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Abstract— The resolution of an imaging system is 

usually determined by the width of its point spread function 
and is measured using the Rayleigh criterion. For most 
system, it is in the order of the imaging wavelength. 
However, super resolution techniques such as localization 
microscopy in optical and ultrasound imaging can resolve 
features an order of magnitude finer than the wavelength. 
The classical description of spatial resolution no longer 
applies and new methods need to be developed. 

In optical localization microscopy, the Fourier Ring 
Correlation has showed to be an effective and practical way 
to estimate spatial resolution for Single Molecule 
Localization Microscopy data. In this work, we wish to 
investigate how this tool can provide a direct and universal 
estimation of spatial resolution in Ultrasound Localization 
Microscopy. Moreover, we discuss the concept of spatial 
sampling in Ultrasound Localization Microscopy and 
demonstrate how the Nyquist criterion for sampling drives 
the spatial/temporal resolution tradeoff. 

We measured spatial resolution on five different datasets 
over rodent’s brain, kidney and tumor finding values 

between 11 m and 34 m for precision of localization 

between 11 m and 15 m. Eventually, we discuss from 
those in vivo datasets how spatial resolution in Ultrasound 
Localization Microscopy depends on both the localization 
precision and the total number of detected microbubbles.  

This study aims to offer a practical and theoretical 
framework for image resolution in Ultrasound Localization 
Microscopy.  

Index Terms—Ultrasound Localization Microscopy, 
Fourier Ring Correlation, Temporal and Spatial 
Resolutions, Nyquist Criterion 

I. INTRODUCTION 

THE classical definition of the resolution of an imaging system 

is its ability to distinguish close objects and is usually derived 

from the system’s Point Spread Function (PSF) using the 
Rayleigh criterion [1]. Because of diffraction, the width of the 

PSF is usually limited to the order of the imaging wavelength 

and the resolution as defined with the Rayleigh criterion is 

limited to half the imaging wavelength. Localization based 

methods like Single Molecule Localization Microscopy 

(SMLM) in optics [2]–[4] and Ultrasound Localization 

Microscopy (ULM) in ultrasound [5]–[10], differ from 

conventional imaging, they rely on the subwavelength 

localization of individual and punctual sources. This allows a 
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resolution improvement far beyond the PSF based resolution 

limits and creates a need for new methods to measure 

resolution.  

The precision at which microbubbles (MB) could be localized 

was first used as an indicator of resolution. The first studies 

primarily compared the distribution of the localizations with the 

width of a tube with flowing MB to estimate this localization 

precision [8], [11]–[13]. Other studies proposed a maximum 

localization precision based on the uncertainty of time of flights 

using the Cramer Rao lower bound [14] or by estimating the 

mean error of the localization algorithms [15]. However, it was 

later demonstrated that the resolution of the imaging system 

alone was insufficient to describe the resolution of images as 

motion artifacts [16]–[18] and acquisition times [19], [20] were 

equally important in ULM.  

Several methods were proposed directly on the final images, to 

account for image resolution in the sense of finding the smallest 

separable features. For instance, it was proposed to analyze 

features directly on images, and define the resolution using 

statistical considerations on a vessel profile [3] or the 

separability at a bifurcation [21]. Although they are technically 

adapted for in vivo imaging, they rely on a crucial step of 

selection and segmentation which in itself can introduce heavy 

biases which limit their application and generalization. 

Moreover, the vasculature is usually complex and tortuous and 

therefore misrepresented in 2D.  

In this study, we wish to build on this previous characterization 

of the resolution and to provide both practical and theoretical 

tools to describe resolution in ULM. The first concept we want 

to introduce is the Fourier Ring Correlation (FRC) to measure 

the resolution derived from the consistency of the spatial 

frequency content. The second is the notion of spatial sampling 

and the necessity to acquire enough samples to ensure adequate 

coverage of the image. Indeed, localization microscopy is not a 

conventional imaging method but rather a digital sampling and 

the issues of spatial resolution are tightly associated with the 

Shannon/Nyquist theorem. With those two notions, we propose 

two approaches to spatial resolution for ULM, a practical 

measure based on the FRC, and a theoretical model based on 

both the localization precision and on a typical sampling length. 

