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Abstract:  20 

An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence 

of current flow. Here we report a qualitative deviation from the standard behavior in 

electron systems with high viscosity. We find that the viscous electron fluid in graphene 

responds to non-quantizing magnetic fields by producing an electric field opposite to that 

generated by the ordinary Hall effect. The viscous contribution is substantial and identified 25 

by studying local voltages that arise in the vicinity of current-injecting contacts. We analyze 

the anomaly over a wide range of temperatures and carrier densities and extract the Hall 

viscosity, a dissipationless transport coefficient that was long identified theoretically but 

remained elusive in experiments.  
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Main Text: Electron transport in metallic systems is routinely described in terms of classical 30 

charges that whizz through the bulk and scatter at various defects such as impurities, edges, 

lattice vibrations, etc. This semiclassical picture does not hold however for materials where 

defects are scarce and electron-electron collisions provide the shortest scattering length. In 

the latter case electrons respond to external fields collectively so that their transport 

resembles a classical fluid flow (1–3). The studies of electron hydrodynamics have been 35 

hampered by the scarcity of experimental systems in which both impurity and electron-

phonon scattering – which do not conserve the electron momentum – are weak so that 

electron-electron collisions become the dominant source of scattering. The situation has 

changed recently owing to improvements in materials quality (4, 5) including high-quality 

graphene with its exceptionally weak electron-phonon coupling (6–8). Transport 40 

experiments have provided clear evidence for a fluid-like behavior of charge carriers in 

graphene, which reveals itself in, e.g., negative vicinity resistance (6, 7) and superballistic  

transport (8). Good agreement between the experiments and theory indicates that electron 

transport in high-quality graphene at temperatures (𝑇) above 100 K is consistent with the 

hydrodynamics description (7, 9–13).  45 

So far, studies of electron hydrodynamics focused on zero magnetic field 𝐵. On the other 

hand, the finite 𝐵 regime described by a combination of the Navier-Stokes and Maxwell’s 

equations is relevant for many research fields ranging from astrophysics to plasma physics 

to geophysics and engineering. For static 𝐵, the viscous response of a charged fluid is 

described by a tensor in the Navier-Stokes equation that contains a dissipationless, off-50 

diagonal coefficient called Hall or odd viscosity 𝜈H (14–17). To get some qualitative insight 

into the behavior of a two-dimensional electron fluid subjected to a non-quantizing 
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magnetic field, we plot the calculated electric potential distribution 𝜙(𝒓) expected near a 

narrow current injector in zero (Fig. 1A) and finite 𝐵 (Fig. 1B). The injected current 𝐼 entrains 

adjacent fluid regions, which results in negative lobes of the potential near the injector (18, 55 

19). In zero 𝐵 (Fig. 1A), the lobes are symmetric with respect to the injection direction and, 

for restricted geometries, can be accompanied by whirlpools of electric current (18–22). 

Finite 𝐵 induces considerable asymmetry in 𝜙(𝒓) (Fig. 1B), which involves the following 

three contributions. First, the ordinary Hall effect (HE) causes the well-known potential 

difference 𝑉H = 𝐼𝐵/𝑛𝑒 between the left and right sides of the half-plane (Fig. 1C) where 𝑛 is 60 

the carrier density and 𝑒 the elementary charge. The second contribution comes from the 

longitudinal viscosity 𝜈(𝐵) and, in small 𝐵, is practically indistinguishable from that shown in 

Fig. 1A for zero 𝐵. The third contribution arises from Hall viscosity, the main subject of our 

interest here. The 𝜈H contribution (Fig. 1D) is opposite in sign to the classical Hall effect (Fig. 

1C); 𝜈H suppresses the normal Hall response but this influence rapidly decays away from the 65 

injector region (Fig. 1D). The latter feature makes it difficult to observe the Hall viscosity 

using conventional devices and measurement geometries such as the standard Hall bar 

configuration (15, 16). As shown below, the vicinity geometry (Fig. 1E) allows us to 

distinguish between the ordinary HE and the anomalous one caused by 𝜈H. 

