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Abstract

We propose a novel similarity measure for Hidden
Markov Models (HMMs). This measure calculates the
Bayes probability of error for HMM state correspondences
and propagates it along the Viterbi path in a similar way
to the HMM Viterbi scoring. It can be applied as a tool
to interpret misclassifications, as a stop criterion in iter-
ative HMM training or as a distance measure for HMM
clustering. The similarity measure is evaluated in the con-
text of online handwriting recognition on lower case char-
acter models which have been trained from the UNIPEN
database. We compare the similarities with experimental
classifications. The results show that similar and misclas-
sified class pairs are highly correlated. The measure is not
limited to handwriting recognition, but can be used in other
applications that use HMM based methods.

1 Introduction

Hidden Markov Model (HMM) based techniques are fre-
quently used for modeling handwritten symbols like char-
acters or sub-characters in handwriting recognition. Their
success is based mainly on powerful methods to adapt and
score them. The complex structure of HMMs makes it diffi-
cult however to give a unique measure of similarity between
two (or more) HMMs. In this contribution we propose a
method for comparing HMMs based on the Bayes proba-
bility of error. We also show experimentally gained mea-
sures for lower case character models which are trained on
the UNIPEN online handwriting database [3] and compare
them to classification results.

Applications of HMM similarity measures are manifold.
They can be used for monitoring and controlling the param-
eter re-estimation during the training process or as a mea-

sure for discriminative training methods [6] as well as for
HMM clustering. Furthermore, and this is the objective in
this contribution, a similarity measure can help get a thor-
ough insight into misclassifications.

HMM similarity or dissimilarity measures have been
proposed by a few authors. Early approaches were based
on the Euclidean distance of the discrete observation proba-
bilities [7], others on entropy [4, 2] or on co-emission prob-
abilities [9] of two models.

The proposed measure is defined on the basis of the
Bayes probability of error and thus is well suited for an-
alyzing misclassification behavior. It integrates very ele-
gantly into common HMM based classification methods, as
will be demonstrated. We shall therefore start with a short
review of the underlying handwriting recognition system in
the following section. Section3 then describes the similar-
ity measure and experimental results with this measure are
presented in section4. Section5 provides a summary of this
contribution.

2 Recognition

2.1 Feature selection

Here we are dealing with a system for online data. A
character is represented as a polygonT = (t1, . . . , tNT ).
Each elementti describes a feature vector at sample point
i. In our case, the feature vector isti = (x̃i, ỹi, θi)

T :
x̃i = xi−µx

σy
and ỹi = yi−µy

σy
are the horizontalx- and

verticaly-coordinates of the writing shifted by the charac-
ter mean(µx, µy) and normalized by they-deviationσy.
The featureθi is the tangent slope angle at pointi, approx-
imated byθi = ang((xi+1 − xi−1) +  · (yi+1 − yi−1))
with 2 = −1 and “ang” the complex angle function.

The data is sampled at regular interval in time. No pre-
processing, such as re-sampling of the writing or reference
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line detection, is applied in this case. Each pattern is typi-
cally represented by about 30–80 samples.

2.2 Classification

Classification is accomplished by dynamic time warping
(DTW) [11] with an extension to incorporate a second or-
der statistic, a technique which we call “statistical DTW”
(SDTW).

To be more specific: the classifier is defined by the min-
imum distanceD

(
T ,Rlk

)
of the test patternT to a set

of reference modelsRlk and the prior probabilitiesπlk (l
corresponds to a character class andk to an allograph pro-
totype, i.e. a characteristic shape of classl)

l̂ = arg min
l∈{1,...,L},k∈{1,...,Kl}

{
D

(
T ,Rlk

)
− log πlk

}
.

(1)
Given a warping (or alignment) pathφ =
(φ (1) , . . . , φ (N)) with φ (i) = (φT (i) , φR (i)) (see
[11, Chapter 4.7] for further details),Dφ is defined as the
normalized, accumulated distance along the warping path

Dφ

(
T ,Rlk

)
=

1
N

N∑
i=1

d
(
tφT (i),Rlk

φR(i)

)
(2)

and the classifier distanceD
(
T ,Rlk

)
in (1) is the distance

(2) along the Viterbi pathφ∗

D
(
T ,Rlk

)
= Dφ∗

(
T ,Rlk

)
= min

φ

{
Dφ

(
T ,Rlk

)}
.

(3)
Several choices of local continuity constraints which define
the allowable warping paths are conceivable. We use the
ones illustrated by the dashed lines in figure1 (a)–(c).