This length is the Nyquist dimension and represents the quality 

of the spatial coverage by the detected positions of the MB. 
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The localization error is the average precision δLoc at which MB 

can be localized on the images. It depends on many factors 

including signal to noise ratio, efficiency of clutter filters and 

precision of the localization algorithms. As the dimensions of 

the PSF for our acquisitions is similar in both directions, we 

consider axial and lateral localization error to be similar and 

combine them in a single average error. It is an ultimate limit 

for the resolution.  

Although it is still debated whether the refreshing rate of MB 

can be described as a deterministic process based on 

microvascular flow [19] or a probabilistic  process described by 

a Poisson’s distribution [20], [22], [23], it is consensual that a 

large number of samples is required to reach super resolution. 

This is best described with the Nyquist/Shannon sampling 

theorem stating that structures finer than twice the Nyquist 

dimension δNyq defined in (1) can’t be appropriately 
reconstructed [24], [25]. It is the maximum resolution 

obtainable when the whole vascular space is explored by MB. 

Seeing that a pixel is considered complete when a MB has been 

localized in it, we can consider that the size of a pixel, otherwise 

seen as the distance between two neighboring pixels, depends 

on the expected localized MB density 𝜌. Similarly to Nyquist 

sampling theory, we can consider that the maximum resolution 

attainable spatial frequency is half the normalized density 𝜌1/𝜅, 

where 𝜅 = 1,2,3 the dimension in space. It is measured on the 

whole image. 

 δNyq = 2ρ1/κ            (1) 

 

Spatial resolution R can then be modeled as the root mean 

square of the localization error and the Nyquist dimension (2).  

 R = √δLoc2 + δNyq2              (2) 

 

Nonetheless, this definition allows for a synthetic 

characterization of the tradeoff between the spatial and 

acquisition time as the Nyquist dimension is a direct function 

of MB detection and therefore of the acquisition time. 

A crucial question for image reconstruction is the choice of the 

finest grid size that allows a meaningful representation of MB 

localizations density map. We propose that this choice can be 

motivated by the calculation of both the FRC curve and the 

theoretical estimation of the resolution. We foresee that these 

considerations on the resolution could help researchers better 

understand their data and represent their images in richer and 

more relevant ways. 

II. MATERIAL & METHODS 

A. Animal experimentation 

In order to cover different imaging situations, we performed 

this study on five different datasets. The first dataset for ULM 

is the rat’s brain after craniotomy BrainInfusion [19] that we 

chose to use here for general reference as it was already 

published and is available upon request. During the acquisition, 

MB were injected at a constant and slow rate to ensure low and 

steady MB concentration. For comparison, a second rat brain 

BrainBolus was imaged with MB injected in a unique bolus. 

Acquisitions were also performed over a mouse subcutaneous 

tumor and a rat’s kidney to produce a third and fourth datasets 

Tumor and KidneyBolus. A fifth dataset was produced from the 

rat’s kidney by applying motion compensations strategies 
KidneyMoCo. 

All experimental procedures were performed in accordance 

with the European Community Council Directive and approved 

by the institutional committee C2EA-59:” Comité d’éthique en 

matière d’experimentation animale Paris Centre et Sud” under 
the protocols 2015-23 and APAFIS # 16874-

2017122914243628 v9, and by the institutional committee 34 

under the protocol APAFIS #25169-202008071746473. 

Experimental procedures were thoroughly described in [6], 

[19], [21].  Animals were anesthetized and a catheter placed in 

the jugular vein. For the rat’s brain experiments, a cranial 
window was carved to expose the naked brain which was 

immediately covered with saline and acoustic gel. For the rat’s 
kidney, a small incision was performed on the side of the animal 

so as to allow the stabilization of the organ and limit respiratory 

motions to the minimum. 

