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Resolution in optical nanoscopy (or super-resolution 

microscopy) depends on the localization uncertainty and 

density of single fluorescent labels and on the sample’s 

spatial structure. Currently there is no integral, practical 

resolution measure that accounts for all factors. We introduce 

a measure based on Fourier ring correlation (FRC) that can be 

computed directly from an image. We demonstrate its validity 

and benefits on two-dimensional (2D) and 3D localization 

microscopy images of tubulin and actin filaments. Our FRC 

resolution method makes it possible to compare achieved 

resolutions in images taken with different nanoscopy methods, 

to optimize and rank different emitter localization and labeling 

strategies, to define a stopping criterion for data acquisition, 

to describe image anisotropy and heterogeneity, and even  

to estimate the average number of localizations per emitter. 

Our findings challenge the current focus on obtaining the best 

localization precision, showing instead how the best image 

resolution can be achieved as fast as possible.

The first and foremost law of conventional optical imaging science 
is that resolution is limited to a value on the order of λ/NA, with 
λ equal to the wavelength of light and NA to the numerical aper-
ture of the imaging lens. Rayleigh and Sparrow captured this law 
through empirical resolution criteria. These criteria were placed 
on solid foundations by Abbe and Nyquist, who defined resolu-
tion as the inverse of the spatial bandwidth of the imaging system. 
This diffraction limit, however, can be overcome by numerous 
optical nanoscopy techniques, notably stimulated emission deple-
tion (STED)1, reversible saturable optical fluorescence transitions 
(RESOLFT)2, the family of localization microscopy techniques 
such as photoactivated localization microscopy (PALM), stochas-
tic optical reconstruction microscopy (STORM), ground state 
depletion microscopy followed by individual molecule return 
(GSDIM) and direct STORM3–6 and statistical methods such as 
blinking fluorescence localization and super-resolution optical 
fluctuation imaging (SOFI)7,8.

These revolutionary developments raise the question: what is 
resolution in diffraction-unlimited imaging? The resolving power 
of the instrument is often coupled to the uncertainty of localizing 
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single emitters, that is, point sources. The closely related two-
point resolution can be given a precise meaning in the context 
of localization microscopy9, thus generalizing the Rayleigh cri-
terion of conventional microscopy. These concepts characterize 
the resolution in images in which the structure of interest can be 
defined by a limited number of molecules—such as images of the 
nuclear pore complex10—or when investigating the relative posi-
tion of different molecules11. However, if more-or-less continu-
ous structures with a large number of potential labeling sites are 
imaged—for example, actin filaments or organelle membranes—
then it is clear that the average density of localized fluorescent 
labels must also play a role. As early as the first demonstration 
of localization microscopy for cell imaging3, it was noted that 
“both parameters—localization precision and the density of ren-
dered molecule—are key to defining performance….” The effects  
of labeling density and photoswitching kinetics on resolution  
have since been investigated experimentally12,13. Recently, an  
estimation-theoretic resolution concept was presented14 that 
combines both labeling density and localization uncertainty using 
an a priori model of the sample.

We conclude from all prior work that neither the average den-
sity of localized molecules needed for random Nyquist sampling 
nor the localization uncertainty alone is a suitable measure to 
characterize the resolution. In addition, the resolution depends 
on a multitude of other factors such as the link between the label 
and the structure, the underlying spatial structure of the sample 
itself and the extensive data processing required to produce a final 
super-resolution image comprising, for example, single-emitter 
candidate selection and localization algorithms. Ultimately, only 
an integral, image-based resolution measure not depending on 
any a priori information is suitable for determining what level of 
detail can be reliably discerned in a given image.

Here we propose an image-resolution measure that can be com-
puted directly from experimental data alone. It is centered on the 
FRC (or, equivalently, the spectral signal-to-noise ratio), which is 
commonly used in the field of cryo-electron microscopy (cryo-
EM) to assess single-particle reconstructions of macromolecular 
complexes15–17. We have used the FRC resolution to analyze the 
trade-off between localization uncertainty and labeling density, 
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and we have applied it to monitor resolution buildup during data 
acquisition and to compare different localization algorithms. 
Quantification of the spatial correlations in the image leading 
to this resolution measure also provides a means to estimate the 
average number of localizations per emitter contributing to the 
image. Software for computing the FRC curve and the image 
resolution for localization microscopy data is available in the 
form of an ImageJ plugin and Matlab code at http://www.diplib.
org/add-ons/ and as Supplementary Software.

RESULTS
To compute the FRC resolution, we divide the set of single-emitter 
localizations that constitute a super-resolution image into two 
statistically independent subsets, which yields two subimages f r1( )


 

and f r2( )


, where 

r  denotes the spatial coordinates. Subsequent 

statistical correlation of their Fourier transforms f q1
 ( ) and f q2

 ( )  
over the pixels on the perimeter of circles of constant spatial fre-
quency with magnitude q = | 


q | gives the FRC16
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For low spatial frequencies, the FRC curve is close to unity; and 
for high spatial frequencies, noise dominates the data and the 
FRC decays to 0. The image resolution is defined as the inverse 
of the spatial frequency for which the FRC curve drops below a 
given threshold. We evaluated different threshold criteria used 
in the field of cryo-EM15,18–20 and found that the fixed threshold 
equal to 1/7 ≈ 0.143 (ref. 18) is most appropriate for localization 
microscopy images (Supplementary Fig. 1). The FRC resolu-
tion concept and the steps needed to compute it are illustrated 
in Figure 1a. FRC resolution describes the length scale below 
which the image lacks signal content; smaller details are not 
resolved in the image. Resolution values will always be larger 
than those based on localization uncertainty or labeling density 
alone (Supplementary Fig. 2).

(1)(1)

Theoretical considerations and simulations
FRC resolution allows predictions to be made about the impact 
of different imaging and sample parameters on the achievable 
resolution; these predictions are based on the expectation value of 
the FRC curve (Supplementary Figs. 3 and 4 and Supplementary 
Note 1), which is given by
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where N is the total number of localized emitters, σ is the average 
localization uncertainty and 

 y ( )q  denotes the Fourier spectrum 
of the spatial distribution of the fluorescent emitters. The param-
eter Q is a measure for spurious correlations due to, for example, 
repeated photoactivation of the same emitter. Each emitter con-
tributing to the image is localized once for Q = 0 and in general 
Q/(1 – e−Q) times on average, provided the emitter activation 
follows Poisson statistics. Careful analysis of the spatiotempo-
ral correlations in the image and the emitter activation statistics 
(including effects of photobleaching) can provide a way to esti-
mate Q and correct for its effect on image resolution as well as 
to estimate the number of fluorescent labels contributing to the 
image, as is discussed below.

