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Abstract

Assessing spatial autocorrelation (SA) of statistical estimates such as means is a common practice 

in spatial analysis and statistics. Popular spatial autocorrelation statistics implicitly assume that the 

reliability of the estimates is irrelevant. Users of these SA statistics also ignore the reliability of the 

estimates. Using empirical and simulated data, we demonstrate that current SA statistics tend to 

overestimate SA when errors of the estimates are not considered. We argue that when assessing 

SA of estimates with error, it is essentially comparing distributions in terms of their means and 

standard errors. Using the concept of the Bhattacharyya coefficient, we proposed the Spatial 

Bhattacharyya coefficient (SBC) and suggested that it should be used to evaluate the SA of 

estimates together with their errors. A permutation test is proposed to evaluate its significance. We 

concluded that the SBC more accurately and robustly reflects the magnitude of SA than traditional 

SA measures by incorporating errors of estimates in the evaluation.
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An important theme in spatial analysis and statistics is to determine whether or not values 

across units within a study region are strongly correlated because the significant presence of 

spatial autocorrelation (SA) in the data violates the basic assumption of independence in 

classical statistics. In practice, Moran’s I (MC) and the Geary Ratio (GR) are regarded as 

standard measures to reflect the magnitude of SA of a study region (Cliff and Ord 1981). To 

evaluate the magnitude of SA, statistical estimates (“estimates” thereafter) derived from 

samples within neighborhoods are compared. When these statistics are applied, users often 
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implicitly assume that estimates are accurate without error, while in reality all sample 

estimates have standard errors reflecting their degrees of uncertainty. In addition, when 

testing the significance of SA statistics, the difference between the observed and expected 

measures are standardized by the variances of the respective statistics. The analytical 

derivations of these variances implicitly assume that the estimates have unit variances or 

uniform variance across units (Cliff and Ord 1973, p.34).

It is the norm rather than the exception that the standard errors of estimates are not spatially 

uniform or random (e.g., Spielman and Folch 2015) but are not always provided with the 

data. However, standard errors should be included in the data because they reflect the 

reliability of the estimates. Increasing number of datasets gathered by government agencies 

(e.g., the American Community Survey (ACS) data disseminated by the U.S. Census 

Bureau) and private organizations (e.g., the State of Obesity datasets disseminated by the 

Trust of America’s Health & R. W. Johnson Foundation) include standard errors of the 

estimates. Thus, using existing measures to evaluate the level of SA of these spatial datasets 

fails to utilize the actual reliability information provided by the data, and the results from 

these existing measures are likely biased.

The objective of this study is to explore and demonstrate that when using existing measures 

to assess the SA of statistical estimates, results are insensitive to the error levels of the 

estimates as reflected by their standard errors. The insensitivity of results may also imply 

that the SA indicated by these measures is biased. Using simulated and empirical data, the 

relationship is explored between the magnitude of estimate error and the direction and 

magnitude of bias. Existing measures are not sufficient to reflect the SA of statistical 

estimates with uncertainty information. Therefore, a new measure is proposed to evaluate the 

SA of statistical estimates by considering the standard error associated with each estimate. 

This measure is based on the Bhattacharyya coefficient (BC), which measures the overlap 

between two distributions. It is demonstrated that the spatial Bhattacharyya coefficient 

(SBC) is a more statistically sufficient measure than existing SA measures because it 

considers the errors of statistical estimates in evaluating SA.

Uncertainty and SA measurement

Positional and attribute uncertainties, the two main sources among various types of 

uncertainty in spatial data (ANSI 1998), can influence SA measures because SA compares 

attributes over space. The impacts of positional uncertainty on SA have been explored in 

several empirical studies. Burra et al. (2002) examine the positional uncertainty of geocoded 

points and its impact on the results of global and local SA measures (i.e., MC, local Moran, 

Gi and Gi*). They report that even a low level of positional inaccuracy affects local SA 

measures, but that global measures are robust. Spatial weights matrix captures the spatial 

relationship among locations for the calculation of SA measures. When created from 

geocoded points with positional errors (Jacquez and Rommel 2009), errors originated from 

positional inaccuracy may propagate to SA measures. More recently, Griffith, Chun, and Lee 