B. ULM acquisition sequence and processing 

All the datasets were acquired on a Supersonic Imagine 
ultrafast system using a 15 MHz probe (128 elements, 0.1 mm 
pitch). Acquisitions sequences consist of sending a set of 
compounded plane waves (PW) that are then beamformed using 
a Delay and Sum method and saved every second. All imaging 
parameters are summed up in Table 1. No contrast specific 
sequence was used. Frame rates are given after compounding. 
Although they were not directly measured, the MI of these 
acquisition are sufficiently low to no burst MB, and should 
therefore be within FDA standards. On the beamformed data, a 
combination of Singular Value Decomposition (SVD) filters 
(removing of the 10 first singular values per bloc of 800 frames) 
and temporal Butterworth high MB signals from surrounding 
tissue signal. 

 
 

 MB Dose (L) Injection method Frame rate (Hz) Compounding Number of frames 

BrainInfusion 400 Infusion 1000 -5:5:5 240 k 

BrainBolus 200 Bolus 1000 -5:5:5 182 k 

Tumor 100 Bolus 500 -11:2:11 30 k 

KidneyBolus 300 Bolus 1000 -5:5:5 182 k 

KidneyMoCo 300 Bolus 1000 -5:5:5 182 k 

Table 1: Injection and Imaging parameters for ULM in the different rodent datasets 
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Individual MB were localized using a radial symmetry-based 
algorithm and tracked using the simpletracker code adapted 
from the Kuhn-Munkres algorithm for assignment, which was 
developed for single particle tracking 
(https://github.com/tinevez/simpletracker). MB whose track 
was shorter than 20 points were discarded. 

KidneyMoCo is similar to KidneyBolus except that motion 

was compensated in a two steps frame to frame method using 

affine registration on tissue low pass filtered as described in 

[16]. For each bloc of 800 compounded frames, all the frames 

were registered on the central frame of the bloc. A second step 

consists in registering all the central reference frames to allow 

the adequate registration for all the frames.  

All tracks were interpolated to a 1 m distance between 

consecutive points and binned on 1 m x 1 m pixel grid as 

showed on Fig. 1. The evaluation of the Nyquist dimension was 

performed on the raw detection prior to this interpolation step. 

 

C. Fourier Ring Correlation to measure the resolution 

The FRC is a method that can be directly computed from the 

images, which makes it applicable to both in vitro and in vivo 

situations. It provides a correlation criterion on the spatial 

frequency content of the dataset to estimate the resolution. It 

was first introduced in cryo-microscopy and proved to be 

robust, independent of the imaging conditions and have since 

then become a standard method in optical nanoscopy and 

SMLM [26], [27]. FRC codes were adapted to ULM data from 

https://github.com/bionanoimaging/cellSTORM-MATLAB/. 

The original list of tracks is randomly split in two form two sub-

images Im1 and Im2. The correlation of the spatial frequency 

content is calculated as the normalized correlation of the two 

spectrum F1 and F2 along iso-spatial frequency rings r (3). 

 FRC(r) = ∑ F1(r)F2(r)∗ring√∑ |F1(r)|ring 2 ∑ |F2(r)|ring 2                    (3) 

 

This creates a curve that starts at 1 for low spatial frequencies 

that are evenly distributed in the dataset, before decreasing and 

eventually tending to 0 for high spatial frequencies that do not 

contribute more than noise with consistent information on the 

final image. 

To calculate the FRC curve as in (3), the list of tracks is 

randomly split in two as in Fig. 2(a). The random assignation is 

performed by taking odd and even numbered tracks. As the 

number of tracks is high, the randomization method does not 

affect the FRC method. The variation between random 

assignations is less than 1 m. Then, two independent sub-

images can be reconstructed from those two subsets as  

illustrated in Fig. 2(b). The 2D Fourier transforms of these sub-

images can be calculated as in Fig. 2(c). The FRC can then be 

calculated as the correlation of these two Fourier transforms 

along iso-frequency rings corresponding to the colored circles. 

