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Measuring freezing of gait during daily-life: 
an open-source, wearable sensors approach
Martina Mancini1* , Vrutangkumar V. Shah1, Samuel Stuart1,2, Carolin Curtze3, Fay B. Horak1, 

Delaram Safarpour1 and John G. Nutt1

Abstract 

Background: Although a growing number of studies focus on the measurement and detection of freezing of gait 

(FoG) in laboratory settings, only a few studies have attempted to measure FoG during daily life with body-worn 

sensors. Here, we presented a novel algorithm to detect FoG in a group of people with Parkinson’s disease (PD) in the 

laboratory (Study I) and extended the algorithm in a second cohort of people with PD at home during daily life (Study 

II).

Methods: In Study I, we described of our novel FoG detection algorithm based on five inertial sensors attached to 

the feet, shins and lumbar region while walking in 40 participants with PD. We compared the performance of the 

algorithm with two expert clinical raters who scored the number of FoG episodes from video recordings of walking 

and turning based on duration of the episodes: very short (< 1 s), short (2–5 s), and long (> 5 s). In Study II, a differ-

ent cohort of 48 people with PD (with and without FoG) wore 3 wearable sensors on their feet and lumbar region for 

7 days. Our primary outcome measures for freezing were the % time spent freezing and its variability.

Results: We showed moderate to good agreement in the number of FoG episodes detected in the laboratory (Study 

I) between clinical raters and the algorithm (if wearable sensors were placed on the feet) for short and long FoG 

episodes, but not for very short FoG episodes. When extending this methodology to unsupervised home monitoring 

(Study II), we found that percent time spent freezing and the variability of time spent freezing differentiated between 

people with and without FoG (p < 0.05), and that short FoG episodes account for 69% of the total FoG episodes.

Conclusion: Our findings showed that objective measures of freezing in PD using inertial sensors on the feet in the 

laboratory are matching well with clinical scores. Although results found during daily life are promising, they need 

to be validated. Objective measures of FoG with wearable technology during community-living would be useful for 

managing this distressing feature of mobility disability in PD.

Keywords: Wearable sensors, Freezing of gait, Parkinson’s disease, Freezing of Gait Questionnaire, Home monitoring
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Background
Gait disturbances, such as reduced gait speed, shorter 

stride length, increased time of double support and 

slow turns, occur early in Parkinson’s disease (PD) and 

progress over time [1, 2]. It is also estimated that over 

80% of people with PD eventually develop freezing of gait 

(FoG), an intermittent failure to initiate or maintain loco-

motion [3, 4]. FoG and slow walking are the most signifi-

cant factors affecting the quality of life in people with PD 

and are associated with an increased risk of falls [5]. FoG 

episodes can be very short (< 1  s), short (2–5 s) or long 

(> 5 s) and are more common during walking conditions 

typical of daily life than during straight walking in a clinic 

or laboratory (i.e.; turning, gait initiation, when walking 
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through doorways or when performing a concurrent 

dual-task when walking [6, 7]).

Objectively assessing the severity of FoG is challeng-

ing from both a clinical and a research perspective [7, 

8]. In fact, as recently summarized in our previous work 

[8], there still isn’t an optimal freezing score that clini-

cians can use. �e ‘gold-standard’ to assess the pres-

ence of freezing (from actual video recordings [9, 10] or 

computer-generated animations [11]) is time consuming 

and does not represent daily fluctuations. Assessment 

of FoG in the clinic or laboratory is challenged by the 

fact that these assessment do not accurately represent 

severity or extent of FoG in daily life [12, 13]. Increased 

attention, alertness, and effort to impress the examiner 

during testing may improve gait performance [14–16]. 

�is is particularly true for FoG, in fact FoG is difficult 

to elicit during a clinical visit or in the laboratory [13, 

17, 18] when participants focus attention on their walk-

ing. As walking and turning while dual‐tasking (DT) have 

been suggested to induce freezing, the addition of a DT 

is often used to elicit FoG in the laboratory environment 

[12, 19].

Significant advancements in technology using wearable 

inertial sensors provides a new opportunity to objectively 

quantify subtle gait disturbances, such as FoG, in both 

clinical and laboratory settings [20–22], and ultimately 

during daily life [20, 21]. Objective measures of gait dis-

turbances, such as FoG, have the potential to help inform 

effects of treatment, disease progression, and character-

ize fall risk.

Two recent reviews [23, 24] have summarized differ-

ent approaches to objectively measure FoG with wearable 

sensors. However, only three studies were performed in 

the home setting and the validity of the algorithms in the 

laboratory or home varied considerably (accuracy 79% 

to 96%) [25–28]. While studies detecting FoG in a labo-

ratory setting have been well-validated, studies focused 

on detecting FoG during daily life are relatively scarse 

[23, 25, 26, 29–32]. In addition, the percentage of freez-

ing during daily life, as well as the variability of it, have 

not yet been reported. In addition, the impact of FoG 

on mobility perception and other gait disturbances have 

not yet been investigated during daily life. Finally, open-

source solutions to monitor FoG with wearable inertial 

sensors in free living conditions are not yet available. 

Common algorithms available to many investigators will 

improve reproducibility of results, external validation, 

algorithm improvements, and ultimately reducing barri-

ers to applying digital health solutions for unsupervised 

FoG monitoring.

