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Abstract

Background: Inequalities in geographic access to health care result from the configuration of facilities, population

distribution, and the transportation infrastructure. In recent accessibility studies, the traditional distance measure

(Euclidean) has been replaced with more plausible measures such as travel distance or time. Both network and

raster-based methods are often utilized for estimating travel time in a Geographic Information System. Therefore,

exploring the differences in the underlying data models and associated methods and their impact on geographic

accessibility estimates is warranted.

Methods: We examine the assumptions present in population-based travel time models. Conceptual and practical

differences between raster and network data models are reviewed, along with methodological implications for

service area estimates. Our case study investigates Limited Access Areas defined by Michigan’s Certificate of Need

(CON) Program. Geographic accessibility is calculated by identifying the number of people residing more than 30

minutes from an acute care hospital. Both network and raster-based methods are implemented and their results are

compared. We also examine sensitivity to changes in travel speed settings and population assignment.

Results: In both methods, the areas identified as having limited accessibility were similar in their location,

configuration, and shape. However, the number of people identified as having limited accessibility varied substantially

between methods. Over all permutations, the raster-based method identified more area and people with limited

accessibility. The raster-based method was more sensitive to travel speed settings, while the network-based method

was more sensitive to the specific population assignment method employed in Michigan.

Conclusions: Differences between the underlying data models help to explain the variation in results between raster

and network-based methods. Considering that the choice of data model/method may substantially alter the

outcomes of a geographic accessibility analysis, we advise researchers to use caution in model selection. For policy,

we recommend that Michigan adopt the network-based method or reevaluate the travel speed assignment rule in

the raster-based method. Additionally, we recommend that the state revisit the population assignment method.
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Background
Disparities in the geographic accessibility of health care

services arise due to the manner in which people and

facilities are arranged spatially. Specifically, health care

services are provided at a finite number of fixed loca-

tions, yet they serve populations that are continuously and

unevenly distributed throughout a region [1]. Although
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inequalities in accessibility are inevitable due to this con-

figuration, the extent to which they manifest is a product

of the unique spatial arrangement of the health care deliv-

ery system, the location and distribution of the population

within a region, and the characteristics of the transporta-

tion infrastructure. Of particular concern are scenarios

that result in large distances between people and health

care facilities. These populations experience greater dif-

ficulty in gaining access due to increased travel times,

often coupled with poor transportation infrastructure and

a lack of public transportation options [2].
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The spatial or geographic dimensions of access

have received considerable attention from planners and

researchers for many years [3]. Referred to as spatial

accessibility [4], the spatial dimensions of access include

accessibility and availability of services. Accessibility (or

geographic accessibility) is a measure of the “friction of

distance” or “burden of travel” between locations, whereas

availability generally measures the number of services in

comparison to the number of potential users of the ser-

vice. Identifying areas with limited spatial accessibility of

health care services allows planners to understand the

effects of opening, closing, or relocating health care facili-

ties or modifying the services offered by existing facilities

[5]. Thus, accurate and detailed representations of spatial

accessibility are imperative to describe and understand the

overall access picture.

Changing technology and the availability of detailed

spatial data have allowed for the representation of geo-

graphic accessibility in a GIS to more closely resemble the

real-world phenomena of travel. Early studies acknowl-

edged that the travel costs among locations were more

complex than those provided by straight-line (Euclidean)

distance measures (see [6]), yet this particular repre-

sentation of geographic accessibility has been the most

widely used in past health services research [7]. Although

Euclidean distance has shown to be correlated with travel

time [8-10], it does not incorporate topological structures

or the transportation infrastructure [11], both of which

are likely to influence travel travel time. As computa-

tional power and data collection/storage capabilities have

improved, more detailed representations of geographic

accessibility have emerged, incorporating the transporta-

tion infrastructure (e.g., roads → travel distance), travel

impedance (e.g., speed limits → travel time), and various

modes of travel (public transportation → travel time).

The flexibility provided by GIS allows for multiple

data representations of the same real-world phenomena.

Specifically, travel costs can be represented using a field-

based model (raster) or an object-based model (vector).

The vector datamodel can also be extended to incorporate

network or graph features and is referred to as a “net-

work” data model. Whereas a raster vs. vector debate in

regards to spatial data representation and analysis in GIS

has been present for many years in the GIS and Geog-

raphy literature (see [12-14]), the issues have not been

fully explored in health services research. Considering the

importance placed on the role of distance and travel in

health care accessibility studies, we believe that an exam-

ination of the data models and methods is warranted.

Thus, the purpose of this paper is to compare geographic

accessibility measured as travel time using both raster and

network (vector) based models of spatial data representa-

tion.We aim to illuminate both the conceptual and practi-

cal differences between models and their methodological

implications inmeasuring geographic accessibility. Specif-

ically, we address the following questions over the course

of this manuscript:

• What are the basic assumptions when constructing a

conceptual model of travel?
• What are the specific abstractions in the raster and

network representational models of travel in a GIS?
• What are the similarities and differences in results

between data models?
• How do the underlying differences in data models

affect the results?

The manuscript is organized as follows. First, we offer a

short review of access and geographic accessibility. Next,

the spatial data models and methods used to calculate

travel costs are summarized. In the following section, we

describe our case study and report on the specific data

and methods used in analysis. Next, we report our results

and discuss the similarities and differences betweenmeth-

ods. Lastly, we discuss the implications of our findings for

measuring geographic accessibility.

Access and geographic accessibility

Access to health care is a multifaceted and complex con-

cept, dependent upon the characteristics of both the pop-

ulation in need of services and the health care delivery

system [15]. Penchansky and Thomas [16] identified five

distinct dimensions of access which were classified by

Khan [17] into spatial components (accessibility and avail-

ability) and aspatial components (affordability, accommo-

dation, and acceptability). Access to health care can also

be classified into potential and realized delivery of ser-

vices [1,15] based on whether actual utilization data of the

services is incorporated (realized) or based solely on the

characteristics of the services offered (potential).