The resolution can be derived from this FRC curve using 

various thresholding methods thus defining the resolution as the 

inverse of the spatial frequency where the FRC drops below the 

threshold. Fixed threshold at 0.5 and 1/7 have been used but 

more advanced methods seem to have taken their place in 

SMLM.  

Figure 1: (a) ULM over the rat’s brain with bolus of MB reconstructed from BrainBolus. (b) ULM over the rat’s brain with 
infusion of MB reconstructed from BrainInfusion. (c) ULM over the rat’s kidney with MB bolus injection reconstructed from 
KidneyBolus. (d) ULM over the rat’s kidney with bolus injection and motion correction reconstructed from KidneyMoCo. (e) 

ULM over a mouse tumor with MB bolus injection reconstructed from Tumor. Scale bar 1 mm. 
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The  threshold curve computes the maximum spatial 

frequency that allows a correlation higher than the noise 

equivalent. The bit-based curves which computes the highest 

spatial frequency that allows the collection of information 

required to fill a half bit with signal [28], [29]. Images can be 

decomposed into signal and noise. In the calculation of the FRC 

for such a decomposition is a noise correlation term which 

depends on the number of pixels N in the ring. Both threshold 

curves depend on the number of pixels within the iso frequency 

ring. It is common to use threshold curves proportional to these 

curves, and we will focus here on the and the 2 and ½ bit 

threshold curves corresponding respectively to a correlation 

higher than twice the equivalent noise level and the information  

required to fill a half bit. The 2- (in green) and ½ bit (in red) 

curves are displayed on Fig. 2(d) and resolution is determined 

as the intersection with the FRC curve. A smoothing window of 

10 points was used on the FRC curve prior to resolution 

determination. In case two or more crossing can be observed, 

we always chose the one corresponding to the lower resolution. 

III. RESULTS 

A. Resolution measurements in vivo 

The FRC curves are presented in Fig. 3, start at 1 for low 

frequencies and drop around zeros for higher frequencies. 

Sharper looking images have FRC curves extending further to 

the right, indicating that higher frequencies are present in the 

dataset. The measured resolutions with the 2 threshold 

criterions are presented in Table 2. 

  

 FRC 2 FRC ½ bit Model 

BrainInfusion 9 m 11 m 12 m 

BrainBolus 10 m 13 m 14 m 

KidneyBolus 22 m 34 m 17 m 

KidneyMoCo 20 m 25 m 19 m 

Tumor 23 m 29 m 23 m 

  
An advantage of the FRC method is that it can also be 

extended to its directional equivalent called the Fourier Line 
Correlation (FLC). Instead of correlating the two spatial 
spectrums on iso-frequency rings, it can be integrated along a 
straight line orthogonal to a given wave vector as can be seen 
on Fig. 4(a). This operation is repeated along all wave vector of 
the 2D plane to reconstruct a complete FLC image representing 
the consistency of the frequency content in a given direction as 
can be seen in Fig. 4(b) with the isolines. The values of the FLC 
along the vertical and horizontal lines enable the measurement 
of the axial and lateral resolutions as for the final ULM image.  

Figure 3: FRC curve with the 2-  and the ½ bits threshold 
curves for the four datasets: (a) BrainBolus, (b) Tumor, (c) 
KidneyBolus, and (d) KidneyMoCo. 

 

Figure 2: FRC calculation for ULM (a). Reconstruction of all 

MB tracks and separation in two equally filled subsets. (b) 

Reconstruction of the two corresponding sub-images. (c) 

Calculation of the two 2D Fourier spectrums. (d) Calculation of 

the FRC along iso-frequency rings and measure of resolution as 

the intersection with the 2- curve. 
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B. Localization Precision 

The localization precision depends on multiple factors: 

primarily on the accuracy of localization algorithm [15], [21], 

the efficiency of the clutter filtering [30], but also on 

beamforming methods [31]–[33], and can also be heavily 

impacted by the label density on each frame [19], [34] as it is 

fundamental that MB signals do not overlap.  