(2016) investigated the impacts of positional uncertainty on local SA measures, including 

local Moran and Gi*, using heavy metal soil sample points. They found considerable 

changes of SA levels caused by positional uncertainty; specifically, changes in local Moran 
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values were larger than in Gi*. Unlike positional uncertainty, the impact of attribute 

uncertainty on SA measures has not been extensively investigated, although its effects on the 

result of general spatial analysis are widely recognized (e.g., Haining and Arbia 1993; 

Griffith et al. 2007; Lee, Chun, and Griffith 2018).

Among various approaches to address attribute uncertainty in spatial analysis and statistics 

(Longley et al. 2011), a popular approach is to use a probability distribution function to 

represent attribute error as a form of an uncertain object (Heuvelink, Brown, and van Loon 

2007). For example, Heuvelink (1998) developed various types of probability models for 

attribute error to reflect different measurement scales and space-time variability of an 

attribute, and implemented these models in geographic information science (GIS). In data 

mining, this uncertain object approach is widely used for cluster analysis, such as in the 

implementations of UK-means (Chau et al. 2006) and Fuzzy DBSCAN (Kriegel and Pfeifle 

2005) methods. Specifically, these cluster analysis methods use a probability density 

function to calculate distance between each pair of uncertain objects instead of a general 

Euclidean distance (Kriegel and Pfeifle 2005). The research reported here also adopts the 

concept of uncertain objects, but in the attribute space (based on a probability density 

function) and develops an alternative SA measure by comparing probability density 

functions rather than only estimates.

Limitations of traditional SA measures for estimates with empirical error 

information

In the formulation of SA statistics, the differences between estimates are expressed as 

deviations from the mean (i.e., MC) and as actual differences (i.e., GR). Similarity between 

estimates is evaluated with the implicit assumption that estimates are relatively accurate. The 

standard errors of these estimates are not considered when the estimates are compared. 

Figure 1 illustrates the amount of overlapping probability density functions between two 

neighboring spatial units. Estimates in Figures 1A and1B are relatively similar as compared 

to those in Figures 1C and1D. If estimates have relatively small errors (narrower 

distributions in Figures 1B and1D) or if their errors are ignored, the similarity of these 

estimates, SA, is higher than those estimates with larger errors (wider distributions in 

Figures 1A and1C). Thus, the SA statistics of estimates are inflated when errors of estimates 

are not considered. By extension, estimates with larger errors are less positively 

autocorrelated than the same set of estimates with smaller errors. Conversely, when 

estimates with moderately strong negative SA (i.e., very different estimates), they should 

become more statistically similar if they have relatively larger errors (i.e., more positive or 

less negative autocorrelation) than as if they have smaller or no error.

In general, estimates with larger errors vary over larger ranges or more dissimilar, or the 

autocorrelation levels are diluted regardless if they are positively or negatively 

autocorrelated. In other words, if the errors of estimates are ignored in evaluating SA, it is 

similar to treating the estimates as highly accurate or without error, and the results tend to be 

more extreme. Statistical estimates with positive SA yield SA statistics more positive than 

they should while estimates with negative SA result in more negative SA statistics.
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The second issue with using MC and GR is that in testing the significance of these statistics, 

the variances are assumed to be unity or constant. With no empirical information about the 

reliability of estimates, adopting these assumptions (i.e., uniform variance with unity) is 

reasonable. However, the analytical variances which adopt these assumptions likely create 

bias in testing the significance of the statistics. For example, the significance of MC can be 

biased due to the uncertainty of rates associated with the varying sizes of population at risk, 

and modified MC calculations for rates were proposed to address this uncertainty (Oden 

1995; Waldhör 1996; Assunção and Reis 1999). It has been demonstrated that the 

uncertainty introduced by varying sample sizes is controllable using funnel plots (Dover and 

Schopflocher 2011). These treatments on the impacts of uncertainty on SA measures rely on 

known sample sizes, which may not be available. The research reported here examines the 

impacts of uncertainty on traditional SA measures using empirical (e.g., ACS data) and 

simulated data with varying degrees of reliability as reflected by the standard error values or 

related measures.