Analytical expressions for the resolution can be derived for 
particular object types (such as line pairs) often used in resolu-
tion definitions (Supplementary Note 2). The resolution R for 
an image consisting of two parallel lines with a cosine-squared 

(2)(2)
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Figure 1 | The FRC principle and trade-off between localization 
uncertainty and labeling density. (a) All localizations are divided into  
two halves, and the correlation between their Fourier transforms over 
the perimeter of the circle in Fourier space of radius q is calculated for 
each q, resulting in an FRC curve indicating the decay of the correlation 
with spatial frequency. The image resolution is the inverse of the spatial 
frequency for which the FRC curve drops below the threshold 1/7 ≈ 0.143, 
so a threshold value at q = 0.04 nm−1 is equivalent to a 25-nm resolution. 
Error bars indicate theoretically expected s.d. (Supplementary Note 1). 
(b) Simulated localization microscopy image of a line pair with mean 
labeling density ρ = 2.5 × 103 per µm2 in the area occupied by the lines 
and localization uncertainty σ = 7.6 nm (line distance 70 nm, cosine-
squared cross-section). (c) Constant resolution in theory (lines) and 
simulation data (circles) for line pairs as in b as a function of localization 
uncertainty and labeling density. Regions of localization uncertainty–
limited resolution (blue) and labeling density–limited resolution (yellow) 
are separated by the red line ρσ2 = e/(6π). (d) Simulation results for 
localization uncertainty versus image resolution for different fixed total 
measurement times. Camera frame rates were varied to match the on-times 
of the emitter. The minima of the curves fall on the line R = 2πσ that 
separates the yellow region (not enough emitters localized) from the blue 
region (emitters not localized precisely enough).
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cross-section and mean labeling density ρ in the area occupied 
by the lines is

R

W

= 2

6
2

ps

prs( )

where W(x) is the Lambert W-function21. Two regimes can be 
identified in which changes in either labeling density or localiza-
tion uncertainty have the most impact on improving the resolu-
tion. At the boundary between these regimes, the relative gains 
in resolution due to changes in either quantity are equally large. 
This trade-off occurs at R = 2πσ (Supplementary Note 3), which 
corresponds to

rs
p

2

6
0 14= ≈e
.

The region ρσ2 < e/(6π) is labeling-density limited, whereas  
ρσ2 > e/(6π) is localization-uncertainty limited (Fig. 1b,c). The 
exact boundary between the two regimes depends on the underly-
ing object, so the boundary value for the two-line example serves 
only as a rule of thumb (Supplementary Note 3). For example, 
for M parallel lines, we obtain a value e/(3πM). From this it may 
be inferred that the trade-off occurs for a value smaller than 0.14 
for any intricate but irregular object structure.

The same trade-off as above may also manifest itself in the opti-
mization of image resolution, given a fixed total acquisition time 
(Fig. 1b,d). Suppose that the photon count per localization is 
improved by increasing the on-times of the emitters while keeping the 
emitters’ brightness and the number of simultaneously active emitters 

(3)(3)

(4)(4)

constant: this then also reduces the total number of labels that can be 
localized in a given acquisition time. Therefore, longer single-emitter 
events yield more accurate localizations, but at the expense of a lower 
recorded emitter density3,22. Again, the optimum is R = 2πσ, inde-
pendent of the object (Supplementary Note 3). Tuning the on-times 
as described here may be done in the design phase of an experiment 
by the choice of label or buffer composition.

Resolution buildup during data acquisition
To test and evaluate the FRC resolution measure, we imaged 
tubulin networks in fixed HeLa cells labeled with Alexa Fluor 
647 using localization microscopy (Fig. 2a and Online Methods). 
The resolution improved with acquisition time (Fig. 2b–f), or, 
equivalently, with the density of localized labels. The trade-off 
point between the localization density and uncertainty limited 
regimes lay at R = 2πσ = 61 nm. Therefore, the resolution values 
for Figures 2b–e were labeling-density limited, and the trade-off 
point was just crossed at the end of the data acquisition. Real-time 
monitoring of the resolution buildup by real-time single-molecule 
fitting algorithms23 provides a much needed stopping criterion 
for localization microscopy data acquisitions.

The FRC resolution concept is also sensitive to differences in 
localization uncertainty (Fig. 2g–i). Maximum-likelihood estima-
tion (R = 58 ± 1 nm) is theoretically optimal24 and is slightly better 
than least-squares fitting (R = 60 ± 1 nm) and superior to centroid 
fitting (R = 88 ± 2 nm). All specified uncertainties are computed 
from 20 FRC resolution estimates obtained from different random 
assignments of localizations to half data sets (s.e.m.). Because the 

Figure 2 | The effect of localization density and 
data processing on resolution. (a) Localization 
microscopy image of tubulin labeled with Alexa 
Fluor 647 in a HeLa cell (R = 58 ± 1 nm for the 
whole image, where uncertainty reflects s.e.m. of 
20 random repeats of FRC resolution calculation). 
Acquisition time was T = 12 min within 1.4 × 104 
frames, the localization uncertainty was σ = 9.7 nm 
after merging nearby localizations in subsequent 
frames (Online Methods) and the density of 
localizations was ρ = 6.0 × 102 per µm2.  
(b–e) Magnified insets of two crossing filaments 
(upper boxed region in a) constructed from  
fewer time frames showing poorer resolution 
(indicated by the distance between the blue arrows). 
(f) Resolution (R) buildup during acquisition, with 
R = 2πσ plotted in blue, showing a transition from 
density-limited to precision-limited resolution. 
(g–i) Reconstructions of lower boxed region in a by 
different localization algorithms showing maximum-
likelihood estimation (g; MLE, R = 58 ± 1 nm), least 
squares fitting (h; LS, R = 60 ± 1 nm) and centroid 
fitting (i; CEN, R = 88 ± 2 nm). (j) Localization 
microscopy image of the actin cytoskeleton (F-actin) 
of a fixed HeLa cell labeled with phalloidin coupled 
to Alexa Fluor 647 after correction for sample drift 
of ~70–100 nm during acquisition. The image was 
obtained from 5.0 × 104 frames in 8 min (σ = 8.0 nm,  
ρ = 8.2 × 103 µm−2, ρσ2 = 0.52, 2πσ = 50 nm).  
(k–n) Magnified insets of reconstructions before 
(k,l; left boxed region in j) and after drift correction 
(m,n; right boxed region in j). Resolutions before 
and after drift correction were R = 79 ± 2 nm and  
R = 54 ± 1 nm, respectively. The arrows indicate 
regions of sharper detail after drift correction.
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effect of the parameter Q on the resolution 
for this data set was found to be negligible, 
it was not necessary to correct for it.