In contrast to the simple DTW classification, our local
distance is not simply the Euclidean distanced

(
ti, rlk

j

)
=∥∥ti − rlk

j

∥∥ of two feature vectorsti and rlk
j , but is com-

puted fromti and a second order statistic of estimated mean

and covarianceRlk
j =

(
µlk

j ,Σlk
j

)
of samples from a refer-

ence model (see figure1 (b)). Assuming that the probabil-
ity density function (pdf)plk

j (x) at sample pointj can be
modeled by a unimodal multivariate GaussianN

(
Rlk

j ,x
)
,

a formula for the local distance can be derived to

d
(
ti,Rlk

j

)
=

n

2
ln (2π) +

1
2

ln
(∣∣∣Σlk

j

∣∣∣)
+

1
2

(
ti − µlk

j

)T
(
Σlk

j

)−1 (
ti − µlk

j

)
− ln (P (φ (j) |φ (j − 1) , l, k)) (4)

The variablen is the dimension of the feature space, i.e.
n = 3 in our case. The framework of equations (1)–(4) can
be derived from amaximum-a-posteriori (MAP) classifier

approach assuming sequential independency of the pdfs and
some other commonly made prerequisites [1].

Usual dynamic programming and beam search strategies
[11] are applied to reduce the computational complexity
when minimizing equation (3). We would like to state that
the supplementary normalization with respect to the length
of the path (N ) in equation (2) is not considered in the opti-
mization criterion, and thus the Viterbi path is a suboptimal
solution in general. However, the classification based on
this suboptimal Viterbi detection performs better in prac-
tice.

It is helpful to see the SDTW in relation to the standard
HMM context [11]: the reference sample pointsj corre-

spond to the HMM states, the statisticRlk
j =

(
µlk

j ,Σlk
j

)
corresponds to the observation pdf which is associated with
the HMM statej andP (φ (j) |φ (j − 1) , l, k) to the state
transition probability. With these correspondences in mind
we will use the terms SDTW and HMM synonymously in
the following.

2.3 Model Training

The training of the symbol models works as follows: Al-
lograph prototypes for each class are first generated by an
agglomerative hierarchical clustering with the simple Eu-
clidean DTW distance. Methods are incorporated to control
the number or diversity of the clusters, resp. [1, 12].

Mean, covariance and transition probabilities for each
cluster (l, k) and sample pointj are subsequently
adapted iteratively by alternating Viterbi path detection
and mean/covariance/transition-probability parameter re-
estimation from the samples on the Viterbi path. This train-
ing procedure is also known as Viterbi training in the HMM
context. Care is needed in the estimation of the statistic of
the angular quantityθ [10].

For iteration initialization the mean is set to the corre-
sponding cluster prototypes and covariances are set to unity
matrices.

3 SDTW and HMM Similarity

The framework for measuring HMM similarity is now
obtained by a modification of the classifier. Looking at fig-
ure1 (a) and (b) the difference between standard DTW and
SDTW/HMM is that a pdf of the reference patterns is taken
into account when computing the local distancesd (·, ·).

In consequence it would therefore be straightforward to
assign a pdf also to the second patternT (which from now

we will call Rl′k′
) and compute a distanceD

(
Rl′k′

,Rlk
)
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Figure 1. Comparing the concepts of DTW, SDTW/HMM and the proposed method for computing
model similarity: (a) in DTW local distances are computed from two pattern templates ti and rlk

j .
(b) In SDTW/HMM local distances are computed from pattern templates ti and a pdf, here denoted by
a second order statistic Rlk

j =
(
µlk

j ,Σlk
j

)
. (c) In the proposed model similarity measure local distances

are computed from two pdfs Rl′k′

i =
(
µl′k′

i ,Σl′k′

i

)
and Rlk

j =
(
µlk

j ,Σlk
j

)
. Whereas local distances are

defined differently in these concepts, the principle of Viterbi path detection and scoring is the same.

in a very similar way as in (2) and (3):

Dφ

(
Rl′k′

,Rlk
)

=
1
N

N∑
i=1

d
(
Rl′k′

φRl′k′ (i),R
lk
φRlk (i)

)
(5)

D
(
Rl′k′

,Rlk
)

= Dφ∗

(
Rl′k′

,Rlk
)

= min
φ

{
Dφ

(
Rl′k′

,Rlk
)}

(6)

The component which has to be redefined is the local dis-
tance measure (4) of the now two pdfs. Several choices are
possible, e.g.χ2, Kullback-Leibler [5] or Jensen-Shannon
divergence [8]. However, we want to interpret the model
similarities in the context of experimentally gained classifi-
cation errors. A measure for the probability of a classifica-
tion error in a two class problem is the Bayes probability of
error (or Bayes error) [12]

Pe (p1 (x) , p2 (x)) =
∫
x

min {π1p1 (x) , π2p2 (x)} dx.

