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Resumo

A hospitalização de doentes com insuficiência cardíaca tem cada vez maior peso nas despesas
públicas, estima-se que no mundo inteiro existam cerca de 23 milhões de doentes que sofrem
de insuficiência cardíaca, em Portugal serão aproximadamente 260,000. Os idosos são os mais
afetados e com a esperança média de vida e os perfis de risco (diabetes e obesidade, por exemplo)
a aumentar estima-se que estes numeros continuem a crescer.

A medição da impedância corporal está cada vez mais presente em ambiente clínico para
avaliar a hemodinâmica. O risco de descompensação em doentes de insuficiência cardíaca pode
ser avaliado com recurso à medição da impedância toráxica.

A progressão da doença está marcada por uma retenção gradual de fluído nos pulmões, muito
antes dos sintomas de doença serem visíveis, é assim importance haver uma monitorização cons-
tante que permita detectar a acumulação de fluídos muito antes da hospitalização para que estes
casos possam ser tratados.

No mercado não existem soluções de baixo custo e portáteis que permitam ao doente comum
auto-diagnosticar-se de forma continua sem a necessidade de se deslocar a um hospital. Este tra-
balho propõe uma solução de custo reduzido, baixo consumo e pequenas dimensões (permitindo
a portabilidade) que pode ser controlada através de um dispositivo móvel, por exemplo um smart-
phone.

Com esse intuito foi desenvolvido um sistema electrónico à volta dos Pandlets, que é uma
plataforma desenvolvida pela Fraunhofer AICOS para medir o comportamento humano e o con-
texto ambiental. Este sistema é constítuido por um bloco responsável por gerar a corrente a ser
injectada, outro bloco responsável pela aquisição do sinal e ainda um circuito de potência que
permite que a alimentação do sistema seja feita através de uma simples bateria recarregável.

Ao criar uma comunicação Bluetooth Low Energy entre o dispositivo e um smartphone per-
mite que um utilizador comum controle a medição de impedância através de uma App Android.

A solução desenvolvida apresenta um baixo consumo permitindo assim ser transportada no
dia-a-dia pelo utilizador e trata-se de uma solução de baixo custo relativamente às outras presentes
no mercado.

Os resultados apresentados nos testes realizados permitiram validar a viabilidade desta solução
para a medição de impedância. No futuro serão implementadas as funções para a extracção dos
parametros de Cole podem vir a ser implementados permitindo no futuro esta solução ser testada
e implementada em ambiente clínico, para que os cardiologistas possam validar esta solução.
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Abstract

The hospitalization of patients with Heart Failure represents an increasing burden for the health-
care system, more than 23 million worldwide suffer from HF and in Portugal there are approxi-
mately 260,000. Living longer with multiple chronic diseases such as diabetes, kidney disease and
heart failure is now the norm and not the exception and explains why increases in life expectancy
among older adults are slowing.

Measuring body impedance is becoming increasingly available in the clinical setting as a tool
for assessing hemodynamics, and can be used to measure the thoracic impedance in order to
identify patients at risk for decompensation of heart failure.

The disease progression is marked by a gradual retention of fluid in the lungs, long before
symptoms of disease worsening occur. In order to prevent this significant mortality, morbidity and
healthcare expenditures it is necessary to monitor patients at risk, in a way to detect congestion
episodes before worsening of symptoms that will lead to hospitalization.

There is not available in the market a portable and low-cost solutions that allows the commun
user to auto-diagnose in a continuous way, not needing to go to the hospital . This work proposes
a low-cost, low-power and small size solution (allowing the portability) that can be controlled by
a mobile device, for example a smartphone.

With that in mind, an electronic system was developed built around Pandlets that is a platform
developed by Fraunhofer AICOS to measure human behaviour and environmental context. This
system is composed by a block responsible for generating a current to be injected, and another
block to acquire the signal. A power circuit was also developed allowing the system to be supplied
by a simple rechargeable battery.

The Smartphone uses Bluetooth Low Energy to comunicate with the device and to start the
measurement procedure and estimate the thoracic impedance an Android App was created.

It can be observed that the proposed solution has a low power consumption so it can be carried
by the user on a daily basis and when compared with the other solutions available on the market
has a low cost of production.

The results of the tests performed help us to validate bioelectrical measurement method, some
fields like the extraction of Cole Parameters can be implemented in the future, so this solution can
be tested in a clinical setting, thus the cardiologists should validate the final solution.
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Chapter 1

Introduction

1.1 Context

The healthcare system is overloaded with patients hospitalized due to Heart Failure (HF); in the

United States of America (USA) more than 5.8 million suffer from HF and over 23 million world-

wide. Every year more than 550,000 cases are diagnosed in the USA [17]. In Portugal there are

approximately 260,000 individuals suffering from Heart Failure [18]. Elderly people are the most

affected by HF problems, and considering the worsening risk factor profile for HF in the popula-

tion (e.g. diabetes, hypertension), aging of the population (due to the longer life span), and the

increasing HF prevalence, it is likely that these numbers will increase [19].

HF represents also a considerable burden to the healthcare system being responsible for costs

of more than $39 billion annually in the USA. In developed countries, HF hospitalization repre-

sents 1-2% of all healthcare expenditures [17].

The American Heart Association defines Heart Failure as “a chronic, progressive condition

in which the heart muscle is unable to pump enough blood through to meet the body’s needs for

blood and oxygen”; in a more simple way it means that the heart cannot keep the pace of the blood

circulation.

Within the Heart Failure we can distinguish three different types:

• Left-Sided (LS) heart failure – when heart is pumping, it transports oxygen-rich blood from

the lungs to the left atrium, then on to the left ventricle, which distributes it for the whole

body. The pumping power of the heart comes mostly from the left ventricle so it is larger

than the other chambers and essential for all the process. We can also distinguish the LS

heart failure in two different types:

– Systolic Failure – The left ventricle is not able to contract normally, so the heart cannot

pump with enough force to push enough blood into circulation.

– Diastolic Failure – The left ventricle loses the ability to relax normally and the heart

cannot fill with blood during the period between each beat.

1



2 Introduction

• Right Sided (RS) heart failure – the blood returns to the heart through the veins through the

right atrium into the right ventricle. The blood is pumped into the lungs by the right ventricle

to be provided with oxygen. The RS heart failure usually occurs due to LS heart failure. If

the left ventricle fails, the pressure of the fluid increases which is transferred to the lungs,

damaging the heart’s right side. When this side loses the pump power, the blood goes back

in the body’s veins, causing swelling or congestion in the legs, ankles and swelling within

the abdomen.