Sample drift is a common annoy-
ance in optical nanoscopy, as motion has to be limited to a few 
nanometers over typical acquisition times of many minutes. We 
analyzed the drift in localization microscopy data of the actin 
cytoskeleton of a fixed HeLa cell labeled with phalloidin coupled 
to Alexa Fluor 647 (Fig. 2j) without the use of fiducial mark-
ers25. A drift of ~70–100 nm was found with this procedure 
and corrected for. Computed resolution values before drift cor-
rection (Fig. 2k,l; R = 79 ± 1 nm) were much worse than those 
after drift correction (Fig. 2m,n; R = 54 ± 1 nm), which is in 
agreement with the apparent detail in the images (Fig. 2k–n).  
For this data set also, the effect of Q was found to be negligible. 
More experimental data are provided to show the validity of the 
FRC resolution (Supplementary Figs. 5–7).

Estimation of the number of localizations per emitter
Multiple localizations per emitter due to, for example, repeated 
photoactivations lead to spurious correlations between the two 
image halves, resulting in overoptimistic resolution values. This 
is particularly problematic for cases involving large numbers of 
localizations per emitter, low localization uncertainties and low 
labeling densities (Supplementary Figs. 8 and 9).

The FRC can be corrected for this effect by estimating the spu-
rious correlation parameter Q in equation (2). To that end, we 
divided the numerator of the FRC by the weighted average of 
the function exp(−4π2σ2q2) over the distribution of localization 
uncertainties. The parameter Q is proportional to the minimum 
of that curve, which takes the form of a broad plateau if Q >> 1 
(Online Methods). To test this method, we analyzed a two-color 
image of tubulin labeled with both Alexa Fluor 647 and Alexa 
Fluor 750 (ref. 26; Fig. 3a–c). The resolution values for Alexa 

Fluor 647 and Alexa Fluor 750 without correction (25 ± 1 nm 
and 34 ± 1 nm, respectively) were much lower than the resolution 
derived from the cross-channel, that is, when taking the two color 
images as data halves for the FRC (118 ± 2 nm). This difference 
was due to the multiple localizations per emitter, which affect the 
one-color FRC curves but not the cross-channel curve. The FRC 
curves and attendant resolution values were much more simi-
lar after correction. The remaining differences in the calculated 
resolution values reflected the differences in labeling density (the 
density of localizations was 4.0 × 103 per µm2 for Alexa Fluor 
647 and 1.3 × 103 per µm2 for Alexa Fluor 750) and localization 
uncertainty (9.2 nm and 12 nm, respectively).

We checked the data sets of Figure 2a,j for spurious correla-
tions and found Q = 0.28 and Q = 0.33, respectively, which led 
to corrected resolution values equal to 62 ± 2 nm and 66 ± 1 nm, 
respectively. This means that neglecting to correct for spurious 
correlations gave rise to an underestimation of the resolution 
value by only several nanometers. These estimated values for  
Q are smaller than the values for the data set of Figure 3 primarily 
because Q scales with the data acquisition time, which is much 
smaller in Figure 2a,j than the 1.4 × 105 frames in 39 min and 
3.0 × 104 frames in 25 min for Alexa Fluor 647 and Alexa Fluor 
750, respectively (Fig. 3). Other reasons for the discrepancy of 
Q values may be found in differences in photobleaching behav-
ior and preprocessing for candidate selection of single-emitter 
events (from false positives, for example). Finally, the density of 
 localizations for Figure 2j is close to 104 per µm2, 1–2 orders 
of magnitude larger than the density in other data sets. In the 
limit of high labeling density, the effects of spurious correla-
tions are negligible compared to the intrinsic image correlations 

Figure 3 | Spurious correlations from a two-color 
localization microscopy image. (a) Overview image 
of a tubulin network labeled with both Alexa  
Fluor 647 (magenta) and Alexa Fluor 750 (green). 
The inset shows the quality of registration.  
(b) Uncorrected FRC curves for the magenta  
and green channels are higher than that for the 
cross-channel because of spurious correlations 
from repeated photoactivations of individual 
emitters, which result in overly optimistic 
resolution values (R = 25 ± 1 nm and 34 ± 1 nm, 
respectively, compared to 118 ± 2 nm for the 
cross-channel). Uncertainty reflects s.e.m.  
of 20 random repeats of the FRC resolution 
calculation. (c) FRC curves corrected for spurious 
correlations all yield similar resolution values  
(108 ± 1 nm for Alexa Fluor 647, 133 ± 2 nm 
for Alexa Fluor 750, 121 ± 2 nm for the cross-
channel). (d–f) Scaled FRC numerator curves 
showing a plateau for intermediate spatial 
frequencies, which is used to estimate the 
correction term and Q parameter. For this 
correction (Online Methods) we used a mean 
and width of the distribution of localization 
uncertainties equal to 9.2 nm and 2.8 nm for 
Alexa Fluor 647 and 12 nm and 2.0 nm for  
Alexa Fluor 750.
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(Supplementary Notes 1 and 2). We point 
out that the correction method appears to 
be quite sensitive to (the distribution of) 
the localization uncertainty, and to any residual effects of drift, 
and must therefore be applied with care.

The estimation of the average number of localizations per 
emitter from the spurious correlation parameter Q also makes 
it possible to count the actual number of fluorescent labels that 
contribute to the overall image. Although such counting has been 
demonstrated for irreversibly photoactivatable fluorophores27,28, 
only a few studies have investigated the possibility of counting 
with reversibly photoswitchable dyes29,30. One approach is based 
on pair correlation functions28,29, but unlike our method, it 
requires a model for the correlations in the spatial distribution of 
the fluorescent labels. Neither do we require a calibration experi-
ment, in contrast to cluster kymography analysis, for example30. 
A potential complication for our method is that deviations from 
Poisson statistics of emitter activations due to photobleaching 
may lead to overestimation and in some cases underestimation  
(Q < 1) of the number of localizations per emitter (Supplementary 
Note 1). The same caveat applies to alternative approaches28,29. 
Control experiments on sparsely distributed labeled antibodies on 
a glass surface indicated that photobleaching caused Q values for 
the data (Fig. 3) to overestimate the true number of localizations 
per emitter by a factor of 1.5 for Alexa Fluor 647 and 1.7 for Alexa 
Fluor 750, even though the Q parameter was estimated much more 
accurately (Supplementary Fig. 10 and Online Methods). Taking 
into account all factors leads to an estimated number of localiza-
tions per molecule equal to 7 for Alexa Fluor 647 and 11 for Alexa 
Fluor 750, which is in qualitative agreement with values reported 
earlier31. We found the labeling densities to be 6.0 × 102 per µm2 
(Alexa Fluor 647) and 1.2 × 102 per µm2 (Alexa Fluor 750).