(7)
It measures the area of overlap of two pdfsp1 andp2 with
priors π1 and π2 under the constraintπ1 + π2 = 1 (see
figure2).

This concept of the Bayes error is now extended to the
SDTW/HMM modeling. Given two modelsRl′k′

andRlk

and an alignment pathφ, the probability of a classification
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Figure 2. The Bayes probability of error
Pe (p1 (x) , p2 (x)) equals the dark shaded area
of overlap. The distance measure d (·, ·) =
1− 2Pe (·, ·) corresponds to the bright shaded
area.
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error in this two-class problem according to Bayes is the
sum of all overlaps along the path divided by the sum of the
integrals of all a-priori weighted pdfs along the path (which
is N because we will normalize the priors toπ̃l′k′ + π̃lk = 1
and

∫
x

p (x) dx = 1), i.e.

Pφ
e

(
Rl′k′

,Rlk
)

=
1
N

N∑
i=1

Pe

(
N

(
Rl′k′

φRl′k′ (i),x
)

,N
(
Rlk

φRlk (i),x
))

.

(8)

From all possible alignment paths there is one which is
most probable to provoke a misclassification: it is the path

φ∗ with themaximum overlapPφ∗

e

(
Rl′k′

,Rlk
)

. In order

to computeP ∗
e

(
Rl′k′

,Rlk
)

:= Pφ∗

e

(
Rl′k′

,Rlk
)

andφ∗

with our minimization framework, we transform the simi-
larity measurePe

(
N

(
Rl′k′

i ,x
)

,N
(
Rlk

j ,x
))

into a dis-

tance measure by

d
(
Rl′k′

i ,Rlk
j

)
= 1 − 2Pe

(
N

(
Rl′k′

i ,x
)

,N
(
Rlk

j ,x
))

= 1−2
∫

x

min
{

π̃l′k′N
(
Rl′k′

i ,x
)

, π̃lkN
(
Rlk

j ,x
)}

dx

(9)

(i.e. the area outside the overlap, see figure2) and apply
the well known Viterbi detection (5) and (6).1 Assuming a
two-class problem the prior probabilities are normalized to
π̃l′k′ = πl′k′

πl′k′+πlk
andπ̃lk = πlk

πl′k′+πlk
.

The similarity measureP ∗
e

(
Rl′k′

,Rlk
)

is achieved

by back-transforming the distanceP ∗
e

(
Rl′k′

,Rlk
)

=
1
2

(
1 − D

(
Rl′k′

,Rlk
))

. A nice property ofP ∗
e (·, ·) is

that its range is[0, 1/2] (and consequentlyD (·, ·) ∈ [0, 1]).
When integrating in (9), the periodic nature of the fea-

ture θ must be respected. This is achieved by wrapping
the feature space once positively and once negatively along
the periodic dimension. For that we replaceN

(
Rlk

j ,x
)

by N ′ (Rlk
j ,x

)
=

∑1
i=−1 N

(
Rlk

j ,x + i · s
)

in the previ-
ous equations. The variables is ann-dimensional vector

1Minimizing 1 − 2Pe instead of maximizingPe has the additional
effect, that (for the chosen local transitions) the Viterbi path is not misdi-
rected to a suboptimal solution (as indicated in section2.2). When max-
imizing Pe, the Viterbi search detects a path which covers as many grid
points as possible. This is due to the fact that the normalization byN is
not part of the optimization criterion. Minimizing1 − 2Pe gives a bias to
short paths which is a more natural behavior and agrees with our Viterbi
classification.

containing a zero for non-periodic and the periodicity for
periodic features (s = (0, 0, 2π)T in our case).

We should note that the computation includes the numer-
ical integration of the feature space, given that an analyti-
cal solution for the integration in (9) is not known in gen-
eral. Consequently the complexity increases exponentially
with the dimension of the feature space. For high dimen-
sion situations Monte-Carlo methods can be considered to
overcome this problem. Fortunately, the applications for an
HMM similarity measure mainly arise in the model training
phase and thus do not require real-time computation.

4 Results

We have trained character models with the training
method described in section2.3 and using 20% (i.e.≈
12000 samples, randomly chosen) of1c section (lower
case characters) of thetrain_r01_v07 UNIPEN on-
line handwriting database [3]. Several clustering parame-
ter settings which influence the diversity of clusters have
been evaluated. A good compromise regarding a minimum
of models and a maximum of recognition rate yielded 237
models for the 26 character classes (and 88.7% recognition
rate on a disjunct test set).

