

Measuring Human Development Index: The Old, The New and The Elegant

Srijit Mishra
(based on a paper with Hippu Salk Kristle Nathan)

Lunchtime Seminar Series at OPHI University of Oxford 13 March 2014

Presentation Format

- Focus of the Study
- The Three Measures
 - Linear average
 - Geometric Mean
 - Displaced Ideal
- The MANUSH Axioms
- Some Propositions
- Class of Measures
- Concluding Remarks

Focus of the study

- NOT rationale behind choosing the indicators
- NOT how the indicators are measured and scaled
- NOT how the indicators are normalized and weighed

INVESTIGATES the appropriateness of the known two measures of HDI

proposes an alternative measure

Inverse of the Euclidean Distance from Ideal

HDI – the old (till 2009)

3 dimensions -

- 1. A long and healthy life Life Expectancy at birth ••• h
- 3. Ability to achieve decent standard living GDP per capita (PPP)

$$0 \le h, e, y \le 1$$
 HDI_{LA} = 1/3 (h) + 1/3 (e) + 1/3 (y)

Iso-HDI lines – old HDI (perfect-substitutability)

HDI – the new (from 2010)

3 dimensions -

- 1. A long and healthy life Life Expectancy at birth •••• h
- 2. Knowledge

 Mean years of schooling: adults

 Expected years of schooling: children
- 3. Ability to achieve decent standard living GNI per capita (PPP)

$$0 \le h$$
, e , $y \le 1$

$$HDI_{GM} = (h * e * y)^{1/3}$$

Iso-HDI lines – new method

Zeleny (1974)

better system should have less distance from "ideal".

HDI - the elegant (proposed)

3 dimensions -

- 1. A long and healthy life Life Expectancy at birth ••• h
- 2. Knowledge

 Mean years of schooling: adults

 Expected years of schooling: children
- 3. Ability to achieve decent standard living GNI per capita (PPP)

 $0 \le h, e, y \le 1$

$$HDI_{DI} = 1 - (\sqrt{((1-h)^2 + (1-e)^2 + (1-y)^2)}/\sqrt{3})$$

Iso-HDI lines – elegant method

Axiom M: Monotonicity

A measure of HDI should be greater (lower) if the index value in one dimension is greater (lower) with indices value remaining constant in all other dimension.

For any random country k in

Zone A $\mathbf{h_k} \ge \mathbf{h_j}$, $\mathbf{e_k} \ge \mathbf{e_j}$ $(\mathbf{h_k} = \mathbf{h_j} \text{ or } \mathbf{e_k} = \mathbf{e_j})$

LA: $HDI_k > HDI_j$

 $GM: HDI_k > HDI_i$

DI: $HDI_k > HDI_j$

Zone B $h_k \le h_i$, $e_k \le e_i$ $(h_k = h_i \text{ or } e_k = e_i)$

LA: $HDI_k < HDI_i$

LA: $HDI_k < HDI_i$

DI: $HDI_k < HDI_i$

LA, GM* and DI satisfy

* GM fails when any one dimension is zero

Axiom A: Anonymity

A measure of HDI should be indifferent to swapping of values across dimensions.

$$LA: h_j + e_j = h_{j'} + e_{j'}$$

GM:
$$h_j * e_j = h_{j'} * e_{j'}$$

DI:
$$\mathbf{d}_{j} = \mathbf{d}_{j'}$$

LA, GM and DI satisfy Anonymity

Note that this is a statistical property of symmetry and does not invoke substitution between dimensions

Axiom N: Normalization

A measure of HDI should have a minimum and a maximum i.e. $HDI \in (0,1)$

HDI = 0: NO development (h = 0, e = 0, y = 0) - "Origin"

HDI = 1: COMPLETE development (h = 1, e = 1, y = 1) – "Ideal"

LA, GM and DI satisfy this;

for GM the value will be zero if any dimension has no development

Illustration (1)

Uniform to Non-Uniform

$$j(0.5, 0.5)$$
 $d_j = \sqrt{(0.50)}$ $GM = \sqrt{(0.25)}$

$$j'(0.6,0.4)$$
 $d_{j'} = \sqrt{(0.52)}$ $GM = \sqrt{(0.24)}$

Change in HDI:

$$HDI^{LA}_{i} = HDI^{LA}_{i}$$

$$HDI^{GM}_{i} > HDI^{GM}_{i}$$

$$HDI^{DI}_{i} > HDI^{DI}_{i}$$

Illustration (2)