• Congestive Heart Failure (CHF) – if the blood flow out of the heart slows down, the blood

coming back to the heart from the veins backs up, causing congestion in the body’s tissues.

Often swelling (edema) results. Sometimes fluid accumulates in the lungs and interferes

with breathing. This is called pulmonary edema.

This thesis focuses on the CHF, monitoring the fluid status of the body. Current guidelines for

assessing the fluid status of patients with heart failure include subjective physical findings, which

often occur late in decompensation, and objective pulmonary artery catheter measurements, whose

use is controversial in patients with heart failure [20].

1.2 Motivation

Measuring the impedance of the human body is becoming increasingly available in the clinical

setting as a tool for assessing hemodynamics and volume status [21], and can be used to measure

the thoracic impedance in order to identify patients at risk for decompensation of heart failure.

The study will be carried in association with Fraunhofer Portugal Research Center for As-

sistive Information and Communication Solutions (AICOS) and will be part of the international

project SmartBEAT that focuses on developing useful and realistic services that reduce the need

for hospital admissions and institutional care, and encourages early discharge.

The disease progression is marked by a gradual retention of fluid in the lungs, long before

symptoms of disease worsening occur [22]. When patients are admitted at the hospitals with CHF

they are usually suffering from symptoms such as dyspnea and edema and are treated with diuretic

therapy.

In order to prevent this significant mortality, morbidity and healthcare expenditures it is nec-

essary to monitor patients at risk, in a way that the fluid overload is detected long before the

hospitalization.

1.3 Objectives

The aim of this study is to explore methods to detect fluid retention in the lungs by measuring the

thoracic impedance, so it is possible to monitor Congestion Heart Failure patients, and physicians

can early detect acute episodes.
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To acquire the data it will be measured the thoracic impedance so it can be determined the

accumulation of fluid in the lungs. Materials, such as blood or muscle, have a higher conductivity

in comparison to bones or fat [23], and a lung filled with liquid has a higher conductivity than an

air-filled one.

The purpose of the work is to develop a small and portable device to extract thoracic impedance

of the patient. The solution should be low cost and friendly to use so it can be operated by a big

range of users and also have a low power consumption for portable use.

The possibility that a patient can monitor his own body fluid by himself at home and be ob-

served remotely by a doctor, would help to reduce drastically the number of hospitalizations and,

consequently, improve the quality of live of people diagnosed with heart failure.

1.4 Contributions

The main contributions of this thesis are:

• Hardware and Firmware - Using the Magnitude-Ratio and Phase-Difference Detection (MR-

PDD) method initially proposed by [2] and explained later in this document a structure will

be constructed around the pandlets platform capable of measuring the thoracic impedance;

• Implementation of a bluetooth low energy communication - This will allow the use of a

wireless connection capable of remote and real time monitoring by connecting the measur-

ing device with a smartphone;

• Development of an Android application - With a user-friendly android app it will be possible

to send and receive data from the measuring device allowing a continuous monitorring;

• Integration in the pandlets platform - By developing the measurement structure around pan-

dlets, in the future this project could be integrated in a multi-parameter measuring applica-

tion, since this platform allows to measure a wide number of variables.

1.5 Structure of the Document

Following this introduction a review of the literature regarding the bioelectrical impedance mea-

surement will be made. Analysing both Bioelectrical Impedance Monitoring and Measurement

Methods. Still in Chapter 2, follows a brief study of the solutions available in the market as also

the other options for detecting HF events. The current Low-Power Technologies will also be pre-

viewed since one of the objectives of this work is to develop a device capable of communicate

with a smartphone. In the last section of this Chapter a summary will be made.

After understanding how the Bioelectrical Impedance can be measured, in Chapter 3 the ar-

chitecture used to develop the measurement device is presented, following in Chapter 4 the imple-

mentation of this architecture is explained.



4 Introduction

The results of the work performed will be presented in Chapter 5, by testing the measurement

device in a controlled environment and discussing the advantages of the features introduced by

this thesis.

The conclusions and what can still be done to improve this study will be described in the last

Chapter.



Chapter 2

State of the Art

In this chapter the state of the art regarding bioelectrical impedance measurement is presented.

The different methods for bioelectrical impedance monitoring will be reviewed and advantages

and disadvantages of these impedance methods will be discussed.

Since the goal is to develop a low-cost and low-power device capable of communicate with

a mobile equipment, the current commercial solutions as well as different methods to measure

impedance will be analysed.

2.1 Introduction to Bioelectrical Impedance

The human body is a biological system with a very complex structure composed by several liv-

ing tissues [24]. Therefore the determination of the body composition and hemodynamics with

noninvasive techniques represents a big challenge nowadays.

As referred before, materials, such as blood or muscle, have a higher conductivity in compar-

ison to bones or fat and a lung filled with air has a lower conductivity than one filled with fluid.

The biological cells, containing Intracellular Fluid (ICF), cell membranes with or without cell

wall, are suspended in the Extracellular Fluids (ECF) and show a frequency behavior similar to

an alternating electrical signal. If an alternate current is applied to the biological cells and tissues,

a complex bioelectrical impedance, also known as bioimpedance, is produced which depends on

tissue composition and the frequency of the applied signal [25].

The ECF and ICF are considered electrically resistive, whereas the cellular membrane, due

to its lipid layer, has an isolating (capacitive) behavior, figure 2.1. According to that, the injected

current will flow differently for low and high frequencies: low frequency current only flows around

the cells through the ECF (Re), whereas at high frequency current will also pass through the cell

membranes and the ICF (Cm, Ri) [26].

The multifrequency studies provide a lot more information about the tissue properties which

help in a better tissue characterization. Therefore the multifrequency impedance analysis is found

very promising for noninvasive investigation of pathologies and physiological status.

5
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Figure 2.1: Low and high frequency current flow through body tissue. (In: [1])

2.2 Cole Equation

A very common practice within the multi-frequency bioelectrical impedance measurement is the

fitting of the measured data to the Cole equation, using the Cole plot for data visualization and

Cole parameters for data analysis.

Introduced by Kenneth S. Cole, in 1940 [27], the Cole equation is a mathematical equation

that fits the experimentally obtained bioelectrical impedance measurements.

