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Abstract

We measure the experimental error that arises from the
use of non-validated simulators in computer architecture
research, with the goal of increasing the rigor of simula-
tion-based studies. We describe the methodology that we
used to validate a microprocessor simulator against a
Compaq DS-10L workstation, which contains an Alpha
21264 processor. Our evaluation suite consists of a set of
21 microbenchmarks that stress different aspects of the
21264 microarchitecture. Using the microbenchmark suite
as the set of workloads, we describe how we reduced our
simulator error to an arithmetic mean of 2%, and include
details about the specific aspects of the pipeline that
required extra care to reduce the error. We show how these
low-level optimizations reduce average error from 40% to
less than 20% on macrobenchmarks drawn from the
SPEC2000 suite. Finally, we examine the degree to which
performance optimizations are stable across different sim-
ulators, showing that researchers would draw different
conclusions, in some cases, if using validated simulators.

1  The need for validated simulators

Because of the time, expense, and complexity of con-

structing hardware prototypes, the computer architecture

research community relies heavily on simulation to evalu-

ate new ideas. As a result of the increasing complexity in

modern computer systems, and with the corresponding

difficulties of building and maintaining software tools that

reflect that complexity, simulation infrastructure is now

widely shared among both academic and industry

researchers. A majority of the papers published in recent

conferences use shared tools such as the SimpleScalar

tools [4], RSim [17], SimOS [19], and CACTI [10]. While

some tools, such as CACTI, have been validated against

real hardware, none of the microarchitecture simulators

have been subject to such scrutiny. This lack of perfor-

mance validation may be consistently introducing error

into experimental studies, which, if sufficiently large, may

cause researchers to draw incorrect conclusions.

Black and Shen introduce a taxonomy for describing

the source of inaccuracy in simulations [2]. Modeling

errors result from unintentional performance bugs lurking

in the simulator code. Specification errors occur when the

developer models behavior that does not match that of the

specified system, possibly through misunderstanding of

the specification or invalid assumptions about the underly-

ing technology. Abstraction errors arise by modeling the

system at an insufficient level of detail. Common sources

of abstraction errors include neglecting to simulate minor

structures in the microarchitecture, overlapping of opera-

tions, finite pipelining of storage structures, non-modeled

signal delays, or overly simplistic simulation of state

machines and corner cases.

While modeling errors are gradually eliminated over a

tool’s lifetime, significant bugs may be introduced into the

code when functionality not anticipated by the original

tool designer is added. Specification errors often arise

when the designer neglects physical constraints, such as

clock speeds, and tend to occur more frequently with

increased system complexity. Abstraction errors are not

typically reduced as a tool matures, and will become more

frequent and serious as global wire delays introduce lay-

out-determined communication delays [1]. Consequently,

the relative error in microprocessor simulators is likely

growing, thus increasing the motivation for validation of

experimental simulators. Worse, the magnitude of the

errors, as shown by Black and Shen [2], may be suffi-

ciently large that researchers draw the wrong conclusions

when evaluating a new technique. Our results show that

the error in common simulators is often larger than the

performance gains yielded by new architecture ideas

reported in the literature.

In this paper, we describe our validation of an Alpha

21264 simulator, called sim-alpha, against a Compaq

DS-10L workstation. In Sections 2, 3, and 4, we describe

the 21264 architecture and DS-10L platform, the valida-

tion of sim-alpha using a suite of microbenchmarks,

and our methodology for approximating native memory
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system parameters. In Section 5, we present the validation

of sim-alpha using ten benchmarks drawn from the

SPEC2000 suite. We also present a case study which dem-

onstrates that different conclusions may be reached when a

researcher uses to a high-fidelity, validated simulator. In

Section 6, we describe related microprocessor simulation

validation efforts. In Section 7, we conclude that simula-

tors which do not model real targets tend to overestimate

performance, since they are not subject to implementation

constraints. We also provide a list of recommendations for

improving the rigor of simulation-based, empirical archi-

tecture research.

2  Alpha 21264 review

The Compaq Alpha 21264 processor [6,11] is an out-

of-order issue microarchitecture that is designed to operate

at frequencies higher than other processors of its genera-

tion. We chose the 21264 because the specification of its

microarchitecture has been published in much more detail

than chips from other vendors. We relied primarily on ref-

ereed publications by Kessler [11, 12], the Alpha 21264

Compiler Writer’s Guide [6], and the hardware reference

manual [5].

2.1  Pipeline stages

The pipeline of the 21264, shown in Figure 1, includes

seven basic stages plus a variable number of execute

stages, depending on the instruction. The fetch stage of the

pipeline accesses the 64KB, 2-way set-associative, 64-

byte block instruction cache in a single cycle. A 128-bit

packet of four instructions, called an octaword in the Com-

paq Alpha literature, is fetched on every cycle. All fetches

must be aligned on an octaword boundary. To improve

fetch bandwidth, the I-cache contains a line predictor and

a way predictor. The line predictor contains a prediction

used to perform the next i-fetch, which requires a pointer

to an I-cache set and the offset to an octaword within a

line. The way predictor assists the I-cache by predicting

which line in the set to access, incurring a two-cycle bub-

ble upon a way misprediction. The fetch stage will

prefetch up to four 64-byte instruction cache lines when an

I-cache miss occurs.

The slot stage contains the tournament branch predic-

tor, which is a combination of three predictors: a two-level

local predictor, a path-based global predictor, and a choice

predictor that chooses between the local and global predic-

tions for individual branches. The local predictor (L) con-

tains 1024 10-bit local histories, which are used to access a

1024-entry table of 3-bit saturating counters. The global

predictor (G) uses a 12-bit history shift register to index

into a 4K-entry table of 2-bit saturating counters. The

choice predictor (C) uses the PC to index into a 4K-entry

table of 2-bit saturating counters, which select the local or

global prediction for each branch. In addition to the branch

prediction, the slot stage also performs a table lookup to

assign each instruction in the fetched packet to one of the

two subclusters in the execution core, according to prede-

termined rules stored in a table.

The map stage performs register renaming, assigning

one of the 80 physical registers (40 integer and 40 floating

point) to each instruction’s result. In addition, the map

stage assigns each instruction a unique 8-bit number,

called the inum, and loads the instructions into the reorder

buffer and collapsible issue queues. The rename table is

designed not to stall as long as at least eight free physical

register names are available.