Resolution in 3D, anisotropic and heterogeneous content
The FRC resolution concept can be generalized and extended in 
several ways. The first way addresses image anisotropy, which 
may arise, for example, from line-like features in the image or 
from differences between the axial and lateral resolving power 
in 3D imaging32. Anisotropic image resolution can be described 
similarly to FRC by correlating the two data halves in Fourier 
space over a line in 2D (Fourier line correlation, FLC) or plane 
in 3D (Fourier plane correlation, FPC) perpendicular to spatial 
frequency vectors 


q. Spatial frequencies for which the FLC or FPC 

is above the threshold in the image are resolved. The FPC for a 3D 

image of a tubulin network labeled with Alexa Fluor 647 (Fig. 4) 
using the bifocal method33 shows clear anisotropy with filaments 
oriented mostly in the xy plane along the x direction. Therefore, 
the FPC is highest in the y direction, orthogonal to the filaments, 
and worst in the z direction.

The FLC for part of the data set of Figure 2j shows that the 
region of resolved spatial frequencies is anisotropic and high-
est in the direction orthogonal to the filaments (Supplementary 
Fig. 11), as expected. Another way in which the FRC resolution 
concept can be generalized targets local variations in the density 
of the sample’s spatial structure. Local image resolution can be 
obtained from resolution values of overlapping subimage patches 
(Supplementary Fig. 12).

DISCUSSION
The FRC resolution concept can be naturally extended to STED, 
imaging with an extended diffraction limit such as structured illu-
mination microscopy34, and conventional confocal and wide-field 
imaging. It is possible not only to conceptually extend the FRC 
method but also to measure the resolution directly from experi-
mental data. This stands in contrast to recently introduced unified 
resolution concepts35, which provide only a rigorous theoretical 
framework. The FRC resolution is most easily computed from 
two images of the same scene that differ only in noise content. 
The resolution then depends on the signal-to-noise ratio, spectral 
image content and (effective) optical transfer function. The width 
of the effective point-spread function replaces the role of the 
localization uncertainty. In the limit of infinitely high signal-to-
noise ratio, the FRC resolution reduces to Abbe’s diffraction limit 
(for the conventional fluorescence imaging modalities) or to the 
limit that has been proposed for STED36 (Supplementary Note 4 
and Supplementary Fig. 13). We also applied the FRC concept 
to time-lapse recordings in scanning electron microscopy in  
single-electron counting mode (Supplementary Fig. 14). For any 
extension of the FRC concept, systematic dependencies between 
image halves due to, for example, fixed-pattern noise or common 
alignment references must be prevented. Alignment references 
have caused particular problems for the application of the FRC 
concept in the field of single-particle cryo-EM37.

We envision that FRC resolution may be used for character-
izing and optimizing fluorescence labeling and data processing 

Figure 4 | 3D resolution. (a) Representation  
of a 3D localization microscopy image of a 
tubulin network, with the axial coordinate  
in false color. (b) Orthogonal slices of the 
Fourier plane correlation (FPC). (c–e) Cross-
sections of the FPC for this data set in the  
qxqz plane (c), qyqz plane (d) and qxqy plane (e),  
with added threshold contours for FPC = 1/7  
(black lines). The FPC clearly shows the 
anisotropy of image content resulting from  
the line-like structure of the filaments  
(the highest image resolution is perpendicular 
to the filaments) as well as from the anisotropy 
in localization uncertainty (the lowest 
resolution is in the axial direction).
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 strategies in general. The FRC resolution may be used to rate differ-
ent approaches for faster super-resolution image buildup that deal 
with high densities of simultaneously active emitters38–40. Access to 
the number of molecules in a multimolecular complex, such as the 
spliceosome or transcription machinery, without the need to make 
assumptions about their spatial structure adds a new dimension 
to the application of optical nanoscopy with reversibly switchable 
fluorescent dyes. Most notably, a resolution measure as proposed 
here is indispensable for advancing the blooming field of optical 
nanoscopy because it provides a quantitative guide for reliable inter-
pretation of data, thus enabling sound biological conclusions.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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Computation of FRC and FRC resolution. Computation. The 
starting point for the computation of the FRC resolution is a set 
of estimated fluorophore locations along with the numbers of 
the frames from which they originate. To calculate the resolution 
from a set of localizations {


ri}, the following steps were followed 

for experimental data:

1. The set of N localizations was divided into two half sets N1 
and N2 of size N/2 by splitting the time series into blocks of 500 
frames and assigning an equal number of blocks randomly to each 
half set. Alternatively, half sets could also have been obtained by 
simply assigning localizations randomly to half sets or by splitting 
the time series in two parts.

2. The localizations from each half set were binned into images 
f1 and f2. For the experimental data, the bin sizes (that is the super-
resolution pixel sizes) were taken to be p times smaller than the 
camera pixel size, typically p = 10 (10-nm back-projected pixel 
size). See Supplementary Note 2 for a further discussion about 
the choice of pixel size.

3. An intensity mask M (

r ) was applied to the binned images to 

taper the edges. For this work, a Tukey window41 was used, which 
has the form M (


r ) = m(x)m(y), where

m x

x L x
L

x L

x
L

x L

( )

sin / /

/

=
( ) < >

≥ ≤









2
4

8
7 8

1
8

7 8

p if and

if and

Here L denotes the size of the field of view.
4. Both binned images were Fourier transformed.
5. The FRC was obtained for spatial frequencies q = 1/L, 2/L, ...  

by evaluating equation (1), where 

q  ∈ circle means the set {


q | q ≤ 

|

q| < q + δq} where δq = 1/L is the pixel size in Fourier space.

6. As the FRC curve is often quite noisy, it was smoothed  
with a LOESS (locally estimated scatter plot smoothing) 
method42 with a second-order polynomial and tri-cube weight 
function around each q over a span ∆q = 1/(20l), where l is the 
pixel size.

7. The first intersection qres between the resulting smoothed 
FRC curve and the threshold was used to finally calculate the 
resolution R = 1/qres.

Please note that the term Σq∈ circle f q f q1 2
   ( ) ( )

* is real, if f1(

r ) 

and f2(

r ) are real, because then it holds that f q f q   

( ) ( )
*= −  and in 

each term f(

q) + f(−


q), the complex parts cancel out. Note that we 

assume square-sized images f1(

r ) and f2(


r ) for ease of computa-

tion. If the images are not square, the images must be extended 
through zero padding or the circle averaging must be replaced by 
averaging over ellipses, as the pixel size in Fourier space depends 
on the linear size of the image. The uncertainty of the FRC resolu-
tion value is found by evaluating the resolution for 20 different 
random splittings of the entire data set. The resulting mean and 
s.d. are the reported numbers.