Using the Cole model, the frequency dependent impedance is described as follows:

Z(ω) =
Re ·

(

Ri +
1

jωCm

)

Re +Ri +
1

jωCm

=

(

Re

Ri +Re

)

·

(

Ri +
Re

1+ jωCm(Ri +Re)

)

(2.1)

with the following real and imaginary part:

Re{Z}=
Re +ω2C2

mRiRe(Ri +Re)

1+ω2C2
m(Ri +Re)2 (2.2a)

Im{Z}=
ωCmR2

e

1+ω2C2
m(Ri +Re)2 (2.2b)

The previously shown frequency dependent impedance would represent a semicircle in a com-

plex frequency locus plot. Since real measurements show a depressed semicircle, a heuristic fac-

tor α as a tissue-specific dispersion parameter was introduced [28]. In that way, the electrical

behaviour of biological tissue can be described completely by the Cole equation [29]:

Z(ω) = R∞ +
R0 −R∞

1+
(

j ω
ωc

)α (2.3)

where R0 and R∞ are the resistances at very low and high frequencies, respectively, ωc is the

characteristic angular frequency of the system and α is a dimensionless exponent .

2.3 Cole Parameter Extraction

The biolectrical impedance monitoring of a biological structure is normally obtained by measuring

the real/resistive (R) and imaginary/reactive (X) impedance components, or the module (Z) and
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phase angle (θ ) [30].

As it can be observed in section 2.2, the Cole parameters (R0,R∞,α and τ) are the base of the

multi-frequency bioelectrical impedance measurement and fitting the complex measurements data

onto the Cole equation and then extracting the Cole parameters has become a common practice in

multi-frequency bioelectrical impedance measurement applications [3].

When extracting the Cole parameters, it is usual to fit a semi-circular arc in the complex plane

called the Cole plot, in which the resistive part R (on the horizontal axis) is plotted against the

conjugate part of the reactance X (on the vertical axis). The fitted semi-circle travels through the

original measured data according to certain rules from the right side to the left side along the locus

as the frequency increases [27]. Cole plot is only an impedance plot, frequency information is not

provided. R0 and R∞ are the intersections of the arc and the horizontal axis, α is a measure of the

position of the center of the circle below the horizontal axis, τ corresponds to the inverse of the

angular frequency ω of the impedance with highest reactance [31].

Figure 2.2: Cole Plot example (In: [2])

In order to estimate these parameters and having a curve and its mathematical function that

approximates correctly the data points, a curve fitting technique needs to be applied. Regression

analysis, to be more specific the non-linear least squares method is the most common approach

to estimate the best coefficients of a defined non-linear model that fits the measured point to the

curve described by the model [3]. The method tries to minimize the summed squared of the error

between the data series and the fitted model as indicated:

min
N

∑
i=1

e2
i =

N

∑
i=1

(yi − yi)
2 (2.4)

where ei is the error of the i-th data point, and N is the total number of data points included in the

fit.

By this relationship jα = cos
(

α π
2

)

, it is possible to decompose the complex Z from the Cole

equation into the real part, the resistance R and imaginary part, the reactance X , in the following
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formulas:

R(ω) = R∞ +
(R0 −R∞)

(

1+(ωτ)αcos
(

α π
2

))

1+2(ωτ)αcos
(

α π
2

)

+(ωτ)2α
(2.5a)

X(ω) =− j
(R0 −R∞)1+(ωτ)αsin

(

α π
2

)

1+2(ωτ)αcos
(

α π
2

)

+(ωτ)2α
(2.5b)

Using the natural frequency as independent variable, for curve fitting we can estimate the Cole

parameters R0 R∞, τ and α as the model coefficients.

The initial values are necessary and can be estimated from R(ω) and X(ω) planes of original

data following the next method [3]:

Figure 2.3: Regression lines for initial value estimation. (In: [3])

If the regression line RLF is calculated as the line that fits the low frequency points of R, α can

be estimated according to its slope:

φ =−arctg(m) (2.6a)

α =
(π

2
−φ

)

·
2
π

(2.6b)

R0 can be estimated as the point where the line RLF crosses the R axis, n, and R∞ can be

estimated as the point where the regression line at high frequencies RHF crosses the R axis, q.
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τ can be estimated from X(ω), taking into account that the maximum reactance is found at the

characteristic frequency ωC, and τ = 1/ωC.

Since ECF and ICF contains ions, they are conducting and the measurements of their volume

is based on their resistance or their impedance as celll membranes may act as capacitors at low

and intermediate frequencies, this assumption allow us to calculate ECF and ICF as function of

the Cole parameters [32].

2.4 Bioelectrical Impedance Monitoring Methods

Electrical impedance can be obtained by measuring the voltage developed across a particular part

of an object when injecting a certain constant current signal to the object. Mathematically, the

impedance (Z) is calculated dividing the voltage signal measured (V ) by the current signal injected

(I). Z is considered as a complex quantity, and it will have a phase angle (θ ) depending on the

tissue properties.

Many techniques are being used to study the frequency response of the electrical impedance

of biological tissues; the following section presents the most commonly used in the literature.

2.4.1 Bioelectrical Impedance Analysis

The bioelectrical impedance Z 6 (θ) is calculated by dividing the voltage measured V 6 (θ1) by

applied current I 6 (θ2) as shown in:

Z 6 (θ) =
V 6 (θ1)

I 6 (θ2)
(2.7)

In Bioelectrical Impedance Analysis (BIA) the body composition of a biological object is anal-

ysed by measuring its bioelectrical impedance. As explained before a constant sinusoidal current is

injected to the subject under test, the voltage developed is measured using a four-electrode method,

then the bioelectrical impedance is calculated. A constant alternate current is injected through the

outer electrodes called current electrodes and the inner electrodes measure the voltage, known as

voltage electrodes [33], as depicted in figure 2.4.

Figure 2.4: Impedance measurement using four-electrode technique. (In: [4])
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A study on BIA was initiated in 1981 by Dr. William Mills, M.D., an Admiral in the US

Navy who assessed the hydration status of soldiers in high altitude cold weather environments. In

1969 Hoffer et al. [34] published a paper indicating a procedure to predict the total body water by

measuring the hand to foot whole body BIA (figure 2.5). Lukaski et al. [35] shortly after published

the first paper on BIA and body composition.