Here, we aimed to: (1) introduce a novel, objective 

algorithm to detect FoG episodes in the laboratory in a 

cohort of people with PD with and without freezing of 

gait compared to age-matched controls, and evaluate the 

performance of such algorithm with clinicians judgment 

of FoG; and (2) extend this approach to characterize FoG 

during daily life (7  days recording with inertial sensors 

on the feet) as well as investigate the association between 

subjects’ perception of freezing severity and other objec-

tive measures of walking and turning in a different cohort 

of people with PD with, and without, freezing of gait.

Methods
We analyzed the dataset of two studies: Study I took 

place in the laboratory to determine validity of detected 

freezing events compared to expert rating of videos and 

Study II took place in the home setting to compare FoG 

episodes and gait between those with, and without, FoG.

Participants
Study I included 45 subjects with PD and 21 healthy con-

trols of similar age while Study II included 48 subjects 

with PD. All participants were recruited through the 

Parkinson’s Center of Oregon clinic at Oregon Health & 

Science University. For both studies, inclusion criteria 

were: diagnosis of idiopathic Parkinson’s disease con-

firmed by a movement disorders neurologist according 

to the United Kingdom Parkinson’s disease Society Brain 

Bank criteria, Hoehn and Yahr scores of II–IV, and ability 

to follow instructions and appreciate research purpose. 

For both studies, exclusion criteria were: other factors 

affecting gait (hip replacement, musculoskeletal disorder, 

uncorrected vision or vestibular problem), or an inabil-

ity to stand or walk without an assistive device. Study I 

included 27 participants classified as freezers, based on 

a score of > 0 on the New Freezing of Gait Questionnaire 

(NFOGQ) [33] and 18 without FoG. �ey were all tested 

in our laboratory in the “Off” state, after at least 12-h 

overnight withdrawal from anti-parkinsonian medica-

tions. We choose to test people with PD Off their medi-

cation because FoG is most often observed in Off periods 

[34]. Study II included 23 different participants with 

PD classified as freezers, based on a score of > 0 on the 

NFOG Q as well as 25 participants with PD without FoG.

Both studies were carried out in accordance with the 

recommendations of the Oregon Health & Science Uni-

versity (OHSU) institutional review board (IRB) with 

written informed consent from all subjects. All subjects 

gave written informed consent in accordance with the 

Declaration of Helsinki. �e protocols were approved by 

the OHSU IRB (#9903, #10775 and #15578).

Procedure
Procedure for study I

Participants underwent a 3-h assessment, which included 

clinical assessments, questionnaires, and quantitative 
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assessments of gait, detailed elsewhere [35]. �e gait 

assessment analyzed here included two walking condi-

tions, a 2-min walk in a 8-m hallway, and a 1-min walk 

with a concurrent cognitive task (reciting alternate letter 

of the alphabet). Participants were asked to stand quietly 

for few seconds, instructed when to walk 8-m at their 

comfortable speed, turn 180°, and keep walking until they 

hear stop at the end of 2 (or 1) min test. While perform-

ing these walking tasks, participants wore eight wireless, 

synchronized inertial sensors (Opals by APDM, Inc.) on 

both shins, feet, wrists, on the sternum and on the pos-

terior trunk (over L5). Each inertial sensor includes a 

tri-axial accelerometer, gyroscope, and magnetometer 

sampling at 128  Hz. Data were wirelessly streamed to 

a laptop and stored for offline analysis. All trials were 

video-recorded and videos were rated by two move-

ment disorders specialist (DS and JGN), blinded to group 

allocation, who assessed each FoG episode, its duration 

(short, medium or long) and and total number of FoG 

episodes per test. Disease severity was measured with the 

Movement Disorders Society Unified Parkinson’s Dis-

ease Rating Scale (MDS-UPDRS) Part III [36]. �e MDS-

UPDRS Part III was administered by a certified examiner.

Procedure for study II

Subjects wore three inertial sensors (same as Study I) 

only one on each foot and one over the lumbar area for 

a week of continuous monitoring for at least 8  h/day, 

details in Shah et al. [37]. �e Opal is lightweight (22 g), 

has a battery life of 16  h, and includes 8  GB of storage, 

which can record over 30 days of data. Subjects removed 

the sensors at night and placed them in a charging sta-

tion. Data were stored in the internal memory of the 

Opals. Subjects returned the sensors either by mail, using 

a pre-paid box after completion of 1 week of data collec-

tion, or a research assistant picked up the sensors at their 

homes. Data were uploaded via a laptop to a cloud service 

and downloaded to a local computer for analyzing FoG. 

Severity of disease was rated based on MDS-UPDRS, 

Part III, while participants were on their regular dose of 

Levodopa (On state, approximately 1 h after intake). �e 

MDS-UPDRS Part III was administered by a certified 

examiner in a laboratory screening visit. Perceived motor 

functioning was assessed using the mobility domain of 

the Parkinson’s Disease Questionnaire (PDQ-39) [38]. 

�e PDQ-39 mobility Sect.  (10 items) has a possible 

score range of 0 to 40; higher scores are associated with 

greater impairment.

Data analysis
Video assessment of freezing (study I)

Two independent raters, both with experience in FoG 

assessment, analyzed the video-recordings. A FoG 

episode was defined when the gait pattern (alternat-

ing right and left steps) was arrested or if it appeared as 

if they were trying unsuccessfully to initiate or continue 

locomotion/turn. �e end of an episode was defined as 

the time when an effective step had been performed and 

followed by continuous locomotion. At least two effective 

steps were required in order to score and time the dura-

tion of a freezing episode. �e raters were asked to sum, 

for each subject, and for each gait condition (walking in 

single- and dual-task conditions) the number of FoG epi-

sodes using a similar cut‐off duration as in the NFOGQ: 

less than 1 s (very short episodes), 2–5 s (short episodes), 

and more than 5 s (long episodes).