Bright spots. Localization microscopy images sometimes contain 
clusters of localizations with a diameter of a few times the locali-
zation precision σ where the density of localizations is very high. 
These clusters may be due to, for example, anomalous fluorescent  

(5)(5)

molecules that are active during a large part of the total measure-
ment time. However, the localizations in these clusters can rep-
resent a substantial fraction of all localizations and are very close 
together. This close spatial proximity translates into large correla-
tions in the high spatial frequency components of the images that 
are not representative of the other parts of the image. Therefore, 
these clusters are considered to be artifacts. Thus, it is often neces-
sary to suppress the influence of these clusters. One approach that 
we adopted to this end was to mask out these clusters if they were 
not on the main structures. Remaining bright spots were sup-
pressed by the procedure to merge nearby localizations in time, 
which is further outlined below, and by limiting the number of 
binned localizations per super-resolution pixel to a maximum of 5.  
For the data of Figure 2a, all these approaches were adopted: 
most bright spots were removed by segmenting the cell in the 
wide-field image and deleting all localizations outside the cell. 
For the data in Figure 2j, no masking of regions outside the cell 
was applied because the entire field of view is filled. For the other 
experimental data sets, only the merging of nearby localizations 
was used to reduce the influence of bright spots.

Spurious correlations. Multiple localizations of the same emit-
ter result in substantial correlations at all spatial frequencies. 
The result is that the numerator of the FRC contains a term 
(2πqL)NQexp(−4π2q2σ2) (or the weighted average of this quantity 
over the distribution of localization uncertainties) that belongs 
to the denominator of the FRC. Here L is the size of the field of 
view. Correction for this effect then requires that this spurious 
term is estimated and corrected for. The first step in estimating 
the spurious correlations consisted of calculating the numerator 
of the FRC and dividing by the number of pixels in the Fourier 
circle resulting in a function ν(q)

v q
qL

f q f qq( ) ( ) ( )= ∈∑
1

2
1 2p
    *

circle

Subsequently, ν(q) was divided by H(q)sinc(πqL)2, where H(q) is 
the factor in the correlation averages related to the localization 
uncertainties that depends on the mean σm and width ∆σ of the 
distribution of localization uncertainties, which is taken to be 
Gaussian (Supplementary Note 1) 

H q

q

q

q
( ) exp=

+ ∆
−

+











1

1 8 2 2 2

4 2 2 2

1 8 2 2 2p s

p s

p s
m

∆

Therefore, the result should have an expectation value (Q + 
NS(q))/4. Here S(q) is defined formally in Supplementary Note 1 
as the ring average of the spectral signal content of the image. 
For estimation of NQ/4 in a robust manner, the logarithm of 
|ν(q)/H(q)/sinc(πqL)2| was taken and smoothed, and log(NQ/4) 
was then estimated as the minimum of this smoothed logarithm. 
The smoothing was accomplished through robust LOESS42 with 
a second-order polynomial and tri-cube weight function around 
each q over a span ∆q = 1/(10l).

The logarithm of |ν(q)/H(q)/sinc(πqL)2| typically is a function 
that initially decreases, then levels off to a constant plateau value 
and finally increases again. The mean and width of the assumed 
Gaussian distribution of localization uncertainties are adjusted 
to get a horizontal plateau of the largest possible width. This 

(6)(6)

(7)(7)
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procedure, though manually executed, can be used to estimate 
these parameters with an accuracy of typically 1–2 nm. A plateau 
results when Q >> NS(q), so that |ν(q)/H(q)/sinc(πqL)2| ≈ NQ/4. 
For large q, the noise on the absolute value of ν(q), which has an 
expected value of about N/√(32πqL), is blown up by the factor 
1/H(q)/sinc(πqL)2. Therefore, the aforementioned procedure will 
also yield a narrow plateau and a finite estimate for Q even in the 
case where Q << NS(q), when there is no plateau due to Q. In 
this case Q will be overestimated and there will therefore be an 
overcorrection for spurious correlations.

FLC and FPC computation. The Fourier line correlation (FLC,  
n = 2 dimensions) or Fourier plane correlation (FPC, n = 3 dimen-
sions) are evaluated numerically as follows. The entire image is 
again split into two subimages f1(


r ) and f2(


r ), with Fourier trans-

forms f q1
 ( ) and f q2

 ( ). The FLC and FPC are defined similarly to 
the FRC

G q

G q G q

12

11 22

( )

( ) ( )



 

where the correlation averages are now defined as averages over 
lines (n = 2) or planes (n = 3) perpendicular to 


q

Gjl q f j q fl q j lq( ) ( ) ( ) , , { , }
    = ′ ′ =′∈∑ *

line, plane 1 2

where the summation over the line/plane means 
′q ∈{

′q | (
′q  ± 

q)· 


q  = 0} (Supplementary Fig. 15). For n = 2 the implementation 
of a line average boils down to a Radon transform, executed with 
the Matlab (MathWorks) function ‘radon’. For n = 3 the plane 
average is done by first rotating f q1

 ( ) and f q2
 ( ) to a grid with 


q 

oriented along the z axis, executed with the function ‘rotation3D’ 
of the DipImage toolbox (http://www.diplib.org/), and subse-
quent averaging over the x and y directions in the rotated frame. 
Averaging over lines/planes with an orientation that is not aligned 
with one of the coordinate axes is possible but computationally 
much more costly than the rotation procedure. Computational 
time can be saved by doing the 3D Fourier transforms to get 
f q1
 ( ) and f q2

 ( ) on the full data cube of L × L × L super-resolution 
pixels and all the rotations on a cropped M × M × M cube, where 
M is adjusted so that the FPC drops below the threshold close to 
the edge of the cropped data cube. For the data set of Figure 4, 
we used L = 1,024, M = 191 and 10-nm super-resolution pixels. 
Note that square/cubic image sizes are used for convenience. Only 
square/cubic images have isotropic pixel sizes in Fourier space 
if the pixel sizes in real space are isotropic. Further information 
on the computation of FRC and FRC resolution is provided in 
Supplementary Note 5.

Simulations. General setup. Simulations were conducted in 
Matlab with the use of the image processing toolbox DipImage 
and several C-language and CUDA codes that were compiled to 
Matlab MEX files and run from within the Matlab environment. 
Localization microscopy data without multiple localizations per 
emitter (Q << 1) are simulated as follows. Poisson noise is added 
to an object image serving as the ‘ground truth’ (which has pixel 
values larger than 0). The resulting value per pixel is taken to be 
the simulated number of emitters in that pixel, and a number 
of random points equal to this value is generated for each pixel.  