Our devices were multiterminal Hall bars such as shown in Fig. 1E and figs. S1A-B. They were 70 

made from graphene encapsulated between hexagonal boron-nitride crystals (22). The Hall 

bars had typical widths of 2 − 4 m and were endowed with narrow (~ 0.3 m) and closely 

spaced (~ 0.5 m) voltage probes (Fig. 1E). Such submicrometer probes are essential for 

detection of viscous effects as seen from the spatial scale of Figs. 1, A-D. Several devices 

made from mono- and bi- layer graphene (MLG and BLG, respectively) were studied, all 75 
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exhibiting similar behavior. The data reported below are from three MLG and two BLG 

devices which were studied in great detail. They had typical mobilities exceeding  100,000 

cm2 V-1 s-1 at all 𝑇 up to 300 K (22), which ensured micrometer-scale transport with respect 

to momentum-non-conserving scattering over the entire 𝑇 range explored in the 

experiments (fig. S1); for comparison, the electron-electron mean free path at 80 

representative 𝑛 = 1012 cm-2 and 𝑇 = 150 K is ~ 0.4 m, shorter than a typical distance of 

~ 1 m at which the viscous contribution was probed (8, 11).  

In the vicinity geometry, the current 𝐼 is injected through a narrow contact (e.g., probe 1 in 

Fig. 1E) into a wide graphene channel, and the local potential 𝜙 is measured using probe 3 

positioned at the distance 𝐿 from the injector. Contacts 2 and 4 (chosen sufficiently far away 85 

from the injection region) complete the electric circuit, serving as the drain and reference-

voltage contacts, respectively. The vicinity resistance is defined as 𝑅v = 𝑅34,12 = 𝑉34/𝐼12 

where 𝑉34 is the voltage drop between 3 and 4. As per Figs. 1, A-D, 𝑅v is expected to be 

sensitive to viscous effects (6, 7, 18, 22). According to the previous experiments and theory 

(6, 7, 12, 18), 𝑅v is a nonmonotonic function of 𝑇 such that 𝑅v is positive in the ballistic 90 

regime at low 𝑇, changes its sign to negative with increasing 𝑇, passes through a minimum 

and then starts growing. The negative sign of 𝑅v is a clear indicator that electron-electron 

scattering strongly affects ballistic transport (6, 7, 12, 18, 22) whereas the turning point 

marks the onset of the regime where the hydrodynamics approach becomes applicable (6, 

7).  95 

For the purpose of this report, we focus on the latter regime which in our devices starts 

above 100–150 K, depending on 𝑛 (fig. S2A).  In addition, we set several other constraints on 

variables used in the experiments. First, we limit ourselves to 𝐵 < 40 mT such that the 
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cyclotron radius always exceeds our devices’ width. This is to avoid hydrodynamics effects 

to be obscured by those caused by Landau quantization and electron focusing (23). In 100 

addition, such small B are not expected to affect the longitudinal component of 𝜈 (see 

below). Second, to avoid unrelated effects stemming from thermal excitations and charge 

inhomogeneity, we carry out experiments away from the charge neutrality point, at 𝑛 of the 

order of 1012 cm-2. Finally, we employ small 𝐼 ≤ 1 μA to stay in the linear response regime 

and avoid nonlinear effects including electron heating (2, 6).  105 

Examples of 𝑅v(𝑛) in the hydrodynamic regime are shown in Fig. 1F for one of our MLG 

devices. In agreement with the previous studies (6, 7), 𝑅v in zero 𝐵 is negative for all 𝑛 away 

from the charge neutrality and is practically symmetric for electron and hole doping 

(positive and negative 𝑛, respectively). The small positive field of 20 mT shifts the 𝑅v curves 

in opposite directions for electrons and holes, as indicated by the green arrows in Fig. 1F. 110 

The shifts are opposite for negative 𝐵. This behavior implies a contribution that is 

antisymmetric with respect to 𝐵 and 𝑛, similar to the ordinary Hall effect. However, the 

latter cannot possibly explain the observed shifts because in the vicinity geometry voltage 

probes are placed on the same side of the current path, which cancels the ordinary HE 

contribution to the measured voltages. A formal proof of this can be found in (16). 115 

Experimentally, we have also checked that there is no ordinary HE contribution for the 

vicinity geometry using similar graphene devices but exhibiting low mobility (fig. S2, D-F). 

