects,
such as infants or patients, in whom fatigue or inatten-
tion can be an important factor.

3. Several researchers have told me that the simplicityof
the staircase rules is itself an advantage. It makes writing
programs easier. It is nicer for teaching students. It also
simplifies the uncertain business of guessing likelihood
priors and communicating the methodology when writ-
ing articles.

Methods That Can Be Used to Estimate
Slope as Well as Threshold

There are good reasons why one might want to learn
more about the PF than just the single threshold value.
Estimating the PF slope is the first step in this direction.
To estimate slope, one must test the PF at more than one
point.Methodsare available to do this (Kaernbach, 2001b;
Kontsevich & Tyler, 1999), and one could even adapt sim-
ple Brownian staircase procedures to give better slope es-
timates with minimum harm to threshold estimates (see
the comments in Strasburger, 2001b).

Probably the best method for gettingboth thresholdsand
slopes is the Y (Psi) method of Kontsevich and Tyler
(1999). The Y method is not totally novel, it borrows tech-
niques from many previous researchers—as Kontsevich
and Tyler point out in a delightful paragraph that both clar-
ifies their method and states its ancestry. This paragraph
summarizes what is probably the most accurate and precise
approach to estimating thresholds and slope, so I reproduce
it here:

To summarize, the Y method is a combinationof solutions
known from the literature.The method updates the poste-
rior probability distribution across the sampled space of
the psychometric functions based on Bayes’ rule (Hall,
1968; Watson & Pelli, 1983). The space of the psychome-
tric functions is two-dimensional (King-Smith & Rose,
1997; Watson & Pelli, 1983). Evaluation of the psycho-
metric function is based on computing the mean of the
posterior probability distribution (Emerson, 1986; King-
Smith et al., 1994). The termination rule is based on the
number of trials, as the most practical option (King-Smith
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et al., 1994; Watson & Pelli, 1983). The placementof each
new trial is based on one-step ahead minimum search
(King-Smith, 1984) of the expected entropy cost function
(Pelli, 1987).

A simplified, rough description of the Y trial placement
for 2AFC runs is that initially trials are placed at about the
90% correct level to establish a solid threshold. Once
threshold has been roughly established, trials are placed at
about the 90% and the 70% levels to pin down the slope.
The precise levels depend on the assumed PF shape.

Before one starts measuring slopes, however, one must
first be convinced that knowledge of slope can be impor-
tant. It is so, for several reasons:

1. Parametric fitting procedures either require knowl-
edge of slope, b, or must have data that adequately con-
strain the slope estimate. Part of the discussion that fol-
lows will be on how to obtain reliable threshold estimates
when slope is not well known. A tight knowledge of slope
can minimize the error of the threshold estimate.

2. Strasburger (2001a, 2001b) gives good arguments
for the desirability of knowing the shape of the PF. He is
interested in differences between foveal and peripheral
visual processing, and he uses the PF slope as an indica-
tion of differences.

3. Slopes are different for different stimuli, and this
can lead to misleading results if slope is ignored. It may
help to describe my experience with the Modelfest pro-
ject (Carney et al., 2000) to make this issue concrete.
This continuing project involves a dozen laboratories
around the world. We have measured detection thresh-
olds for a wide variety of visual stimuli. The data are
used for developing an improved model of spatial vision.
Some of the stimuli were simple, easily memorized low
spatial frequency patterns that tend to have shallower
slopes because a stimulus-known-exactly template can
be used efficiently and with minimal uncertainty. On the
other hand, tiny Modelfest stimuli can have a good deal
of spatial uncertainty and are therefore expected to pro-
duce PFs with steeper slopes. Because of the slope change,
the pattern of thresholds will depend on the level at
which threshold is measured. When this rich dataset is
analyzed with f ilter models that make estimates for
mechanism bandwidths and mechanism pooling, these
different slope-dependent threshold patterns will lead to
different estimates for the model parameters. Several of
us in the Modelfest data gathering group argued that we
should use a data-gathering methodology that would
allow estimation of PF slope of each of the 45 stimuli.
However, I must admit that when I was a subject, my pa-
tience wore thin and I too chose the quicker runs. Al-
though I fully understand the attraction of short runs fo-
cused on thresholds and ignoring slope, I still think there
are good reasons for spreading trials out. For one thing,
interspersing trials that are slightly visible helps the sub-
ject maintain memory of the test pattern.

4. Slopes can directly resolve differences between mod-
els. In my own research, for example, my colleagues and

I are able to use the PF slope to distinguish long-range fa-
cilitation that produces a low-level excitation or noise re-
duction (typical with a cross-orientation surround) from a
higher level uncertainty reduction (typical with a same-
orientation surround).

Throwing-Out Rules, Goodness-of-Fit
There are occasions when a staircase goes sour. Most

often, this happens when the subject’s sensitivity changes
in the middle of a run, possibly because of fatigue. It is
therefore good to have a well-specified rule that allows
nonstationaryruns to be thrown out. The throwing-out rule
could be based on whether the PF slope estimate is too
low or too high. Alternatively, a standard approach is to
look at the chi-square goodness-of-f it statistic, which
would involve an assumption about the shape of the un-
derlying PF. I have a commentary in Section III regard-
ing biases in the chi-square metric that were found by
Wichmann and Hill (2001a). Biases make it difficult to
use standard chi-square tables. The trouble with this ap-
proach of basing the goodness-of-fit just on the cumulated
data is that it ignores the sequentialhistory of the run. The
Brownian up–down staircase makes the sequential history
vividly visible with a plot of sequentially tested levels.
When fatigue or adaptation sets in, one sees the tested lev-
els shift from one stable point to another. Leek, Hanna, and
Marshall (1991) developeda method of assessing the non-
stationarity of a psychometric function over the course of
its measurement, using two interleaved tracks. Earlier,
Hall (1983) also suggesteda technique to address the same
problem. I encourage further research into the develop-
ment of a non-stationaritystatistic that can be used to dis-
card bad runs. This statistic would take the sequential his-
tory into accountas well as the PF shape and the chi-square.

The development of a “throwing-out” rule is the ex-
treme case of the notion of weighted averaging. One im-
portant reason for developing good estimators for good-
ness-of-fit and good estimators for threshold variance is
to be able to optimally combine thresholds from repeated
experiments. I shall return to this issue in connection
with the Wichmann and Hill (2001a) analysis of bias in
goodness-of-fit metrics.

Final Thought: The Method Should
Depend on the Situation

Also important is that the method chosen should be ap-
propriate for the task. For example, suppose one is using
well-experienced observers for testing and retesting sim-
ilar conditions in which one is looking for small changes
in threshold or one is interested in the PF shape. In such
cases, one has a good estimate of the expected threshold,
and the signal detection method of constant stimuli with
blanks and with ratings might be best. On the other hand,
for clinical testing in which one is highly uncertain about
an individual’s threshold and criterion stability, a 2AFC
likelihood or staircase method (with a confidence rating)
might be best.



MEASURING THE PSYCHOMETRIC FUNCTION 1439

III. DATA-FITTING METHODS FOR
ESTIMATING THRESHOLD AND SLOPE,
PLUS GOODNESS-OF-FIT ESTIMATION

This final section of the paper is concerned with what
to do with the data after they have been collected. We
have here the standard Bayesian situation. Given the PF,
it is easy to generate samples of data, with confidence in-
tervals. But we have the inverse situation, in which we are
given the data and need to estimate properties of the PF
and get confidence limits for those estimates. The pair of
articles in this special issue by Wichmann and Hill (2001a,
2001b), as well as the articles by King-Smith et al. (1994),
Treutwein (1995), and Treutwein and Strasburger (1999)
do an outstandingjob of introducing the issues and provide
many important insights. For example, Emerson (1986)
and King-Smith et al. emphasize the advantages of mean
likelihood over maximum likelihood. The speed of mod-
ern computers makes it just as easy to calculate mean
likelihoodas it is to calculate maximum likelihood.As an-
other example, Treutwein and Strasburger (1999) demon-
strate the power of using Bayesian priors for estimating
parameters by showing how one can estimate all four pa-
rameters of Equation 1A in fewer than 100 trials. This im-
portant finding deserves further examination.