The issue stage selects instructions from the 20-entry

integer queue and the 15-entry floating-point queue.

Instructions are issued to one of the two register file/exe-

cution unit clusters, each of which has an upper and a

lower subcluster. The subcluster assignment is determined

in the slot stage. The scheduler and scoreboard of the issue

stage determine the cluster to which an instruction should

be sent, since there is a one-cycle delay required to bypass

instructions between clusters (but not subclusters). The

collapsible queues issue instructions strictly based on the

inum, with oldest instructions issued first. The issue stage

uses two predictors: a load-use predictor, which is a four-

bit counter that speculates whether a load instruction will

hit in the level-one data cache, and a store-wait predictor,

which is a 1024x1 bit table that speculates whether a load

Fetch Slot Map Issue Regread W-back Retire

2-way I-cache
Line predictor
Way predictor

Subcluster assignment
Branch predictors (L, G, C)

Rename table

Load-use predictor
Store-wait predictor

Jump squash
D-cache access Store commit

Arch. reg. commit

Execute

X-cluster bypass

Load-use rollbackScoreboard

Branch predictor update

Line predictor update

Figure 1. Alpha 21264 pipeline
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should be issued if there are earlier, unresolved stores that

may share the same address as the load. The 21264 can

issue a maximum of six instructions per cycle: two float-

ing-point instructions and four integer operations. In

Table 1, we list the number of cycles required to execute

the various instruction classes of the 21264.

In the write-back stage, results are bypassed to issued

consumers, and are written back into the register file.

Stores are sent from the store buffer to the memory sys-

tem, results are written back to the architectural register

file, and instructions are retired from the reorder buffer.

Support exists in the reorder buffer for bursty retires, up to

eleven per cycle, for those cases in which a single instruc-

tion that has stalled retirement of a large number of

instructions completes.

In addition to the instruction cache, the 21264 on-chip

memory system includes a 64KB, two-way set associative

data cache with 64-byte blocks, an eight-entry victim

buffer for data cache misses, an eight-entry, combining

miss address file (or MAF)—commonly known as a miss

status holding register (or MSHR) [13]—to process off-

chip cache misses, and two dedicated off-chip connec-

tions: a 128-bit channel to the off-chip backside (level-

two) cache, and a connection to the 64-bit memory bus.

2.2  DS-10L platform

The Compaq DS10-L workstation that we used to vali-

date the simulator contains a single 21264 processor

clocked at 466 MHz, a 2 MB L2 cache (direct mapped,

with 64 byte blocks), and 256 MB of physical memory.

The workstation runs version 5.1 of Compaq Tru64 UNIX,

and all of our microbenchmarks were compiled with ver-

sion 6.3-025 of the Compaq C compiler. The macrobench-

marks were compiled using the native DEC C V5.9-008

compiler on Digital UNIX V4.0, and the DIGITAL For-

tran 90 V5.2-705 compiler.

2.3  Measuring native system performance

To validate the simulations, an accurate time count

must be obtained for each benchmark running on the

native system. We used the Compaq DCPI (DIGITAL

Continuous Profiling Infrastructure) tool to measure time.

DCPI employs hardware counters to measure execution

time (in cycles), number of instructions committed, and a

few other hardware events, such as load replay traps and

TLB misses. The events may be sampled at several inter-

vals, from 1,000 cycles to 64K cycles. Larger sampling

intervals dilate the execution time less, but introduce addi-

tional error when counting events. We chose a sampling

interval of 40,000 cycles, which showed the best trade-off

between sampling error and instrumentation dilation.

3  Microbenchmark suite

To isolate and validate specific aspects of the 21264

implementation, we constructed a suite of microbench-

marks. All of the benchmarks, except those specifically

targeted at the memory system, are instruction cache, data

cache, and TLB resident, eliminating system-level effects.

We break the microbenchmarks into three categories: con-

trol (“C” microbenchmarks), execution (“E” microbench-

marks), and memory (“M” microbenchmarks), each of

which stresses different stages of the pipeline, and are dis-

cussed in the subsections below.

3.1  Front-end benchmarks

The 21264 relies heavily on control and dependence

speculation, using five distinct predictors to keep the

instruction pipe as full as possible. We designed four

microbenchmarks to stress different parts of the front end:

control-conditional (C-C), control-recursive (C-R), con-

trol-switch (C-S), and complex-control (C-O).

C-C implements a simple if-then-else construct in a

loop that is repeatedly executed, and alternates between

taking and not taking the conditional branch. We discov-

ered that two different implementations of the Alpha com-

piler, Tru64 Unix 5.1 Compaq C V6.3-025 and Digital

UNIX 4.0 DEC C V5.9-008, generated slightly different

code sequences, called C-Ca and C-Cb, respectively. Dif-

ferent padding with no-ops (unop in the Alpha instruction

set) results in the line predictor being trained by different

branches in C-Ca and C-Cb. Both cases were useful for

tuning predictors in the front end of sim-alpha cor-

rectly.

C-R tests subroutine calls and the bsr instructions by

incorporating a 1,000-level deep recursive function call

within an outer loop. C-Sn tests indirect jumps (jmp) with

a 10-way case statement within a loop. We call the bench-

mark control-switch-n because each case statement is

taken times on consecutive loop iterations before mov-

ing on to the next case statement.

The C-O benchmark is a hybrid between C-C and C-S,

which loops over an if-then-else statement, executing C-S2

in the if clause and C-S3 in the else clause.

instruction latency

integer ALU 1
integer multiply 7
integer load (cache hit) 3
FP add, multiply 4
FP divide/sqrt (single precision) 12/18
FP divide/sqrt (double precision) 15/33
FP load (cache hit) 4
unconditional jump 3

Table 1: 21264 instruction latencies

n
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3.2  Execution core benchmarks

The first of the execution core benchmarks, execute-
independent (E-I), simply adds the index variable to eight

independent, register-allocated integers twenty times each

within a loop. The absence of memory operations, control

hazards, or data dependences should allow close to ideal

throughput on this microbenchmark. The second execute

microbenchmark, execute-float-independent (E-F), per-

forms the same computation as E-I, except on floating-

point variables. The third execute microbenchmark, exe-
cute-dependent-n (E-Dn), implements dependent chains

of register-allocated integer additions within a loop. Each

arithmetic instruction in the loop is dependent on the

instruction positions earlier. E-DM1 is simply E-D1

using multiply instructions instead of adds.