Figure 2.5: BIA current injection and voltage measurement schematic. (In: [4])

2.4.2 Electrical Impedance Spectroscopy

In this method the same principles explained before are applied, however in this technique the

complex electrical impedance (Z( f )) and its phase angle (θ( f )) of a subject under test are cal-

culated at different frequency points by measuring the voltage (V ( f )) developed for a constant

current injection (I( f )).

Electrical Impedance Spectroscopy (EIS) is the most popular method for monitoring the bio-

electrical impedance in several fields when compared with the other methods as it provides the

impedance variations over a range of frequencies. Also EIS has been studied for the noninvasive

characterization of biological as well as nonbiological materials in the frequency domain [4].

By studying the frequency response of the electrical impedance of any material the structural

and compositional properties can be obtained as well as the frequency response of the material

properties which can be potentially used for nondestructive material characterization.

Bioelectrical impedance only requires the placement of electrodes on the body in the clas-

sic tetrapolar arrangement on hand/wrist and foot/ankle for whole body measurement or in other

positions for segmental measurements.

Using the impedance measurement over the entire spectrum of frequencies, the modeling pro-

cedure involves fitting the spectral data to the Cole equation using nonlinear curve fitting [27].

Thus the Cole model terms are generated, including Re (resistance associated with the ECF); Ri
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(resistance associated with the ICF); Cm (cell membrane capacitance); a heuristic factor (exponent

α) that takes into account the distribution effects due to the tissue characteristics.

Cole model terms are then applied to equations derived from the Hanai mixture theory [36]

which is based on the notion that the body is a conducting medium of water, electrolytes, and

lean tissue, in addition to nonconducting material within it (eg, bone and fat). From this we can

calculate ECF and ICF.

2.4.3 Impedance Plethysmography

Impedance Plethysmography (IPG) is an electrical impedance based noninvasive medical diag-

nostic procedure which measures small changes in the blood volume in terms of its bioelectrical

impedance of a body part (figure 2.6), to study the tissue health condition of the patient.

Figure 2.6: Volume change in body part due to blood pressure pulse and corresponding impedance
variation due to the volume change. (In: [4])

A low amplitude, low frequency (50 kHz) alternate current is applied through the outer elec-

trodes and the change in electrical impedance is measured across the inner electrodes, considering

that is being used a four electrode placement technique.

IPG was proposed in early 1950’s by Nyboer [37], by introducing the equations to evaluate

volumetric change in the body parts in terms of impedance. Later a formula was proposed by

Swanson and Webster [38], which is simpler both mathematically and computationally.

2.4.4 Impedance Cardiography

Impedance Cardiography (ICG) also referred to as transthoracic electrical bioimpedance, is a tech-

nology which calculates the changes in blood volume in transthoracic region over time, using the

changes in transthoracic impedance [39] called thoracic electrical bioimpedance.

In the clinical setting, an alternating current (I), of constant magnitude, low amplitude (IRMS =

1 - 4 mA) and frequency range from 30 to 100 kHz is injected through the thoracic volume, and

the voltage change with each systole is measured. This change in voltage results in a change in

thoracic impedance.
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Electrodes are placed in an eight-electrode configuration (figure 2.7), where the current is

introduced by electrodes placed on both sides of the neck and both sides of the lower thorax.

The potential difference or voltage drop (E), is measured by another pair of electrodes below the

current injecting electrodes on the neck, and another pair above the current injecting electrodes on

the lower thorax.

Figure 2.7: Impedance measurement with band electrode. (In: [4])

When this constant magnitude current is applied to the thorax, the voltage is proportional to

the measured impedance. The overall thoracic impedance is called base impedance (Z0). Z0 is

composed by the sum of weighted means of the various tissues impedance of the thorax including,

fat, cardiac and skeletal muscle, lung, vascular tissue, bone, and the ratio of air to liquids in the

thorax. The changes in impedance (∆Z) correspond to both ventilation and pulsatile blood flow.

Analyzing Z0 and ∆Z, the stroke volume, cardiac volume, and several hemodynamic parame-

ters are calculated for noninvasive diagnosis of the heart and circulatory system.

2.4.5 Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) [40], a computed tomography image reconstruction tech-

nique, is a nonlinear inverse problem in which the electrical conductivity or resistivity of a con-

duction domain (Ω) is reconstructed from the surface potentials developed by a constant current

signal injected, figure 2.8, at the domain boundary (δΩ).
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Figure 2.8: A closed domain of interest under EIT scanning with a constant current injection
through driving electrodes and boundary potential measurement on sensing electrodes. (In: [4])

A low frequency, constant amplitude sinusoidal current is injected to the boundary (δΩ) of

the object domain (Ω) to be imaged within a volume conductor surrounded by an array of surface

electrodes and the boundary potentials are measured using an electronic instrumentation [41].

The pair of electrodes called sensing electrodes collect the voltage data that is created by the

current signal injected by the pair of electrodes called driving electrodes. Boundary data is then

send to the PC that processes the data, constructing the spatial distribution of the domain under

test using an image reconstruction algorithm.

EIT is a low cost, portable, fast, noninvasive, nonionizing and radiation free technique, and

hence is found advantageous in several fields of applications compared to the other computed

tomographic methods.

2.5 Bioelectrical Impedance Measurement Methods

The bioelectrical impedance is calculated as the complex division of the voltage measured over

the tissue under test by the reference injected current. With the increasingly wide uses of the bio-

electrical impedance techniques, a low cost, low power consumption, and capable of performing

real-time measurement with adequate accuracy is highly desirable.

The two most commonly used methods for measuring the bioelectrical impedance of biologi-

cal tissue are auto balancing bridge method and quadrature demodulation. More recently, a phase

sensitive detector method that is gaining popularity with the advancement of the digital signal pro-

cessing; another novel method uses the magnitude-ratio and phase-difference detection technique.
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2.5.1 Auto Balancing Bridge Method

The current Ix flowing through the Device Under Test (DUT) (figure 2.9), flows also through the

range resistor (Rr), by operation of the I-V converter. The potential at the Low point is maintained

at zero volts (thus called a virtual ground), because the current through Rr balances with the one

flowing through the DUT. The impedance of the DUT is calculated using the voltage measured at

the High terminal (Vx) and across Rr (Vr) [5].