Freezing detection algorithm, open-source (study I 

and study II)

We present an open-source algorithm to detect numbers 

of FoG episodes, percentage of time spent freezing and 

its variability during 7  days of unsupervised, daily life 

settings (Figs. 1 and 2). We first used the proposed algo-

rithm to compare the number of detected FoG episodes 

with the clinical judgment of two movement disorders 

experts using Study I, and then apply the proposed algo-

rithm on Study II to characterize FoG during 7  days of 

unsupervised monitoring in daily life.

�e algorithm first detects the periods of walking, from 

the 3D angular velocity and 3D acceleration of the lum-

bar sensor, in windows of 30 min [39–42]. Briefly, walk-

ing bouts of 10  s and longer were then used for further 

analysis. Although the algorithm was originally written 

for sensors to be placed on the feet, in Study I we also 

compared the performance of the algorithm using sen-

sors on the shins.

�e FoG algorithm used the antero-posterior accelera-

tions and rotations around the medio-lateral axis of the 

gyroscopes of the sensors worn on the feet during each 

identified gait bout to identify potential FoG episodes. 

It has been shown that freezing is usually accompanied 

by high-frequency leg movements [4]. Recently a ‘Freez-

ing Ratio’ was defined as the power in the “freeze band” 

(3.5–8 Hz) divided by the power in the “locomotor band” 

(0.5–3  Hz) with larger ratios indicating more freezing 

[43, 44]. Such ‘high-frequency’ components of gait have 

been associated with the ‘trembling’ observed during 

freezing episodes. In addition, it has been recently shown 

that during regular walking, the correlation between 

right and left foot angular velocity is high, while it drops 

significantly prior to, and during, a FoG episode [45, 46]. 

Adopting a similar idea, we used here the information 

from both accelerometers and gyroscopes during non-

overlapping windows of 1 s to confirm a FoG episode.

�e flowchart of the algorithm is shown in Fig.  2. 

First, we use data from the medio-lateral gyroscope to 
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determine the correlation between left and right leg, and 

if the correlation value goes below 0.5 than declare that 

1-s window as potential FoG episode. Second, we use 

antero-posterior accelerometer data to calculate a freez-

ing ratio defined as the ratio of the energy of the signal 

during 3–10 Hz (high frequency) to energy of the signal 

during 0–3  Hz (low frequency) using FFT. If the freez-

ing ratio is higher than 10, then, that period of time is 

declared as a potential FoG episode. Finally, we declare 

an actual FoG episode if a specific 1-s window is declared 

as potential FoG by both methods (See Fig. 1). Once FoG 

episodes are identified, we grouped them into three cat-

egories identified in the NFOGQ: very short FoG (< 1 s) 

episodes, short FoG (2–5  s) episodes, long FoG (> 5  s) 

episodes. Percentage time freezing was calculated as per-

centage of total time spent freezing over total time spent 

walking in 30 min windows. Our primary outcome meas-

ure for freezing was the cumulative sum of such percent-

ages across a week of daily recording. In addition, the 

variability of the percentage of time spent freezing was 

reported.

Initially, we did not merge any individual freezing epi-

sodes detected by the algorithm, and the data set (Study 

I) was analyzed and compared with data obtained from 

clinical raters. While tuning the algorithm, we real-

ized that the algorithm may split long freezing episodes 

into multiple, small freezing episodes. �is phenom-

enon could be explained by hesitations or steps during 

freezing, which woube be detected by the algorithm (and 

identified as non-freezing episodes) but maybe not by 

the clinical eye. �erefore, we tried various thresholds to 

decide whether to split or not a FoG episode and com-

pared results obtained with the clinicians scores. Results 

are in Appendix Table 5 and lead to the choice of merging 

freezing episodes with hesitation durations ≤ 2  s as one, 

single, freezing episode.

Turning and walking features (study II)

In addition to FoG characterization, we report the follow-

ing turning and walking features during daily life moni-

toring (Study II), using methodology published elsewhere 

[37, 47], not part of the open-source algorithm.

Turning features the algorithm used the horizontal 

rotational rate (yaw) of the lumbar sensor during each 

identified gait bout. Details are described elsewhere [39]. 

Briefly, a turn was defined as a trunk rotation around 

the vertical plane with a minimum of 15 °/s [39]. Turn-

ing angle was then obtained integrating the angular rate 

of the lumbar sensor around the vertical axis (done sepa-

rately for each turn). �e following turning characteris-

tics were averaged across the week for number of turns 

per each 30-min period: number of turns, average turn-

ing angle (°), average turning duration (s), average turn 

peak velocity (°/s) and the coefficient of variation (CV) 

was calculated for the turn peak velocity.