3.3  Memory system benchmarks

The first memory system benchmark, memory-indepen-
dent (M-I), repeatedly executes independent loads, all res-

ident in the level-one data cache, and adds their results and

the loop index to a register-allocated scalar variable. This

benchmark tests the level-1 D-cache bandwidth. The mem-
ory-dependent microbenchmark (M-D) tests level-1 D-

cache latency by executing a loop that walks a linked list,

waiting for each load to complete before starting the next

one. By executing loads one at a time, we measure the

access latency of the L1 D-cache. The memory-L2 (M-L2)

and memory-memory (M-M) microbenchmarks are simi-

lar, except that the array access patterns in M-L2 are coded

to miss in the L1 D-cache on every reference, and in M-M

to miss in both the L1 and L2 caches. Finally, the memory-
instruction-prefetch (M-IP) benchmark tests the efficacy

of instruction prefetching by iterating over an enormous

loop that flushes the L1 instruction cache with each itera-

tion.

3.4  Validation process

Our 21264 simulator, called sim-alpha, was written

using the SimpleScalar environment, the Alpha ISA defi-

nition file, the loader, checkpoint functionality, and a num-

ber of data structures from sim-outorder, the

superscalar simulator that comes with the SimpleScalar

tools [4]. Nearly all of the timing simulation code in sim-
alpha was written from scratch.

In Table 2, we depict the results of our validation for

each microbenchmark. The second column contains the

IPC of the native Alpha, measured with DCPI. The IPC

values range from 0.56 (C-S1, which incurs a line mispre-

diction on every switch statement) to a perfect pipeline uti-

lization of 4.00 (E-I, which incurs no structural, data, or

control hazards in the main loop). The third and fourth col-

umns contain the IPC values and errors (compared to the

native DS-10L) for the initial version of sim-alpha that

had been run on simple tests but not validated. We call that

early version sim-initial. The fifth and sixth columns

contain the IPC values and errors for our most current, val-

idated version of sim-alpha. The right-most two col-

umns contain the IPC values generated by the

SimpleScalar simulator, which we discuss later. All errors

are computed as a percentage difference in CPI.

The microbenchmarks running on sim-initial
show a mean error of 74.7% compared to the reference

machine. The mean errors are computed as the arithmetic

mean of the absolute errors. While some of the errors are

negligible, in particular simple timing cases like E-F and

E-D1, most of the microbenchmarks show errors of 20%

or greater. The C-Ca, C-Cb, and C-R microbenchmarks all

underestimate performance by over 100%. While most of

the microbenchmarks underestimate performance, E-DM1

and C-S1 overestimate performance by 85.7% and 31.2%,

respectively.

We used a variety of strategies to discover and elimi-

nate the sources of error in sim-initial. We first made

all resources in the pipeline perfect, and then searched for

performance bottlenecks. In addition to measuring total

execution time, we also monitored event counts, such us

mispredictions requiring rollback in various predictors.

Below, we discuss some of the errors we discovered and

fixed in sim-initial to improve its accuracy with

respect to the reference machine.

Instruction Fetch: Since the front end of the 21264 is

the most complicated component of the processing core,

with many interacting state machines, it is unsurprising

that most of the errors occurred there. We addressed the C-

C and C-R errors first, since they were the largest in mag-

nitude. The most significant contributor to the C-C and C-

R error was an excessive branch misprediction penalty.

sim-initial waited until after the execute stage to dis-

cover a line misprediction and initiate a full rollback. We

determined that there is an undocumented adder that

resides between the fetch and slot stages. That adder com-

putes the target for PC-relative branches early, and is used

by the branch predictor to override the line predictor in

some cases.

We experimentally determined the rules for the interac-

tion between the line predictor and the branch predictors.

The branch predictor will overrule the line predictor on

conditional or unconditional branches (not jumps) if it pre-

dicts taken, can compute the target early, and the target

computation disagrees with the line prediction. Further-

more, we chose the initialization bits for the line predictor

(01) that minimized error, and adjusted the line predictor

state machine to minimize error as well. When testing the

macrobenchmark eon, we noticed that performance was

extremely poor compared to our reference. That bench-

mark exhibits an unusually high number of way mispre-

n

n
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dictions in the I-cache. We found that we had been

charging an extra cycle to access the way predictor. Elimi-

nation of that extra cycle reduced the error dramatically.

In addition to the line predictor/branch predictor inter-

action, another major source of error for C-C and C-R was

in the speculative predictor updates. We did not initially

update any of our predictors speculatively. We determined

that the branch history shift register, which is used to index

into the global and choice branch predictors, and the return

address stack are both updated speculatively and rolled

back upon recovery from a mis-speculation. The line pre-

dictor is also updated speculatively, but is fixed if a specu-

lation was determined to be incorrect. Finally, we

determined—using the microbenchmarks—that no penalty

is applied for squashing instructions in a fetched octaword

that follow a taken branch within the same octaword. We

had been modeling a one-cycle penalty for clearing those

instructions from the fetch queue.

We determined that the C-S benchmarks were perform-

ing too well because we were undercharging for indirect

jumps. The jmp instruction must proceed through the

pipeline because its target cannot be computed with the

slot stage adder. We determined with C-S1 that each

mispredicted jmp incurs a 10 cycle penalty to flush and

restart the pipeline.

Execute: When running E-I, assuming perfect fetch

and memory, we noticed that the add throughput was only

2 instead of the expected 4 instructions per cycle. We had

inadvertently used two multipliers and two adders as the

four execution pipes, rather than the one adder/multiplier

and three adders resident in the 21264. This is an easy trap

to fall into since many simulators [4] specify functional

units as generic resources, and neglect the restricted map-

pings of instruction to units.

We also discovered several abstraction errors that

affected performance in the execute stages of the pipeline.

First, sim-initial did not remove unops, the Alpha

“universal no-op”, in the map stage, but instead allowed

them to proceed until the retire stage and consume real

issue slots. Errors in the E-Dn microbenchmarks were

caused by incorrect modeling of the issue prioritization.