Furthermore, it is important to compare the sign of the 𝑅v changes induced by 𝐵 with the 

sign of the ordinary HE. To keep the same sign convention for 𝐵 and 𝑛, it is instructive to 

measure the local Hall resistance 𝑅35,12 (Fig. 1E and fig. S6) instead of using the standard 120 

Hall geometry. In this case, we use contact 5 instead of 4 and keep all the other contacts 
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same as in the 𝑅v measurements. This swap places the voltage probes at the opposite sides 

of the current path, giving rise to the voltage drop 𝑉H due to the ordinary HE. The 

antisymmetric-in-𝐵 part of 𝑅35,12 (to avoid a contribution from longitudinal resistivity) is 

plotted in Fig. 1F (dashed lines). It shows that the ordinary HE induces 𝜙 of the opposite 125 

polarity with respect to those causing the 𝐵-shifts in 𝑅v. Indeed, the vicinity curve in Fig. 1F 

is shifted, for example, upwards for hole doping and positive 𝐵, whereas the ordinary HE 

would shift it downwards [also, see Section 6 of (22)]. This behavior agrees well with the 

opposite signs of the contributions expected from 𝑉H and 𝜈H towards 𝑅v as shown in 

theoretical Figs. 1, C and D.  130 

For further analysis, we define the Hall (odd) component of the vicinity resistance as 

𝑅A(𝐵) = [𝑅v(𝐵) − 𝑅v(−𝐵)]/2. The antisymmetrization removes the contributions that are 

symmetric in 𝐵 and caused by the longitudinal viscosity 𝜈 and the Ohmic flow (6, 16). Figure 

2A and fig. S3A show examples of the 𝑅A(𝐵) curves for MLG and BLG devices, respectively. 

Within the ranges of 𝑇 and 𝐵 used in our experiment, the dependences are linear in 𝐵 for all 135 

the studied devices and for all 𝐿. By analogy with the conventional Hall coefficient, where 

𝛼H =  𝑅H𝑛𝑒/𝐵  1, it is instructive to introduce the viscous Hall coefficient, 𝛼VH = 𝑅A𝑛𝑒/𝐵 

(22). In this form, the antisymmetric contribution 𝑅A is effectively normalized by the 

ordinary HE, which provides a sense of the magnitude for the observed viscous effects.  

Figure 2B shows the 𝑇 dependence of 𝛼VH obtained using data such as those in Fig. 2A. 140 

Above 100 K, where the hydrodynamic regime becomes fully developed (6, 7, 10, 12), the 

viscous contribution reaches 20% of the ordinary HE and has the opposite sign (Fig. 2B). 

|𝛼VH| decreases with increasing 𝑇 and eventually disappears below noise above room 𝑇. 

This 𝑇 dependence was found universal for all the studied devices (fig. S2C). Figures 2, D and 
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E detail the observed behavior by plotting 𝛼VH(𝑇, 𝑛) for MLG and BLG. The maps are 145 

somewhat different because of different viscosities of the two graphene systems (6, 10, 11) 

but show similar trends as functions of 𝑛 and 𝑇. We have also studied how 𝛼VH depends on 

𝐿 and found that it decreases with increasing 𝐿, practically disappearing if the voltage probe 

is placed further than ~2 m from the current-injecting contact (Fig. 2C). The latter 

highlights the importance of the vicinity geometry to detect viscous effects.  150 

The anomalous viscous contribution to the Hall effect, which is found using the vicinity 

geometry, is fully consistent with our measurements of a local Hall resistance [Section 6 of  

(22)]. To this end, we again employed voltage contacts close to the current injector (e.g., 

using 𝑅35,16) and compared those measurements with the standard HE geometry (𝑅24,16 ≡

 𝑅16,24). The latter exhibited the ordinary HE with 𝛼H = 1, as expected. In contrast, the local 155 

Hall resistance was notably suppressed in the hydrodynamic regime (fig. S6) and agreed 

quantitatively with the behavior of 𝛼VH reported above.  