In recent health service research, distance is com-

monly measured as vehicular travel time over a road

network calculated in GIS [18]. However, other mea-

sures such as travel distance or Euclidean distance are

also regularly used [7,19]. By incorporating real-world

connectivity provided by the road infrastructure, travel

distance offers amore accurate characterization of the dis-

tance among locations compared to Euclidean distance.

Yet, travel distance does not recognize the variations in

travel impedance (speed limits or travel speeds) often

found between rural and urban environments. Although

Euclidean and travel distance are computationally less

expensive and require fewer inputs, respectively, recent

improvements in spatial data processing capabilities and

drive distance analysis allow for vehicular travel time to

be modeled more easily in a GIS [11]. We acknowledge

that travel time estimates offer the most accurate repre-

sentation of the cost of travel for measuring geographic
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accessibility based on a number of recent studies in health

services research discussing the subject (see [8,20-22]).

A number of assumptions regarding real world phe-

nomena are required prior to spatial representation and

modeling. In the case of forming a conceptual for model

travel time, the initial assumption is that the unique

and personal experience of travel among locations can

be sufficiently characterized and estimated using spa-

tial data and models. Rather than attempting to iso-

late and discuss all the factors influencing travel time,

we instead point out the general assumptions present

in many geographic accessibility models constructed for

population-based studies. First, the models assume that

each person in the population has similar driving char-

acteristics and comparable vehicles. Another assumption

is that each person experiences the same travel con-

ditions, therefore variation in factors influencing travel

time such as the day, time of day, local traffic pat-

terns, and weather are held constant. The models also

assume that all people possess knowledge of and choose

to travel along the shortest path between locations.

Increased availability of desktop and internet-based trip

planners has likely diminished the overall impact of this

assumption, yet it remains salient in travel time mod-

els. Finally, due to limitations in data availability and

data processing capabilities, the location of a popula-

tion is often assigned to a single point location. There-

fore, the travel time estimates originating from this

location are assumed to be a reliable proxy for the travel

time experienced by each member of the population.

Although these assumptions hide significant variability,

they are necessary when conducting population-based

studies due to the unpredictability of potential factors

influencing travel [23] and the lack of individually geo-

referenced data. Hence, GIS-based travel time estimates

should aim only to capture the average situation encoun-

tered, a suitable metric for most accessibility studies

[9].

Data models

The differences between raster and network data models

have been extensively documented in many GIS textbooks

and research papers (e.g. [24]). Although the conceptual

models of space, input data formats, and computational

algorithms employed in processing these data differ, the

basic premise behind the calculation of travel time is quite

similar for both. Travel time is modeled as a function of

distance and travel speed and can be conceptualized as the

cost of movement. A number of data products based on

cost of movement can be calculated using a GIS. However,

due to their importance in assessing geographic access,

we focus our discussion on a minimum cost path between

locations and a catchment or service area corresponding

to a point location. In the following paragraphs, the data

formats and corresponding cost of movement concepts

are summarized for both the network and raster models.

The basic network data model comprises a series

of nodes (points) that are connected by edges (lines).

Because the nodes and edges are the sole geometric fea-

tures defined in the data model, any place not falling on

the network is essentially “undefined” or empty space.

Therefore, location and movement within the network

data model are confined solely to the edges and nodes (see

Figure 1(A)).

In the representational model of travel time, the cost to

traverse an edge is defined by the edge length and its asso-

ciated travel speed. Additionally, the network data model

can be augmented to include a penalty for a directional

change at a node (i.e., a time penalty or turn delay when

making a turn at an intersection). In this case, movement

through a node is assigned an angular direction, relative

to the original direction of travel, and the corresponding

delay for that directional change is applied. An example of

travel within a network model is detailed in Figure 1(B),

showing travel from Node A to Node D in a simple net-

work. The travel time (TAD) for the trip can be calculated

such that

TAD =
dAE

SAE
+

dED

SED
+ PR (1)

using edge distance A-E (dAE), edge distance E-D (dED),

travel speed of edge A-E (SAE), travel speed of edge E-D

(SED), and the turn delay for making a 90◦ right hand turn

at Node E (PR).

Many recent studies of health service accessibility have

utilized the network data model for calculating travel time

estimates [21,25-27]. The network data model is appealing

for representing vehicular travel time or distance consid-

ering that road segments (edges) are connected at road

intersections (nodes), upholding real-world connectivity

among locations. Results of path calculations are likely

to be very similar to those experienced in the real world

due to the similarities between the data model struc-

ture and the true travel environment [28]. Because areal

features are not defined in the network data model, ser-

vice area calculation requires that edges (lines) must be

converted to a polygon representation. The polygon rep-

resents the areal extent of the edges within the service

area, but requires an approximation of undefined space in

the original data model.

The raster data model is composed of a series of regu-

larly sized and spaced cells (or pixels). Cells are arranged

in a lattice with explicit spatial boundaries, thus all

locations within the boundaries of the lattice are rep-

resented by their 2 dimensional coordinate location. In

this data model, travel occurs through cell to cell move-

ment wherein a specific cost is designated for each cell,

representing the time required to traverse the cell.
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Figure 1 A) Network data model and B) Cost example.

In most GIS software packages, movement occurs in

only cardinal directions (Rook’s case) or in both cardinal

and diagonal directions (Queen’s case, see Figure 2(A)).

However, other software packages offer more flexible

options such as Knight’s case movement [29]. Travel time

is calculated using the cell dimensions and travel speed

assigned to the cell. Unlike the network model, the length

of individual steps in a route is based on the cell resolution

of the data and thus, constant throughout the entire raster

grid. Figure 2(B) contains a graphic representation of pos-

sible travel routes between cell A and cell D in the raster

model. In this case, the journey can be accomplished by

taking a similar route as shown in Figure 1(B) whereas the

route goes from cell A to cell E to cell D. Travel time (TAD)

for this route would be calculated such that

TAD =

(

d
2

SA
+

d
2

SE

)

+

(

d
2

SE
+

d
2

SD

)

(2)

where d is the distance between cell centers, which is

equal to cell resolution, and travel speed (Si) is defined for

each cell. Division by 2 occurs for each step in the move-

ment because half of each cell is traversed with each step.