Figure 2.9: Auto-balancing bridge method circuit. (In: [5])

Another method known as the bridge method was traditionally the most popular method with

the major advantage of high measurement resolution and accuracy. However, that method was

time-consuming due to the need for bridge balance and not well suited in situations where tissue

impedance changes in time due to ongoing physiological processes. That is the reason of the wide

use of the auto balancing bridge method, instead of the traditional bridge method.

2.5.2 Analog Quadrature Demodulation

The classical Analog Quadrature Demodulation (AQD) method, as can be observed in figure 2.10,

is based on phase coherent demodulation and needs two channels of well-matched in-phase (I) and

quadrature (Q) references. In AQD, the need for carefully avoiding any mismatch between the I

and Q channels, which will cause large phase errors, may cause some complexity in the circuit.

Figure 2.10: Block diagram of the conventional analog quadrature demodulation (AQD) method
based on tetropolar structure. (In: [2])
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With the development of Digital Signal Processing (DSP) techniques, direct sampling of the

signals at the carrier frequency has become possible in recent years, which enables the evolution

of AQD to Digital Quadrature Demodulation (DQD). DQD no longer requires the analog I and

Q references. However, the need for high-speed Analog-to-Digital Converters (ADCs) and DSPs

often leads to high costs and high power consumption because of the high sampling rate [2].

2.5.3 Phase Sensitive Detector

Nowadays Phase Sensitive Detector (PSD) is gaining popularity. PSD is a technique used in

instrumentation and measurement systems, to extract the characteristics of a signal buried in noises

[6]. One of the many applications is in the electrical impedance tomography systems, to recover

the amplitude and phase information of the measured sinusoidal voltage signal, which could be

buried in random noise due to the many disturbances, explained before.

Figure 2.11: Block diagram of an analogue PSD circuit. (In: [6])

Traditionally, an analogue PSD circuit (figure 2.11), comprises a switching amplifier (whose

gain is switched between +B and −B) followed by a low-pass filter. Switching of the amplifier

gain is controlled by a reference signal having the same frequency ( fc) as that of the input signal,

vin, whose amplitude A is the information to be extracted. The two signals, input and reference,

have to be phase-locked, with phase difference Φ, which is not necessarily zero. The switching

amplifier effectively acts as a synchronous full-wave rectifier for vin, or as an analogue multi-

plier multiplying the input signal vin with the square-wave reference signal. The low-pass filter,

following the switching amplifier, extracts vout , the dc component of the amplifier’s output signal.

2.5.4 Magnitude-ratio and phase-difference detection

A novel method was introduced by Yuxiang Yang et al. [2] which provides a compact and cost-

effective alternative for real-time impedance measurements. The principle of the Magnitude-Ratio

and Phase-Difference Detection (MRPDD) can be observed in figure 2.12.



16 State of the Art

Figure 2.12: Impedance measurement principle based on the magnitude-ratio and phase-difference
detection (MRPDD) method. (In: [2])

ZX represents the impedance of the tissue under measurement, and RS is a reference resistor

connected in series with ZX . A sinusoidal excitation current I0 is injected through ZX and RS via

two current electrodes Hc and Lc. A pair of voltage electrodes Hv and Lv detects the voltage drop

across ZX (VZ) and then is amplified by instrumentation amplifier IA1, while the voltage drop

across RS (VS) is amplified by a similar instrumentation amplifier IA2. The two output voltages of

IA1 and IA2 can be expressed as (2.8), assuming that the input impedances of IA1 and IA2 are

infinite and there will be no current flowing through the two voltage electrodes:







VAZ = A1 ·VZ = A1 · I0 ·ZX

VAS = A2 ·VS = A2 · I0 ·RS

(2.8)

where A1 and A2 are the gains of IA1 and IA2, respectively.

The Gain-Phase Detector (GPD) is responsible to compare VAZ and VAS, outputing two DC

voltages proportional to magnitude ratio |K| and phase difference θ of the input voltages:







|K|= |VAZ |
|VAS|

θ = (θAZ −θAS)
(2.9)

By solving simultaneously both equations systems, we obtain the unknown impedance ZX :

ZX = RS ·
VZ

VS

= RS ·
A2

A1
·
VAZ

VAS

= RS ·
A2

A1
· |K|6 θ (2.10)

If the IA1 and IA2 were constructed identically and have an infinite input impedance, we

assum the gain ratio as A2/A1 = 1. Then the previous equation is simplified and the originally

measured impedance Zm is obtained as:

Zm = RS · |K|6 θ (2.11)
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where RS is a standard resistor with known value.

2.6 Commercial Solutions

As seen before Bioelectrical Impedance Monitoring is gaining force in the clinical setting for

monitoring body composition and hemodynamics noninvasively. This allows professional medical

clinicians to monitor the status of the individual and prevent hospitalization.

Next is presented a review of some of those available bioelectrical impedance monitoring

solutions on the market.

2.6.1 BioZ

Created by CardioDynamics [42] BioZ (figure 2.13), "is an innovative noninvasive ICG device that

provides hemodynamic parameters based on the measurement of thoracic electrical bioimpedance.

Specifically, the BioZ allows for assessment of a patient’s hemodynamic status and ventricular

function by determining twelve (12) hemodynamic parameters as well as four (4) indexed param-

eters".

Trends in the patient’s status can be observed by the operator, measure blood pressure inde-

pendently, view and store the collected data and waveforms, connect the data to a PC.

As presented before, it implements an ICG method that measures the change in impedance by

injecting a high frequency (60 kHz minimum), low amplitude (4.0 mA RMS maximum) alternat-

ing electrical current through the thorax.

By detecting and measuring the change in thoracic impedance as a function of time, the BioZ

is able to noninvasively calculate stroke volume, cardiac output and many other hemodynamic

parameters.

Figure 2.13: BioZ Monitor. (In: [7])

2.6.2 Hydra 4200

Hydra 4200 (figure 2.14), produced by Xitron Technologies [43]. Xitron has been designing bio-

impedance instrumentation and conducting impedance-body water research since 1985.
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Xitron’s uses a BIS technology that has been validated on a number of populations by a variety

of leading body composition research institutions dating back to 1992 and was the first company

to introduce a multifrequency device with a measurement range of 1 kHz to 1 MHz and full Cole

modeling software.

It can be controlled by either a computer using the system utilities software or by the easy to

use interface of the hydra 4200 that has an extensive number of data processing capabilities, thus,

the Cole model can be computed internally without use of a computer.