To improve performance, we originally designed sim-
alpha with an aggressive scheduler that minimized cross

cluster delays, sending an older instruction to one cluster if

a younger instruction needed to go to the other1. That pol-

icy increased E-Dn performance beyond that of the 21264,

as the actual 21264 scheduling logic is not that sophisti-

cated. If an instruction can be issued to either cluster, the

scheduler issues it to cluster 1 if it has been slotted to the

upper subcluster, and cluster 0 if it has been slotted to the

lower subcluster, regardless of the issue restrictions of

younger instructions in the queue.

Alpha
21264

Initial simulator
(sim-initial)

Validated simulator
(sim-alpha)

SimpleScalar 3.0b
(sim-outorder)

benchmark IPC IPC % error IPC % error IPC % difference
C-Ca  1.80  0.38  -498.1%  1.87  4.3%  3.17  28.2%
C-Cb  1.87  0.52  -260.4%  1.87 0.6%  3.00  37.8%
C-R  2.65  0.89  -198.4%  2.66  0.3%  3.54  25.2%
C-S1  0.56  0.81  31.2%  0.60  6.4%  0.88 36.1%
C-S2  0.85  0.82  -3.6%  0.86  2.1% 1.33 36.5%
C-S3  0.95  0.87  -8.5%  0.95  0.5% 1.64 42.2%
C-CO  1.75 0.53 -273.6%  1.74  -0.6% 2.05 3.0%
E-I  4.00  3.31  -20.9%  3.99 -0.4%  3.99  -0.4%
E-F  1.01  1.01  -0.1%  1.01  0.2%  1.01 0.2%
E-D1  1.03  1.04  0.3%  1.04  0.4%  1.04  0.4%
E-D2  2.16  2.15  -0.0%  2.15  0.0%  2.21  2.6%
E-D3  2.72  2.99  9.3%  3.07 11.5%  3.19  14.8%
E-D4  2.79  2.89  3.6%  2.80  0.3%  4.00  30.2%
E-D5  3.30  3.23  -2.1%  3.50  5.8%  4.00  17.6%
E-D6  3.11  3.31  6.1%  3.15  1.3%  4.00  22.2%
E-DM1  0.15 1.04 85.7%  0.15  -0.3% 0.15 -0.3%
M-I  2.98  2.39  -24.2%  2.99  0.6%  3.00  0.7%
M-D  1.66  1.25  -32.9%  1.66  0.4%  1.26  -31.1%
M-L2  0.36  0.34  -4.0%  0.35  -0.9%  0.55  35.6%
M-M  0.07  0.07  -8.2%  0.08  4.2%  0.07  -0.3%
M-IP  1.75 0.89 -97.9%  1.76  0.5% 1.22 -43.1%
Mean 74.7% 2.0% 19.5%

Table 2: Microbenchmark validation

1. An instruction must be issued to a specific cluster if it has a source

instruction that has not yet written its result from one cluster to the other.
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The 11.5% error in E-D3 is due to a minor approxima-

tion in the way we implement bypassing; when an instruc-

tion is bypassed, we subtract the latency that is saved as a

result of the bypass from the latency of the execution. That

simplification results in different issue orders than might

occur in the actual 21264 core. Future versions of sim-
alpha will contain a scheduler that accurately represents

the 21264 instruction issue policies.

Memory: We originally noticed an unusually high

number of load traps in sim-alpha resulting from mul-

tiple loads to the same address executing out of order, and

thus violating the coherence requirements built into the

21264 memory system. We hypothesized that the simula-

tor was too conservative because it masked out the lower

three bits of the addresses before comparing them in the

load-trap identification logic. The error dropped dramati-

cally in M-D when the entire memory address was used to

detect these conflicts. We also found that the L2 latency

shown in M-L2 was a cycle longer than that specified in

the Compiler Writer’s Guide. That anomaly was found to

be a modeling error in which the simulator charged too

many cycles for the register read stage on loads that

missed in the cache. We were also charging one cycle too

few for recovery upon load-use mis-speculation, which we

discovered with the M-D benchmark. Finally, we did not

initially implement the store-wait table, expecting it to

make only a small difference in performance. However,

when we observed the large number of store replay traps

in the C-R benchmark, we implemented that table and

noticed a precipitous drop in error. The results in Table 2

for sim-initial include the store-wait table.

3.5  Validation results

Correcting the long list of errors described in

Section 3.4 resulted in substantial improvements across

most of the microbenchmarks, reducing the error from a

mean of 74.7% to 2%. Some of the microbenchmarks have

higher IPCs on sim-alpha (positive error); the highest

is 11.5%, with E-D3. Others show higher performance on

the DS-10L than on sim-alpha (negative error), the

largest of which is -0.9%, for M-L2. Having both positive

and negative errors is consistent with previous validation

efforts [2].

3.6  Remaining sources of error

There are several sources of error that may be contrib-

uting to the remaining microbenchmark error. Our load-

use speculation implementation is an approximation of the

way a real 21264 works. The 21264 may speculatively

issue an operation that is dependent on a load, anticipating

that the load will hit in the cache. If the load causes a

cache miss, all instructions that issued within the preced-

ing two cycles are squashed and reloaded into the issue

window. In sim-alpha, we squash and re-issue only the

instructions that were dependent on the violating load.

We do not model the resource contention produced

when the I-cache attempts to access a line that is in the

midst of its line-predictor training. It is not clear from the

21264 documentation when instructions are removed from

the collapsible issue queue. Kessler [11] states that the

instructions are removed immediately after issue, whereas

the 21264 Compiler Writer’s Guide [6] states that issued

instructions may be removed “two cycles or more” after

issue. The delayed removal would facilitate cheaper roll-

back upon load-use mis-speculation recovery, but would

reduce performance when the issue window was full. We

use the second strategy. We are also conservative when

generating store traps, as we ignore the three low-order

bits when comparing addresses for load-store violations.

Consequently, a load and a store to different bytes in the

same word will still produce a store replay trap.