Biases of traditional SA measures when error information of estimates is 

ignored

Using the American Community Survey (ACS) data

The ACS data are used in this demonstration because each ACS’ estimate has a margin of 

error (MOE) indicating the reliability of estimate. The specific ACS datasets are the 5-year 

(2009–2014) estimates of median household income (MedInc) of counties in Texas, and 

estimates of median income of Hispanics households (HispInc) of census tracts from Dallas 

County, Texas (Figure 2). Table 1 shows the summary statistics of the two variables. The 

expected value of MC is −1/ n − 1  , where n is the number of spatial units. The range of MC 

is approximately between −1 and 1. An MC value greater than the expected value indicates a 

positive SA, and a value smaller than the expected value indicates a negative SA. The 

expected value of GR = 1, and the range of GR is between 0 and 2, with a value less than 1 

indicating a positive SA and a value greater than 1 indicating a negative SA. While MC and 

GR offer consistent results (Table 1), both variables have a significant positive SA. However, 

MedInc of Texas counties has a stronger positive SA than HispInc in Dallas. The reliability 

of ACS estimates is closely related to the number of completed questionnaires, a 

combination of population size and response rate (U.S. Census Bureau 2009). Because the 

number of completed surveys is larger for larger spatial units, ACS estimates are more 

reliable for larger (e.g., counties) than for smaller units (e.g., census tracts) (Spielman and 

Folch 2015). Thus, it is not surprising that the average coefficient of variation (CV) of the 

county variable (0.0605) is much smaller than the average CV of the tract variable (0.2960).

The SA statistics (Table 1) are the levels of SA without considering error in the ACS 

estimates. If errors of estimates are considered, the true values of observations should vary 

according to their error levels. To demonstrate how the estimates may vary by incorporating 

the error information, the original estimate of each observation is replaced by a new estimate 

generated from a normal distribution with the mean and standard deviation corresponding to 

the original estimate and standard error of the observation, respectively. This normality 

assumption is reasonable given that that ACS estimates follows a normal distribution (U.S. 
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Census Bureau 2009). This process to introduce error into an estimate is performed for each 

ACS estimate 1,000 times to create 1,000 sets of new estimates with empirical errors. For 

each set of estimates, we computed the MC and GR. The histograms in Figure 3 show the 

distributions of the two SA statistics with 1,000 sets of new estimates.

With the empirical errors introduced, most values of the two SA statistics for the Texas 

county data are more strongly positive than the tract data for Dallas County, consistent with 

the results using estimates without errors. However, by introducing errors to the estimates, 

the means of MC and GR are 0.3560 and 0.6322 for Texas counties (versus 0.4130 and 

0.5853 for MC and GR of the original estimates, respectively) and 0.1364 and 0.8458 for the 

tracts (versus 0.2797 and 0.6898 for MC and GR of the original estimates, respectively) in 

Dallas County. The SA statistics for the estimates without considering error are biased 

upward (i.e., more positively autocorrelated) when compared to estimates with errors 

(Figure 2). In other words, if errors are ignored in estimates, the evaluation of SA is likely 

inflated.

Synthetic data

The above demonstrates that ignoring errors in estimates likely inflate SA values, resulting 

in stronger positive SA statistics than considering the errors in the statistical estimates. 

However, empirical data have mild to moderate levels of positive SA (Table 1). Although 

one expects that ignoring errors in the estimates likely results in less negatively 

autocorrelation if the estimates have negative SA, empirical data with true negative SA are 

rare (Griffith 2000). Therefore, this study simulates data with a negative SA to test our 

conceptual arguments. In addition, this simulation illustrates the impact of error on SA 

statistics with various SA and error levels. Simulation experiments are commonly used to 

test the properties of SA statistics (e.g., using different forms of spatial weights and sample 

sizes (Anselin and Florax 1995), and varying densities of weight matrices (Mizruchi and 

Neuman 2008; Smith 2009)).