Figure 2.14: Xitron Hydra 4200. (In: [8])

2.6.3 PF05 Lab1

PhysioFlow PF05 Lab1 [9] (figure 2.15), covers a range of medical devices designed to perform

continuous non-invasive measurements of cardiac output. PhysioFlow developed a new technol-

ogy based on ICG called SM-ICG.

ICG presented some limitations for it only works in normal or near normal patients and exclu-

sively at rest or very moderate exercise. Obesity, pulmonary edema, emphysema, ventilation are

some known limitations to ICG. It is very sensitive to electrodes placement and therefore not very

reproducible from one operator to another.

SM-ICG uses a first level optimized input filter finely adapted to the high frequency current

transmitted, so that the impedance signal measured is mostly free from noise coming from other

electronic or physiologic devices.

SM-ICG also uses a second level highly sophisticated filter, called HD-Z (for High Definition

Impedance) to eliminate all artifacts from the chest impedance signals that are not correlated with

the heart cycle and the generation of cardiac flow. It has been developed to cancel severe artifacts

in the most demanding situations like a running race or in a very noisy critical care environment.
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Figure 2.15: PF05 Lab1 Bioelectrical Impedance Monitor. (In: [9])

2.6.4 Quantum IV

The Quantum IV (figure 2.16), is a BIA [44] produced by RJL Systems that permits to assess body

composition. It is an instrument with good accuracy, reliability and ease of use.

The Quantum IV precisely measures resistance and reactance at 50 kHz; by positioning two

electrodes in the right hand and other two in the right foot it is possible to measure the human

biological resistance and reactance when the patient is in supine position.

Following the principles presented before regarding BIA, it is possible to determine the total

body composition. With this device it is also possible through a software to automatically obtain

the body composition connecting Quantum IV to a computer.

Figure 2.16: Quantum IV Monitor. (In: [10])



20 State of the Art

2.6.5 ZOE

The ZOE Fluid Status Monitor [11] (figure 2.17), "is a transportable thoracic bioimpedance mon-

itor that provides measurement of fluid status".

Base impedance (Z0) decreases when fluid increases and rises when less fluid exists in the

chest. Normal thoracic Z0 range is between 19-30 ohms, however every person has their own

baseline. It is advised to note fluid status changes and share them with professional medical

clinicians when Z0 readings vary from typical daily values.

The advantage of this device is that it can be used by adults at home to autonomously monitor

bioelectrical impedance changes. However ZOE is an assessment tool, it is not intended to be

a medical diagnostic device. The physician or designated healthcare provider is responsible for

interpreting what assessment, intervention, or action is required as a result of changing Z0 values.

Figure 2.17: ZOE Fluid Status Monitor. (In: [11])

2.7 Other Options

2.7.1 Monitoring Daily Weight

Daily weight monitoring is strongly recommended by the American College of Cardiology/American

Heart Association clinical practice guidelines and recommending it to patients is considered a mea-

sure of quality in HF care. Several recent investigations have reported relatively low sensitivity

and specificity of changes in daily weight to predict worsening HF events [45].

A study conducted by Sarwat I. Chaudhry et al. [46] concluded that increases in body weight

are associated with hospitalization for heart failure and begin at least 1 week before admission.

Daily information about patients body weight identifies a high-risk period during which interven-

tions to avert decompensated heart failure that requires hospitalization may be beneficial.
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2.7.2 UWB Sensor

LifeWave Biomedical [47] created a solution for noninvasive body monitoring, the UWB Sensor

is similar in concept to ultrasound but uses radio frequency instead of sound energy.

The LifeWave UWB sensor emits very low energy, which propagate into the human body. As

the energy enters the body, small amounts of the incident energy are reflected back to a sensing

device. The reflections are primarily the result of the differences in dielectric properties of the

underlying tissues and organs. The reflected energy is then received and processed using signal

processing algorithms to extract information on the type, location, size, and relative movement of

the illuminated tissues and organs.

The LifeWave technology is safe for full-time usage and skin contact and meets all FDA

human safety and Federal Communications Commission (FCC) regulations governing human RF

exposure.

2.8 Low-Power Wireless Technologies

Wireless is a major feature for every electronic product. It adds flexibility, convenience, and

remote monitoring and control without the expensive and inconvenient wiring and cabling. Many

innovative new use cases are now being made possible with the introduction of ultra-low-power

wireless chipsets. The application under development will be characterized by small amounts of

sensor information between the measuring device and the central mobile device.

As one of the objectives of the work is to implement a low power communication between

the measuring device and a mobile device, a study of the low power wireless communications

available is in order.

2.8.1 ANT

ANT "is a low-power proprietary (but open access) wireless technology which operates in the

2.4GHz. It was established in 2004 by the sensor company Dynastream. Typically, the ANT

transceiver device is treated as a black box and should not require much design effort to implement

into a network" [48]. As a type of personal-area network (PAN), ANT’s primary applications

include sports, wellness, and home health.

ANT+ is an interoperability function that can be added to the base ANT protocol. This stan-

dardization allows for the networking of nearby ANT+ devices to facilitate the open collection and

interpretation of sensor data [49].

The technology divides the 2.4GHz industrial, scientific, and medical (ISM) band into 1MHz

channels. The radios have a basic data rate of 1Mbit/s. A time division multiplexing (TDM)

scheme accommodates multiple sensors.

ANT+ supports star, tree, mesh, and peer-to-peer topologies. The protocol and packet format

is simple. And, it boasts ultra-low power consumption and long battery life [50].
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2.8.2 ZigBee

ZigBee "is a low-power wireless specification based on the Institute of Electrical and Electronics

Engineers (IEEE) Standard 802.15.4-2003" and was established by a group of 16 companies in

2002 [48].

It provides a complete protocol stack designed to implement multiple types of radio networks

that include point-to-point, tree, star, and point-to-multipoint. Its main feature is the possibility

to build large mesh networks for sensor monitoring. It can handle up to 65,000 nodes. ZigBee

also provides profiles or software routines that implement specific applications for consumer home

automation, building automation, and industrial control [50].

ZigBee is not a frequency hopping technology, therefore it requires careful planning during

deployment in order to ensure that there are no interfering signals in the proximity.