Fig. 1 Representative example of signals while walking and freezing
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Walking features A separate algorithm, using 

Unscented Kalman Filter to fuse information from the 

accelerometers, gyroscopes, and magnetometers to esti-

mate the orientation and position trajectory of the sen-

sors on the feet, was used to quantify quality of walking 

[37, 47]. Gait was defined as walking bouts of at least 3 

consecutive strides, a minimum duration of 3 s and inter-

mittent breaks of no longer than 6  s. �e selected out-

comes for walking were gait speed (m/s), and the pitch 

angle of the foot at initial contact (°) selected as an indica-

tor of shuffling as well as the variability of the pitch angle 

of the foot at initial contact. All outcomes were averaged 

across the hours of recording. Steps that occurred during 

turning were excluded.

Statistical analysis

In both studies, Independent sample  t-tests compared 

age, disease duration, and MDS-UPDRS Part III between 

people with and without FoG.

Study I To evaluate the agreement between the two 

clinical raters, and between the algorithm and the raters, 

we used an Intra-Class Correlation Coefficient (ICC) 

[48]. In accordance with previous studies [11, 49], we 

used the following classification of ICC power: < 0.2 negli-

gible, 0.2 ≤ 0.4 weak, 0.4 ≤ 0.7 moderate, 0.7 ≤ 0.9 strong, 

and > 0.9 very strong. In addition, the mean and 95% ICC 

confidence interval as well as the number of FOG events 

were reported. To investigate the performance of the 

algorithm against the classification of freezer vs. non-

freezer based on clinical raters, we computed the Area 

Under Curve (AUC), and various performance metrics 

(such as accuracy, sensitivity, specificity).

Study II To investigate whether quantity and quality 

of mobility outcomes differed between the two groups, 

linear mixed models were fit for each outcome, with 

and without adding disease duration as a covariate to 

account for variations in the presented outcomes with 

disease duration. Lastly, Pearson’s correlation was used 

to evaluate the association between objective measures of 

Fig. 2 Schematic of the algorithm for FoG detection
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freezing and the clinical or extracted measures of quan-

tity and quality of mobility at home. �e statistical analy-

sis was performed in MATLAB R2018b (�e Mathworks 

Inc., Natick, MA, USA) using the Statistics and Machine 

Learning Toolbox. A significance level of 0.05 was used 

throughout.

Results
Briefly, people with and without FoG were similar in 

both studies for age, and MDS-UPDRS III, while people 

with FoG presented higher disease duration compared to 

people without FoG (p < 0.05), only for the participants 

of Study II. Demographics and clinical characteristics of 

participants with PD for Study I and II are summarized 

in Table 1.

Study I: comparison between objective and clinically 

detected FoG

A total of 79 FoG events were identified from clinician 

rater I and a total of 150 FoG episodes were identified 

from clinician rater II. �e discrepancy between the two 

raters was mainly due to the detection of the very short 

FoG episodes (< 1 s) with an ICC of 0.39, while the agree-

ment is overall strong for short (2 to 5  s) and long epi-

sodes (> 5  s) with ICC of respectively 0.839 and 0.875. 

In general, ICCs during dual-task walking showed a 

tendency to be lower compared to ICCs calculated for 

single-task walking for very short and short FoG epi-

sodes. Table  2 shows the number of identified episodes 

and ICCs for single- and dual-task walking separately as 

well as overall between raters and between raters (aver-

aged) and the algorithm with sensors in two different 

placements (feet and shins). �e overall ICCs were higher 

between the objective FoG calculated from the sensors 

on feet and the average clinical raters compared to the 

ICCs between the objective measures of FoG calculated 

from the sensors on the shins and the average clinical 

raters. In addition, the ICCs for the very short FoG epi-

sodes were poor for sensors on the feet or shins.

Moreover, healthy controls and PD-FoG showed a sig-

nificantly lower % time spent freezing during walking 

compared to PD + FoG, see boxplot in Fig. 3.

�e algorithm performance to classify non-freezers 

vs. freezers against the clinical raters are summarized in 

Table 3. Specifically, the AUC value to discriminate non-

freezers from freezers using the algorithm versus clinical 

rater 1 was 0.93, and versus clinical rater 2 was 0.89. �e 

performance of the algorithm were slightly higher when 

compared to clinical rater 1 compared to clinical rater 2.

Study II: FOG in daily life

Based on the ICC results of Study I, we deemed it unreli-

able to record very short FoG episodes during daily life. 

�erefore, Study II used the percent of time spent FoG 

as a sum of short (2 to 5 s) and long (> 5 s) FoG episodes. 

�e extracted FoG proxy, percent of time spent FoG 

(average of 30-min windows) was higher (p = 0.04) while 

the variability of time spent FoG was lower (p = 0.02) in 

people who identified themselves as freezers, according 

to the NFOG, compared to people who identified them-

selves as non-freezers, see details in Table 4. After adding 

disease duration as a covariate, such differences between 

freezers and nonfreezers did not change (p < 0.01).

In PD + FoG, we found on average 18 FoG episodes 

(average of 30-min windows) where 69% of the episodes 

consisted of short FoG episodes (2-5  s). �e remainer 

Table 1 Demographics and clinical characteristics for participants in Study I and Study II

a Mann-Whitney U-test

Study I Non-freezers
(N = 18)

Freezers
(N = 27)

p-value

Mean SD Mean SD

Age (years) 70.3 7.0 69.6 7.4 0.723

Disease duration (years) 8.2 4.7 9.0 6.3 0.862a

UPDRS III ON 43.6 11.6 46.7 12.2 0.402

Gender (F/M) 4/14 6/21 1

Study II Non-freezers
(N = 25)

Freezers
(N = 23)

p-value

Mean SD Mean SD

Age (years) 67.8 4.8 69.6 7.1 0.320

Disease Duration (years) 6.6 3.7 13.0 6.5 0.0002

UPDRS III ON 33.7 9.9 34.1 12.7 0.913

Gender (F/M) 14/11 6/17 0.071



Page 7 of 13Mancini et al. J NeuroEngineering Rehabil            (2021) 18:1  

were long episodes (> 5), and only 1% of the episodes 

were over 30 s, see Fig. 4.