Non-Uniform to Uniform

$$k(0.8, 0.4)$$
 $d_k = \sqrt{0.80}$ $GM = \sqrt{(0.32)}$

$$k'(0.6,0.6)$$
 $d_k = \sqrt{0.72}$ $GM = \sqrt{(0.36)}$

Change in HDI:

$$HDI^{LA}_{k} = HDI^{LA}_{k}$$

$$HDI^{GM}_{k} < HDI^{GM}_{k}$$
,

$$HDI^{DI}_{k} < HDI^{DI}_{k}$$

LA fails, GM and DI satisfy

Axiom S: Shortfall Sensitivity

Axiom H: Hiatus sensitivity

Equal gap at higher attainment should be considered worse off

LA and GM fail
DI satisfies

MANUSH Axioms: A Comparison

Perfect Substitution vs Uniformity

- A measure of HDI cannot satisfy perfect substitutability and uniformity simultaneously
- If a measure satisfies perfect substitutability then it will not change for a given mean even if deviation across dimensions change. As against this, uniformity demands that the measure decreases as deviation increases for a given mean.

Hiatus sensitivity to level vs Proportionate deviation

- A measure of HDI cannot satisfy hiatus sensitivity to level and also penalize proportionate deviation of a given gap from uniformity simultaneously.
- The former suggests that the same gap at a higher average attainment should be considered worse off. The latter would imply that at a higher attainment the same absolute deviation would be identified with a lower proportionate deviation, and hence, acceptable.

Class of Measures

$$\mathcal{H}_{\alpha} = 1 - (((1-h)^{\alpha} + (1-e)^{\alpha} + (1-y)^{\alpha})/3)^{(1/\alpha)}$$

$$\alpha=1, \mathcal{H}_{\alpha}=HDI_{LA}$$

$$\alpha=2, \mathcal{H}_{\alpha}=HDI_{DI}$$

α=∞, t is equal to a Rawlsian leximin ordering

MANUSH is necessary and sufficient for *H*_α; α≥2

Iso-HDI: Class of Measures

Shortfall Sensitivity

Necessary and Sufficient

- MANUSH is necessary and sufficient for _α; α ≥2
 - It is easy to deduce that MANUSH is a necessary condition
 - For MANUSH to be sufficient, we should have an alternative measure, \mathcal{H} , or class of measures, that satisfies the axioms. Now, when \mathcal{H} satisfies shortfall sensitivity then the optimal paths are equivalent to that of \mathcal{H}_{α} .

Concluding Remarks

- Evaluated three methods of aggregation for measuring HDI
- The proposed displaced ideal method is sensitive to shortfalls across dimensions and imposes greater equity consciousness at higher levels of attainment
- We propose an α-class of measures where the most stringent form of shortfall sensitivity can be identified with the Rawlsian scenario.
- The axioms of MANUSH (its anagram is HUMANS) turns out to be necessary and sufficient for the class of measures when α≥2.
- The method articulated across dimensions can also be relevant in other contexts – say, across sub-groups.

References

 This paper is based on a working paper available at http://www.igidr.ac.in/pdf/publication/WP-2013-020.pdf.

Some selected references are given below.

- Anand, S and Sen, A (1994) Human Development Index: Methodology and Measurement, Human Development Report 1994.
- Mishra, Srijit and Nathan, Hippu Salk Kristle (2008) On A Class of Human Development Index Measures, WP-2008-020, Indira Gandhi Institute of Development Research, Mumbai.
- Nathan, Hippu Salk Kristle and Mishra, Srijit (2010), Progress in Human Development: Are we On the Right Path? International Journal of Economic Policy in Emerging Economies, Vol.3. No. 3, 199-221.
- Nathan, Hippu Salk Kristle, Mishra, Srijit and Reddy, B. Sudhakara (2008), An Alternative Measure of HDI, WP-2008-001, Indira Gandhi Institute of Development Research, Mumbai
- Nathan, Hippu Salk Kristle and Mishra, Srijit (forthcoming), Group Differential for attainment and failure indicators, Journal of International Development.
- UNDP (2008), Human Development Report 2007/08: Fighting Climate Change: Human Solidarity in a Divided World, Oxford University Press, New Delhi
- UNDP (2010), Human Development Report 2010: The Real Wealth of Nations; Pathways to Human Development, Oxford University Press, New Delhi