In this section, I will focus on four items. First I will dis-
cuss the relative merits of parametric versus nonparamet-
ric methods for estimating the PF properties. The paper
by Miller and Ulrich (2001) provides a detailed analysisof
a nonparametric method for obtainingall the moments of
the PF. I will discuss some advantages and limitations of
their method. Second is the question of goodness-of-fit.
Wichmann and Hill (2001a) show that when the number
of trials is small, the goodness-of-fit can be very biased.
I will examine the cause of that bias. Third is the issue dis-
cussed by Wichmann and Hill (2001a), that of how lapses
effect slope estimates. This topic is relevant to Strasburg-
er’s (2001b) data and analysis. Finally, there is the possibly
controversial topic of an upward slope bias in adaptive
methods that is relevant to the papers of Kaernbach (2001b)
and Strasburger (2001b).

Parametric Versus Nonparametric Fits
The main split between methods for estimating pa-

rameters of the psychometric function is the distinction
between parametric and nonparametric methods. In a
parametric method, one uses a PF that involves several
parameters and uses the data to estimate the parameters.
For example, one might know the shape of the PF and es-
timate just the threshold parameter. McKee et al. (1985)
show how slope uncertainty affects threshold uncertainty
in probit analysis. The two papers by Wichmann and Hill
(2001a, 2001b) are an excellent introduction to many is-
sues in parametric fitting. An example of a nonparamet-
ric method for estimating threshold would be to average
the levels of a Brownian staircase after excluding the first
four or so reversals in order to avoid the starting level bias.
Before I served as guest editor of this special symposium

issue, I believedthat if one had prior knowledgeof the exact
PF shape, a parametricmethodfor estimating thresholdwas
probably better than nonparametric methods. After read-
ing the articles presented here, as well as carrying out my
recent simulations, I no longer believe this. I think that,
in the proper situation,nonparametricmethods are as good
as parametric methods. Furthermore, there are situations
in which the shape of the PF is unknown and nonparamet-
ric methods can be better.

Miller and Ulrich’s Article on the
Nonparametric Spearman–Kärber
Method of Analysis

The standard way to extract information from psycho-
metric data is to assume a functional shape such as a Wei-
bull, cumulative normal, logit, d¢, and then vary the pa-
rameters until likelihood is maximized or chi-square is
minimized. Miller and Ulrich (2001) propose using the
Spearman–Kärber (SK) nonparametric method, which
does not require a functionalshape. They start with a prob-
ability density function, defined by them as the derivative
of the PF:

(33)

where s(i) is the stimulus intensity at the ith level, and
P(i) is the probabilitycorrect at the that level. The notation
pdf(i.) is meant to indicate that it is the pdf for the interval
between i – 1 and i. Miller and Ulrich give the r th moment
of this distribution as their Equation 3:

(34)

The next four equationsare my attempt to clarify their ap-
proach. I do this because, when applicable, it is a fine
method that deserves more attention. Equation 34 prob-
ably came from the mean value theorem of calculus:

(35)

where f (s) 5 sr11, and f ¢(smid) 5 (r 1 1)smid
r is the deriv-

ative of f with respect to s somewhere within the interval
between s(i 1) and s(i). For a slowly varying function,
smid would be near the midpoint.Given Equation35, Equa-
tion 34 becomes

(36)

where Ds 5 s(i) s(i 1). Equation 36 is what one would
mean by the rth moment of the distribution. The case r 5
0 is important, since it gives the area under the pdf,

(37)

by using the definition in Equation 33. The summation in
Equation 37 gives the area under the pdf. For it to be a
proper pdf, its area must be unity, which means that the
probability at the highest level, P(imax), must be unity and
the probability at the lowest level, Pmin, must be zero, as
Miller and Ulrich (2001) point out.
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The next simplest SK moment is for r 5 1:

(38)

from Equation 33. This first moment provides an esti-
mate of the centroid of the distribution corresponding to
the center of the psychometric function. It could be used
as an estimate of threshold for detection or PSE for dis-
crimination. An alternate estimator would be the median
of the pdf, corresponding to the 50% point of the PF (the
proper definition of PSE for discrimination).

Miller and Ulrich (2001) use Monte Carlo simulations
to claim that the SK method does a better job of extract-
ing properties of the psychometric function than do para-
metric methods. One must be a bit careful here, since in
their parametric fitting they generate the data by using
one PF and then fit it with other PFs. But still it is a sur-
prising claim; if this simple method is so good, why have
people not been using it for years? There are two possible
answers to this question.One is that people never thought
of using it before Miller and Ulrich. The other possibil-
ity is that it has problems. I have concluded that the an-
swer is a combination of both factors. I think that there is
an important place for the SK approach, but its limitations
must be understood. That is my next topic.

The most important limitation of the SK nonparamet-
ric method is that it has only been shown to work well for
method of constant stimulus data in which the PF goes
from 0 to 1. I question whether it can be applied with the
same confidence to 2AFC and to adaptiveprocedures with
unequalnumbers of trials at each level. The reason for this
limitation is that the SK method does not offer a simple
way to weight the different samples. Let us consider two
situations with unequal weighting: adaptive methods and
2AFC detection tasks.

Adaptive methods place trials near threshold, but with
very uneven distribution of number of trials at different
levels. The SK method gives equal weighting to sparsely
populated levels that can be highly variable, thus con-
tributing to a greater variance of parameter estimates. Let
us illustrate this point for an extreme case with five levels
s 5 [1 2 3 4 5]. Suppose the adaptive method placed [1
1 1 98 1] trials at the five levels and the number correct
were [0 1 1 49 1], giving probabilities [0 1. 1. .5 1.] and
pdf 5 [1 0 .5 .5]. The following PEST-like (Taylor &
Creelman, 1967) rules could lead to this unusual data:
Move down a level if the presently tested level has greater
than P1% correct, move up three levels if the presently
tested level has less than P2% correct. P1 can be any
number less than 33%, and P2 can be any number greater
than 67%. The example data would be produced by start-
ing at Level 5 and getting four in a row correct followed
by an error, followed by a wide set possible of alternat-
ing responses for which the PEST rules would leave the
fourth level as the level to be tested. The SK estimate of the

center of the PF is given by Equation 38 to be μ1 5 2.00.
Since a pdf with a negative probability is distasteful to
some, one can monotonize the PF according to the proce-
dure of Miller and Ulrich (which does include the number
of trials at each level). The new probabilities are [0 .51
.51 .51 1] with pdf 5 [.51 0 0 .49]. The new estimate of
threshold is μ1 5 2.97. However, given the data with 49/98
correct at Level 4, an estimate that includes a weighting
according to the number of trials at each level would place
the centroid of the distribution very close to μ1 5 4. Thus
we see that because the SK procedure ignores the number
of trials at each level, it produces erroneous estimates of
the PF properties. This example with shifting thresholds
was chosen to dramatize the problems of unequal weight-
ing and the effect of monotonizing.

A similar problem can occur even with the method of
constant stimuli with equal number of trials at each level,
but with unequal binomial weighting as occurs in 2AFC
data. The unequal weighting occurs because of the 50%
lower asymptote. The binomial statistics error bar of data
at 55% correct is much larger than for data at 95% cor-
rect. Parametric procedures such as probit analysis give
less weighting to the lower data. This is why the most ef-
ficient placement of trials in 2AFC is above 90% correct,
as I have discussed in Section II. Thus it is expected that
for 2AFC, the SK method would give threshold estimates
less precise than the estimates given by a parametric
method that includes weighting.

I originally thought that the SK method would fail on all
types of 2AFC data. However, in the discussion following
Equation 7, I pointed out that for 2AFC discrimination
tasks, there is a way of extending the data to the 0–100%
range that producesweightings similar to those for a yes/no
task. Rather than use the standard Equation 2 to deal with
the 50% lower asymptote, one should use the method dis-
cussed in connection with Figure 3, in which one can use
for the ordinate the percent of correct responses in Inter-
val 2 and use the signal strength in Interval 2 minus that
in Interval 1 for the abscissa. That procedure produces a
PF that goes from 0% to 100%, thereby making it suit-
able for SK analysis while also removing a possible bias.