In the simulation we have computedP ∗
e for any of the

2372 = 56169 model pairsRlk and counted the misclas-
sificationsC (Cl′l is the number of samples of classl rec-
ognized as classl′) for all of the 262 = 676 class pairs.
Both tasks were performed on the same dataset. An exam-
ple of the Viterbi alignment of two reference characters “u”
and “a” is shown in figure3. For further investigation three
post-processing steps have been applied for a direct com-
parison:

1. We reduce any set ofKl′ × Kl allograph prototype

similarities
{

P ∗
e

(
Rl′k′

,Rlk
)}

k′=1,...,Kl′ ,k=1,...,Kl

to one scalar value P̃ ∗
e (l′, l) =∑Kl′

k′=1 π̃′
l′k′

∑Kl

k=1 π̃′
lkP ∗

e

(
Rl′k′

,Rlk
)

with

π̃′
lk = πlk∑ Kl

i=1 πli

.

2. Since our HMM similarity assumes a two-class prob-
lem, we define theerror rate for recognizing character
l′, given characterl asC′

l′l = Cl′l/ (Cl′l + Cll) ,∀l′ �=
l.

3. SinceP ∗
e (l′, l) is the probability of falsely classifying

classl′ into l or l into l′, we defineC̃l′l as the error
rate of classifications from classl′ into l or l into l′:
C̃l′l = π̃′′

l′l
C ′

l′l + π̃′′
ll′

C ′
ll′ with π̃′′

l′l
=

∑
k πlk∑

k πlk+
∑

k πl′k
the prior probability of classl in the two-class context
of l andl′.

409



−1 0 1

−1

−0.5

0

0.5

1

20 40 60 80

5

10

15

20

25

30

35

40

−1 0 1

−1

−0.5

0

0.5

1

Figure 3. In the lower part of this figure two
statistics “a” and “u” are illustrated with their
features x̃i and ỹi with P ∗

e = 0.20; The mean
values µlk
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Viterbi alignment is shown in the third plot.
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the “top 7” similarity scores relative to the
given “a”. The first entry in the list (D = 0,
Pe = 0.5) corresponds to the distance of the
“a” to itself.
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Results of the experiments are compared in figure4. It is
remarkable that̃P ∗

e (l′, l) overestimates the observed error
rate C̃ (l′, l) for most of the examples shown. One rea-
son for this might be that̃P ∗

e has been computed from a
two-class assumption. Similarity values may have been
fudged by the allograph prototype combination (see post-
processing step 3). Moreover, the assumption of Gaussian
pdfs may not be correct. Outliers in the data can broaden
the pdfs and increase the overlap.

However, from a qualitative point of view, for 15 out of
26 classes the most similar and most frequently mixed up
characters coincide (e.g. for the “a” the “u” has the highest
similarity valueP̃ ∗

e and also is the most frequently mixed up
character). For 25 out of 26 classes the sets of the two most
similar and two most frequently mixed up classes share at
least one character. It should also be noted that high values
for P̃ ∗

e also coincide with our intuitive judgment of simi-
larity, as can be seen from figure3 and other examples not
illustrated.

The average run-time for the computation of one HMM
similarity was≈ 6 sec on a PIII 600MHz using a numeri-
cal integration resolution of25 × 25 × 9 (corresponding to
x̃, ỹ, θ) grid points in the 3D feature space.

5 Summary and Outlook

We have presented a similarity measure for HMM based
classification methods which is based on the Bayes error.
The computation algorithm uses the same framework as the
standard Viterbi recognition algorithm. This measure al-
lows to analyze misclassifications, e.g. by interpreting the
Viterbi state correspondences or by detecting similar model
pairs. The measure can also be used as a stop criterion in
the iterative HMM training or as a distance measure when
clustering HMMs.

We have applied the similarity measure to the example
of online handwriting character models and have shown a
qualitatively close match of the most similar model pairs
to misclassifications. However, the use of this measure is
not limited to the application of handwriting recognition,
but can also be employed in other areas where HMM based
methods are used, e.g. in speech recognition or molecular
biology.

It should be stressed that the suggested method is very
flexible, i.e. any underlying pdf (e.g. mixed Gaussians, dis-
crete probabilities) can be used instead of simple Gaussians.
Also, the local pdf distance can be replaced by other dis-
tances likeχ2, Kullback-Leibler or Jensen-Shannon.

Interesting future work lies in the extension of this simi-
larity measure to multi-class situations.
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