In sim-alpha, only one register is consumed when a

double word is loaded. In sim-alpha, we do not parti-

tion conditional move instructions into two separate inter-

nal instructions as is done in the 21264, although sim-
alpha does accurately model the multiple dependences

of the conditional move. Finally, our implementation of

the memory system beyond the L1 cache is less accurate

than that of the processing core. While this inaccuracy

does not affect the cache-resident microbenchmarks, it

does reduce the accuracy of the simulator on macrobench-

marks. We describe the effect of memory system inaccura-

cies on our benchmarks in the next section.

4  Memory system validation

A substantial challenge for any microprocessor simula-

tor is to replicate the behavior of the DRAM and virtual

memory systems. Access latency in modern DRAMs, such

as synchronous and Rambus DRAM, is highly dependent

on the stream of physical addresses presented to them,

which in turn depends on the virtual to physical page map-

pings. Like many other microprocessor simulators, such as

SimpleScalar [4] and RSim [17], sim-alpha does not

simulate past the system call boundary, thus replicating the

the page mappings of the native system is difficult if not

impossible. Complete system simulators, such as SimOS

[19] or SimICS [14], suffer from the same problem as the

page mappings in the native machine depend on the set of

allocated pages prior to starting and measuring the

selected program. These mismatches between simulated

and native page mappings can cause non-cache-resident

benchmarks to experience error due to the variable DRAM

access time. Our challenge, then, is to match the specifica-

tions and observable behavior of our memory system as

closely as possible with that of the native system, and
6



accept that some intrinsic error will not be completely

eliminated.

4.1  Shortcomings of the memory system model

The sim-alpha memory system is the least accurate

aspect of the simulator. We model the cache hierarchy in

more detail than many other simulators, simulating con-

tention at all buses, MSHRs with combining targets at

each level, full hardware page table walks on TLB misses,

and address translations for virtually indexed, physically

tagged caches. We model the DRAM latency using the

simulator provided by Cuppu, et al. [8].

However, the DS-10L external memory system differs

significantly from our memory system. While we

attempted to discover all of the relevant parameters of the

memory system, we were thwarted by a lack of available

documented information and observable data that could be

used to empirically derive it. Below, we list all of the

known and potential differences between our target mem-

ory system and the native machine. We do not model the

memory controller in the DS-10L, which consists of the C-

chips and D-chips; instead we add a constant number of

overhead cycles to the DRAM latency. We do not model

the split memory buses: the 64-bit bus from the processor

pins to the D-chips, which runs at an unknown frequency,

and the 128-bit, 75MHz bus from the D-chips to the mem-

ory array. We have approximated the bandwidth to the

186MHz L2 cache empirically, but are unable to validate it

definitively. The native 21264 disallows caching virtual

aliases in the L1 D-cache to enable overlap of the TLB

lookup and the data and tag accesses. In sim-alpha, we

do not enforce that restriction. We model neither the con-

sumption of ports in the cache for returning misses, nor the

consumption of a register write port when a load returns

from a cache miss. Instead of forcing stores in the store-

queue to wait until an idle L1 data cache cycle is available,

we assume that writes can complete unimpeded. While the

21264 has an 8-entry miss address file (MAF) shared

among the three caches to track outstanding cache misses,

in our memory system, each cache has its own eight-entry

MAF. Although the 21264 allows decoupling of tag and

data accesses to allow a greater utilization of the data bus,

we do not simulate the L1 data cache bus at this level of

detail. Finally, while the 21264 executes TLB misses in

software via PAL code, thus stalling the program, sim-
alpha simulates a hardware walk of the five levels of

page tables and does not stall the pipeline.

4.2  Memory system approximation

To reduce the effect of the unknown latencies, sched-

ules, and bandwidth in our memory system, we tuned our

DRAM and memory system parameters to produce mini-

mal error across three memory-specific benchmarks: M-M

(described in Section 3.3), stream [15], and lmbench [16].

The M-M microbenchmark walks a linked list to obtain

the load latency for back-to-back memory operations. The

stream benchmark measures bandwidth from main mem-

ory for four different “streaming” kernels (copy, scale,

add, and triad), and reports the achieved bandwidth for

each. The lmbench program performs repeated operations

to memory, and reports the mean latency to each level in

the hierarchy.

Unfortunately, since different reference streams will

have different distributions of DRAM page misses, bank

conflicts, and L2 conflicts caused by the physical memory

page mappings, there is no set of memory system parame-

ters that will minimize error uniformly across the mac-

robenchmarks. To minimize the error, we first set the

memory system to be as close as possible to that of the

DS-10L: a 64KB, 2-way set associative, 64-byte block,

write-back level-one instruction cache and data cache; a

three-cycle load-to-use penalty for a data cache hit; a

2MB, direct mapped, write-back, 64-byte block L2 cache

with a 13-cycle load-to-use penalty; and the 8-entry, fully

associative victim/write-back buffer. As in the native

machine, the simulated DRAM is set to run at approxi-

mately 25% the processor speed.

To determine the configuration of the memory system,

we first measured the execution time, in cycles, of M-M,

stream, and lmbench, and then compared the results to

those obtained from the simulator. We varied the RAS

time, the CAS time, the precharge latency, and controller

latency (0 or 1 cycles each way between the processor and

the DRAM). We also compared an open-page policy, in

which DRAM pages are kept active until a precharge is

forced by a page miss, to a closed-page policy in which

DRAM pages are closed and a precharge begun immedi-

ately after each access. Our experiments showed that the

open page policy with a 2-cycle RAS, 4-cycle CAS, 2-

cycle precharge, and total of 2 cycles of memory controller

latency produced the least overall error between the DS-

10L and sim-alpha. The difference in execution time

between the native and simulated systems in M-M, stream,

and lmbench is 2.8%, -6.5%, and 13%, respectively. These

parameters are used for the rest of the macrobenchmark

experiments.

5  Macrobenchmark validation

In this section, we attempt to quantify two important

properties of any experimental simulation framework:

accuracy and stability. To quantify accuracy, we execute

ten of the SPEC2000 benchmarks on the DS-10L worksta-

tion, and compare the resultant performance against the

performance of a number of simulators configured like the

DS-10L. We measure how the addition and removal of ten
7



different microarchitectural features affects performance,

to determine what should be simulated to achieve a given

level of accuracy. A microarchitectural optimization is sta-

ble if it results in similar performance improvements

across multiple platforms. To quantify stability, we mea-

sure how the deltas in performance caused by optimiza-

tions change over a range of simulator configurations, as

well as over a range of simulators.