Quantity of mobility, such as average number of turns, 

average number of bouts and average bout durations, 

were similar in people with and without FoG (Table  4). 

However, measures of quality of mobility, such as aver-

age pitch angle of the feet while walking, average turn 

angle, and average turn duration were significantly 

smaller in people with FoG compared to people without 

FoG (p < 0.05, see Table 4). In addition, variability of pitch 

angle of the feet during walking was significantly larger 

in people with FoG, compared to people without FoG 

(p < 0.05, see Table 4). Other measures of quality of walk-

ing and turning, such as gait speed, and average, turn-

ing, peak velocity were similar between people with and 

without FoG (p > 0.05, see Table 4). However, when con-

sidering disease duration as a covariate, only average turn 

angle was still significantly smaller (p < 0.0001) in people 

with FoG, compared to people without FoG.

�e average% of time spent freezing (in people who 

self-identified as freezers) was significantly associated 

with the MDS-UPDRS III, but not to objective measures 

of walking and turning at home. �e CV of the time spent 

FoG was associated with both MDS-UPDRS Part III and 

to the mobility sub-score of the PDQ-39, see radar plot 

in Fig. 5.

Discussion
�is study introduces a novel, automated algorithm for 

detection and objective characterization of FoG episodes 

from inertial sensors on the feet. �e proposed algo-

rithm is simple and threshold-based, with one threshold 

based on angular velocity data and one on accelerometry 

data, to identify FoG episodes. Overall, we showed bet-

ter agreement between clinical raters and the algorithm 

in detecting the number of FoG episodes in the labora-

tory (Study I) for long FoG episodes. In fact, for very-

short and short FoG episodes, the ICCs during dual-task 

Table 2 ICC between the two clinical raters, as well as  ICC between the average of the clinical raters and the algorithm 

based on IMUs on the feet and the algorithm based on IMUs on the shins

Video # of detected 
episodes

ICC (2,1)- CI # of detected 
episodes

ICC (2,1)- CI # of detected 
episodes

ICC (2,1)- CI

Rater 1 vs Rater 2 Rater 1 Rater 2 Very Short 
episodes (< 1 s)

Rater 1 Rater 2 Short episodes (2 
to 5 s)

Rater 1 Rater 2 Long episodes 
(> 5 s)

Walk 2-min ST 7 45 0.396 (− 0.210 to 
0.698)

35 31 0.892 (0.795 to 
0.943)

13 9 0.848 (0.707 to 
0.921)

Walk 1-min DT 3 25 0.346 (− 0.375 to 
0.689)

13 30 0.743 (0.492 to 
0.870)

8 10 0.929 (0.857 to 
0.964)

Overall 10 70 0.390 (− 0.005 to 
0.629)

48 61 0.839 (0.746 to 
0.899)

21 19 0.875 (0.801 to 
0.922)

Wearable sensors 
on feet

# of detected 
episodes

ICC (2,1)- CI # of detected 
episodes

ICC (2,1)- CI # of detected 
episodes

ICC (2,1)- CI

Algorithm vs 
Raters

Algorithm Raters Very Short 
episodes (< 1 s)

Algorithm Raters Short episodes (2 
to 5 s)

Algorithm Raters Long episodes 
(> 5 s)

Walk 2-min ST 71 26 0.474 (0.025 to 
0.718)

36 33 0.915 (0.841 to 
0.955)

7 11 0.872 (0.761 to 
0.932)

Walk 1-min DT 57 14 0.355 (− 0.161 to 
0.658)

12 22 0.387 (− 0.171 to 
0.683)

6 9 0.932 (0.865 to 
0.966)

Overall 128 40 0.431 (0.018 to 
0.662)

48 55 0.818 (0.714 to 
0.884)

13 20 0.895 (0.833 to 
0.934)

Wearable sensors 
on shins

# of detected 
episodes

ICC (2,1)- CI # of detected 
episodes

ICC (2,1)- CI # of detected 
episodes

ICC (2,1)- CI

Algorithm vs 
Raters

Algorithm Raters Very Short 
episodes (< 1 s)

Algorithm Raters Short episodes (2 
to 5 s)

Algorithm Raters Long episodes 
(> 5 s)

Walk 2-min ST 94 26 0.374 (− 0.175 to 
0.666)

24 33 0.703 (0.443 to 
0.842)

4 11 0.688 (0.414 to 
0.833)

Walk 1-min DT 49 14 − 0.176 (− 1.306 to 
0.400)

20 22 0.619 (0.252 to 
0.806)

4 9 0.814 (0.636 to 
0.905)

Overall 143 40 0.304 (− 0.095 to 
0.558)

44 55 0.672 (0.485 to 
0.792)

8 20 0.744 (0.597 to 
0.837)
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walking were lower compared to ICCs calculated for sin-

gle-task walking.