The simulated data are generated based on two different processes, one for estimates and the 

other for associated variances. Spatially autocorrelated estimates are generated using a 

spatial autoregressive (SAR) process (Chun et al. 2016) as follows:

Y = 1β
o

+ I − ρW
−1ε

where W is a row-standardized spatial weights matrix, ε is a vector of iid normal random 

errors, ρ is a SA parameter and β
o
 is set to one. Nine different ρ values are used (−0.8, −0.6, 

−0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8), corresponding to the autocorrelation levels of the simulated 

estimates. Simulated values of each autocorrelation level are generated and distributed over 

three different sizes of regular hexagonal tessellations: 10-by-10, 30-by-30 and 50-by-50 

(i.e., 100, 900, 2,500 observations, in series).

Subsequently, the nine sets of spatially autocorrelated values for each tessellation are paired 

with different levels of error. As CV indicates the relative amount of error associated with 

the estimates (i.e. CV = standard error /estimate ,) (Sun and Wong 2010; Spielman and Folch 
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2015), CV values are randomly generated from a truncated normal distribution with a lower 

truncation point equal to 0, and an upper truncation point equal to 2. The criteria for an 

appropriate CV level have not been formally investigated except in a small number of 

studies. The National Research Council suggests that a CV of 10–12% or less has a 

reasonable reliability (Citro & Kalton, 2007). ESRI (2014) states that a CV less than 12% 

indicates high reliability, 12–40% indicates moderate reliability, and over 40% indicates low 

reliability. Thus, the simulations employed six CV levels from 10% to 60% with an 

increment of 10%. The CV values are obtained from six different truncated normal 

distributions, whose means are 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. These means are primarily 

related to the above CV levels. The same standard deviations (0.1) are used for each 

distribution to minimize the impact of CV variability when the focus is on the impact of 

different CV (error) levels. As a result, a total of 162 sets of samples are generated with nine 

SA levels, six CV levels and three tessellation sizes. Note that the appropriateness of CV 

level depends on context or application.

Using the same process to incorporate errors to the estimates in the above ACS data, the 

original estimates of the 54 sets of samples (nine SA and six CV levels) of each tessellation 

are replaced with newly generated estimates (i.e., randomly drawn values). Each new 

estimate is drawn from a normal distribution, with the mean and standard deviation set to the 

original estimate and the standard error derived from its original CV values. This process is 

repeated 1,000 times for each estimate.

The variances of both MC and GR values decrease with increasing sample size from 100 

(Figure 4A and B) to 2,500 (Figure 4E and F). However, when the SA are positive (ρ > 0), 

the original SA statistics are concentrated on the positive ends of the SA distributions (i.e., 

larger MC and smaller GR values). When the SA levels are negative (ρ < 0), the original SA 

statistics are on the negative ends of the SA distributions (i.e., smaller MC vales and larger 

GR values). In other words, when computing MC and GR without considering errors for 

estimates with positive SA, the computed statistics are more positively autocorrelated than 

they should be. Conversely, if the estimates are negatively spatially autocorrelated and errors 

are ignored, the computed SA statistics are more negatively autocorrelated than they should 

be. These results confirm the argument that ignoring errors in evaluating SA results in a 

statistical liability.

The interplay of the error level of the SA estimate with sample size also affects the 

probability of detecting a significant SA. To address this interplay, the percentages of 

significant SA statistics with a p-value less than 0.01 based on a two-tail test in the previous 

simulation experiment are illustrated in Figure 5. In this graph 100% means all SA statistics 

from the simulation test are significant while 0% means all simulated SA statistics are not 

significant. With a larger sample size (i.e., 50-by-50 tessellation), SA is significant with a 

low value of ρ, and the significance is not influenced by the error levels. However, with 

smaller sample sizes (i.e., 10-by-10, 30-by-30 tessellations) the probability of detecting a 

significant SA decreases when the error level is high (e.g., CV = 0.6). This impact of error 

level is stronger for negative SA. Therefore, error in estimates have a strong influence on the 

detection of SA and cannot be ignored in assessing SA, especially when working with small 

sample sizes (e.g., less than 100 observations) and data with negative SA.
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In sum, if errors in estimates are ignored in evaluating SA using traditional measures, the 

results are likely biased toward the extremes (i.e., more positive autocorrelation for positive 