5.1  Accuracy

In Table 3, we compare the performance of the DS-10L

against three simulators. We used ten of the SPEC2000

benchmarks, which were compiled with the native Alpha

compilers, using “-arch ev6 -non_shared -O4” for each

benchmark. We ran all of the benchmarks to completion

with the standard “test” input sets from the SPEC distribu-

tion. The three simulators that we compare are the follow-

ing:

• sim-alpha: The validated DS-10L simulator. It is pos-

sible that the accuracy of this tool could be improved

with further effort, but without more information about

the processing core and board-level components, quali-

tative improvements in accuracy are unlikely.

• sim-stripped: A version of sim-alpha with many

of the low-level features removed. We chose the level

of detail to match what is typically seen in simulators in

the architecture community: pipeline organization,

functional unit latencies, etc., but few low-level limita-

tions. We studied removal of the following seven per-

formance optimizing features: (1) addr: an extra adder

for quick computation of jump targets in the front end;

(2) eret: early retirement of no-op instructions in the

map stage; (3) luse: load-use speculation; (4) pref:
instruction cache hardware prefetching; (5) spec: spec-

ulative update of the line and branch predictors; (6)

stwt: the store-wait predictor; and (7) vbuf: the level-

one data cache victim buffer. We also examined remov-

ing three performance-constraining features which are

necessary for high clock rates, but reduce IPC: (1)

maps: a three-cycle stall if the number of available

physical registers drops below eight; (2) slot: no slot-

ting restrictions in the pipeline; (3) trap: mbox traps,

which flush the pipeline on MSHR conflicts and con-

current references to two blocks that map to the same

place in the cache.

• sim-outorder: The out-of-order simulator from ver-

sion 3.0b of the widely used SimpleScalar tool set [5].

The tools simulate a processor organization that would

not be feasible at high frequencies and consequently

have never been validated against hardware. Neverthe-

less, the tools have been used to produce results for

hundreds of research publications. The simulator mod-

els a five-stage pipeline and is based on the Register

Update Unit (RUU) [20], which combines the physical

register file, reorder buffer, and issue window into a sin-

gle structure.

The first row of Table 3 shows the instructions per cycle

for the actual DS-10L hardware, measured with the DCPI

tool. Note that the actual machine never achieves more

than 1.6 IPC. The second and third rows show the IPC and

the percentage error for sim-alpha, compared to the

DS-10L. The next two rows show the IPC for sim-
stripped and the percentage error compared to the

native DS-10L. The last two rows show the same data (IPC

and percent difference from the native hardware) for sim-
outorder. Aggregate IPCs are computed using the har-

monic mean, and aggregate error is the arithmetic mean of

the absolute value of the percent error across the bench-

marks.

In most cases, sim-alpha underestimates the perfor-

mance of the native DS-10L, with a maximum negative

error of -38.4% for mesa, which has an unusually high L2

cache miss rate (43%). Possible sources of this error

include page coloring or memory controller optimizations

to increase page hits, which are not modeled in the simula-

tor. On only one benchmark (art) does sim-alpha per-

form better than the native hardware, by a large margin of

43.0%. That gap is partially due to a larger number of

replay traps occurring in the native machine. The DS-10L

running art incurs 52 million traps, whereas sim-alpha
incurs only 43 million replay traps over 1.4 billion instruc-

tions of execution.

Although those two benchmarks show high error, the

aggregate error is much lower, at 18%. The benchmarks

gzip vpr gcc parser eon twolf mesa art equake lucas mean

Alpha 21264 IPC 1.53 1.02 1.04 1.18 1.21 1.10 1.57 0.48 1.02 1.57 1.05
sim-alpha IPC 1.28 0.99 0.90 0.97 1.21 1.07 1.17 0.82 0.94 1.37 1.05
% error -22.01 -4.63 -18.07 -23.09 -0.92 -6.07 -38.37 43.04 -10.94 -14.74 18.19
sim-stripped IPC 1.07 0.74 0.84 0.89 0.96 0.84 1.04 0.82 0.83 1.44 0.92
% difference -51.52 -44.12 -42.33 -42.01 -34.10 -42.09 -62.10 39.75 -32.71 -9.96 40.07
sim-outorder IPC 2.28 1.62 1.89 2.00 2.08 1.76 2.59 2.14 1.69 1.79 1.95
% difference 28.56 34.04 37.20 37.05 38.29 32.25 36.80 76.89 34.60 11.54 36.72

Table 3: Macrobenchmark validation
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that tend to be cache-resident have the lowest errors, such

as vpr, eon, and twolf (-4.6%, -0.9%, and -6.1%, respec-

tively). The prevalence of benchmarks that show negative

errors, for which the simulator performs worse than the

hardware, indicates that our memory system simulations

are overly conservative, and there are likely optimizations

and performance tuning that we are not modeling or cap-

turing. The harmonic mean of the native IPCs and those

for sim-alpha are identical at 1.05, which is coinci-

dence, given the variance in IPC across individual bench-

marks.

The sim-stripped simulator shows consistently

lower performance than sim-alpha for all but one

benchmark (lucas). The mean error compared to sim-
alpha is 40%, with individual errors as great as -60%. In

fact, except for lucas, all benchmarks perform at least 30%

worse than does the actual workstation. The degradation in

performance is due to the negative effect of the removal of

the performance-enhancing features, such as I-cache

prefetching and load-use speculation, outweighing the

positive effects of the removal of the performance con-

straining features.

We configured sim-outorder to match the 21264 as

closely as possible: the memory system parameters

include similarly configured caches (the 3-cycle L1 data

cache hit latency, and 62-cycle latency for DRAM), the

combined LSQ is set to 64 entries (instead of the 21264’s

split 32-entry load and store queues), and the RUU uses 64

entries. The 2-level adaptive branch predictor along with

the BTB contains a similar quantity of state to the Alpha’s

tournament and line predictors. Interestingly, the perfor-

mance of sim-outorder is entirely in the opposite

direction from sim-stripped, outperforming the DS-

10L by at least 28% for every benchmark except lucas,

and by 36.7% on average. This optimistic level of perfor-

mance results from the lack of cycle-time constraints on

the sim-outorder core, including a shallower pipeline,

no partitioning of the execution core, less contention in the

simulated memory system, a more accurate target predic-

tion (BTB instead of a line predictor), no replay traps, and

fewer pipeline flushes. Consequently, great care must be

taken when using these simulators to predict performance.