Further, we explored this approach during unsuper-

vised home monitoring (Study II) and found that the 

proposed FoG proxies, percent of walking time spent 

freezing and the variability of time spent freezing, were 

different between people with and without FoG. �e per-

cent of walking time spent freezing also was related to 

disease severity, measured with the MDS-UPDRS Part III 

and perception of mobility, measured with the mobility 

sub-score of the PDQ-39.

Here, we modified a threshold-based approach to 

detect FoG recently presented [50]. Specifically, the pro-

posed open-source algorithm first detects periods of 

walking and turning [42, 50], then applies two thresh-

olds, which need to be satisfied to label an episode as a 

“FoG episode”. Specifically, the first threshold is on the 

spectral power of the data coming from the accelerom-

eters, a common way to identify FoG presence, based 

on the high-frequency components of the legs trem-

bling [51]. �is method has well-known advantages and 

Fig. 3 Box plot of the percent of time spent freezing during walking 

in the laboratory in healthy controls, PD − FoG and PD + FoG

Table 3 Performance of the algorithm with clinical raters in classifying Non-freezers vs Freezers

Non-freezers vs freezers AUC Best Threshold Accuracy Sensitivity Speci�city False positive 
rate

False 
negative 
rate

Rater 1 vs algorithm 0.93 0.09 0.88 0.89 0.88 0.13 0.11

Rater 2 vs algorithm 0.89 0.13 0.85 0.80 0.87 0.13 0.20

Table 4 Means and SD of the quantity and quality of mobility measures over 7 days of continuous monitoring

p-values from linear mixed models are reported, considering (p-value adjusted) or not (p-value) disease duration as covariate, p-values < 0.05 are in bold

Quantity of mobility Non-freezers Freezers p-value p-value (adjusted)

Mean SD Mean SD

Total recording (hours) 49.7 9.3 52.0 19.4 0.600 0.855

Average turns # 38.3 15.3 45.2 28.2 0.300 0.827

Average bouts # 6.2 1.0 6.3 1.4 0.680 0.312

Total bouts time (hours) 3 1.5 4.2 3.1 0.08 0.22

Freezing proxy

 Time spent freezing (%) 15.42 4.69 20.18 10.15 0.040 0.006

 CV time spent freezing (−) 0.848 0.224 0.703 0.206 0.024 0.007

Quality of mobility

 Average gait speed (m/s) 0.87 0.13 0.87 0.24 0.960 0.802

 Average pitch angle (°) − 17.0 5.1 − 13.1 6.0 0.020 0.108

  CV Pitch Angle (−) − 0.487 0.238 − 0.746 0.415 0.010 0.154

 Average turn angle (°) 94.3 4.6 87.2 4.9  < 0.0001  < 0.0001

 Average turn duration (s) 2.1 0.2 1.9 0.3 0.001 0.056

Average turn peak velocity (°/s) 77.0 9.4 80.5 12.4 0.270 0.924

 CV turn peak velocity (−) 0.311 0.031 0.311 0.032 0.940 0.744
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disadvantages [24, 52], and can improve the detection of 

FoG episodes. To also detect FoG episodes not involving 

trembling of the knees, we added a threshold, based on 

the correlation between the right and left angular veloc-

ity of the feet. Usually, during regular walking, the cor-

relation between right and left foot angular velocity is 

high, while it drops significantly prior to, and during, a 

FoG episode [45, 46]. �e same approach can be applied 

to wearable sensors placed on the feet or shins. In the 

present study, while evaluating the performance of this 

approach with the clinical raters, we found that: (1) the 

overall agreement between clinical and objective detec-

tion of FoG is strong when the sensors are placed on the 

feet, and moderate when the sensors are placed on the 

shins, (2) both the agreement between the two clinical 

raters, as well as the agreement between clinical raters 

and objective measures are better for the short (2–5  s) 

and long (> 5 s) FoG duration, whereas both agreements 

are poor for the very short FoG episodes (< 1  s); (3) in 

general the agreement in the dual-task walking condition 

seem lower compared to the single-task walking condi-

tions for the short FoG episodes.

Recently, machine learning based methods [24] (neu-

ral networks, decision trees, random forest, and support 

vector machine) have been proposed to surpass the FoG 

detection abilities of threshold-based methods. However, 

it is still unclear whether an algorithm that matches per-

fectly with clinical judgement is needed, even more so, 

when there is still discrepancy among clinical raters with 

more or less experience in detecting the same FoG epi-

sodes specifically for very short FoG episodes where the 

agreement between different raters is poor. Moreover, 

despite the higher sensitivity in detecting the occurrence 

of even shorter FOG episodes compared to the previ-

ous method [24] (an accuracy above 90% was achieved), 

these approaches may require a higher computational 

cost, requiring up to several seconds from the occur-

rence of the episode to its detection, making those algo-

rithms not suitable for real-time interventions, such as 

cueing. However, nowadays, the use of floating-point 

unit microcontrollers could overcome this limitation, 

in fact, such microcontrollers could compute advanced 

machine learning algorithms in real time with low power 

consumption.

Overall, the proposed approach reached AUC of 0.89 

to 0.93 in discriminating people experiencing FoG or not, 

when FoG was classified by movement disorder neurolo-

gists. �ese AUCs and relative sensitivity, specificity and 

accuracy are similar to what reported in the literature 

using a variety of approaches [23, 24]. Lastly, we observed 

lower agreement between raters and the algorithm for 

short episodes during dual-task walking. Although this 

should be verified in a separate cohort, a pontential expla-

nation could be related to decrease smoothness of walk-

ing in people with PD and particularly in freezers [53, 

54]. It could be possible that dual-task further decreases 

smoothness of gait, such decrease may be picked up as 

freezing by the algorithm but not by the clinical raters.