Now let us examine the SK method as applied to data
for which it is expected to work, such as discrimination
PFs that go from 0 to 100%. These are tasks in which the
location of the psychometric function is the PSE and the
slope is the threshold.

A potentially important claim by Miller and Ulrich
(2001) is that the SK method performs better than probit
analysis. This is a surprising claim, since their data are
generated by a probit PF; one would expect probit analy-
sis to do well, especially since probit analysis does espe-
cially well with discriminationPFs that go from 0 to 100%.
To help clarify this issue, Miller and I did a number of
simulations. We focused on the case of N 5 40, with 8 tri-
als at each of 5 levels. The cumulative normal PF (Equa-
tion 14) was used with equally spaced z scores and with the
lowest and highest probabilities being 1% and 99%. The
probabilities at the sample points are P(i) 5 1%, 12.22%,
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50%, 87.78%, and 99%, corresponding to z scores of
z(i) 5 –2.328, 1.164, 0, 1.164, and 2.328. Nonmonot-
onicity is eliminated as Miller and Ulrich suggest (see
the Appendix for Matlab Code 4, for monotonizing). I did
Monte Carlo simulations to obtain the standard deviation
of the location of the PF, μ1, given by Equation38. I found
that both the SK method and the parametric probit method
(assuming a fixed unity slope) gave a standard deviation
of between 0.28 and 0.29. Miller and Ulrich’s result, re-
ported in their Table 17, gives a standard error of 0.071.
However, their Gaussian had a standard deviationof 0.25,
whereas my z-score units correspond to a standard devi-
ation of unity. Thus their standard error must be multiplied
by 4, giving a standard error of 0.284, in excellent agree-
ment with my value. So, at least in this instance, the SK
method did not do better than the parametric method (with
slope fixed), and the surprise mentioned at the beginning
of this paragraph did not materialize. I did not examine
other examples where nonparametric methods might do
better than the matched parametric method. However, the
simulationsof McKee et al. (1985) give some insight into
why probit analysis with floating slope can do poorly even
on data generated from probit PFs. McKee et al. show
that when the number of trials is low and if stimulus lev-
els near both 0% and 100% are not tested, the slope can be
very flat and the predicted threshold can be quite distant.
If care is not taken to place a bound on these probit esti-
mates, one would expect to find deviant threshold esti-
mates. The SK method, on the other hand, has built-in
bounds for threshold estimates, so outliers are avoided.
These bounds could explain why SK can do better than
probit. When the PF slope is uncertain, nonparametric
methods might work better than parametric methods, a
decided advantage for the SK method.

It is instructive to also do an analytic calculationof the
variance based on an analysis similar to what was done
earlier. If only the ith level of the five had been tested,
the variance of the PF location (the PSE in a discrimina-
tion task) would have been as follows (Gourevitch &
Galanter, 1967):

(39)

where var(P) is given by Equation 27 and PF slope is

(40)

where for the cumulative normal, dzi /dxi 5 1/s, where s
is the standard deviation of the pdf and

(41)

from Equation3A. By combining these equationsone gets

(42)

Note that if all trials were placed at the optimal stimulus
location of z 5 0 (P 5 .5), Equation 42 would become
s2p /2Ni, as discussed earlier. When all five levels are
combined, the total variance is smaller than each individ-
ual variance, as given by the variance summation formula:

(43)

Finally, upon plugging in the five values of zi ranging
from –2.328 to 12.328 and Pi ranging from 1% to 99%,
the standard error of the PF location is

(44)

This value is precisely the value obtained in our Monte
Carlo simulations of the nonparametric SK method and
also by the slope fixed parametric probit analysis. This
triple confirmation shows that the SK method is excel-
lent in the realm where it applies (equal number of trials
at levels that span 0 to 100%). It also confirms our sim-
ple analytic formula.

The data presented in Miller and Ulrich’s Table 17 give
us a fine opportunity to ask about the efficiency of the
method of constant stimuli that they use. For the N 5 40
example discussed here, the variance is

(45)

This value is more than twice the variance of p /(2Ntot)
that is obtained for the same PF using adaptive methods,
including the simple up–down staircase, that place trials
near the optimal point.

The large variance for the Miller and Ulrich stimulus
placement is not surprising, given that, of the five stimu-
lus levels, the two at P 5 1% and 99% are quite inefficient.
The inefficient placement of trials is a common problem
for the method of constant stimuli as opposed to adaptive
methods. However, as I mentioned earlier, the method of
constant stimuli combined with multiple response ratings
in a signal detection framework may be the best of all
methods for detectionstudies for revealingpropertiesof the
system near threshold while maintaininga high efficiency.

A curiousquestioncomes up about the optimalplacement
of trials for measuring the locationof the psychometricfunc-
tion. With the original function, the optimal placement is at
the steepest part of the function (at P 5 0). However, with
the SK method, when one is determining the location of
the pdf one might think that the optimal placement of sam-
ples should occur at the points where the pdf is steepest.
This contradiction is resolved when one realizes that only
the original samples are independent.The pdf samples are
obtained by taking differences of adjacent PF values, so
neighboringsamples are anticorrelated.Thus, one cannot
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claim that for estimating the PSE, the optimal placement
of trials is at the steep portion of the pdf.

Wichmann and Hill’s Biased Goodness-of-Fit
Whenever I fit a psychometric function to data I also

calculate the goodness-of-fit. The second half of Wich-
mann and Hill (2001a) is devoted to that topic and I have
some comments on their findings. There are two standard
methods for calculating the goodness-of-fit (Press, Teu-
kolsky,Vetterling,& Flannery, 1992). The first method is
to calculate the X 2 statistic, as given by

(46)

where p (datai) and Pi are the percent correct of the datum
and the PF at level i. The binomialvar(Pi ) is our old friend:

(47)

where Ni is the number of trials at level i. The X 2 is of in-
terest because the binomial distribution is asymptotically
a Gaussian, so that the X 2 statistic asymptoticallyhas a chi-
square distribution. Alternatively, one can write X 2 as

(48)

where the residuals are the difference between the pre-
dicted and observed probabilitiesdivided by the standard
error of the predicted probabilities, SEi 5 [var(Pi )]0.5:

(49)

The second method is to use the normalized log-
likelihood that Wichmann and Hill call the deviance, D. I
will use the letters LL, to remind the reader that I am deal-
ing with log likelihood:

(50)

Similar to the X 2 statistic,LL asymptoticallyalso has a chi-
square distribution.

In order to calculate the goodness-of-fit from the chi-
square statistic, one usually makes the assumption that we
are dealing with a linear model for Pi. A linear model
means that the various parameters controlling the shape of
the psychometric function (like a, b, g in Equation 1 for
the Weibull function) should contribute linearly. However,
Equations1, 8, and 12 show that only g contributes linearly.
Even though the PF function is not linear in its parameters,
one typically makes the linearity assumption anyway, in
order to use the chi-squaregoodness-of-fit tables. The pur-
pose of this section is to examine the validity of the linear-
ity assumption.

The chi-square goodness-of-fit distribution for a linear
model is tabulated in most statistics books. It is given by
the Gamma function (Press et al., 1992):

(51)

where the degrees of freedom, df, is the number of data
pointsminus the number of parameters. The Gamma func-
tion is a standard function (called Gammainc in Matlab).
In order to check that the Gamma function is functioning
properly, I often check that for a reasonably large number
of degrees of freedom (like df >10), the chi-square distri-
bution is close to Gaussian with a mean df and the stan-
dard deviation (2df )0.5. As an example for df 5 18, we
have Gamma(9, 9) 5 0.54, which is very close to the as-
ymptotic value of 0.5. To check the standard deviation,we
have Gamma [18/2, (18 1 6)/2] 5 .845, which is indeed
close to the value of 0.841 expected for a unity z-score.