Assuming a high clock rate—while not accounting for the

constraints on the microarchitecture—can lead to substan-

tially misleading conclusions.

5.2  Effect of individual features on accuracy

In Table 4, we show the effects that each of the ten indi-

vidual features from the previous subsection have on over-

all performance. The ref column corresponds to sim-
alpha with all of the features while the rest of the col-

umns represent sim-alpha minus only the feature listed

in the column heading. In the first row, we list the har-

monic mean of the macrobenchmark IPC values for each

configuration. In the second row, we show the mean per-

cent change in performance compared to sim-alpha,

which results from removing each feature. The third row

displays the standard deviation of the changes in perfor-

mance across the benchmarks for each configuration.

Performance drops significantly when any of four par-

ticular features are disabled, as they each independently

provide more than 4% in performance to sim-alpha.

These features are the jump adder (7.8%), load-use specu-

lation (5.8%), speculative predictor update (5.9%), and

store-wait bits (4.3%). Of the performance-constraining

features, the only one that affects performance more than

1% is map-stage stalling. When those stalls are removed

from sim-alpha, performance increases by 2.1%.

Finally, we note that the variability is high: all of the stan-

dard deviations—which represent the degree to which the

percentage improvements of the optimizations vary across

the benchmarks—are greater than one percent. The stan-

dard deviation for the jump adder, speculative update, and

store-wait bits is particularly high, more than 5% in each

case.

5.3  Stability

When a feature or idea is evaluated on a simulator, that

feature is stable if it provides similar benefits or improve-

ments across other simulators and environments. Detailed,

validated simulators may be unnecessary if new features

are stable across more abstract, yet unvalidated, simula-

tors. Conversely, an added feature that is unstable may

appear to provide benefits on an inaccurate simulator,

while on a validated simulator, the benefits might disap-

pear or even reverse. In this subsection, we measure the

stability of four different parameter sets across a range of

multiple simulator configurations.

In Table 5, we show the change in performance when

three improvements are made: reducing the L1 D-cache

access latency from three cycles to one, increasing the L1

D-cache size from 64KB to 128KB, and doubling the

number of physical registers. Each column displays the

ref addr eret luse pref spec stwt vbuf maps slot trap
sim-alpha IPC 1.05 0.98 1.10 0.99 1.05 0.99 1.00 1.05 1.07 1.05 1.05
% change -7.78 -0.67 -5.79 -0.29 -5.92 -4.25 -0.37 2.11 0.36 0.31
std. deviation 5.81 1.09 2.52 1.27 5.07 5.60 1.07 2.85 1.64 0.99

Table 4: Effects of low-level features on performance
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respective improvements for one simulator configuration.

The left-most column represents sim-alpha. The next

ten columns contain the same configurations as discussed

in Table 4, namely sim-alpha with one feature disabled

per column. The right-most two columns hold the results

for sim-stripped and a modified sim-outorder, in

which the physical register file is a separate structure [1].

The eleven sim-alpha configurations are stable, with

about one percentage point of variation among them

across each row. When we varied configurations with

sim-stripped (adding one feature at a time), we

noticed only slightly larger swings. However, the stability

across the simulator configurations is less consistent; the

cache latency reduction benefits sim-stripped nearly

twice as much as the other simulators. The optimizations

improve sim-outorder less than for the other configu-

rations, likely because its base performance is higher.

We compare stability across a different pair of simula-

tors in Figure 2. A recent study measured the performance

effects of multi-cycle register file delays, with and without

complete bypassing [7]. That study used an in-house, 8-

way issue simulator to simulate the SPEC95 benchmarks

for different register file configurations. We configured

sim-alpha similarly, making sure to balance each pipe-

line stage to avoid obvious bottlenecks. The three bars in

each cluster represent the three register file configurations.

The heights of the bars correspond to the measured IPC in

the previous study, while the dark lower portions of each

bar correspond to the IPC measurements, using sim-
alpha, for the same experiments.

The performance loss seen by the incomplete bypass

results led the authors to explore multi-banked and hierar-

chical register file organizations. However, in our simula-

tions, the performance loss that motivated their work does

not exist; the Alpha microarchitecture is limited by other

overheads, and has sufficiently aggressive scheduling to

overcome the effects of one-cycle bubbles between depen-

dent instructions. Furthermore, while the two studies are

modeling similar target architectures they produce strik-

ingly different absolute performance results. From two dif-

ferent simulators that have similar configurations, one

would draw quite different conclusions.

This example is meant to be illustrative only, as the

hierarchical register file is a useful solution for more

restricted register files. In sim-alpha, we saw the same

sort of performance losses that the authors report for regis-

ter files with greater than two-cycle access times, or no

bypassing at two cycles. However, it is clear that a com-

mon reference point is needed to ensure that researchers

running similar experiments draw the same conclusions.

6  Related work

The effort most similar to our own was the study per-

formed by Black and Shen [2], which validated a perfor-

mance model of a PowerPC 604 microprocessor. Their

validation efforts benefited from the performance counters

on the 604, which allowed them to track individual

instructions, pairs, and combinations through the pipeline

and compare the cycles consumed to those in their perfor-

mance simulator. Since DCPI can measure only a few

events in addition to cycle and instruction commit counts,

we were restricted to running assembly tests for numerous

iterations to isolate the behavior of instruction combina-

tions. While the 604 validation study achieved low (4%

mean) errors, it assumed a perfect L2 cache and could only

measure performance of small, cache-resident bench-

marks. Our work adds to their efforts by modeling a more

complex microarchitecture, which contains seven full pre-

dictors, running memory-intensive benchmarks in addition

to our kernels, and isolating the performance contributions

of distinct microarchitectural features.

Gibson, et al. [9] described a validation of the FLASH

multiprocessor hardware against two software processor

simulators (Mipsy and MXS) coupled with two internal

memory system simulators (Flashlite and NUMA), and

using SimOS to model OS performance effects. The

authors’ validation focused more on the memory system

than on the microarchitecture, as Mipsy does not model

pipelines, while MXS models a generic pipeline, rather

than the R10000 that was in their machine. The authors

found that TLB behavior had a surprisingly substantial

effect on performance and point out that OS page coloring

can reduce cache misses. As we describe in Section 4,

sim-alpha does not account for the TLB overheads cor-

rectly, nor does it model any effects of page coloring.