In this case, to travel from Point A to Point E, half of d is

traversed at 45 mph and half is at 25 mph. The journey

can also be completed by taking the diagonal, direct route

between the two points such that

TAD =

√
2

2
∗ d

SA
+

√
2

2
∗ d

SD
(3)

where the increase in distance traveled for the step is

accounted for by using the Pythagorean theorem to adjust

the distance term.

The raster data model has been used to calculate travel

time in health service accessibility studies (see [20,30-

32]). Because all locations are explicitly defined in the

raster data model, it is attractive for creating service areas,

especially in regions without an all-encompassing trans-

portation network [32].

Roads data are generally available as vector features and

must be converted to a raster representation. This process

requires specification of a cell resolution. The abstraction

process necessitates decision rules for assigning a travel

speed to cells in which multiple roads (with varying speed

Figure 2 A) Raster data model and B) Cost example.
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limits) fall inside the cell bounds and/or cells in which no

roads are present. When the vector roads data are con-

verted to cells, the roads cease to exist as unique and

individual entities (e.g., highways, surface streets, ramps,

etc.) and become a surface of travel speeds (see Figure 3).

In the raster data model, the strict topology that governs

real world travel along roads is replaced by predefined

directional movement among cells. Thus, in routing appli-

cations, the raster data model has the potential to produce

unexpected results [33,34]. Furthermore, travel time esti-

mates may be either overestimated or underestimated

depending upon the geometric complexity of the road

network and the cell resolution.

Case study
Our case study explores the geographic accessibility of

hospitals in Michigan. The Michigan Department of

Community Health (MDCH) identifies Limited Access

Areas (LAA) as a part of the state’s Certificate of Need

(CON) program, thus offering a formal definition of areas

with limited geographic accessibility with which to com-

pare methods. The state also serves as an excellent study

area to conduct a travel time analysis due to a unique

physical geography (two separate peninsulas with irregu-

lar shorelines) and highly variable mix of urban and rural

regions [20].

As defined by statute [35], an LAA is any geographic

area containing a population of 50,000 that is more than a

30 minute drive time (utilizing the slowest route available)

to the nearest acute care hospital offering 24 hours/day 7

days/week emergency room services. LAA maps are used

by the MDCH and Michigan’s CON Commission to eval-

uate applications to construct new hospitals or branch

locations and requests to add or modify existing hospital

services.

In Messina et al. [30], the authors presented a raster-

based GIS methodology used to measure travel time to

hospitals and identify underserved areas and LAAs in

Michigan. This methodology is re-implemented using

updated population and health service facility data from

2010. Underserved areas and LAAs are also identified

using a network-based travel time analysis. Both meth-

ods are tested for sensitivity to travel speed settings and

changes in the population assignmentmethod. The results

of the raster and network-based methods are compared

and implications for measuring geographic accessibility

are explored.

Data andmethods
Roads data

Both the network and raster-based methods of calculat-

ing travel time among locations are heavily dependent

upon a detailed and accurate representation of both road

location (length) and travel speed (impedance). The 2009

road network database (Michigan Geographic Framework

Version 10a) was acquired from the Michigan Center for

Geographic Information (MCGI, http://www.michigan.

gov/cgi). The location of each road segment is provided

along with attributes including, but not limited to: length,

road name, data source, National Functional Classification

(NFC) code, Framework Classification Code (FCC), and

legal ownership.

Speed limit classification

The estimation of travel speed for each road segment, in

the absence of measured travel speed data, can be accom-

plished most accurately using the posted speed limit and

surface material of the road segment. Speed limits define

the maximum legal travel speed, whereas surface material

helps to determine realistic travel speeds (n.b., reasonably

lowered speeds on unpaved roads in rural areas). Because

neither speed limit nor road surface type are included

as attributes in the MCGI roads database, we developed

a hierarchical classification system to assign estimated

travel speed to each road segment. Traditional methods of

assigning travel speeds or speed limits are generally sim-

ple classifications using only the FCC or the NFC of each

road segment (see [36-38]). Our classification system for

Figure 3 Conversion of vector road data to raster cells. The original roads (black lines on left) are converted to a cell-based representation with

large cell sizes (middle), resulting in an overconnected travel grid. Smaller cells (right) improve the topological structure of the travel grid. However,

the two roads are still erroneously connected in this scenario.

http://www.michigan.gov/cgi
http://www.michigan.gov/cgi
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assigning travel speed offers a significant advantage over

traditional methods by incorporating NFC, FCC, and road

ownership into in a hierarchical decision tree, rather than

relying on a single road attribute class.

The actual speed limits of Michigan roads are based

upon road classification, landuse of surrounding areas, or

average travel speed. Statutory speed limits are those set

throughout the state for a certain set of roads (i.e., 70 mph

for expressways, 55 mph for state and county roadways,

and 25 mph for roads in business or residential areas),

whereas modified speed limits are assigned when roads

require a speed limit below 55 mph, but above 25 mph.

National guidelines state that modified speed limits be

based upon the 85th percentile speed of all travelers dur-

ing free flowing traffic and ideal weather conditions. The

length of a speed zone should be at least one half of a mile

and the number of speed limit changes along a given route

should be kept minimal [39].

In preliminary investigations, we found that the NFC

system provided valuable information for speed limit

assignment, but should be superseded or supplemented

with FCC or road ownership. For instance, in small

rural communities, road ownership better characterized

observed speed limits than the NFC system, where the

cutoff value for an urban population is 5,000 people. Using

only the NFC attribute, the speed limits for streets in

many small communities (rural villages and towns with

populations less than 5,000) would be mis-assigned as

they are not distinguished from other rural roads. Each

of the many scenarios encountered will not be discussed

in detail; however, a graphic depiction of the complete

hierarchical classification system is found in Figure 4.

Development and preliminary evaluation of the classifica-

tion system included personally traveling road networks

in southeast and mid-Michigan, documenting the actual

speed limits.