Given that MB can be paired and tracked on sufficiently long 

trajectories, we postulate that the localization precision can be 

estimated as the average deviation of each MB along a 

smoothed track. This smoothed track was obtained using the 

smooth function from matlab which makes a sliding average on 

5 points, in axial and lateral coordinates. Indeed, we can assume 

that the trajectories of microbubbles follow a relatively smooth 

and straight trajectory of the blood flow, aside in turbulent and 

heavily tortuous vascularization. MB tracks that were shorter 

than 20 points were discarded in the process. 

This localization precision can be measured for all MB tracks 

as described in Fig. 5(a) and the distribution of errors can be 

represented as a violin plot as in Fig. 5(b). The localization 

precision is then defined as the mean of this distribution. 

Overall, the difference between datasets is only of a few m and 

seems to be convincingly in the order of /10. 

 

C. Temporal sampling and Nyquist dimension 

A good spatial sampling is achieved with the acquisition of 

enough MB to fill the whole image with fine enough resolution.  

Fig. 6(a) shows the instantaneous MB count, which should 

be proportional to the intravascular MB concentration along 

time. Fig. 6(b) displays the cumulative MB count representing 

the total density of sample used to calculate the Nyquist 

dimension. The total MB count is of several million of 

detections for each acquisition. For all the data acquired as 

boluses, the saturation curves in Fig. 6(c) show a more rapid 

growth but also quickly a plateau whereas the infusion has a 

steadier and complete filling.  

The Nyquist dimension is plotted for the different datasets in 

Fig. 6(d). This Nyquist dimension is a direct representation of 

the acquisition time as it is a direct function of MB count, which 

is in itself a function of MB concentration and acquisition time. 

Figure 4: Adaption of the FRC for directional resolution 

estimation for the different datasets. (a) Principle of the 

Fourier Line Correlation calculation. (b) Corresponding 

FLC representation in BrainInfusion, (c) BrainBolus, (d) 

Tumor,(e) KidneyBolus, and (f) KidneyMoCo. 

Figure 5: Estimation of the localization precision on in vivo 

data. (a) Principle of track-based localization estimation in 

BrainInfusion. (b) Localization precision estimated for all the 

datasets and represented as a violin plot with the corresponding 

mean written on top. 
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It is worth noting than in all the conditions, reaching the 10 

m mark took more than a full minute while it takes longer and 

longer to reach for smaller Nyquist dimension. Still, reaching 

small Nyquist dimension does not grant a high resolution as the 

limiting factor is ultimately the localization precision. 

 

D. Fundamental spatial/temporal resolution tradeoff  

To explore the link between the spatial resolution and 

acquisition time, we can compute the resolution as measured 

with the FRC calculated at different time points and represent 

it as a function of the resolution we modeled in (2). Both the 

resolutions measured with the 2 (in green) and the ½ bit (in 

red) thresholds are represented in Fig. 7. All the final 

resolutions as measured and predicted can be found in Table 2. 

Globally, all curves are aligned around the first diagonal, 

indicating an overall relevance for the modelisation, especially 

for the two brain datasets in Fig. 7(a) and (b), where there is no 

motion.  

 The resolution measured with the ½ bit threshold and the 2 

threshold seems to follow parallel temporal behaviors even 

though the 2 is slightly but consistently smaller. In the other 

datasets, the predicted resolution is strongly underestimated as 

it does not account for motions. In the KidneyMoCo dataset in 

Fig. 7(c), where motions were corrected, the prediction is closer 

although still a little underestimated. For the tumor in Fig. 7(d), 

the modeled resolution is slightly underestimated.  

All these examples demonstrate how the FRC and Nyquist 

dimension can be used in practice to measure and predict the 

resolution of an ULM acquisition. 