With a sparse number of trials, or with probabilitiesnear
unity or with nonlinear models (all of which occur in fit-
ting psychometric functions), one might worry about the
validityof using the chi-squaredistribution(from standard
tables or Equation 51). Monte Carlo simulations would be
more trustworthy. That is what Wichmann and Hill (2001a)
use for the log likelihood deviance, LL. In Monte Carlo
simulations, one replicates the experimental conditions
and uses different randomly generated data sets based on
binomial statistics.Wichmann and Hill do 10,000 runs for
each condition. They calculate LL for each run and then
plot a histogram of the Monte Carlo simulations for com-
parison with the expected chi-square given by Equa-
tion 50, based on the chi-square distribution.

Their most surprising finding is the strong bias displayed
in their Figures 7 and 8. Their solid line is the chi-square
distribution from Equation 51. Both Figures 7a and 8a are
for a total of 120 trials per run, with 60 levels and 2 trials
for each level. In Figure 7a, with a strong upward bias, the
trials span the probability interval [0.52 , 0.85]; in Fig-
ure 8a, with a strong downward bias, the interval is [0.72,
0.99]. That relatively innocuousshift from testing at lower
probabilities to testing at higher probabilitiesmade a dra-
matic shift in the bias of the LL distribution relative to the
chi-square distribution. The shift perplexed me, so I de-
cided to investigate both X 2 and likelihood for different
numbers of trials and different probabilitiesfor each level.

Matlab Code 2 in the Appendix is the program that cal-
culates LL and X 2 for a PF ranging from P 5 50% to
100%, and for 1, 2, 4, 8, or 16 trials at each level. The
Matlab code calculates Equations 46 and 50 by enumer-
ating all possible outcomes, rather than by doing Monte
Carlo simulations.Consider the contribution to chi square
from one level in the sum of Equation 46:

(52)

where Oi 5 Ni p(datai) and Ei 5 Ni Pi. The mean value of
X 2

i is obtained by doing a weighted sum over all possible
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outcomes for Oi. The weighting, wti, is the expected prob-
ability from binomial statistics:

(53)

The expected value < X 2
i > is

(54)

A bit of algebra based on åOi
wti 5 1 gives a surprising

result:

(55)

That is, each term of the X 2 sum has an expectation value
of unity, independentof Ni and independentof P! Having
each deviant contribute unity to the sum in Equation 46
is desired, since Ei 5NiPi is the exact value rather than a
fitted value based on the sampled data. In Figure 4, the
horizontal line is the contribution to chi square for any
probability level. I had wrongly thought that one needed
Ni to be fairly big before each term contributed a unity
amount, on the average, to X 2. It happens with any Ni .

If we try the same calculation for each term of the
summation in Equation 50 for LL, we have

(56)

Unfortunately, there is no simpleway to do the summations
as was done for X 2, so I resort to the program of Matlab
Code 2. The output of the program is shown in Figure 4.
The five curves are for Ni 5 1, 2, 4, 8, and 16 as indicated.
It can be seen that for low values of Pi, near .5, the contri-
bution of each term is greater than 1, and that for high val-
ues (near 1), the contributionis less than 1. As Ni increases,
the contributionof most levelsgets closer to 1, as expected.
There are, however, disturbingdeviationsfrom unityat high
levels of Pi. An examination of the case Ni 5 2 is useful,
since it is the case for which Wichmann and Hill (2001a)
showed strong biases in their Figures 7 and 8 (left-hand
panels). This examinationwill show why Figure 4 has the
shape shown.

I first examine the case where the levels are biased to-
ward the lower asymptote. For Ni 5 2 and Pi 5 0.5, the
weights in Equation 53 are 1/4, 1/2, and 1/4 for Oi 5 0, 1,
or 2 and Ei 5 Ni Pi 5 1. Equation 56 simplifies, since the
factors with Oi 5 0 and Oi 5 1 vanish from the first term
and the factors with Oi 5 2 and Oi 5 1 vanish from the sec-
ond term. The Oi 5 1 terms vanish because log(1/1) 5 0.
Equation 56 becomes

(57)

Figure 4 shows that this is precisely the contribution of
each term at Pi 5 .5. Thus, if the PF levels were skewed to

the lowside, as in Wichmann and Hill’s Figure 7 (left panel),
the present analysis predicts that the LL statistic would
be biased to the high side. For the 60 levels in Figure 7
(left panel), their deviance statistic was biased about 20%
too high, which is compatible with our calculation.

Now I consider the case where levels are biased near the
upper asymptote. For Pi 5 1 and any value of Ni , the
weights are zero because of the 1 Pi factor in Equa-
tion 53 except for Oi 5 Ni and Ei 5 Ni . Equation 56 van-
ishes either because of the weight or because of the log
term, in agreement with Figure 4. Figure 4 shows that for
levels of Pi . .85, the contributionto chi-square is less than
unity. Thus if the PF levels were skewed to the high side,
as in Wichmann and Hill’s Figure 8 (left panel), we would
expect the LL statistic to be biased below unity, as they
found.

I have been wondering about the relative merits of X 2

and log likelihood for many years. I have always appreci-
ated the simplicity and intuitivenature of X 2, but statisti-
cians seem to prefer likelihood. I do not doubt the argu-
ments of King-Smith et al. (1994) and Kontsevich and
Tyler (1999), who advocate using mean likelihood in a
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Figure 4. The bias in goodness-of-fit for each level of 2AFC
data. The abscissa is the probability correct at each level Pi . The
ordinate is the contribution to the goodness-of-fit metric (X 2 or
log likelihood deviance). In linear regression with Gaussian
noise, each term of the chi-square summation is expected to give
a unity contribution if the true rather than sampled parameters
are used in the fit, so that the expected value of chi square equals
the number of data points. With binomial noise, the horizontal
dashed line indicates that the X 2 metric (Equation 52) contributes
exactly unity, independent of the probability and independent of
the number of trials at each level. This contribution was calcu-
lated by a weighted sum (Equations 53–54) over all possible out-
comes of data, rather than by doing Monte Carlo simulations.
The program that generated the data is included in the Appen-
dix as Matlab Code 2. The contribution to log likelihood deviance
(specified by Equation 56) is shown by the five curves labeled
1–16. Each curve is for a specific number of trials at each level.
For example, for the curve labeled 2 with 2 trials at each level
tested, the contribution to deviance was greater than unity for
probability levels less than about 85% correct and was less than
unity for higher probabilities. This finding explains the goodness-
of-fit bias found by Wichmann and Hill (2001a,Figures 7a and 8a).
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Bayesian framework for adaptivemethods in order to mea-
sure the PF. However, for goodness-of-fit, it is not clear
that the log likelihoodmethod is better than X2. The com-
mon argument in favor of likelihood is that it makes sense
even if there is only one trial at each level. However, my
analysis shows that the X 2 statistic is less biased than log
likelihood when there is a low number of trials per level.
This surprised me. Wichmann and Hill (2001a) offer two
more arguments in favor of log likelihood over X 2. First,
they note that the maximum likelihoodparameters will not
minimize X 2. This is not a bothersome objection, since
if one does a goodness-of-fit with X 2, one would also do
the parameter search by minimizing X 2 rather than max-
imizing likelihood.Second, Wichmann and Hill claim that
likelihood, but not X 2, can be used to assess the signifi-
cance of added parameters in embedded models. I doubt
that claim since it is standard to use c2 for embedded mod-
els (Press et al., 1992), and I cannot see that X 2 should
be any different.