Road hierarchy

Each road was assigned a “hierarchy” value in an effort to

control traffic flow within the network data model. The

MCGI roads data did not contain attribute information

describing real-world connectivity at road intersections

(e.g., overpasses and underpasses). All intersections are

presumed traversable if no connectivity rules are estab-

lished, leading to an over-connected network and likely

underestimation of travel times if not accounted for. True

connectivity could not be established for all roads in the

state due to the large number of intersections in the roads

dataset (n > 500,000) along with a lack of reference data.

Therefore, our efforts were directed towards establish-

ing realistic connectivity between expressways and surface

streets.

We utilized the hierarchy attribute in conjunction with

a turn delay to account for the absence of connectivity

information at expressway intersections in the MCGI

data. In ArcGISTM, turn delays in a network dataset can

be assigned not only by the direction of the turn, but

also by the hierarchy values of the intersecting roads.

Using the FCC attribute in the roads data, all express-

ways were assigned a hierarchy value of 1, all ramps

(leading onto and off of expressways) were assigned a

value of 2, and all remaining roads (surface streets) were

assigned a value of 3. Considering that real-world traffic

flow between expressways and surface streets is restricted

to only entrance and exit ramps connecting the two road

types, we assigned an artificially high turn delay (20 min-

utes) to any direct turn between expressways and surface

roads (hierarchy values 1 and 3). This prevented the net-

work solver from choosing to make a “non-existent” turn

between surface streets and expressways due to the unre-

alistically high turn delay between road hierarchy values.

Essentially, expressway connectivity within the network

was restricted to match actual driving conditions, thus

improving the accuracy of travel time estimates.

Network comparison

Five network datasets were created and explored to better

understand how changes to the speed limit classification

system (see Table 1) and the penalties assigned for turn

delays (see Table 2) affected the estimated travel times.

Although theMichigan Office of Highway Safety Planning

offers guidelines for assigning road speed limits [39], we

were unable to locate reference data for comparative pur-

poses. Furthermore, collecting enough actual travel time

data to allow for formal statistical testing was not fea-

sible. Given these limitations, we compared travel time

estimates to results obtained from Google MapsTM. The

results from Google Maps were not considered true travel

times due to the lack of methodological documentation

available and a substantial number of speed limit errors

that were manually identified in their roads data. How-

ever, because the Google Maps travel time estimates are

derived from independent source data, the comparison

allowed us to assess whether the travel speeds and turn

delays of our custom built networks provided reasonable

travel time estimatesa (see [40]).

A “shortest path” analysis was completed for 1618

routes covering a broad range of travel distances (range =

0.5 - 647 miles, mean = 185.41 miles) and route types (e.g.,

rural, urban, suburban)b. All networks provided reason-

able travel time estimates compared to Google Maps (see

Figure 5 and Table 3). Network 5 was considered the most

suitable for estimating travel time in this application. The

travel speeds specified in Network 5 are a simple 5 mph

reduction of the initial speed limit values from our hierar-

chical classification system, offering an objective method

to account for sub-optimal driving and traffic conditions

and the presence of stop signs, traffic lights, and other
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Figure 4 Hierarchical classification system for speed limits.

mechanisms for traffic control not present in the roads

database. Additionally, the turn delays (outside of the

expressway turn delay) in Network 5 are conservative, but

conventional, estimates for normal surface street turns

[41,42].

Population and hospital data

2010 block population data and boundary files were

acquired from the US Census Bureau (http://www2.

census.gov/census 2010/, http://www.census.gov/geo/

www/tiger/). Michigan statute requires that LAAs be

identified using zip code population data, therefore the

block population data were aggregated to their corre-

sponding Zip Code Tabulation Area (ZCTA) boundaries

(n = 978), herein referred to as zip codes. Because the

census blocks nest perfectly inside the zip code bound-

aries, the block population polygons were converted to

geographic centroids and spatially joined to the zip code
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Table 1 Travel speeds (miles per hour, mph) used in custom-built network datasets

Road type N1 N2 N3 N4 N5

Expressways 70 60 60 62 65

Ramps 25 25 25 25 20

City owned, major 35 30 30 35 30

City owned, minor 25 20 20 25 20

Private 25 25 25 25 20

Minor collectors 55 55 55 45 50

Rural arterials and major collectors 55 55 55 45 50

Rural local 45 45 45 45 40

Urban, state owned arterials and major collectors 35 35 35 35 30

Urban, county owned arterials and major collectors 45 45 45 45 40

Urban, state owned local 35 35 35 35 30

Urban, county primary local 55 55 55 45 50

Urban, county local 25 25 25 25 20

boundary file. The population of each zip code was calcu-

lated by summing the population of all the block centroids

falling within its boundaries. Michigan’s total population

was 9,883,640 in 2010.

Location and attribute data for 169 hospitals in Michi-

gan were acquired from the MDCH. The hospital

addresses were geocoded in ArcGIS and converted to

point features. Hospital attribute data were used to iden-

tify and subset those hospitals offering acute care and 24/7

emergency room services, resulting in 137 hospitals.

Raster-based method

The raster-based method used to identify LAAs is doc-

umented extensively by Messina et al. [30] and MDCH

[35]. Thus, it will only be summarized here. First, roads

data were converted to a raster grid of 1 km cells wherein

the travel speed for each cell was defined as speed of the

slowest road falling inside the bounds of the cell. Because

each cell required a specific travel speed, cells containing

no roads were assigned 3 mph as an estimate of non-

vehicular travel speed. Travel time or cost for traversing

each cell was calculated using the cell length and specific

travel speed. An accumulated cost surface was created

Table 2 Turn delays (seconds) used in custom-built

network datasets

Turn type N1 N2 N3 N4 N5

Non-existent expressway turn 1,200 1,200 1,200 1,200 1,200

Reverse (non U-turn) 8 8 10 45 20

Left 4 5 8 30 8

Right 2 3 5 15 5

Straight (with crossroad) 1 0 2 1 1

Straight (no crossroad) 0 0 0 0 0

wherein cell values represented the total travel time from

the cell to the nearest hospital location (i.e., least cost path

for each cell). To identify underserved areas, the accumu-

lated travel time surface was reclassified into a Boolean

surface based on whether the cell was greater than 30

minutes from a hospital location. The grid representing

underserved areas was then filtered to remove any groups

of less than three contiguous cells (using Queen’s case

connectivity). The filtering process was conducted in an

effort to remove single cells and very small areas where

no roads were present, but were generally “inside” the

30 minute travel bounds. Using a connectivity filter in

lieu of a “count-only” filter ensured that areas near the

edges of the actual underserved areas were not trimmed.