2.8.3 RF4CE

Radio Frequency for Consumer Electronics (RF4CE) is based on ZigBee and was standardized in

2009 by four consumer electronics companies: Sony, Philips, Panasonic, and Samsung. RF4CE is

supported by two silicon vendors: Texas Instruments and Freescale Semiconductor, Inc. RF4CE’s

intended use is as a device remote control system, for example for television set-top boxes. The

intention is that it overcomes the common problems associated with infrared: interoperability,

line-of-sight, and limited enhanced features [48].

Zigbee RF4CE protocol stack utilizes 2.4GHz transceiver compliant to 802.15.4 for remote

control devices and their targets (audio and video devices). The second RF4CE application profile

is introduced in 2012 compliant to zigbee standard [51].

2.8.4 6LoWPAN

6LoWPAN means IPv6 protocol over low-power wireless PANs. The concept was born from the

idea that the Internet Protocol could and should be applied to even the smallest of devices [52].

Developed by the Internet Engineering Task Force (IETF), it provides a way to transmit IPv6

and IPv4 Internet Protocols over low-power wireless point-to-point (P2P) links and mesh net-

works. This standard (RFC4944) also permits the implementation of the Internet of Things on

even the smallest and remote devices [50].

Its characteristics make the technology ideal for markets such as home automation with sensors

and actuators, street light monitoring and control, residential lighting, smart metering and generic

IoT applications with Internet connected devices. Today’s deployments use both 2.4GHz and

Sub- 1GHz, building on the IEEE 802.15.4 advantages including support for large mesh network

topology, robust communication and very-low power consumption [53].
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2.8.5 Bluetooth Low Energy

Bluetooth Low Energy (BLE), that is marketed as "Bluetooth Smart", "is a lightweight subset of

classic Bluetooth and was introduced as part of the Bluetooth 4.0 core specification. While there

is some overlap with classic Bluetooth, BLE actually has a completely different lineage and was

started by Nokia as an internal project called "Wibree" before being adopted by the Bluetooth

Special Interest Group (SIG)" [54].

As a result of being a standard, BLE benefits from all the advantages of conformance and

extensive interoperability testing. A device that operates Bluetooth v4.0 may not necessarily im-

plement other versions of Bluetooth; in such cases it is known as a single-mode device. New

Bluetooth chipsets from leading Bluetooth silicon manufacturers will support Bluetooth and the

BLE functionality [48].

Bluetooth Smart technology operates in the same spectrum range (the 2.400GHz−2.4835GHz

ISM band) as Classic Bluetooth technology, but uses a different set of channels. Instead of the

Classic Bluetooth 79 1MHz channels, Bluetooth Smart has 40 2MHz channels.

2.9 Summary

It is important to have in mind that the purpose of this work is to develop a low-power and low-cost

device capable of communicating with a mobile equipment, it should also be friendly to use so it

can be operated by a big range of social classes.

Electrical impedance based noninvasive tissue characterizing techniques like bioelectrical impedance

analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography

(IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) are being used

to study the frequency response of the electrical impedance of biological tissues. But EIS is found

more popular in several fields of application compared to BIA, IPG and ICG as it provides the

impedance variations over frequencies.

Regarding the methods for measurement of the impedance the most important aspect is the

low-power characteristic in order to develop a small size and portable device. Most of the methods

presented in the literature are either time consuming or require the use of a DSP that results in the

increase of the power consumption. The novel method using the MRPDD technique provides a

feasible advantage over the traditional bioelectrical impedance measurement systems, based on

quadrature demodulation methods, by simplifying the electronics.

Table 2.1: Commercial Solutions Resume

Monitoring Method Price
BioZ ICG 5,800$

Hydra 4200 BIS Not Available
FF05 Lab1 SM-ICG* 2,999$

Quantum IV BIA 3,090$
ZOE ICG 2,860$
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*Method based on ICG

The bioelectrical devices currently on the market analyzed in this work are either based on ICG

technology or EIS or BIA, as seen in table 2.1. The disadvantages of these devices is that none of

them has an user friendly interface and portable size, and all of them have an expensive price for

home monitoring. This represents a scientific and commercial opportunity that will be explored

by this work.

The purpose of this work is to develop a cheaper solution than the ones available on the market

that could be integrated in the daily use of the patients with the use of a mobile device. This mobile

device (e.g. smartphone) would be responsible for the human-machine interaction, resulting in

reduction of the price and a solution capable of direct connection to the physicians would allow

remote monitoring.

In regard to the wireless communication there are plenty of protocols available, but BLE is the

easiest and cheapest one to implement. Nowadays the Bill of Materials(BoM) for a system-on-

chip solution with microcontroller and radio integrated is under 2$ which is well below the total

overall price point of similar wireless technologies (ZigBee, RF4CE, 6LoWPAN, etc.).



Chapter 3

Proposed Architecture

3.1 Overview

The system will be built around pandlets (Personal Area Dots: Letting Everything Sense) (fig-

ure 3.1). A Pandlet is a platform developed by Fraunhofer AICOS to measure human behaviour

and environmental context.

Figure 3.1: Pandlets Board.

The circuit that generates the excitation source includes a sine wave generator and a Voltage

Controlled Current Source (VCCS) and will be responsible for generating the excitation current in

a range of frequencies from 20kHz to 1MHz.

Two equivalent Instrumentation Amplifiers (INA) will be used, one to amplify the signal mea-

sured by the pair of voltage electrodes and the other to amplify the voltage drop across the refer-

ence resistor, then the INAs two input buffers will be used to match the internal impedance of the

GPD.

The voltage from the pair of electrodes and reference resistor is compared using the GPD and

calculates magnitude ratio and phase difference.

With Pandlets, the analogic-digital conversion will be made and the data will be transferred to

a smartphone using Bluetooth Low Energy (BLE), marketed as Bluetooth Smart.

Pandlets will also be responsible for tuning the signal generator and implementing the previ-

ously explained MRPDD method by acquiring the digital signal from the ADCs.

25
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So the low-power feature can be achieved a power circuit is included in the design and a

wireless communication will be implemented so a real time monitoring can be achieved between

the device and a mobile phone.

A structual diagram of the device can be oberved in figure 3.2, the different blocks are sepa-

rated by dashed lines and respectively labeled.

Figure 3.2: Structural diagram of the device.