Finally, I will mention why goodness-of-fit considera-
tions are important. First, if one consistently finds that
one’s data have a poorer goodness-of-fit than do simula-
tions, one should carefully examine the shape of the PF fit-
ting function and carefully examine the experimental
methodologyfor stability of the subjects’ responses. Sec-
ond, goodness-of-fit can have a role in weightingmultiple
measurements of the same threshold. If one has a reliable
estimateof thresholdvariance, multiplemeasurements can
be averaged by using an inverse variance weighting.There
are three ways to calculate threshold variance: (1) One can
use methods that depend only on the best-fitting PF (see
the discussion of inverse of Hessian matrix in Press et al.,
1992). The asymptotic formula such as that derived in
Equations 39–43 provides an example for when only
threshold is a free parameter. (2) One can multiply the vari-
ance of method (1) by the reduced chi-square (chi-square
divided by the degrees of freedom) if the reduced chi-
square is greater than one (Bevington, 1969; Klein, 1992).
(3) Probably the best approach is to use bootstrap estimates
of threshold variance based on the data from each run
(Foster & Bischof, 1991; Press et al., 1992). The bootstrap
estimator takes the goodness-of-fit into account in esti-
mating threshold variance. It would be useful to have more
research on how well the threshold variance of a given run
correlates with threshold accuracy (goodness-of-fit) of

that run. It would be nice if outliers were strongly corre-
lated with high threshold variance. I would not be sur-
prised if further research showed that because the fitting
involves nonlinear regression, the optimal weighting
might be different from simply using the inverse variance
as the weighting function.

Wichmann and Hill, and Strasburger:
Lapses and Bias Calculation

The first half of Wichmann and Hill (2001a) is con-
cerned with the effect of lapses on the slope of the PF.
“Lapses,” also called “finger errors,” are errors to highly
visible stimuli. This topic is important, because it is typi-
cally ignored when one is fittingPFs. Wichmann and Hill
(2001a) show that improper treatment of lapses in para-
metric PF fitting can cause sizeable errors in the values
of estimated parameters. Wichmann and Hill (2001a) show
that these considerations are especially important for es-
timation of the PF slope. Slope estimation is central to
Strasburger’s (2001b)article on letter discrimination.Stras-
burger’s (2001b) Figures 4, 5, 9, and 10 show that there
are substantial lapses even at high stimulus levels. Stras-
burger’s (2001b) maximum likelihood fitting program
used a non-zero lapse parameter of l 5 0.01% (H. Stras-
burger, personal communication, September 17, 2001).
I was worried that this value for the lapse parameter was
too small to avoid the slope bias, so I carried out a num-
ber of simulations similar to those of Wichmann and Hill
(2001a), but with a choice of parameters relevant to
Strasburger’s situation.Table 2 presents the results of this
study.

Since Strasburger used a 10AFC task with the PF rang-
ing from 10% to 100% correct, I decided to use discrim-
ination PFs going from 0% to 100% rather than the
2AFC PF of Wichmann and Hill (2001a). For simplicity I
decided to have just three levelswith 50 trials per level, the
same as Wichmann and Hill’s example in their Figure 1.
The PF that I used had 25, 42, and 50 correct responses at
levels placed at x 5 0, 1, and 6 (columns labeled “No
Lapse”). A lapse was produced by having 49 instead of
50 correct at the high level (columns labeled “Lapse”).
The data were fit in six different ways: Three PF shapes
were used, probit (cumulative normal), logit, and Wei-
bull corresponding to the rows of Table 2; and two error
metrics were used, chi-squareminimizationand likelihood

Table 2
The Effect of Lapses on the Slope
of Three Psychometric Functions

l 5 .01 l 5 .0001 l 5 .01 l 5 .0001

Psychometric No Lapse No Lapse Lapse Lapse

Function L c2 L c2 L c2 L c2

Probit 1.05 1.05 1.00 0.99 1.05 1.05 0.36 0.34
Logit 1.76 1.76 1.66 1.66 1.76 1.76 0.84 0.72
Weibull 1.01 1.01 0.97 0.97 1.01 1.01 0.26 0.26

Note—The columns are for different lapse rates and for the presence or absence of lapses. The 12 pairs of
entries in the cells are the slopes; the left and right values correspond to likelihood maximization (L) and c2

minimization, respectively.



maximization, corresponding to the paired entries in the
table. In addition, two lapse parameters were used in the
fit: l 5 0.01 (first and third pairs of data columns) and
l 5 0.0001 (second and fourth pairs of columns). For this
discrimination task, the lapses were made symmetric by
setting g 5 l in Equation 1A so that the PF would be
symmetric around the midpoint.

The Matlab program that produced Table 2 is included
as Matlab Code 3 in the Appendix. The details on how the
fitting was done and the precise definitions of the fitting
functions are given in the Matlab code. The functions
being fit are

with z 5 p2(y p1). The parameters p1 and p2, repre-
senting the threshold and slope of the PF, are the two free
parameters in the search. The resulting slope parameters
are reported in Table 2. The left entry of each pair is the
result of the likelihood maximization fit, and the right
entry is that of the chi-square minimization. The results
showed that (1) When there were no lapses (50 out of 50
correct at the high level), the slope did not strongly de-
pend on the lapse parameter. (2) When the lapse param-
eter was set to l 5 1%, the PF slope did not change when
there was a lapse (49 out of 50). (3) When l 5 0.01%,
the PF slope was reduced dramatically when a single
lapse was present. (4) For all cases except the fourth pair
of columns, there was no difference in the slope estimate
between maximizing likelihoodor minimizing chi-square
as would be expected, since in these cases the PF fit the
data quite well (low chi-square). In the case of a lapse
with l 5 0.01% (fourth pair of columns), chi-square is
large (not shown), indicatinga poor fit, and there is an in-
dication in the logit row that chi-square is more sensitive
to the outlier than is the likelihood function. In general,
chi-square minimization is more sensitive to outliers
than is likelihood maximization. Our results are compat-
ible with those of Wichmann and Hill (2001a). Given this
discussion, one might worry that Strasburger’s estimated
slopes would have a downward bias, since he used l 5
0.0001 and he had substantial lapses. However, his slopes
were quite high. It is surprising that the effect of lapses
did not produce lower slopes.

In the process of doing the parameter searches that went
into Table 2, I encountered the problem of “local minima,”
which often occurs in nonlinear regression but is not al-
ways discussed. The PFs depend nonlinearly on the pa-
rameters, so both chi-square minimizationand likelihood
maximization can be troubled by this problem whereby
the best-fitting parameters at the end of a search depend
on the starting point of the search. When the fit is good

(a low chi-square), as is true in the first three pairs of data
columns of Table 2, the search was robust and relatively
insensitive to the initial choice of parameter. However, in
the last pair of columns, the fit was poor (large chi-square)
because there was a lapse but the lapse parameter was
too small. In this case, the fit was quite sensitive to choice
of initial parameters, so a range of initial values had to be
explored to find the global minimum. As can be seen in
the Matlab Code 3 in the Appendix, I set the initial choice
of slope to be 0.3, since an initial guess in that region gave
the overall lowest value of chi-square.

Wichmann and Hill’s (2001a) analysis and the discus-
sion in this section raise the question of how one decides
on the lapse rate. For an experiment with a large number
of trials (many hundreds), with many trials at high stim-
ulus strengths,Wichmann and Hill (2001a, Figure 5) show
that the lapse parameter should be allowed to vary while
one uses a standard fitting procedure. However, it is rare
to have sufficient data to be able to estimate slope and
lapse parameters as well as threshold. One good approach
is that of Treutwein and Strasburger (1999) and Wichmann
and Hill (2001a), who use Bayesian priors to limit the
range of l. A second approach is to weight the data with
a combination of binomial errors based on the observed
as well as the expected data (Klein, 2002) and fix the
lapse parameter to zero or a small number. Normally the
weighting is based solely on the expected analytic PF
rather than the data. Adding in some variance due to the
observed data permits the data with lapses to receive
lesser weighting. A third approach, proposed by Manny
and Klein (1985), is relevant to testing infants and clin-
ical populations, in both of which cases the lapse rate
might be high, with the stimulus levels well separated.
The goal in these clinical studies is to place bounds on
threshold estimates. Manny and Klein used a step-like
PF with the assumption that the slope was steep enough
that only one datum lay on the sloping part of the func-
tion. In the fitting procedure, the lapse rate was given by
the average of the data above the step. A maximum likeli-
hood procedure with threshold as the only free parameter
(the lapse rate was constrained as just mentioned) was
able to place statistical boundson the threshold estimates.