(8)(8)

(9)(9)

Each of these points is then displaced according to a zero-mean 
normal distribution with variance Var(∆x) = Var(∆y) = σ2 to 
obtain the simulated data (localizations). Localization micros-
copy data with multiple localizations per emitter are simulated 
in a similar way. The only difference is that each of the simulated 
emitter positions is used to generate a binomially distributed 
number Mj of offspring points (localizations) instead of 1. All of 
these offspring points are then displaced with a zero-mean normal 
distribution with variance Var(∆x) = Var(∆y) = σ2.

Figure 1b. The result in Figure 1b was obtained by simulating 
measurements without multiple localizations per emitter (Q << 1) 
for ground truth images of the form (Supplementary Fig. 16)

o x y
x d x d y a

( , )
( cos( / )) | | | | /

=
− < <




r p1 2 2

0

if and

otherwise

This was done for d = 20, 40, …, 100 nm and σ = 1, 2, …, 30 
nm, with a pixel size of 1 nm and number of signal photos  
nph = 500. For each d and σ, 400 simulations were carried out 
for a density of localizations ρ = 2 × 104 µm−2. The value of ρ for 
which the resolution was calculated was varied in these simula-
tions by taking 2, 4, … 100% of the simulated localizations at ρ = 
2 × 104 µm−2. However, the resolution could not be obtained by 
calculating where the FRC curve falls below the threshold because 
the FRC is not approximately monotonically decreasing for this 
object. Instead, contour lines in the ρσ plane were generated for 
each d where FRC(1/d) = 1/7. These contour lines are equivalent 
to lines of constant resolution R = d.

Figure 1c. The result in Figure 1c was obtained in a simi-
lar way as the result in Figure 1b. However, in the simula-
tions for Figure 1b, ρ and σ are used as independent variables, 
whereas for Figure 1c, ρ is determined by both Ttotal and σ: σ =  
σ0/ √(φphTframe) and ρ = MsimTtotal/Tframe. Here σ0 = 90 nm, φph =  
5.0 × 104 s−1 is the number of collected photons per emitter per 
unit time and Msim = 0.2 µm−2 is the number of simultaneously 
active emitters43. Localized emitter localizations were simulated 
for this figure 100 times for Ttotal = 30 min, Tframe = 10−3, 10−2.8,…, 
10−1 s and d = 10, 15,…, 60 nm. The FRC curve was calculated by 
taking the localizations up to 1, 5, 10, 20 and 30 min out of these 
sets of localizations of 30 min to vary Ttotal. Lines of constant 
measurement time Ttotal were then calculated by taking the con-
tour lines in the σR plane where FRC (q = 1/R) = 1/7.

Further information on the simulations of FRC and FRC resolu-
tion is provided in Supplementary Note 6.

Experimental setup and methods. Figure 2a: imaging of tubulin 
filaments. The first samples that were used for experimental vali-
dation of the results from the simulations were tubulin structures 
in human epithelial cervical cancer (HeLa) cells. These cells were 
plated on aminosilane coverslips in Lab-Tek eight-well chambers 
(Nunc). Cells were fixed for 10 min in 4% paraformaldehyde in 
cytoskeleton buffer (10 mM MES, pH 6.1, 138 mM KCl, 2 mM 
EGTA, 0.32 M sucrose and 3 mM MgCl2) and afterward put in  
50 mM ammonium chloride in phosphate buffered saline (PBS) to 
quench the fixation process. Subsequently, the cells were washed 
three times in PBS and permeabilized (0.5% (v/v) Triton X-100) 
for 2 min with 0.2% fish-skin gelatin added to reduce nonspecific 
binding. Cells were then washed three times in PBS again and 

(10)(10)
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subsequently labeled with anti–β-tubulin antibodies (9F3 rabbit 
monoclonal) conjugated to Alexa Fluor 647 dye molecules (Cell 
Signaling Technology) in PBS at a concentration of approximately 
1.0 µg/ml in the presence of 0.2% fish-skin gelatin, after which 
they were washed thrice in PBS. Before imaging the cells, a sparse 
dilution of 1:105 of fluorescent beads (0.1 µm TetraSpeck micro-
spheres, Invitrogen) was put in solution for 3 min to enable drift 
correction. Next, the cells were immersed in oxygen-scavenging 
buffer solution consisting mainly of glucose oxidase and catalase 
in PBS in the presence of glucose and 80 mM mercaptoethylamine 
(MEA) as a reducing agent.

Imaging of the samples was carried out in an epifluorescence 
microscope setup. This setup consisted of the following compo-
nents: an inverted microscope (IX71, Olympus), a 1.45-NA TIRF 
objective (U-APO 150× NA 1.45, Olympus), a 635-nm diode laser 
(Radius 635, Coherent), a 561-nm diode-pumped solid state laser 
(CrystaLaser) and an EMCCD camera (iXon 897, Andor) with 
EM gain set to 25. The epifluorescence filter setup consisted 
of a dichroic mirror (650 nm, Semrock) and an emission filter 
(692/40, Semrock). The samples were mounted in a 3D piezo stage 
(Nano-LPS100, Mad City Labs). Images were taken in a TIRF 
configuration at 20 frames per second for 14,000 frames, giving 
a total measurement time of about 12 min. Drift correction was 
accomplished by moving the field of view to a preselected fluores-
cent bead and imaging it with the 561-nm laser after every 1,000 
frames of acquisition with the 635-nm laser on. Position estimates 
of the beads were then used to move the sample back to its initial 
position at the beginning of the experiment.