Reilly and Edmonson’s work on a performance model

for the Alpha 21264 was intended to enable quick explora-

tion of the design space, rather than model the microarchi-

tecture in detail [18]. Finally, Bose and Conte discuss

performance evaluation from a design perspective and

suggest the use of microbenchmarks, as well as the com-

Optimization
sim-
alpha

addr eret luse pref spec stwt vbuf maps slot trap
sim-
strip.

sim-
out

3 to 1-cycle L1 D$ 5.53 5.45 5.98 n/a 6.25 5.45 6.49 6.42 5.90 5.25 5.95 9.85 5.78
64KB to 128KB L1 D$ 2.04 1.72 2.03 1.70 2.23 1.96 2.43 2.14 2.02 1.55 1.38 1.70 0.66
40 to 80 physical regs. 0.63 0.91 0.53 0.63 0.98 1.07 1.44 0.55 0.88 1.27 0.95 0.64 0.23

Table 5: Simulator stability (% improvement)
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parison of simulation data with hardware sampled event

counts to detect performance bugs [3].

7  Conclusions

Because the architecture research community relies so

heavily on simulation, it is disconcerting to think that our

simulators may be highly inaccurate due to abstraction,

specification, or modeling errors. Many of the studies pub-

lished in our conferences and journals may report results

that are unintentionally erroneous. Architecture ideas may

show promising results merely because of simulator pipe-

line artifacts, performance bugs, or unrealistic baselines.

It is also possible that our unvalidated simulators are

sufficiently accurate, errors balance out, and we can trust

the results we obtain. Injecting new ideas into the litera-

ture may be more important than a quantitative evaluation

to the second or third decimal place of precision. In that

case, the community (including the authors of this study)

could certainly benefit from fewer late nights spent pro-

ducing gigabytes of simulation data.

The answer to the question of simulator validation

depends on the conventionality of the research approach.

A fundamentally new computer organization or technol-

ogy can not be evaluated in the context of a conventional

superscalar processor. Furthermore, no baseline exists

against which the simulation of a radically new idea can be

compared. However, innovations that provide incremental

modifications to a conventional pipeline certainly can be

evaluated within a conventional context. The more con-

ventional the framework—and the smaller the perfor-

mance gain—the greater the onus on the researchers to

verify that the experimental framework, and thus their

conclusions, are valid.

In this paper, we describe an attempt to verify a high-

level timing simulator against actual hardware, the Com-

paq DS-10L workstation. Our goal was to measure and

understand the error that researchers (including ourselves)

incur by assumptions that we make in our simulation

infrastructures. We measured the performance impact of

many features the Alpha 21264 incorporated to permit fast

clocks: instruction slotting, coupled line, way, and branch

prediction, load-use speculation, deep pipelines, and early

branch resolution. Our microbenchmark errors are small,

on average less than 2%, but the large number of

unknowns in the external memory system, despite our

efforts to obtain documentation, made our efforts to obtain

similar accuracy across our macrobenchmark suite unsuc-

cessful, resulting in an 18% average error. Of the features

we measured, we determined that early jump address cal-

culation, load-use speculation, speculative updating of

predictors, and store-wait prediction had the largest impact

on performance and should be considered for incorpora-

tion by experimental architecture researchers.

By comparing sim-alpha against a stripped-down

version of itself (sim-stripped), and then against

sim-outorder, we were able to draw some broad con-

clusions about simulator implementation. First, simulators

that model abstract machines are likely to outperform vali-

dated simulators that model real targets. The lack of

implementation constraints, particularly in the high-fre-

quency world of modern systems, makes an abstract target

too optimistic. The SimpleScalar tools, which incorporate

a shorter pipeline than the 21264, no replay traps, a cen-

tralized execution core, and a frequency-unconstrained

front end, consistently outperformed the native Alpha by

about a third—a mean of 36.7%.

Second, non-validated simulators that model real tar-

gets are likely to underestimate actual performance. They

may implement all of the penalties that modern designs

incur (clustering, deep pipelines, long memory latencies,

etc.) but may not include all of the careful performance

tuning microarchitecture structures that mitigate the penal-

ties. The sim-stripped simulator consistently under-

estimated 21264 performance, with a mean error of -40%.

We conclude with four recommendations that, if fol-

lowed, will improve the scientific rigor of much of the

research performed in our community.
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• Reproducibility: Research studies should provide suf-

ficient detail for others to reproduce their results,

through some combination of making the simulator

code available or publishing all of the pertinent details

in a paper or a technical report. We predict that the

results of this paper will be reproducible because we

have a specific reference machine, have provided sub-

stantial detail about what is not modeled in the simula-

tor, and have made the code publicly available.

• Consistent parameters: Currently, many studies

choose parameters, such as DRAM latencies, in an ad-

hoc manner. That variance makes comparing results

across papers difficult or impossible. Simulation

parameters should be chosen against either reference

machines, common models, or communal parameter

sets, to maximize consistency across research studies.

In this study, we used the DS-10L workstation as a

source for our parameter choices.

• Common baselines: Studies of similar machines result

in drastically varied performance. In the ISCA-27 pro-

ceedings, five different studies reported IPCs of the

SPEC95 gcc benchmark that were evenly distributed

from 0.9 to 3.5. Research studies should compare their

results to a known baseline, such as an actual machine

or standardized public simulator, so that the reported

results are not wholly self-consistent.

• Quantified stability: To ensure that an optimization is

widely effective, and is not merely a fortunate by-prod-

uct of coincidence, it should be measured across a

range of processor and system organizations. Achiev-

ing better reproducibility would help this goal, as sta-

bility could be measured across multiple research

groups and simulation environments.

For many of the reasons highlighted above, results cur-

rently produced by architecture researchers are rarely used

by practitioners. The ideas are frequently re-evaluated

with an attempt to reproduce and refine the results in a

company’s internal environment. Improved accuracy,

reproducibility, and consistency would greatly improve the

utility of the results we generate for both practitioners and

other researchers.
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