SA estimates, and more negative autocorrelation for negative SA estimates), based on the 

results of our analyses with the empirical (i.e., ACS data) and synthetic data. Also, the 

likelihood of having a significant SA statistic is inversely related to the magnitudes of errors 

of the estimates. To obtain a more accurate assessment of SA for estimates with error 

information using traditional measures such as MC and GR, the process of incorporating 

errors into the estimates with randomization is needed. However, the process of introducing 

variability to the estimates with empirical errors is time and computationally intensive, and 

an alternative approach is to derive an SA measure accounting for the errors of estimates.

Measuring spatial autocorrelation by accounting for error information

An alternative SA Measure

A major limitation of traditional SA measures is that when those SA measures compare 

estimates, do not consider the errors of the estimates when comparing the estimates. A more 

accurate comparison should include the error information, and a candidate to measure the 

difference between estimates and the errors of estimates is the Bhattacharyya coefficient 

(BC) or Bhattacharyya distance (BD). The BC or BD quantifies the dis/similarity between 

two discrete or continuous probability distributions (Bhalerao and Rajpoot 2003) and is 

widely used for image processing and pattern recognition (e.g., Kailath 1967; Schmidt and 

Skidmore 2003; Mas et al. 2004; Patra et al. 2015). Recently, the BD was used to derive 

class breaks in map classification while considering attribute error (Koo, Chun, and Griffith 

2017; Wei, Tong, and Phillips 2017). Specifically, BC measures the similarity between the 

overlap between two distributions. Assuming i x  and j x  are two continuous distributions, 

according to Kailath (1967), BC is defined as follows:

BC i, j = ∫ i x j x dx (1)

The BD between two normal distributions is derived from this formulation (Coleman and 

Andrews 1979) as follows:

BD i, j =
1
4

ln
1
4

σi
2

σ j
2 +

σ j
2

σi
2 + 2 +

1
4

μi − μ j

2

σi
2 + σ j

2 (2)

where μ
i
 and μ

j
 are the sample estimates at locations i and j , respectively, σ

i
 and σ

j
 are the 

standard errors of the estimates at the corresponding locations and ln denotes the natural 

logarithm. The BC has a negative exponential relationship to BD (Kailath 1967) as follows:

BC i, j = − exp BD i, j =
2σiσ j

σi
2 + σ j

2e

1
4

μ
i
− μ

j

2

σ
i
2 + σ

j
2

.
(3)
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The value of BC, which indicates the amount of overlap between two sample distributions, 

ranges from 0 to 1 where. 0 indicates no overlap and 1 indicates a perfect overlap. Thus, BC 

is a comprehensive index to measure the difference between two distributions by considering 

both their means and deviations.

Using BC, a global SA measure (Spatial Bhattacharyya coefficient (SBC)) is formulated as 

follows:

SBC =

∑i = 1
n ∑

j = 1

n

wi jBC i, j

∑
i = 1

n

∑
j = 1

n

wi j

=
n

∑
i = 1

n

∑
j = 1

n

wi j

·
∑

i = 1

n

∑
j = 1

n

wi jBC i, j

∑
i = 1

n

BC i, i

,

(4)

where w
i j

 is an element of a spatial weights matrix that has a binary weight (i.e., 0 and 1), n 

is the total number of observations, and ∑i = 1
n BC i, i = n . The expression on the right 

hand side of Equation 4 shows a conceptual similarity to the general SA statistics, 

specifically to MC. The SBC ranges from 0 to1, with a higher SBC indicating a high degree 

of similarity between the neighboring distributions. That is, SBC values are affected by both 

error and SA levels. A higher error level would yield a higher SBC value, and in contrast, a 

lower error level would lead to a lower SBC value. In addition, positive SA of estimates 

would lead to a high SBC value, while negative SA of estimates would lead to a low SBC 

value, keeping the error level constant. The significance of SBC is conducted through a 

permutation test. The SBC formulation is similar to MC and GR conceptually in that all 

numerators capture the differences between neighboring observations. However, the 

numerators of MC and GR consider only the estimates, while SBC considers both the 

estimates and errors. Thus, comparing the values of MC and GR with SBC needs to 

acknowledge the conceptual difference between the two types of SA measures.