Figure 6 shows an example of the filtering process near an

underserved area in southern Michigan. After the filter-

ing process, the underserved areas were converted from

a raster grid to a vector data format (polygons) wherein a

unique ID was assigned to each contiguous underserved

area.

The population assignment method, according to

Michigan’s guidelines for identifying LAAs, requires that

the entire population of a zip code be assigned to the

underserved area if any portion of the zip code polygon

falls inside of the underserved area. Thus, the underserved

area polygons and zip code polygons were spatially joined

in the GIS such that each underserved area polygon was

assigned the summed population of all intersecting zip

code polygons. Underserved areas with a total population

of 50,000 or greater were then classified as Limited Access

Areas.

Network-based method

ArcGIS Network Analyst was employed for all network-

based analysis. Prior to converting the vector roads
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Figure 5 Travel time estimates from custom-built networks

compared with travel time estimated from Google Maps.

database to a network data format, each line segment was

assigned a travel time value calculated using the line seg-

ment’s length and estimated travel speed. Upon the con-

version to the network data format, travel time was spec-

ified as the cost value for edges. Turn delays were defined

to both control traffic flow and to model expected slow-

downs in travel speed accompanying directional changes

as detailed previously.

After the network was built, we created 30 minute travel

time polygons for each of the hospital locations using the

“Service Area” function. Underserved areas were identi-

fied by clipping the service area polygons from a state

base map, essentially finding the inverse of the 30 minute

travel areas throughout the state (see Figure 7). Popula-

tion data were assigned to each underserved polygon and

the LAAs were subset using the methods detailed in the

previous section.

Table 3 Mean difference in travel time and road distance

between Google Maps and custom-built networks in

shortest path analysis

Time (minutes) Distance (miles)

Network 1 18.39 2.84

Network 2 8.29 6.41

Network 3 1.54 4.42

Network 4 2.33 3.04

Network 5 0.87 2.55

Sensitivity

To assess eachmethod’s sensitivity to the input roads data,

the preceding steps for the raster and network methods

were carried out a second time using the original speed

limits of the roads as opposed to the travel speeds in Net-

work 5. In the raster-based analysis, the speed limit of cells

with no roads present were raised to 10 mph. This test

was conducted in an effort to uncover the variability in the

results associated with small changes in the travel speed

settings. Although this was not a comprehensive sensitiv-

ity analysis, exploring the difference in results due to the

changes in the travel speed settings allowed us to estimate

the relative importance of the settings for each method

and the overall robustness of each data model.

We also evaluated each method for sensitivity to the

scale of the data used to assign population to under-

served areas. Instead of assigning the population using

the zip code polygons, we assigned population using the

US Census block centroids. In this method, a block’s pop-

ulation was assigned to an underserved area only when

the centroid fell within the bounds of underserved area

polygon. Then, the population of all block centroids were

summed and new LAAs were then identified using the

updated population totals within the underserved areas.

The results of the population assignment by census block

were compared to the original results for both the raster

and network-based methods. Considering that the block

estimates of population are closer to the “true” number of

people within the underserved areas [8], this comparison

allowed us to evaluate which method is more sensitive to

the population assignmentmethod specified inMichigan’s

statute.

Results
Underserved areas

The underserved areas identified using both the raster

and network-based methods are found in Figure 8 and

Table 4. Overall, the raster-based method identified more

total area, zip codes, and population as being underserved

than the network method. The raster method produced

fewer unique contiguous areas than the network method.

Examination of Figure 8 reveals that this result was due

to larger and more contiguous areas in the raster output.

The most notable difference between methods is the total

population identified as being underserved. Whereas the

raster method reports that 23% of Michigan’s population

(≈2.26 million) lives in underserved areas, the network

method identified only 13% (≈1.28 million), a difference

of nearly one million people.

As Figure 8 illustrates, the underserved areas identified

by both methods share similar shapes resulting in a gen-

eral agreement in the overall configuration of underserved

places throughout the state. We compared the spatial

configuration of the underserved areas by conducting an
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Figure 6 Example of raster filter.

overlay analysis. The total overlapping area (the areas

identified by both methods) was 38,667 km2, compris-

ing 71% of the total area identified by either method

(54,347 km2). The network-based results are a nearly per-

fect subset of the raster-based results; only 1,376 km2

were identified uniquely by the network method. Figure 9

shows a detailed example where each method produced

both overlapping and unique results.

Limited access areas

The results of the LAA identification are found in

Figure 10 and Table 5. Again, the raster method produced

Figure 7 Service areas (and resulting underserved areas) produced by network-basedmethod.
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Figure 8 Underserved areas.

more total area, zip codes, and total population identified

in LAAs. Similar to the results of the underserved areas,

the most notable difference between methods is the total

population identified. The raster-based method identified

over 1.8 million people in LAAs, whereas the network-

based method identified just over 650,000, a difference

of over one million residents. Because the LAAs are a

subset of the underserved areas, the spatial configuration

produced by each method are similar.

Sensitivity

Speed limits

The results for underserved areas and LAAs, using both

the network and raster-based methods, are presented in

Table 6. The table contains the initial areas identified

and the areas identified using the actual speed limit val-

ues of the input roads data (+5 mph). Interestingly, the

network-based method identified more people as being

underserved, whereas the raster-based method identified

more once the LAA criteria of 50,000 people was applied

to the underserved areas.