Let us now turn to theory. In the linear-response and steady-state regimes, two-dimensional 

viscous transport in the presence of a perpendicular field 𝐵 (in the 𝒛 direction) is described 

by the Navier-Stokes equation 160 

 𝜎0

𝑛𝑒
∇𝜙(𝒓) = (1 − 𝐷𝜈

2∇2)𝒗(𝒓) + 𝜔c𝜏(1 + 𝐷H
2 ∇2)𝒗(𝒓) × 𝒛 (1) 

in conjunction with the continuity equation and no-slip boundary conditions (16, 22). Here, 

𝒗(𝒓) is the local fluid velocity, 𝜔c = 𝑒𝐵/𝑚 the cyclotron frequency for electrons with the 

effective mass 𝑚, 𝜎0 = 𝑛𝑒2𝜏/𝑚 the Drude conductivity and 𝜏 the transport time with 

respect to momentum-non-conserving collisions such as, e.g., scattering on phonons. The 

right-hand side of Eq. 1 contains two terms. The first describes the electric current and 165 
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viscous friction parameterized through the diffusion constant, 𝐷𝜈 = √𝜈𝜏. The second term 

arises from the Lorentz force 𝑭L = −(𝜔c𝑚) 𝒗(𝒓) × 𝒛 and its viscous counterpart that 

depends on 𝜈H and is parameterized through another diffusion constant, 𝐷H = √𝜈H/𝜔c. 

Note that the Hall friction acts against 𝑭L which also means that 𝜈H does not perform any 

work on the electron fluid and, therefore, it is a dissipationless coefficient. 170 

For the half-plane geometry (fair approximation for our devices) and close to the injection 

point, the above equation can be solved analytically (16) yielding 𝜙(𝒓) shown in Figs. 1, A-D 

(fig. S4 provides examples of the potential and current maps calculated taking into account 

the finite device width). The Hall contribution to the vicinity resistance can be written as   

 
𝑅A = −𝜎0

−1ξ (
𝐿

𝐷𝜈
)

𝜈H

𝜈
 

(2) 

where ξ(𝑥) = [L1(𝑥) − I1(𝑥)]/2𝑥, and L1(𝑥) and I1(𝑥) are the modified Struve and Bessel 175 

functions, respectively (16). The function ξ(𝐿/𝐷𝜈) decreases monotonically with increasing 

𝐿, behaving as 𝐷𝜈/𝜋𝐿 for 𝐿 ≫ 𝐷𝜈. The 𝐿 dependence expected for our devices using Eq. 2 is 

plotted in Fig. 2C, showing reasonable agreement with the experiment (especially in terms 

of the absolute values), even without taking into account the finite width ( 0.3 m) of our 

current and voltage contacts. 180 

The measured 𝑅A(𝐵) such as shown in Fig. 2A can be used to extract 𝜈H. To this end, we 

rewrite Eq. 2 as 𝜈𝐻 = −𝑅A𝜎0𝜈/ξ(𝐿/√𝜈𝜏) where 𝜎0 and 𝜏 can be deduced from standard 

longitudinal resistivity measurements (6, 8). The longitudinal viscosity 𝜈(𝐵) can be 

approximated using the semiclassical expression (16, 24, 25) 𝜈(𝐵) = 𝜈0
𝐵0

2

𝐵2+𝐵0
2 where 𝜈0 is 

the kinematic viscosity in zero 𝐵, and 𝐵0 = ℏ𝑣F 𝑘F/(8𝑒𝜈0) is the characteristic magnetic 185 

field expressed through the Fermi wave number 𝑘F, the Fermi velocity 𝑣F, and the reduced 
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Planck constant ℏ. For the reported range of 𝑛 and 𝑇, 𝐵0 is much larger than the fields in 

our experiments. Accordingly, we can assume 𝜈 ≈ 𝜈0 in Eq. 2 and then use 𝜈0 found 

experimentally in (8). Employing the above protocol, it is straightforward to calculate 𝜈H and 

its 𝐵 and 𝑇 dependences. Examples are shown in Figs. 3, A and B. One can see that the Hall 190 

viscosity is linear in 𝐵 and rapidly decreases with increasing 𝑇.  