Figure 2j: imaging of actin filaments. HeLa cells were cultured 
on #1.5 coverslips. After 24 h cells were washed briefly with PBS 
and fixed in two steps: a first incubation step in 0.3% glutaralde-
hyde + 0.25% Triton in cytoskeleton buffer (10 mM MES, pH 6.1, 
150 mM NaCl, 5 mM EGTA, 5 mM glucose and 5 mM MgCl2) for 
2 min at room temperature and a second step with 0.5% glutaral-
dehyde in the same buffer for 10 min at room temperature. The 
sample was treated with 0.1% NaBH4 in PBS (freshly prepared) for 
7 min at room temperature to reduce background fluorescence44. 
Samples were extensively washed with PBS and blocked with 5% 
BSA for 30 min at room temperature. Staining with phalloidin 
(Invitrogen) diluted in 5% BSA in PBS to a final concentration of 
0.25 M was done overnight at a temperature of 4 °C. Cells were 
washed using first 0.1% Tween-20 in PBS and then PBS. Imaging 
of the samples was carried out on a Leica SR-GSD microscope. 
This setup consisted of the following components: an inverted 
microscope (DMI6000 B, Leica Microsystems GmbH), a 1.47-NA 
TIRF objective (HCX PL APO 100× NA 1.47), a tube lens provid-
ing an extra factor of 1.6× in magnification, a 532-nm fiber laser 
(2RU-VFL-P-1000-532-B1R, MPB communications), a 642-nm 
fiber laser (2RU-VFL-P-1000-642-B1R, MPB Communications) 
and an EMCCD camera (iXon DU-897, Andor) with an effec-
tive EM gain of 50.6. The epifluorescence filter cube (642HP-T)  
for imaging with the 642-nm laser consisted of an excitation  
filter (zet405/642x), a dichroic mirror (t405/642rpc) and emission 
filters (et710 100lp and ET650LP). Images were taken in TIRF 
mode at 100 frames per second for 50,000 time frames, giving a 
total measurement time of about 8 min. The epifluorescence filter 
cube (532HP-T) for imaging with the 532-nm laser consisted of 
an excitation filter (zet405/532x), a dichroic mirror (t405/532rpc) 
and emission filters (et600/100m and ET550LP).

Localization and image rendering algorithms (Fig. 2). The 
recorded movies were processed by estimating the emitters’ posi-
tions, as well as the Cramer-Rao lower bounds (CRLBs) for those 
events, using a fast algorithm24 on a Quadro 5000 GPU (NVidia). 
The method for finding candidate regions of interest for position 
estimation has been documented in the literature38. Because the 
fitting algorithm is expected to perform close to the CRLB for 
each fit, these CRLBs were taken as estimates of the localization 
precision of the fits. The resulting events were filtered to reduce 
the number of false positive localizations. The parameters used for 
filtering were the estimated number of signal photons nph of the 
event (at least 250), the estimated localization precision σ (at most 
30 nm for Fig. 2a and 35 nm for Fig. 2j), the s.d. of the Gaussian 
PSF model σPSF (101–161 nm for Fig. 2a and 100–150 nm  
for Fig. 2j) and the information divergence between the PSF 
model and the data in the fitted regions of interest (at least −120). 
Figure 2 shows a comparison between the maximum-likelihood 
estimation algorithm, the least-squares estimation and a centroid 
estimation scheme for the same localization events45,46. This 
means that the centroids were estimated for the same regions of 
interest (ROI) in the raw data that contributed to the localiza-
tions in the maximum-likelihood image. For this estimation, the 
background was subtracted from the ROI image, negative pixel 
values were set to 0 and the center of mass was subsequently cal-
culated. The background value is the average of 24 edge pixels: the 
32 edge pixels of the 9 × 9 pixel ROI excluding the four highest 
and four lowest values. Least-squares fitting was done by mini-
mizing the mean square error between the observed ROI images 
and a Gaussian spot (integrated over the finite pixels) charac-
terized by the emitter position, spot width, signal photon count 
and a constant background. The mean square error function was 
minimized using a standard Levenberg-Marquardt optimization 
routine programmed in Matlab.

The filtered localizations in Figure 2j were corrected for stage 
drift using a frame-by-frame cross-correlation algorithm25. Time 
series were split into M (typically M = 20) equal parts. For each 
of these parts, a super-resolution image was made by binning 
the localizations into bins, typically 10 nm in size. Subsequently, 
the displacement of each image with respect to the first image 
was calculated, and from this displacement the drift was calcu-
lated for the time points at the boundaries of each time block. 
Finally, the average drift per time block was computed from the 
two drift estimates at the boundaries of those time blocks, and 
these were integrated to come to an estimate of the sample’s 
trajectory over time, which was subtracted from the estimated 
fluorophore locations.

The Nraw drift-corrected localizations were condensed into  
N < Nraw localization events by grouping spatially nearby locali-
zations that are less than ∆ image frames apart into single locali-
zation events, where ∆ = 5 for the data in Figure 2. ‘Nearby’ is 
defined here as having a distance less than three times the sum 
of the localization uncertainty of the two to-be-merged localiza-
tion events. For the single grouped localization, the position was 
taken to be equal to the weighted average of the localizations with 
the inverse of the variances as weights. Also, for each grouped 
localization the sum of the photon counts and background photon 
counts of the single localizations were stored, and the estimated 
variance of the grouped localization was taken to be the har-
monic mean of the single localizations’ variances. This procedure 
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improves the localization uncertainty, as the average number of 
photons per localization event now scales with the fluorescence 
on-time τon rather than with the frame time Tframe.

Figure 3: two-color imaging of tubulin filaments. Green mon-
key kidney BS-C-1 cells were fixed with formaldehyde (3%) + 
glutaraldehyde (0.1%) at room temperature in PBS for 10 min. 
The fixing step was followed by quenching with sodium boro-
hydride (0.1%) in PBS for 7 min. The fixed sample was per-
meabilized in blocking buffer (3% BSA, 0.5% Triton X-100 in 
PBS) for 10 min and stained with primary antibodies for 30 min 
in blocking buffer. The sample was rinsed with washing buffer 
(0.2% BSA, 0.1% Triton X-100 in PBS) three times for 10 min 
each. Secondary antibodies were added to the sample (diluted 
in blocking buffer) and left for 30 min at room temperature. 
The sample was then washed three times for 10 min each with 
washing buffer. The sample was postfixed for 10 min at room 
temperature with formaldehyde (3%) + glutaraldehyde (0.1%) 
and then stored in PBS at 4 °C before imaging. For two-color 
imaging of microtubules labeled with both Alexa Fluor 647 
and Alexa Fluor 750, the primary antibody was rat anti-tubulin 
(Abcam ab6160, 1:100 dilution). The secondary antibody was 
donkey anti-rat (Jackson ImmunoResearch, 712-005-153). Two 
separate labeled samples of secondary antibodies were prepared: 
one labeled with both Cy2 and Alexa Fluor 647 and the other 
labeled with Cy2 and Alexa Fluor 750, as described previously26. 
These two samples of secondary antibody were mixed in equal 
portions and used for labeling at a concentration of ~2.5 µg/ml. 
The microscope setup used for localization imaging has been 
described in detail previously47. Briefly, an inverted fluores-
cence microscope (Olympus IX71) was equipped with a 100× 
oil-immersion objective lens (Olympus, UPLANSAPO100XO) 
and an EMCCD camera (Andor DU-897) that enabled efficient 
detection of single fluorophores. A custom-built focus lock sys-
tem was used to maintain sample focus during all measurements. 
For imaging, photoswitchable Alexa Fluor 647 or Alexa Fluor 
750 was excited using 642-nm light or 752-nm light, respectively. 
Laser light at 642 nm was generated using a fiber laser (MPB 
Communications, 2RU-VFL-P- 1500-642), and laser light at  
752 nm was generated using a Krypton gas laser (Coherent, 
Innova I300C). Additionally, the microscope was capable of laser 
illumination at 488 nm, generated using an Argon-Krypton laser 
(Coherent, Innova I-70), and 561 nm, generated using a solid-
state laser (Cobalt, Jive). For detection of Alexa Fluor 647 fluo-
rescence, a dichroic mirror (Chroma, Z660DCXRU) was used 
to split excitation light from emitted fluorescence, and a band-
pass emission filter (Chroma, ET700/75) was used to filter the 
emitted signal. A dichroic mirror (Chroma, Q770DCXR) and a 
band-pass emission filter (Chroma, HQ800/60) were also used 
for fluorescence detection of Alexa Fluor 750. The data were 
reconstructed from 138,749 frames at 60 frames per second, giv-
ing a total measurement time of about 39 min (Alexa Fluor 647), 
and from 30,087 frames at 20 frames per second, giving a total 
measurement time of about 25 min (Alexa Fluor 750).