Population representation

Table 7 displays the number of people in underserved

areas and LAAs when the population is assigned using

Table 4 Comparison of underserved areas (Percent figures

reflect proportion of state totals)

Underserved areas Raster % Network %

Area (km2) 52,971 35 40,043 26

Number of unique areas 223 386

Number of zip codes 410 42 316 32

Total population (zip code) 2,258,452 23 1,280,257 13

the US Census block centroids. In both the raster and

network-based methods, the use of a less aggregated pop-

ulation data source identifies far fewer people as being

underserved within the state. A new set of LAAs were

identified using the original 50,000 population criteria,

but with population assigned using the block population

in lieu of the zip code populations. Figure 11 shows the

resulting LAAs. Only three LAAs were identified using

the raster-based method and no underserved area met

the population criteria using the network-based method,

although two areas nearly met the criteria with popula-

tions of 45,786 and 47,849.

Discussion
The results of the analysis show that large areas in Michi-

gan are outside of a 30 minute travel time from an acute

care hospital and thus have limited geographic accessi-

bility, regardless of which data model is employed. Using

the state’s current methods, we found that over 2.2 mil-

lion residents would be considered underserved and over

1.8 million residents would be classified as having limited

access. The network-based method identifies fewer total

residents as underserved (≈1.28 million) and as having

limited access (≈650,000). The results are less dramatic

after “raising” the speed limits of the input roads data

by 5 mph. However, both the raster and network-based

methods identified large numbers of underserved and lim-

ited access populations in this scenario. Modifying the

population assignment method resulted in far fewer peo-

ple as both underserved and having limited access using

both methods. Notably, the network-based method in

conjunction with the block population assignment did

not identify any official LAAs, although nearly 200,000

would be considered underserved in this scenario and two
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Figure 9 Example of the similarities and differences between

network and raster-based underserved areas.

underserved areas nearly meet the 50,000 person LAA

threshold.

The general location of the underserved areas and LAAs

are similar between raster and network-based methods.

Much of the underserved area is found in sparsely popu-

lated regions in Michigan’s Upper Peninsula and northern

Lower Peninsula. However, both methods identified small

areas in the more populated central and southern Lower

Peninsula. These smaller underserved areas are located

in rural regions between urban centers. The raster-based

method identified larger, more contiguous underserved

areas, thus more were classified as being LAAs.

In both the network and raster data models, the cost to

travel among locations is based on the distance separating

places and travel speed. Given these meta-parameters, the

71% agreement in total area identified as underserved is

not completely surprising. However, in all of the tests per-

formed in this analysis, the raster-basedmethod identified

more total area as underserved and as LAAs in compar-

ison to the network-based method, warranting further

examination. Figures 8 and 10 show that both methods

identified similar patterns of underserved areas and LAAs

throughout the state, however the raster method’s results

are universally larger. These results appear to be due to the

underlying difference in the data models and the abstrac-

tion process occurring when converting the vector road

data to a raster representation. The differences in the data

models’ characterization of space are worth reinforcing

such that they directly influence geographic accessibil-

ity measurement. The raster data model defines space

as a continuous surface where each cell within the data

extent has a specific location and attribute value. The

network data model defines space as an empty container

that is populated only by features having specific locations

and attributes. In the following paragraphs, we explore

these differences and their implications for conducting

geographic accessibility studies.

Given the structural constraints of the raster data

model, accessibility calculation necessitates converting

the vector road data to a cell-based representation. The

conversion process requires a decision rule for assigning

the speed limit to a cell when multiple roads are present

Figure 10 Limited Access Areas.
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Table 5 Comparison of Limited Access Areas (Percent

figures reflect proportion of state totals)

Limited access areas Raster % Network %

Area (km2) 49,080 32 34,634 23

Number of unique areas 15 6

Number of zip codes 328 33 199 20

Total population (zip code) 1,830,028 19 654,755 7

within the cell bounds. Although a number of decision

rules exist (e.g., the highest travel speed or the mean travel

speed of roads within the cell), each increases the uncer-

tainty of travel time estimates in the raster method. In

the case study, because Michigan statute requires that the

speed limit of the cell be determined by the slowest route

available, only a small percentage of cells are assigned to

the higher speed categories (i.e., highways and express-

ways) due to the presence of nearby slower roads. This

results in a general overestimation of the time required

to travel among locations. Figure 12 contains an example

that illustrates the dilemma produced by the abstrac-

tion process. In the example, an expressway traversing a

medium-sized town nearly disappears after the conver-

sion to the raster data format. Although Figure 12 shows

a very specific example, the impact of this decision rule

in the conversion process is not trivial when summed

over the entire state. Table 8 contains the proportions of

the roads in each travel speed class in the original vec-

tor format (based on road length) and after conversion

to the raster format (based on cell counts). Notably, the

raster format contains a higher proportion of roads in

the 20 and 40 mph classes and less in the rest of the

travel speed classes. As Figure 12 illustrates, this clearly

inhibits high-speed travel. The result of slower travel

speeds is an overestimation of travel time among loca-

tions and an increased amount of area identified as being

Table 6 Comparison of underserved areas and LAAs

identified with speed limits assigned to roads (% change

reflects change compared to initial travel speed settings)

Underserved areas Raster % Change Network % Change

Area (km2) 37,945 -28 31,815 -21

Number of unique areas 61 -73 390 1

Number of zip codes 238 -42 255 -19

Total population (zip code) 856,150 -62 1,000,612 -22

Limited access areas Raster % Change Network % Change

Area (km2) 35,404 -28 19,343 -44

Number of unique areas 6 -60 3 -50

Number of zip codes 194 -41 117 -41

Total population (zip code) 694,562 -62 333,290 -49

Table 7 Comparison of results from block centroid

population assignment method with original travel speed

settings (% change reflects change compared to zip code

intersectionmethod)

Block centroid Raster % Change Network % Change

Underserved population 489,588 -78 191,420 -85

Limited access population 288,118 -84 0 -100

underserved. As Table 4 shows, the raster-based method

identified nearly 13,000 km2 more total area as being

underserved than the network-based method. In addition,

the raster-based underserved areas were larger on aver-

age than the network-based areas (237.54 km2 vs. 103.74

km2). Larger contiguous underserved areas increase the

probability that the 50,000 population threshold will be

reached for LAA classification. Hence, the raster-based

method identified nearly 1.2 million more people in LAAs

than the network-based method.

All areas of the state should be accounted for in the LAA

identification process [30]. This creates a conundrum-

LAAs are conceptually based upon vehicular travel time,

yet some places in the state do not have any roads present.