Using SBC to evaluate SA of estimates with error information

The property of SBC is explored with simulated data consisting of spatial autocorrelated 

estimates and error statistics. Data generation is similar to the process described in Section 

4.2 as the spatially autocorrelated estimates are generated through an SAR process with nine 

different autocorrelation levels ( ρ = −0.8, −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6 and 0.8). 

Standard errors are derived from CV values drawn from a truncated normal distribution with 

different means (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) and a fixed standard deviation (0.1). The 

1,000 sets of spatially autocorrelated estimates and associated standard errors are generated 

for each pair of ρ and CV values, with a total of 54,000 simulation datasets generated for 

three different sample sizes: 10-by-10, 30-by-30 and 50-by-50 regular hexagonal 

tessellations. The MC and GR values for the simulation datasets show that as ρ increases the 
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SA level of the estimates increases (Figure 6). The increase tends to be less for negative and 

low SA but more for positive and high SA. However, CV levels do not affect the MC values 

because MC does not consider errors of estimates.

Figure 7 shows the distributions of SBC with different SA ( ρ ) and error (CV) levels. Three 

salient observations are offered by Figures 6 and 7. First, the SBC means become larger with 

increasing SA as reflected by the traditional measures of GR and MC (Figure 6). The 

increases are much larger for strong and positive SA than for negative or weak positive SA. 

Such a pattern is also similar for the GR and MC results (Figure 6). Second, the SBC means 

are markedly affected by the error level (i.e., CV) given any SA level (i.e., ρ). Smaller CV 

levels generally lead to lower SBC values, and larger CV values lead to larger SBC values. 

Also, the range of SBC values is affected by the SA level. For instance, with a strongly 

negative SA (i.e., ρ = –0.8), the mean SBC ranges from 0.07 to 0.40. When SA is strongly 

positive at ρ = 0.8, the mean SBC ranges from 0.15 to 0.56. Third, the variability of SBC is 

associated with both ρ and CV. A larger ρ value tends to produce larger variation in SBC 

than a smaller ρ. With both large ρ and CV values, the SBC have the largest variability. 

Also, the variability of SBC shows a strong association to sample size, a characteristic 

generally shared among SA statistics (Figure 6). Specifically, SBC shows a smaller variance 

with a larger sample size (i.e., 50-by-50 tessellation) than that with a smaller sample size 

(i.e., 10-by-10 tessellation).

These results are consistent with the proposal that SBC is a sufficient measure of SA. When 

estimates have strong negative SA (i.e., negative ρ) and are relatively reliable (i.e., low CV 

values), these estimates should be statistically different and their corresponding distributions 

should have low SA values (SBC). If these negatively autocorrelated estimates are relatively 

unreliable (i.e., large CV values), they are more similar to each other (i.e., larger overlaps in 

their distributions) or are more spatially autocorrelated than those distributions with more 

reliable estimates (i.e., smaller overlaps). It follows that these negatively autocorrelated 

estimates may not be statistically different. Thus large CV values or having more unreliable 

estimates make the distributions more similar and, therefore, produce larger SBC values. A 

larger ρ value for the estimates raises the similarity between neighboring estimates, but the 

errors of the estimates (i.e., uncertainty) are critical in determining SBC values.

A permutation test examines the statistical power of SBC in detecting significant SA among 

neighboring estimates with their errors. For each simulation dataset (54,000 datasets), the 

permutation shuffles the estimates and standard errors separately 1,000 times. The mean 

probabilities of SBC values from the permutation test (10-by-10 tessellation in Figure 8A) 

show that when estimates have a negative SA (i.e., negative ρ) and are relatively reliable 

(i.e., low CV), their corresponding SBC values are likely to be significant with p > 0.975. 