Imaging of tubulin labeled with both Alexa Fluor 647 and Alexa 
Fluor 750 was carried out in two sequential steps. First, a data 
set was obtained for the Alexa Fluor 750 channel, followed by a 
second data set for the Alexa Fluor 647 channel. Fiducial markers 
were used to register the two images, creating the final two-color 
image47. Fluorescent beads (Invitrogen, F8810) were bound to 

the sample and used as fiducial markers for drift correction and 
image registration. Prior to imaging, the sample was incubated 
with a solution of beads (2% solids stock solution diluted 1:50,000 
in PBS), which were allowed to bind to the sample for 1 min. The 
sample was then rinsed and incubated with PBS + 50 mM MgCl2, 
which caused the beads to stick to the surface of the coverglass. 
The buffer was then exchanged to imaging buffer, and the data 
set was collected.

The imaging medium consisted of a pH buffer with an enzy-
matic oxygen-scavenging system consisting of glucose, glucose 
oxidase, catalase to reduce photobleaching and a thiol to facilitate 
photoswitching. The specific composition of the imaging buffer 
was Tris (50 mM, pH 8.0), NaCl (10 mM), glucose (10% w/v),  
β-mercaptoethanol (143 mM) and the enzymatic oxygen scaveng-
ing system (1% v/v). The enzymatic oxygen-scavenging system 
stock solution (GLOX) was prepared by mixing glucose oxidase 
powder (10 mg, Sigma, G2133) with catalase (50 µl, Sigma, C100) 
in PBS (200 µl) and centrifuging the mixture at 13,000 r.p.m. for  
1 min. The data analysis used for localization microscopy and the 
nanoscale image-registration procedure, based on the positions of 
the fiducial markers, has been described in detail previously26.

Figure 4: 3D imaging of tubulin filaments. Swiss 3T3 cells were 
plated in eight-well chambers (Lab-Tek II, Nunc) overnight in 
standard DMEM phenol-free medium. Samples were washed 
twice with room-temperature PBS and then fixed with 4% PFA 
in cytoskeleton buffer (10 mM MES, 138 mM KCl, 3 mM MgCl, 
2 mM EGTA, 0.32 M sucrose) for 30 min at room temperature. 
The sample was then incubated twice for 5 min in 10 mM Tris in 
PBS. The sample was permeabilized with a 1% BSA, 0.1% Triton 
solution in PBS for 15 min. During the permeabilization the 
primary antibodies were added to an aliquot of the previously 
mentioned blocking/permeabilizing buffer at a concentration of 
12 µg/ml. After permeabilization, the sample was incubated with 
the primary antibody (Sigma T8328 anti-B tubulin) at 12 µg/ml 
in permeabilization buffer for 1 h at room temperature on an 
orbital shaker operating at a slow speed. The sample was then 
washed three times for 5 min each with 1% BSA, 0.1% Triton 
solution. Secondary antibody labeling was performed using an 
anti-mouse antibody (Jackson ImmunoResearch, 715-005-150 
anti-mouse IgG) labeled with an average of two Alexa Fluor 647 
dyes per protein. Labeling was performed at a concentration of  
15 µg/ml in permeabilization buffer for 30 min at room tempera-
ture on an orbital shaker. The sample was again washed three 
times for 5 min in PBS, postfixed for 10 min in 4% PFA and stored 
in 0.05% PFA in PBS solution until the time of imaging. Before 
imaging, samples were washed twice with 10 mM Tris for 5 min.

3D imaging was performed using a dual focal plane setup. 
To define the imaging area, we placed an adjustable slit at the 
primary image position of the microscope (Olympus IX71), 
followed by a relay lens system (focal length F = 75 mm and  
50 mm, respectively) to create a 1.5× magnification to a secondary 
image position. From there, a lens (F = 125 mm) was used to 
collimate the beam, and a 50/50 beam splitter was used to split 
the beam into two equal-length optical paths. In one pathway 
an additional lens (F = 1 m) was used to create the second focal 
plane, giving an approximately 330-nm defocused imaged as com-
pared to the unaltered beam path. The two optical paths were 
redirected by mirrors (two in each path) so that they both pass 
through an imaging lens (F = 125 mm) and image side by side 
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onto the same EMCCD camera (Andor iXon 860). An emission 
filter (FF01-692/40-25, Semrock) was placed after the F = 125 mm  
collimation lens. Excitation light was provided by a 637-nm 
diode laser (Thorlabs HL63133DG). Samples were imaged in 
an oxygen-scavenging buffer consisting of 10% (w/v) glucose,  
50 mM Tris, 10 mM NaCl, pH 8.5, glucose oxidase, catalase and 
20 mM MEA. Excitation at 637 nm (Thorlabs HL63133DG) 
was 1 kW/cm2. 50,000 images were acquired at a 100-Hz frame 
rate. A 405-nm laser (DL405-010-O, CrystaLaser) was used to 
recover Alexa Fluor 647 from the dark state, and the power was 
adjusted by hand to provide control over the active-state duty 
cycle. Position estimations were performed using maximum- 
likelihood estimation with a Poisson noise model and PSF  
models calculated from phase-retrieved pupil functions48. Pupil 
functions were retrieved for each focal plane independently. The 
parameters position x, y and z, intensity I and background val-
ues bg1 and bg2 were estimated simultaneously using both focal 
planes, where (x, y) positions in each plane were connected by a 
predetermined transform matrix, the z position was connected by 
a plane separation that was found in the phase-retrieving process 
and the intensity I was related with a premeasured ratio factor.

Further information on the experimental setup for the supple-
mentary figures is provided in Supplementary Note 7.
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