In the raster data model, all locations within the data

extent are explicitly defined and measurable. Hence, to

be included in the service area estimation, each cell must

be assigned a specific travel speed even if no roads are

present within the cell. The network model does not

define “space” outside of the network features (i.e., places

not located on a node or edge feature). Therefore, non-

road areas are undefined and not directly measured in

service area calculation. Because the two data models

diverge greatly in their characterization of space with-

out roads, each method requires specific techniques to

account for the presence of non-road areas when identi-

fying geographic service areas based on vehicular travel

time estimates.

In the raster method, non-road cells are not distin-

guished from cells with roads. Therefore, by assigning

an artificially low travel speed value to non-road cells

(e.g., walking speed), vehicular-based travel time esti-

mates originating at these cells will be artificially high.

Regions near the origin of the service area will be less

affected than those located towards the periphery of the

serve area extent. For example, the travel time to exit a

1 km non-road cell with a travel speed of 3 mph is 6.21

minutes. When a specific threshold value for a service

area is implemented, the higher travel time estimates

for non-road cells result in regions or cells identified

as “non-served” areas even though they fall within the

extent of the larger service area (see Figure 6). When

combined with the conservative population assignment

method employed by Michigan, the non-road cells have
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Figure 11 Limited Access Areas with block population assignment method.

the potential to significantly bias the results of the analy-

sis. Therefore, we implemented the filter process to limit

the number of non-road cells identified as underserved.

As observed in the results of the speed limit sensitivity

analysis, the raster-based method is much more sensi-

tive to changes in the input speed limits. The 5 mph

increase in travel speeds led to a 28% reduction in the

total area (15,000 km2) and 62% reduction in the popu-

lation (1.4 million) identified as underserved, far outpac-

ing the changes observed in the network-based method.

Whereas some of the raster-basedmethod’s sensitivity can

be attributed to the cell-based representation of roads and

Travel Speed (mph)
20

50

6540

30 3

20

30

40

50

65

Figure 12 Conversion of vector roads data to raster data format with slowest route rule.
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Table 8 Michigan roads by travel speed

Travel speed (mph) Network% Raster % Difference

20 30.78 38.92 8.14

30 5.99 0.36 -5.63

40 40.75 49.33 8.58

50 19.73 11.20 -8.53

65 2.76 0.19 -2.57

the predefined directional movement (considering that

travel occurs in large 1km steps between cells), we believe

that much of it is due to the change in speed for the

non-road cells (from 3 mph to 10 mph).

“Non-road” areas are also accounted for in the network-

based method; however, this process is not as apparent

due to the output format of the data produced using

ArcGIS Network Analyst. The “Service Area” function

produces polygon features which are in turn used to clip a

state base map to find non-served areas. Albeit indirectly,

all areas in the state are measured when implementing the

network-basedmethod to identify service areas. Although

this technique appears straight-forward, it is not with-

out uncertainty. Service area polygons constructed from

the network-based data model are actually areal approx-

imations of the network edges (roads) within a specified

travel time from the origin location. In Network Ana-

lyst, the network edges are converted to a triangulated

irregular network (TIN) data structure with travel time

estimates along the edges as the “height” value. Service

area polygons are then formed by subsetting the TIN to

only those areas falling within the specified travel time

[43]. Figure 13 shows a service area where large regions,

both inside and near the bounds, have no roads. The

figure includes two detailed examples of non-road areas

to help illustrate the abstraction process of generating a

polygon from a set of lines. In the upper right example,

the non-road area is nearly completely enclosed by roads

within 30 minutes, thus the entirety of the non-road area

is considered “served”. In the lower right example, the

non-road area is bisected by the boundary of the service

area. Specifically, the “cut out” region in the service area

appears to be a remnant of the TIN conversion and subset-

ting technique. In theory, this particular boundary could

be located anywhere within the non-road area; therefore,

its true location is uncertain. The uncertainty associ-

ated with the polygon generation process raises questions

regarding the validity of the service area boundaries pro-

duced by Network Analyst. However, we did not find any

evidence that this led to a large amount of over or under-

representation of underserved areas (and hence, LAAs) in

our case study.

Because the conceptual models of space differ signif-

icantly between data models, topological relationships

governing movement among locations are also highly

dissimilar. In the raster model, connectivity is defined

solely by cell proximity- movement only occurs in sin-

gle step increments in predefined directions from the cell.

The network data model, on the other hand, enforces

strict connectivity rules within the data structure itself;

travel only occurs along the edges of the network and

directional changes can only be accomplished at nodes.

Because the actual cost of travel between locations is

highly dependent upon the connectivity provided by the

transportation network linking the locations, the mod-

els’ differences in defining connectivity lead to dissimilar

travel time estimates. Specifically, real-world connectivity

is not accounted for in the raster data model. There-

fore, travel routes among locations may be geographi-

cally warped, resulting in inaccurate travel time estimates.

For example, in Figure 12, all cells surrounding the 65

mph cell (on the right side of the map) have the poten-

tial to “route” through this cell. However, in the original

vector road data, no ramp connects the surface streets

to the expressway within this cell. Only the cell to the

left and bottom of the 65 mph cell are actually con-

nected to this cell. Therefore, movement is less restricted

in the raster model than in the real-world and travel

time estimates will generally be underestimated. In our

case study, we believe that the underestimation of travel

speeds was offset by the previously discussed overestima-

tion of travel time due to the “slowest route” assignment

rule.

Reducing the cell size of the input data used in the

raster-based method would result in improved travel time

estimates. Specifically, smaller cells will increase the prob-

ability of a single road falling within each cell, negating

the impact of the decision rule to assign travel speeds to

multi-road cells. In addition, as cell size is reduced, the

topological similarity between the raster travel speed sur-

face and the original roads data increases (see Figure 3).