However, it is difficult to statistically differentiate unreliable estimates from one other (e.g., 

CV = 0.6) even with strong negative SA (ρ = −0.8). When ρ is positive (i.e., positive SA) 

and the CV is relatively large (i.e., unreliable estimates), the SBC tends to be significant, 

indicating a similarity among neighboring distributions (i.e., comparing estimates together 

with their errors). Similar to other SA statistics, the level of significance in SBC is greater 

when sample size is large (Lin, Lucas, and Shmueli 2013). For the 50-by-50 tessellation 

(Figure 8C), SBCs are significant even with a large CV (i.e., CV = 0.6), although the 
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estimates do not show spatial autocorrelation (i.e., ρ = 0.0). This suggests that the estimate 

errors have an overwhelming influence on determining the presence of positive SA among 

distributions.

Application to the ACS data

The SBCs are computed for the two ACS datasets in Section 4 (MedInc at the county level 

and HispInc at the census tract level) and the MC, GR and CV of the two variables are 

included for comparison purpose (Table 2). MC and GR consistently show that MedInc has 

stronger positive SA than HispInc. However, SBC values indicate that HispInc are more 

similar than MedInc as the SBC for MedInc is 0.405 and that for HispInc is 0.618. In 

general, a coarser areal tessellation tends to have a higher SA as data are relatively smoother 

than that found in a finer areal tessellation where data have more local variation. Although 

MC and GR conform to this general expectation, these statistics do not consider the errors of 

the estimates. The mean CV of MedInc is small (0.0605), while that of HispInc is relatively 

large (0.2960) (Table 2). Given that the tract-level estimates have high levels of error, 

estimates can be statistically similar when errors are taken into consideration. Thus, the SBC 

for HispInc is relatively large when compared to the SBC for MedInc, in which the values 

are more likely to be statistically different with small error levels. The permutation tests also 

indicate that the two SBC values are statistically significant (Figure 9 and Table 2).

Conclusion

When using popular statistics to evaluate the SA of estimates, which are often the means of 

statistical distributions, and the norm is that the reliability levels of the estimates 

(represented by the corresponding standard error or CV levels) are ignored. Comparison of 

these estimates, therefore, assumes that the estimate errors are uniform. Their errors and 

variability are not considered, and as a result the SA assessment is biased upward. If the 

estimate errors are considered in assessing SA level, the process is conceptually the same as 

comparing distributions with respect to the means and standard errors.

The applicability of BC to comparing distributions is recognized, and subsequently the SBC 

is proposed as a measure of SA. Using simulated and ACS data, the utility of SBC in 

evaluating the SA of distributions is demonstrated. In general, SBC captures a high SA when 

the distributions (or estimates) have large errors. When errors are relatively small, the SA of 

distributions depends more on the similarity of estimates (i.e., means) than the errors. The 

significance test of SBC is conducted with the permutation test. When an SA assessment is 

needed for data with relatively large errors (e.g., mean CV over 40%) or errors with 

considerable variability, it is proposed that SBC1 be used to capture error information. 

Taking a slightly more conservative position, even if estimates have relatively low error but 

are relatively non-uniform, SA assessment should employ SBC in concert with traditional 

SA measures. Moreover, SBC furnishes an additional SA measure highlighting the influence 

of errors on existing SA statistics (i.e., MC and GR).

1R code for SBC is available online (https://github.com/hyeongmokoo/SBC).
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The proposed measure furnishes a new approach to measuring SA. Instead of comparing 

estimates (i.e., means) as in conventional SA statistics (e.g., MC, GR, G-statistic, Local 

spatial heteroscedasticity measure (LOSH, Ord and Getis 2012)), the proposed approach 

highlights the importance of considering the distributions underneath the estimates. As the 

new approach requires one to consider the error of estimate as an additional component in 

SA evaluation, the proposed SA statistic-SBC-is not compatible with the more conventional 

approaches to assess SA, particularly in determining the direction of autocorrelation. The 

traditional dichotomous concept of positive-negative SA is no longer applicable in 

comparing distributions, although the concept is still relevant in describing estimates.