After comparing the algorithm with clinical judg-

ment in the laboratory, we extended our approach to 

Fig. 4 Pie chart summarizing the composition of the average FoG 

episodes duration

Fig. 5 Radar plot summarizing the correlation between % of time 

spent FoG and its variability with clinical and objective measures 

of quality and quantity of walking and turning over 7 days of 

continuous monitoring at home
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unsupervised monitoring during daily life for 7  days in 

48 people with PD, 23 of which reported having FoG 

according to the NFOGQ. �e percentage of time spent 

freezing was significantly higher in those people who 

report themselves as freezers compared to non-freezers, 

while the variability of time spent freezing was lower in 

those reporting FoG. �e lower variability found in freez-

ers may indicate that a certain amount of FoG is present 

across the day and week. Instead, the higher variability 

found in the non-freezers may either indicate that we are 

picking up subtle hesitations that are not constantly pre-

sent over the day, therefore increasing the variability, or 

the high variability could be due to a high false positive 

rate. �erefore, to confirm this finding, we would need 

to first validate the algorithm during daily life and follow 

longitudinally the same cohort of people with PD who 

does not report FoG at baseline.

Interestingly, we found that the short, 2–5 s duration, 

FoG episodes account for 69% of all episodes, while the 

rest are long (5–30 s) episodes, 1% of which have dura-

tion over 30 s. �is suggests that short FoG episodes are 

the most common during the day. �e percent of walk-

ing time spent freezing and its variability were related to 

disease severity, measured with the MDS-UPDRS Part 

III and to perceived mobility, measured with the PDQ-

39, only in the freezers. �e association between percent 

time spent freezing and the MDS-UPDRS Part III is not 

totally surprising, as freezing severity tends to increase 

with disease severity. �e association between the vari-

ability of time spent freezing and mobility perception 

suggests that FoG may affect the perception of mobility 

in people with PD. Our objective measures of FoG during 

7  days of continuous monitoring were not significantly 

associated with the NFOGQ performed at the beginning 

of the study, indicating that perception of FoG may be 

differ from the measured FoG over a week of monitor-

ing. Although surprising, this may, in part, be explained 

by the items composing the NFOGQ. �e questionnaire 

asks about the impact of freezing in daily life, in addition 

to the presence and severity of freezing. For some people, 

even mild freezing may significantly disturb walking,and 

cause fear of falling that may significantly impact or cause 

people to avoid activities of daily life.

We also characterize quantity and quality of walking 

and turning over 7 days of continuous monitoring. Our 

findings are in keeping with studies showing that quan-

tity of walking and turning is similar among people with 

and without FoG [42, 55] while quality of walking and 

turning may be more affected in people with FoG. Spe-

cifically, the average pitch angle at initial contact of foot 

with the ground was significantly smaller in freezers 

compared to non-freezers, consistent with more shuf-

fling gait and more falls in freezers than non-freezers. 

�e large variability of the pitch angle at initial contact 

and the high variability of the time spent freezing could 

potentially reflect fluctuations in number of freezing epi-

sodes due to periodic medication intake throughout the 

day.

In addition, the average turning angle was smaller 

in freezers compared to non-freezers, as previously 

reported in a larger cohort [42]; and such difference could 

potentially be attributed to the fact that freezers may 

avoid larger turning angles, known to elicit more freez-

ing, and explain that turning duration was significantly 

shorter in freezers. However, after correcting these out-

comes for disease duration, only turning angle was still 

statistically significant, suggesting that gait disturbances 

such as shuffling are related to disease duration more 

than to freezing of gait. Turning angle was still signifi-

cantly smaller in freezers compared to non-freezers after 

correcting for disease duration suggesting that freezers 

may modify their turning in order to avoid FoG. How-

ever, it is also possible that average turning angles were 

measured as small in freezers because they hesitated dur-

ing a turn such that a large turn was detected as several 

small turns.

�ese findings, although promising, should be taken 

cautiously. Future work will need to validate the algo-

rithm on a new dataset, increase the number of sub-

jects at home and determine the validity of our objective 

freezing measures in daily life. Specifically, we plan to 

use either a mini-camera pointed at the feet or pressure 

insoles as a gold standard comparison for home record-

ing of gait and turning, for comparison with the inertial 

sensor data. It is also possible that some participants with 

FoG show akinetic freezing, not involving trembling of 

the knees, so these events may not be identified with our 

threshold approach. At this time, we hope that by mak-

ing this algorithm available to researchers, we could, 

together, further improve FoG detection.

Conclusions
Overall, here we presented an objective measure of 

freezing with wearable technology to be used in the 

laboratory. Its validity would need to be determined for 

continuous monitoring in unsupervised settings. �ese 

metrics could have tremendous value to assess the effi-

cacy of interventions such as medications and rehabili-

tation on the quality of mobility and frequency of FoG 

during community-living.
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PD: Parkinson’s disease; FoG: Freezing of Gait; NFOGQ: New Freezing of Gait 

Questionnaire; PDQ39: Parkinson’s Disease Questionnaire; MDS-UPDRS: 

Movement Disorders Society Unified Parkinson’s Disease Rating Scale; FFT: 

Fast fourier transform; ICC: Intra-class correlation coefficient; CV: Coefficient 
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Appendix
See Table 5.