As a result, travel time estimates would be more accurate

for cells falling on or near the road network, providing

improved results in simple distance measurements and

routing applications. However, for service area identifica-

tion, reducing the cell size would also lead to an increase

the number of non-road cells in the raster data. This

would likely require a more sophisticated method to cre-

ate the travel speed surface, a more elaborate filtering

process to remove these cells, or a polygon generating

algorithm similar to the one employed in the network-

based method. Additionally, reducing cell size may lead to

substantial increases in processing time and data storage

requirements [34,44].

By design, the zip code population assignment rule used

in Michigan is conservative [30] in that it attempts to

minimize the likelihood of source A errors [45]. Hence,

by assigning the entire zip code population regardless
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Figure 13 Service area delineation in areas where no roads are present.

of the amount of area overlapping an underserved area,

the true population with limited geographic accessibility

is almost certainly overestimated. The results from the

block population assignment method illustrate the mag-

nitude of the overestimation. The percent change values

in Table 7 show that the network-based method was more

sensitive to the block population assignment method,

overall. This is likely a result of the differences in the

size and shape of the underserved areas produced by

each method. On average, the raster-based method pro-

duced larger contiguous underserved areas. Due to the

abstraction and filtering processes (see Figure 6) in the

raster-basedmethod, theminimum size of an underserved

area is 3 cells (3km2). The network-based method has

no such size restriction. This difference has three main

implications in relation to population assignment. First,

larger areas increase the likelihood that an individual area

will intersect multiple zip codes when assigning popu-

lation using the zip code intersection method, resulting

in more underserved areas meeting the LAA population

criteria (See Tables 4, 5, 6, and 7). Second, unequally

sized underserved areas can be assigned the same popu-

lation. For example, using the intersection method, a very

small area that falls on the border of two zip codes would

be assigned the same population as a larger area com-

pletely covering the two zip codes. However, third, larger

areas increase the likelihood that an underserved area

will contain a block centroid when the population assign-

ment method is modified. Considering that the average

size of the raster-based underserved areas were generally

larger than their network counterparts, the raster-based

method was less affected by the change in the population

assignment method.

Conclusions
We have presented a comparison of raster and network-

based methods for measuring geographic access to health

care facilities. Specifically, we have explored how both

conceptual and practical differences in the underlying

data models have the potential to influence travel time

estimates. In Michigan, each data model and method

produced underserved areas and LAAs with similar con-

figuration and shape, but of varying size. Specifically,

the raster-based method identified 132% more land area

as underserved than the network-based method. After

assigning population to the underserved areas, the results

clearly indicate that these spatial differences resulted in

substantial variation in the number of people with lim-

ited geographic accessibility to acute care hospitals. In

fact, the raster-basedmethod identified 176%more people

than the network-basedmethod, a difference of nearly one

million state-wide. Using the 50,000 population minimum

for an underserved area to be deemed an LAA, the dif-

ferences were even greater with the raster-based method

identifying 142%more land area and 279%more people in

LAAs.

Because speed limit data were not available for Michi-

gan roads, travel speeds were estimated using the available

road attribute data. Although we presented a detailed

hierarchical speed limit classification system, the unavail-

ability of the true speed limits, the variability in road

surface types, and the large number of roads through-

out the state make a perfect characterization of travel

speeds impossible. Therefore, we tested each data model

for sensitivity to changes in the travel speed settings. The

method using the raster data model was more sensitive

to the input speed limits of the roads data. Specifically, a
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small increase in travel speed settings produced greater

changes in the resulting underserved areas and population

identified when compared to the network-based method.

Messina et al. selected the raster-based method to ful-

fill the requirement that all areas of the state be measured

directly while assessing geographic access in Michigan

[30]. However, we have illustrated that converting the

roads data to a 1 km cell resolution leads to a substantial

loss of topological relationships due to the abstraction

process. In addition, the coarse resolution requires a deci-

sion rule to assign travel speeds to cells with multiple

roads present, resulting in a lower precision travel speed

dataset. A reduction in cell size would provide a travel

speed surface more similar to the original roads data

along with better travel time estimates and more accurate

routing results. Uncertainty associated with travel speed

classification systems is always present in these kinds

of large, unconstrained travel models. Future application

of raster data modeled geographic access should explore

alternatives to the methods described here for assigning

travel speeds to cells with multiple roads and cells where

no roads are present. Furthermore, an examination of the

effects of cell size is also warranted in future research

efforts as it was not considered here.

As noted earlier, the conservative population assign-

ment method currently employed in Michigan likely over-

estimates the number of people in underserved areas (and

thus in LAAs). We implemented an alternative population

assignment method using higher spatial resolution data.

Our findings suggest that the network-based method was

more sensitive to the block population data assignment

method. This sensitivity is likely due to the overall

smaller underserved areas produced by the network-

based method and its lack of a minimum size filter as was

employed in the raster-based method. However, this find-

ing speaks more to the population assignment method

used by Michigan rather than the results of the travel time

analysis. Thus, we believe that the overestimation of the

population with limited geographic accessibility, regard-

less of whether the network or raster-based method is

employed, warrants further evaluation.

Both the network and raster data models provide a valid

structure for constructing travel time models. A defini-

tive conclusion regarding the superiority of one or the

other is unjust, however, due to the lack of true reference

data to compare each against. Therefore, we recommend

that, whenmeasuring geographic access for health-related

applications, researchers consider how the data models

and associated methods employed may potentially influ-

ence their results. Because the raster data model defines

all areas as traversable, the raster-based method appears

more suitable when estimating travel time service areas

for non-vehicular travel modes or in regions where travel

is not restricted to roads. For estimating vehicular-based

travel time, we contend that the network data model pro-

vides a more accurate characterization of the topology

governing vehicular travel. Therefore, for this travel mode,

we believe that the network-basedmethod is the appropri-

ate choice to identify areas with limited geographic access

to health care services.

Endnotes
a The dominance of Google Maps in web-based mapping

applications [46] does not guarantee that their roads data,

travel speed data, or travel time estimates are, in fact,

accurate. However, given the large and growing number

of users, we believe that there is a low likelihood that the

Google Maps source data contain a substantial amount of

significant errors.

b A custom-written automated query function was imple-

mented in RTM. The function sent origin and destination

locations to the GoogleMaps API and returned the result-

ing travel times and distances.
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