Future studies should pursue along several directions. First, the significance test for SBC is 

conducted based on a permutation test. However, permutation might be limited when the 

distribution of a variable is affected by other factors, such as the underlying population at 

risk (Waller and Gotway 2004). Thus, a conditional test has merit to reflect the underlying 

distribution of a variable. Second, the impact of error on the SBC warrants further 

investigation with a weighting scheme between the error level and the similarity of 

estimates. The SBC appears to be more affected by the error level than the similarity of 

estimates. If the SBC approach allows analysts to interactively adjust the relative weights for 

error and the similarity of estimates, then the influence of errors and the similarity of 

estimates on SA can be evaluated separately. However, in the current formulation of SBC, 

standard errors and estimates cannot be linearly disentangled (i.e., weights for errors and 

estimate similarity cannot be controlled independently). Future studies are warranted to 

derive a more flexible scheme to control the influences of these two components in assessing 

the SA of distributions. The study provides evidence that when estimate error is available, 

SBC should be employed to assess SA. Thus, a future research is to derive more specific 

quantitative guidelines to determine the circumstances when SBC and traditional SA 

measures yield significantly different results.
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Figure 1. 
Illustrations of overlapping probability density functions between two neighboring spatial 

units with different levels of similarity and uncertainty in estimates.
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Figure 2. 
Sample ACS datasets: (A) median household income and CV values of Texas counties; (B) 

median income of Hispanic households and CV values in Dallas County, Texas.
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Figure 3. 
The distributions of MC [(A) and (C)] and GR [(B) and (D)] of the 1,000 sets of new 

estimates of the two variables generated by incorporating errors into the estimates. The MC 

and GR values without error information are shown by the vertical lines.
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Figure 4. 
The distributions of MC and GR for the 1,000 sets of the random samples generated by 

incorporating errors into the estimates. The (red) points connected by line segments 

represent the SA statistics of the original simulated estimates (54 of them). The boxplots 

show the distributions of the SA statistics of estimates generated with errors.
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Figure 5. 
The percentages of significant SA values of the simulation dataset (p-value < 0.01)
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Figure 6. 
The box-whisker plots of estimated MC and GR values of the simulation datasets with 

different levels of spatial autocorrelatoin (ρ).
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Figure 7. 
The box-whisker plots of estimated SBC of the simulation datasets with different levels of 

spatial autocorrelation (ρ).
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Figure 8. 
The mean probabilities of SBC of the simulation datasets from the permutation test (the 

dotted lines are 95% confidence intervals for a two-tail test.)
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Figure 9. 
The distributions of SBCs from the permutation tests for the two ACS variables, MedInc and 

HispInc. The two dotted vertical lines represent the SBC values for corresponding variables.
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Table 1.

Summary statistics of the two ACS variables for Texas counties (median household income, MedInc) and 

tracts in Dallas County, Texas (median income of Hispanic households, HispInc).

Dataset # of areal
units

Average
estimates

SA measures Average

CV
1

Min
CV

Max
CV

STD
3

CVMC GR

MedInc 254 46,353 0.4130 (<0.001) 0.5853 (<0.001) 0.0605 0.0039 0.6414 0.0577

HispInc 516
2 49,355 0.2797 (<0.001) 0.6898 (<0.001) 0.2960 0.0023 5.1461 0.4207

1
CV- coefficient of variation

2
Exclude tracts with missing data

3
STD - standard deviation
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Table 2.

SBC values and their probabilities for two ACS variables, MedInc and HispInc.

Dataset SA Mean CV SBC p-value

MedInc
MC: 0.4130 (<0.001)
GR: 0.5853 (<0.001)

0.0605 0.4046 0.001

HispInc
MC: 0.2797 (<0.001)
GR: 0.6898 (<0.001)

0.2960 0.6184 0.001
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