IV. DISCUSSION 

 The FRC curve is a simple yet effective way to measure 

spatial resolution in ULM. It provides a reading richer than the 

localization precision or individual vessel segmentation as it 

characterizes the final image in its globality. The FRC measure 

does not depend on the imaging system, nor on the operator but 

on the choice of the threshold. In optical nanoscopy, the 

question of the threshold has long been debated and is to this 

day still not consensual. The first studies proposed to use fixed 

arbitrary thresholds at 0.5 or 0.2 although they have been shown 

to overestimate the resolution [28]. The  curves and bit based 

methods where later introduced [28].  

Nonetheless, the FRC is quite versatile and can be extended 

in various ways. In particular, we showed that the FLC could 

provide resolution estimated in all directions. It is important as 

ultrasound imaging is often anisotropic. The FRC can also be 

easily implemented in 3D by correlating along iso-frequency 

shells instead of rings, and is often refers to as Fourier Shell 

Correlation (FSC). 

Moreover, FRC is not really specific to ULM. For any 

imaging modality that can produce two independent images or 

two independent realization of a media/sample, the FRC curve 

Figure 7: Relation between FRC measurement of resolution 
and the Nyquist dimension. (a) Theoretical representation of the 
resolution tradeoff with a curve following (2). (b) – (d), plotting 
of the FRC resolution for different acquisition times represented 
as a function of the corresponding Nyquist dimension in the 
different datasets. Points are separated by 2000 new detections. 

Figure 6: Temporal aspect of the different acquisitions in 
ULM. (a) Instantaneous MB count along time per bloc of 1s. 
(b) Cumulated MB count in time. (c) Saturation curves 
corresponding to the total area covered by MB detections on 
the image along time. (d) Corresponding Nyquist dimension 
calculated as in (1). 
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could be computed and should provide a resolution 

measurement. In particular, it could be applied to ultrafast 

Doppler or any imaging modality. 

It is also important to keep in mind that the FRC is a tool to 

estimate the resolution with advantages and drawbacks, and in 

some conditions, it will underperform. For instance, the 

measurement can easily be biased for very under-sampled data 

or when strong and local artefacts appear. This can create 

spurious correlations which may under or overestimate the 

resolution reading. It can appear because of aliasing or 

quantization errors, or because of some processing effects. A 

good indicator of a clean measurement is to have a regular FRC 

curve without strong and irregular peaks. 

We also introduced a synthetic model for spatial resolution 

that can be summarized with the localization precision and the 

Nyquist dimension. It describes the resolution as the error 

associated with the complete ULM process which is classically 

the root mean square of all the sources of errors. Here, we 

accounted for the localization error via the localization 

precision, and a sampling error via the Nyquist dimension, but 

the model could be extended to describe a motion-based error, 

an aberration-based error, etc…  
It should be noted than a hypothesis for the Nyquist 

dimension is that the vasculature is considered homogeneous. 

If the vasculature is non-homogeneous, for instance in the 

kidney, where the middle of the medullar area is almost not 

vascularized, this can introduce an overestimation of the 

Nyquist dimension and therefore of the modeled resolution.  

Still, this synthetic form allows for an expression of the trade-

off between spatial and temporal resolution in ULM as the 

acquisition time is driving the Nyquist dimension.  

V. CONCLUSION 

In this study, we proposed a practical and theoretical 
framework for the description spatial resolution in Ultrasound 
Localization Microscopy. We adapted the Fourier Ring 
Correlation to the field of ultrasound as a simple and general 
tool to adapt the notion of resolution for localization 
microscopy data, directly on in vivo images and independently 
of the operator and imaging system. Because of its simplicity 
and versatility, we foresee that the FRC can become a valuable 
tool for ultrasound imaging in general as it can provide a simple 
measure for image resolution not only for ULM but to any 
imaging modality.  

Moreover, the simplicity and generality of the model we 
introduced can serve as a base for more advanced descriptions 
of spatial and temporal resolution in ULM. 
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