Biased Slope in Adaptive Methods
In the previous section, I examined how lapses produce

a downward slope bias. Now I will examine factors that
can produce an upward slope bias. Leek, Hanna, and
Marshall (1992) carried out a large number of 2AFC,
3AFC, and 4AFC simulations of a variety of Brownian
staircases. The PF that they used to generate the data and
to fit the data was the power law d¢ function (d¢ 5 xt

b). (I
was pleased that they called the d¢ function the “psycho-
metric function.”) They found that the estimated slope,
b, of the PF was biased high. The bias was larger for runs
with fewer trials and for PFs with shallower slopes or
more closely spaced levels. Two of the papers in this spe-
cial issue were centrally involved with this topic. Stras-
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burger (2001b) used a 10AFC task for letter discrimina-
tion and found slopes that were more than double the
slopes in previous studies. I worried that the high slopes
might be due to a bias caused by the methodology.Kaern-
bach (2001b) provides a mechanism that could explain
the slope bias found in adaptive procedures. Here I will
summarize my thoughts on this topic. My motivation
goes well beyond the particular issue of a slope bias as-
sociatedwith adaptivemethods. I see it as an excellent case
study that provides many lessons on how subtle, seem-
ingly innocuous methods can produce unwanted biases.

Strasburger’s steep slopes for character recognition.
Strasburger (2001b) used a maximum likelihoodadaptive
procedure with about 30 trials per run. The task was let-
ter discrimination with 10 possible peripherally viewed
letters. Letter contrast was varied on the basis of a like-
lihood method, using a Weibull function with b 5 3.5 to
obtain the next test contrast and to obtain the threshold
at the end of each run. In order to estimate the slope, the
data were shifted on a log axis so that thresholds were
aligned.The raw datawere then pooled so that a large num-
ber of trials were present at a number of levels. Note that
this procedure produces an extreme concentration of tri-
als at threshold. The bottom panels of Strasburger’s Fig-
ures 4 and 5 show that there are less than half the number
of trials in the two bins adjacent to the central bin, with a
bin separation of only 0.01 log units (a 2.3% contrast
change). A Weibull function with threshold and slope as
free parameters was fit to the pooled data, using a lower
asymptote of g 5 10% (because of the 10AFC task) and
a lapse rate of l 5 0.01% (a 99.990% correct upper as-
ymptote). The PF slope was found to be b 5 5.5. Since
this value of b is about twice that found regularly, Stras-
burger’s finding implies at least a four-fold variance re-
duction.The asymptotic (large N ) variance for the 10AFC
task is 1.75/(Nb 2) 5 0.058/N (Klein, 2001). For a run of
25 trials, the variance is var 5 0.058/25 5 0.0023. The
standard error is SE 5 sqrt(var) .05. This means that in
just 25 trials, one can estimate threshold with a 5% stan-
dard error, a low value. That low value is sufficiently re-
markable that one should look for possible biases in the
procedure.

Before considering a multiplicity of factors contribut-
ing to a bias, it should be noted that the large values of b
could be real for seeing the tiny stimuli used by Strasburger
(2001b). With small stimuli and peripheral viewing, there
is much spatial uncertainty, and uncertainty is known to
elevate slopes. A question remains, of whether the uncer-
tainty is sufficient to account for the data.

There are many possible causes of the upward slope
bias. My intuitionwas that the early step of shifting the PF
to align thresholds was an important contributor to the
bias. As an example of how it would work, consider the
five-pointPF with equal level spacing used by Miller and
Ulrich (2001): P(i) 5 1%, 12.22%, 50%, 87.78%, and
99%. Suppose that because of binomial variability, the
middle point was 70% rather than 50%. Then the thresh-

old would be shifted to between Levels 2 and 3, and the
slopewould be steepened.Suppose,on the other hand, that
the variability causes the middle point to be 30% rather
than 50%. Now the threshold would be shifted to between
Levels 3 and 4, and the slope would again be steepened.
So any variability in the middle level causes steepening.
Variability at the other levels has less effect on slope. I will
now compare this and other candidates for slope bias.

Kaernbach’s explanation of the slope bias. Kaern-
bach (2001b) examines staircases based on a cumulative
normal PF that goes from 0% to 100%. The staircase rule
is Brownian, with one step up or down for each incorrect or
correct answer, respectively.Parametric and nonparamet-
ric methods were used to analyze the data. Here I will focus
on the nonparametric methods used to generate Kaern-
bach’s Figures 2–4. The analysis involves three steps.

First, the data are monotonized. Kaernbach gives two
reasons for this procedure: (1) Since the true psychome-
tric function is expected to be monotonic, it seems appro-
priate to monotonize the data. This also helps remove noise
from nonparametric thresholdor slope estimates. (2) “Sec-
ond, and more importantly, the monotonicity constraint
improves the estimates at the borders of the tested signal
range where only few tests occur and admits to estimate
the valuesof the PF at those signal levels that havenot been
tested (i.e., above or below the tested range). For the
present approach this extrapolation is necessary since
the averaging of the PF values can only be performed if
all runs yield PF estimates for all signal levels in question”
(Kaernbach, 2001b, p. 1390).

Second, the data are extrapolated, with the help of the
monotonizing step as mentioned in the quote of the pre-
ceding paragraph. Kaernbach (2001b) believes it is es-
sential to extrapolate. However, as I shall show, it is pos-
sible to do the simulations without the extrapolation
step. I will argue in connection with my simulations that
the extrapolation step may be the most critical step in
Kaernbach’s method for producing the bias he finds.

Third, a PF is calculated for each run. The PFs are then
averaged across runs. This is different from Strasburger’s
method, in which the data are shifted and then, rather than
average the PFs of each run, the total number correct and
incorrect at each level are pooled. Finally, the PF is gen-
erated on the basis of the pooled data.

Simulations to clarify contributions to the slope bias.
A number of factors in Kaernbach’s and Strasburger’s pro-
cedures could contribute to biased slope estimate. In Stras-
burger’s case, there is the shifting step. One might think
this special to Strasburger, but in fact it occurs in many
methods, both parametric and nonparametric. In paramet-
ric methods, both slope and threshold are typically esti-
mated. A threshold estimate that is shifted away from its
true value corresponds to Strasburger’s shift. Similarly,
in the nonparametric method of Miller and Ulrich (2001),
the distribution is implicitly allowed to shift in the process
of estimating slope. When Kaernbach (2001b) imple-
mented Miller and Ulrich’s method, he found a large up-
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ward slope bias. Strasburger’s shift step was more explicit
than that of the othermethods, in which the shift is implicit.
Strasburger’s method allowed the resulting slope to be vi-
sualized as in his figures of the raw data after the shift.

I investigatedseveral possible contributionsto the slope
bias: (1) shifting, (2) monotonizing,(3) extrapolating,and
(4) averaging the PF. Rather than simulations, I did enu-
merations, in which all possible staircases were analyzed
with each staircase consisting of 10 trials, all starting at
the same point. To simplify the analysis and to reduce the
number of assumptions, I chose a PF that was flat (slope
of zero) at P 5 50%. This corresponds to the case of a
normal PF, but with a very small step size. The Matlab pro-
gram that does all the calculations and all the figures is
includedas Matlab Code4. There are four parts to the code:
(1) the main program, (2) the script for monotonizing,

(3) the script for extrapolating, (4) the script for either av-
eraging the PFs or totalingup the raw responses. The Mat-
lab code in the Appendix shows that it is quite easy to find
a method for averagingPFs even when there are levels that
are not tested. Since the annotatedprograms are included,
I will skip the details here and just offer a few comments.