For consistency, we crosschecked the above analysis against the results obtained previously 

(8) for zero-field viscosity 𝜈0. To this end, we note that the field dependence of 𝑅A =

𝑅A[𝜈H(𝐵), 𝜈(𝐵)] originates from changes in both longitudinal and Hall viscosities. The full 

formula for 𝜈(𝐵) is given above whereas the same semiclassical consideration (16, 24) for 195 

the Hall viscosity yields 𝜈H(𝐵) = 𝜈0
𝐵𝐵0

𝐵2+𝐵0
2. This allows us to redefine the anomalous Hall 

contribution as 𝑅A[𝜈0, 𝐵] and calculate 𝜈0 from the measured 𝑅A(𝐵) dependences such as 

in Fig. 2A. Figure 3C compares 𝜈0 extracted using this procedure with the values found 

independently in (8). The figure shows good agreement between the two analyses and with 

the viscosity expected theoretically (11).  200 

Finally, the above hydrodynamic description is also consistent with the large negative 

magnetoresistance observed in our graphene devices at elevated 𝑇 using the standard 

longitudinal geometry (22). The magnetoresistance can be described accurately, without 

any fitting parameters (fig. S5), using the same viscosity values as found experimentally in 

Fig. 3C. It is interesting to note that similar magnetoresistance was reported in other high-205 

quality 2D systems and attributed to ballistic transport affected by electron-electron 

interactions (26, 27). Only recently it has been realized that the anomalous negative 

magnetoresistance at elevated 𝑇 may signify the presence of a viscous flow and can also be 

described by the hydrodynamic approach (15, 24), consistent with our work (22). It would 
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be interesting to expand studies of the Hall viscosity into the quantum Hall effect regime, 210 

which attracts considerable theory interest [see, e.g., (28–30)] but, unfortunately, no 

experimental procedure has so far been suggested to probe this regime.  
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 330 

Fig. 1. Effect of magnetic field on viscous electron flow. (A and B) Electric potential 

distribution 𝜙(𝒓) expected in graphene’s electron fluid near a current injector in zero 𝐵 and 

50 mT, respectively. The calculations were based on Eq. C15-C16 of (16) using characteristic 

𝜈0 = 0.1 m2/s, found in our experiments below, 𝑛 = 2 × 1012 cm-2 and 𝜏 = 2 ps. Solid 

curves: Equipotentials. (C) Contribution from the ordinary Hall effect towards the map in (B). 335 

(D) Contribution that comes from 𝜈H. Color scale in (A-D): dark-blue to dark-red, -2.5 to +2.5 

of the potential induced by the ordinary Hall effect in (C). (E) Optical micrograph of one of 

our devices, along with the schematic of the vicinity geometry from which 𝑅v is obtained. (F) 

Examples of the vicinity resistance for different 𝐵 (solid curves); 𝐿 ≈ 1 m. Dashed: Local 

Hall resistance measured using voltage probes 3 and 5 close to the current injector (22). 340 
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Fig. 2. Viscous Hall effect. (A) 𝑅A(𝐵) for one of our MLG devices at 𝐿 ≈ 1 μm for three 

different temperatures. (B) The dimensionless viscous coefficient 𝛼VH(𝑇) (symbols). For 

reproducibility, see fig. S2C. (C) 𝛼VH(𝐿) found for 5 different devices indicated by different 345 

symbols whereas the color refers to MLG and BLG. 𝑛 = 2 × 1012 cm-2 for (A-C), which 

corresponds to the Fermi energy of  165 meV and  70 meV for MLG and BLG, 

respectively. Dashed lines in (C): Dependences from Eq. 2 with no fitting parameters: 𝜎0(𝑇) 

is determined as described in Section 1 of (22) and 𝜈0(𝑇) is taken from experiment (6). (D 

and E) Maps of |𝛼VH| in MLG and BLG devices for 𝐿 ≈ 1.5 μm and 0.7 μm, respectively; 𝐵 =350 

40 mT. Shaded areas: Omitted analysis because the cyclotron diameter becomes 

comparable to the device width (23).  
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 355 

Fig. 3. Hall viscosity in graphene. (A) Examples of 𝜈H extracted using data from Fig. 2A. (B) 

𝜈H/𝐵 as a function of 𝑇. (C) Zero-field viscosity 𝜈0 extracted from our 𝑅A(𝐵) measurements 

(green). Solid curve: Theory (11). Purple symbols: Previous experiments (8). For all the 

panels: MLG at 𝑛 = 2 × 1012 cm-2. No fitting parameters were used for the theory curve in 

(C). Error bars in (B) and (C) represent the scatter for measurements using different 𝐿. The 360 

notable increase of the error below 150 K indicates that the electron system starts exiting 

the hydrodynamic regime (7, 12).  

 

 