Table 5 ICCs changes based on  merging or  not  subsequent FoG episodes. Window of  merging goes from  no  merging 

at  all (No gap) to  5s gap in  merging subsequent episodes. The ICC is  between  the average of  the  clinical raters 

and the algorithm based on IMUs on the feet and the algorithm based on IMUs on the shins.

No gap No gap

Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (>5s) Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (> 5s)

2 minute ST .651 (.346 to .814) .914 (.839 to .954) .618 (.283 to .796) 2 minuteST .438 (-.054 to .700) .679 (.398 to .829) .000 (-.875 to .467)

1 minuteDT .469 (-.041 to .729) .846 (.698 to .921) .618 (.252 to .805) 1 minuteDT .294 (-.384 to .640) .880 (.764 to .939) .000 (-.961 to .490)

Overall .593 (.359 to .741) .894 (.833 to .932) .618 (.399 to .757) Overall .416 (.081 to .629) .780 (.655 to .860) .000 (-.573 to .364)

1 sec gap 1 sec gap

Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (>5s) Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (> 5s)

2 minute ST .511 (.006 to .753) .931 (.871 to .963) .828 (.675 to .909) 2 minuteST .404 (-.118 to .682) .663 (.369 to .821) .257 (-.394 to .604)

1 minuteDT .312 (-.184 to .626 .734 (.485 to .864) .923 (.836 to .962) 1 minuteDT .173 (-.622 to .578) .833 (.672 to .915) .468 (-.043 to .729)

Overall .432 (-0.43 to .678) .883 (.816 to .925) .866 (.777 to .917) Overall .374 (.016 to .602) .740 (.591 to .835) .345 (-.031 to .583)

2 sec gap 2 sec gap

Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (>5s) Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (> 5s)

2 minute ST .474 (.025 to .718) .915 (.841 to .955) .872 (.761 to .932) 2 minuteST .374 (-.175 to .666) .703 (.443 to .842) .688 (.414 to .833)

1 minuteDT .355 (-.161 to .658) .387 (-.171 to .683) .932 (.865 to .966) 1 minuteDT -.176 (-1.306 to .400) .619 (.252 to .806) .814 (.636 to .905)

Overall .431 (.018 to .662) .818 (.714 to .884) .895 (.833 to .934) Overall .304 (-.095 to .558) .672 (.485 to .792) .744 (.597 to .837)

3 sec gap 3 sec gap

Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (>5s) Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (> 5s)

2 minute ST .007 (-.582 to .415) -0.86 (-1.073 to .426) .519 (0.91 to .745) 2 minuteST .381 (-.161 to .670) .617 (.282 to .796) .660 (.362 to .818)

1 minuteDT -.343 (-1.227 to .248) -.219 (-1.239 to .356) .000 (-.764 to .459) 1 minuteDT -.268 (-1.486 to .354) .399 (-.178 to .694) .680 (.372 to .837)

Overall -.105 (-.542 to .236) -0.81 (-.711 to .315) .410 (.073 to .624) Overall .300 (-.102 to .555) .548 (.289 to .713) .667 (.477 to .788)

4 sec gap 4 sec gap

Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (>5s) Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (> 5s)

2 minute ST .474 (.025 to .718) .915 (.841 to .955) .872 (.761 to .932) 2 minuteST .416 (-.095 to .689) .616 (.280 to .795) .716 (.468 to .849)

1 minuteDT .335 (-.157 to .638) .214 (-.481 to .590) .706 (.423 to .850) 1 minuteDT -.380 (-1.707 to .296) .182 (-.603 to .583) .120 (-.725 to .551)

Overall .445 (.066 to .663) .799 (.684 to .872) .818 (.714 to .884) Overall .304 (-.095 to .558) .493 (.203 to .678) .573 (.328 to .728)

5 sec gap 5 sec gap

Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (>5s) Very Short episodes (<1s) Short episodes (2 to 5s) Long episodes (> 5s)

2 minute ST .469 (.023 to .714) .904 (.820 to .949) .857 (.733 to .923) 2 minuteST .437 (-0.56 to .700) .616 (.280 to .795) .691 (.420 to .835)

1 minuteDT .339 (-.156 to .641) .180 (-.527 to .571) .640 (.287 to .817) 1 minuteDT -.401 (-1.748 to .286) -.018 (-.996 to .481) .059 (-.846 to .520)

Overall .445 (.084 to .659) .787 (.666 to .864) .786 (.663 to .864) Overall .322 (-.066 to .569) .451 (.137 to .651) .549 (.290 to .713)

Wearables on shins vs raters ICC (2,1)- CI

Wearables on shins vs raters ICC (2,1)- CI

Wearables on shins vs raters ICC (2,1)- CI

Wearables on shins vs raters ICC (2,1)- CI

Wearables on shins vs raters ICC (2,1)- CI

Wearables on shins vs raters ICC (2,1)- CIWearables on feet vs raters ICC (2,1)- CI

Wearables on feet vs raters ICC (2,1)- CI

Wearables on feet vs raters ICC (2,1)- CI

Wearables on feet vs raters ICC (2,1)- CI

Wearables on feet vs raters ICC (2,1)- CI

Wearables on feet vs raters ICC (2,1)- CI

https://github.com/BDLab-OR/FoGdetection
https://github.com/BDLab-OR/FoGdetection
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