The outputof the Matlab program is shown in Figure 5.
The left and right columns of panels show the PF for the
case of no shifting and with shifting, respectively. The
shifting is accomplished by estimating threshold as the
mean of all the levels, a standard nonparametric method
for estimating threshold. That mean is used as the amount
by which the levels are shifted before the data from all runs
are pooled. The top pair of panels is for the case of aver-
aging the raw data; the middle panels show the results of av-
eraging following the monotonizingprocedure.The monot-
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Figure 5. Slope bias for staircase data. Psychometric functions are shown following four types of processing
steps: shifting, monotonizing, extrapolating, and type of averaging. In all panels, the solid line is for averaging the
raw data of multiple runs before calculating the PF. The dashed line is for first calculating the PF and then aver-
aging the PF probabilities. Panel a shows the initial PF is unchanged if there is no shifting, maximizing, or ex-
trapolating. For simplicity, a flat PF, fixed at P 5 50%, was chosen. The dot–dashed curve is a histogram show-
ing the percentage of trials at each stimulus level. Panel b shows the effect of monotonizing the data. Note that this
one panel has a reduced ordinate to better show the details of the data. Panel c shows the effect of extrapolating
the data to untested levels. Panels d, e, and f are for the cases a, b, and c where in addition a shift operation is done
to align thresholds before the data are averaged across runs. The results show that the shift operation is the most
effective analysis step for producing a bias. The combination of monotonizing, extrapolating, and averaging PFs
(panel c) also produces a strong upward bias of slope.
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onizing routine took some thought,and I hope its presence
in the Appendix (Matlab Code 4) will save others much
trouble. The lower pair of panels shows the results of aver-
aging after both monotonizingand extrapolating.

In each panel, the solid curve shows the average PF ob-
tained by combining the correct trials and the total trials
across runs for each level and taking their ratio to get the
PF. The dashed curve shows the average PF resulting from
averaging the PFs of each run. The latter method is the
more important one, since it simulates single short runs.
In the upper pair of panels, the dashed and solid curves
are so close to each other that they look like a single curve.
In the upper pair, I show an additional dot–dashed line,
with right–left symmetry, that represents the total num-
ber of trials. The results in the plots are as follows.

Placement of trials. The effect of the shift on the num-
ber of trials at each level can be seen by comparing the
dot–dashed lines in the top two panels. The shift narrows
the distributionsignificantly. There are close to zero trials
more than three steps from threshold in panel d with the
shift, even though the full range is 610 steps. The curve
showing the total number of trials would be even sharper
if I had used a PF with positive slope rather than a PF
that is constant at 50%.

Slope bias with no monotonizing. The top left panel
shows that with no shift and no monotonizing, there is no
slope bias. The PF is flat at 50%. The introductionof a shift
produces a dramatic slope bias, going from PF 5 20% to
80% as the stimulus goes from Levels 8 to 12. There was
no dependence on the type of averaging.

Effect of monotonizing on slope bias. Monotonizing
alone (middle panel on left) produced a small slope bias
that was larger with PF averaging than with data averaging.
Note that the ordinate has been expanded in this one case,
in order to better illustrate the extent of the bias. The ex-
treme amount of steepening (right panel) that is produced
by shifting was not matched by monotonizing.

Effect of extrapolatingon slopebias. The lower left panel
shows the dramatic result that the combination of all three
of Kaernbach’s methods—monotonizing, extrapolating,
and averaging PFs—does produce a strong slope bias for
these Brownian staircases. If one uses Strasburger’s type
of averaging, in which the data are pooled before the PF is
calculated, then the slope bias is minimal. This type of av-
eraging is equivalent to a large increase in the number of
trials.

These simulations show that it is easy to get an upward
slope bias from Brownian data with trials concentrated
hear one point. An important factor underlying this bias is
the strong correlation in staircase levels, discussed by
Kaernbach (2001b). A factor that magnifies the slope bias
is that when trials are concentrated at one point, the slope
estimate has a large standard error, allowing it to shift eas-
ily. Our simulationsshow that one can produce biased slope
estimates eitherby a procedure (possibly implicit) that shifts
the threshold, or by a procedure that extrapolates data to
untested levels. This topic is of more academic than prac-

tical interest, since anyoneinterested in the PF slope should
use an adaptivealgorithmlike the Y method of Kontsevich
and Tyler (1999), in which trials are placed at separated
levels for estimating slope. The slope bias that is produced
by the seemingly innocuous extrapolation or shifting step
is a wonderful reminder of the care that must be taken
when one employs psychometric methodologies.

SUMMARY

Many topics have been in this paper, so a summary
should serve as a useful reminder of several highlights.
Items that are surprising, novel,or important are italicized.

I. Types of PFs
1. There are two methods for compensating for the PF

lower asymptote, also called the correction for bias:
1.1 Do the compensation in probability space. Equa-

tion 2 specifiesp(x) 5 [P(x) P(0)] /[1 P(0)], where P(0),
the lower asymptote of the PF, is often designated by the
parameter g. With this method, threshold estimates vary as
the lower asymptote varies (a failure of the high-threshold
assumption).

1.2 Do the compensation in z-score space for yes/no
tasks. Equation 5 specifies d ¢(x) 5 z(x) z(0). With this
method, the response measure d¢ is identical to the metric
used in signal detection theory. This way of lookingat psy-
chometric functions is not familiar to many researchers.

2. 2AFC is not immune to bias. It is not uncommon for
the observer to be biased toward Interval 1 or 2 when the
stimulus is weak. Whereas the criterion bias for a yes/no
task [z(0) in Equation 5] affects d¢ linearly, the interval
bias in 2AFC affects d¢ quadratically and therefore it has
been thought small. Using an example from Green and
Swets (1966), I have shown that this 2AFC bias can have
a substantial effect on d¢ and on threshold estimates, a dif-
ferent conclusion from that of Green and Swets. The in-
terval bias can be eliminated by replotting the 2AFC dis-
crimination PF, using the percent correct Interval 2
judgments on the ordinate and the Interval 2 minus In-
terval 1 signal strength on the abscissa. This 2AFC PF
goes from 0% to 100%, rather than from 50% to 100%.

3. Three distinctions can be made regarding PFs:
yes/no versus forced choice, detection versus discrimi-
nation, adaptive versus constant stimuli. In all of the ex-
perimental papers in this special issue, the use of forced
choice adaptive methods reflects their widespread preva-
lence.

4. Why is 2AFC so popular given its shortcomings? A
common response is that 2AFC minimizes bias (but note
Item 2 above). A less appreciated reason is thatmany adap-
tive methods are available for forced choice methods, but
that objective yes/no adaptive methods are not common.
By “objective,”I mean a signal detectionmethod with suf-
ficient blank trials to fix the criterion. Kaernbach (1990)
proposed an objective yes/no, up–down staircase with
rules as simple as these: Randomly intermix blanks and
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signal trials, decrease the level of the signal by one step for
every correct answer (hits or correct rejections), and in-
crease the level by three steps for every wrong answer
(false alarms or misses). The minimumd¢ is obtainedwhen
the numbers of “yes” and “no” responses are about equal
(ROC negative diagonal). A bias of imbalanced “yes” and
“no” responses is similar to the 2AFC interval bias dis-
cussed in Item 2. The appropriate balance can be achieved
by giving bias feedback to the observer.

5. Threshold should be defined on the basis of a fixed
d¢ level rather than the 50% point of the PF.

6. The connection between PF slope on a natural log-
arithm abscissa and slope on a linear abscissa is as fol-
lows: slopelin 5 slopelog/xt (Equation 11), where xt is the
stimulus strength in threshold units.

7. Strasburger’s (2001a) maximum PF slope has the ad-
vantage that it relates PF slopeusing a probabilityordinate,
b¢, to the low stimulus strength log–log slope of the d¢
function, b. It has the further advantage of relating the
slopes of a wide variety of PFs: Weibull, logistic, Quick,
cumulative normal, hyperbolic tangent, and signal detec-
tion d¢. The main difficulty with maximum slope is that
quite often, threshold is defined at a point different from
the maximum slope point. Typically, the point of maxi-
mum slope is lower than the level that gives minimum
threshold variance.

8. A surprisingly accurate connection was made be-
tween the 2AFC Weibull function and the Stromeyer–
Foley d¢ function given in Equation 20. For all values of
the Weibull b parameter and for all points on the PF, the
maximum difference between the two functions is .0004
on a probability ordinate going from .50 to 1.00. For this
good fit, the connectionbetween the d¢ exponentb and the
Weibull exponent b is b/b 5 1.06. This ratio differs from
b/b 0.8 (Pelli, 1985) and b/b 5 0.88 (Strasburger,
2001a), because our d¢ function saturates at moderate d¢
values just as the Weibull saturates and as experimental
data saturate.

II. Experimental Methods for Measuring PFs
1. The 2AFC and objective yes/no threshold vari-

ances were compared, using signal detection assump-
tions. For a fixed total percent correct, the yes/no and
the 2AFC methods have identical threshold variances
when using a d¢ function given by d¢ 5 ct

b. The optimum
variance of 1.64/(Nb2) occurs at P 5 94%, where N is
the number of trials. If N is the number of stimulus pre-
sentations, then, for the 2AFC task, the variance would
be doubled to 3.28/(Nb2). Counting stimulus presenta-
tions rather than trials can be important for situations in
which each presentation takes a long time, as in the smell
and taste experiments of Linschoten et al. (2001).

2. The equality of the 2AFC and yes/no threshold
variance leads to a paradox whereby observers could
convert the 2AFC experiment to an objective yes/no ex-
periment by closing their eyes in the first 2AFC interval.
Paradoxically, the eyes’ shutting would leave the thresh-
old variance unchanged.This paradox was resolved when

a more realisticd¢ PF with saturationwas used. In that case,
the yes/no variance was slightly larger than the 2AFC vari-
ance for the same number of trials.

3. Several disadvantagesof the 2AFC method are that
(a) 2AFC has an extra memory load, (b) modeling proba-
bility summation and uncertainty is more difficult than
for yes/no, (c) multiplicative noise (ROC slope) is diffi-
cult to measure in 2AFC, (d) bias issues are present in
2AFC as well as in objective yes/no, and (e) threshold
estimation is inefficient in comparison with methods
with lower asymptotes that are less than 50%.

4. Kaernbach (2001b) suggested that some 2AFC
problems could be alleviated by introducing an extra
“don’t know” response category.A better alternative is to
give a high or low confidence response in addition to
choosing the interval. I discussed how the confidence
rating would modify the staircase rules.

5. The efficiency of the objective yes/no method
could be increased by increasing the number of response
categories (ratings) and increasing the number of stimu-
lus levels (Klein, 2002).

6. The simple up–down (Brownian) staircase with
thresholdestimated by averaging levels was found to have
nearly optimal efficiency in agreement with Green (1990).
It is better to average all levels (after about four reversals
of initial trials are thrown out) rather than average an even
numberof reversals.Bothof these findingswere surprising.

7. As long as the starting point is not too distant from
threshold, Brownian staircases with their moderate iner-
tia have advantages over the more prestigious adaptive
likelihood methods. At the beginningof a run, likelihood
methods may have too little inertia and can jump to low
stimulus strengths before the observer is fully familiar with
the test target. At the end of the run, likelihood methods
may have too much inertia and resist changing levels even
though a nonstationary threshold has shifted.

8. The PF slope is useful for several reasons. It is
needed for estimating threshold variance, for distinguish-
ing between multiple vision models, and for improved es-
timation of threshold. I have discussed PF slope as well as
threshold. Adaptive methods are available for measuring
slope as well as threshold.

9. Improved goodness-of-fit rules are needed as a
basis for throwing out bad runs and as a means for im-
proving estimates of threshold variance. The goodness-
of-fit metric should look not only at the PF, but also at the
sequential history of the run so that mid-run shifts in
threshold can be determined. The best way to estimate
threshold variance on the basis of a single run of data is
to carry out bootstrapcalculations(Foster & Bischof, 1991;
Wichmann & Hill, 2001b). Further research is needed in
order to determine the optimal method for weighting mul-
tiple estimates of the same threshold.

10. The method should depend on the situation.

III. Mathematical Methods for Analyzing PFs
1. Miller and Ulrich’s (2001)nonparametricSpearman–

Kärber (SK) analysis can be as good as and often better
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than a parametric analysis. An important limitationof the
SK analysis is that it does not include a weighting factor
that would emphasize levels with more trials. This would
be relevant for staircase methods in which the number of
trials was unequallydistributed. It would also cause prob-
lems with 2AFC detection, because of the asymmetry of
the upper and lower asymptote. It need not be a problem
for 2AFC discrimination, because, as I have shown, this
task can be analyzed better with a negative-goingabscissa
that allows the ordinate to go from 0% to 100%. Equa-
tions39–43 providean analyticmethod for calculating the
optimal variance of threshold estimates for the method of
constant stimuli. The analysis shows that the SK method
had an optimal variance.

2. Wichmann and Hill (2001a) carry out a large number
of simulations of the chi-square and likelihoodgoodness-
of-fit for 2AFC experiments.They found trial placements
where their simulations were upwardly skewed, in com-
parison with the chi-square distributionbased on linear re-
gression. They found other trial placements where their
chi-square simulations were downwardly skewed. These
puzzling results rekindled my longstanding interest in
wanting to know when to trust the chi-square distribution
in nonlinear situations and prompted me to analyze
rather than simulate the biases shown by Wichmann &
Hill. To my surprise I found that the X 2 distribution
(Equation 52) had zero bias at any testing level, even for
1 or 2 trials per level. The likelihood function (Equa-
tion 56), on the other hand, had a strong bias when the
number of trials per level was low (Figure 4). The bias as
a function of test level was precisely of the form that is
able to account for the bias found by Wichmann and Hill
(2001a).

3. Wichmann and Hill (2001a) present a detailed in-
vestigation of the strong effect of lapses on estimates of
threshold and slope. This issue is relevant to the data of
Strasburger (2001b) because of the lapses shown in his
data and because a very low lapse parameter (l 5 0.0001)
was used in fitting the data. In my simulations, using PF
parameters somewhat similar to Strasburger’s situation, I
found that the effect of lapses would be expected to be
strong, so that Strasburger’s estimated slopes should be
lower than the actual slopes. However, Strasburger’s slopes
were high, so the mystery remains of why the lapses did
not have a stronger effect. My simulations show that one
possibility is the local minimum problem whereby the slope
estimate in the presence of lapses is sensitive to the initial
startingguesses for slope in the search routine. In order to
find the global minimum, one needs to use a range of ini-
tial slope guesses.

4. One of the most intriguing findings in this special
issue was the quite high PF slopes for letter discrimination
found by Strasburger (2001b). The slopes might be high
because of stimulus uncertainty in identifyingsmall low-
contrast peripheral letters. There is also the possibility that
these high slopes were due to methodological bias (Leek
et al., 1992). Kaernbach (2001b) presents a wonderful
analysis of how an upward bias could be caused by trial

nonindependence of staircase procedures (not the method
Strasburger used). I did a number of simulations to sep-
arate out the effects of threshold shift (one of the steps in
the Strasburger analysis), PF monotonization, PF extrap-
olation, and type of averaging (the latter three used by
Kaernbach). My results indicated that for experiments
such as Strasburger’s, the dominant cause of upward slope
bias was the threshold shift. Kaernbach’s extrapolation,
whencoupledwith monotonization,can also lead to a strong
upward slope bias. Further experiments and analyses are
encouraged, since true steep slopes would be very impor-
tant in allowing thresholds to be estimated with much
fewer trials than is presently assumed. Although none of
our analyses makes a conclusive case that Strasburger’s
estimated slopes are biased, the possibility of a bias sug-
gests that one should be cautiousbefore assuming that the
high slopes are real.

5. The slope bias story has two main messages. The ob-
vious one is that if one wants to measure the PF slope by
using adaptive methods, one should use a method that
places trials at well separated levels. The other message
has broader implications. The slope bias shows how sub-
tle, seemingly innocuousmethods can produce unwanted
effects. It is always a good idea to carry out Monte Carlo
simulationsof one’s experimental procedures, looking for
the unexpected.
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