3.2 Pandlet Core

Fraunhofer AICOS developed a novel architecture of embedded electronics for wireless devices

platform named Pandlets, which stands for personal area networks letting everything sense. Pan-

dlets are designed to be integrated with mobile platforms, as a basis for new Internet of Things

(IoT) devices.

Taking modularity in mind the Pandlets hardware was designed to easily be adapted to different

IoT need and applications. Pandlets is composed by several building block that when connected

together create new devices and functionalities.

The Pandlet CORE (figure 3.3) is the basic building block and is the only used in this project.

This Pandlet CORE is the heart of every Pandlet, because it is the one responsible for the radio,

basic processing and sensing activities. The Pandlet CORE is composed by:

• ARM M0+, running at 16MHz

• Inertial Measurement Unit (IMU):
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– Accelerometer;

– Gyroscope;

– Magnetometer.

• Environmental Measurement Unit (EMU):

– Humidity;

– Pressure;

– Temperature.

• Blueetooth Smart (fully compliant with Bluetooth Core Specification v4.0).

Figure 3.3: Pandlet Core.

The Pandlet CORE has a surface area of 28×28mm and 1.0mm height, so it can be enclosed

in a wide variety of off-the-shelf cases. Custom made enclosure designs, or textiles and clothes

embedding is also a possibility.

The other building blocks that include Pandlet MEMORY and Pandlet SENSING+ are not

object of study in this project since they are not used in the architecture of the device.

3.3 Excitation Source

3.3.1 Signal Generator

The signal generator is based on the Analog Devices AD9833, which is a low power, programmable

waveform generator [12], that will be used for generating a multi frequency sine wave.

3.3.1.1 Theory of Operation

Sine waves are thought about in terms of their magnitude form: a(t) = sin(ωt). However they are

nonlinear and not easy to generate except through piecewise construction. On the other hand the

angular information is linear. The phase angle rotates through a fixed angle for each unit of time.

The angular rate depends on the frequency of the signal in the following form: ω = 2π f .
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Figure 3.4: Typical Sine Wave. (In: [12])

Given a reference interval (clock period), the phase rotation for that period is:

∆Phase = ω∆t ⇔ ω = ∆Phase/∆t = 2π f ⇔ f = ∆Phase/∆t ×2π (3.1)

Substituting the reference clock frequency for the reference period (1/ fMCLK = ∆t).

f = ∆Phase× fMCLK/(2π) (3.2)

Based on this simple equation, the AD9833 chip builds the output.

3.3.1.2 Circuit Description

A simple fully integrated Direct Digital Synthesis (DDS) chip can implement equation (3.2), us-

ing three major subcircuits: Numerically Controlled Oscillator (NCO) and phase modulator, SIN

ROM, and Digital-to-Analog Converter (DAC).

Numerically Controlled Oscillator Plus Phase Modulator

It is composed by two frequency select registers, a phase accumulator, two phase offset reg-

isters, and a phase offset adder. His main component is a 28-bit phase accumulator. Since time

signals have a phase range between 0 and 2π , outside of this range, the sinusoid functions re-

peat themselves in a periodic manner. The accumulator simply scales the range of phase numbers

into a multibit digital word, in the AD9833 the phase accumulator is implemented with 28 bits.

Therefore 2π = 228.

Substituting in equation (3.2):

f = ∆Phase× fMCLK/228 (3.3)

where 0 < ∆Phase < 228 −1
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The phase accumulator input can be selected either from the FREQ0 register or the FREQ1

register.

SIN ROM

The output from the NCO must be converted from phase information into sinusoidal value in

order for it to be useful. Because phase information maps directly into amplitude, the SIN ROM

uses the digital information as an address to a lookup table and converts the phase information

into amplitude. From the 28 bits of the phase accumulator it only uses 12 truncated bits, because

it is impractical having a lookup table of 228 entries. It is only necessary to have sufficient phase

resolution such that the errors due to truncation are smaller than the resolution of the 10-bit DAC.

Digital-to-Analog Converter (DAC)

The high impedance, current source 10-bit DAC receives the digital words from the SIN ROM

and converts them into corresponding analog voltages. The output voltage range is typically 0.6V

p-p.

The AD9833 also includes a voltage regulator because the digital section of the AD9833 is

operated at 2.5V and the power supply can have a value of 2.3V to 5.5V , this regulator steps down

the power supplied.

3.3.1.3 Functionalities

AD9833 has a standard Serial Peripheral Interface (SPI) that allows the user to control and con-

figure the chip by loading a 16-bit word through SPI.

When Powering up the AD9833 in order to avoid spurious DAC outputs the reset bit should

be set to 1 and when the part is ready to begin operation this bit should be set to 1.

The chip contains a 16 bit control register that allows to configure the operation of the AD9833,

in order to inform the AD9833 that the contents of the control register will be altered, bit 15 and

14 should be set to 0.

There are two frequency registers and two phase registers available and the analog output from

the AD9833 is:

fMCLK

228 ·FREQREG (3.4)

where FREQREG is the value loaded in the frequency register and the signal is phase shifted:

2π

4096
·PHASEREG (3.5)

where PHASEREG is the value loaded in the phase register.
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3.3.2 Anti-Aliasing Filter

The output from the signal generator contains useful sine wave signal but it also contains undesired

alias signal [2]. Thus, an anti-aliasing filter is implemented using the LTC1560-1, which is a fully

integrated continuous-time, lowpass filter [55].

The filter cutoff frequency, fCUTOFF , is pin selectable to either 500kHz (Pin 5 to V+) or 1MHz

(Pin 5 to V-). The LTC1560-1, unlike other high frequency filters, is designed for low noise

and low distortion. In this application it is used a 5th order elliptic filter with a low pass cutoff

frequency of 1MHz.

3.3.3 Voltage Controlled Current Source

Multifrequency impedance measurement needs high-quality controlled current sources over a wide

bandwidth (10kHz−1MHz) even with large variations of the electrode contact impedances [56].

In this application the Current-Feedback Amplifier (CFA) AD844 is used, whose internal

structure can be seen in figure 3.5 (shaded area), that has access to an internal high-impedance

node (TZ) for external frequency compensation; this feature allows its use as a current conveyor.

Figure 3.5: Voltage Controlled Current Source circuit. (In: [2])

The voltage applied to the high impedance non-inverting input is copied to the low-impedance

inverting input, while the output is replicated by the mirrors and flows into the transimpedance

(Zt = Rt||Ct). The voltage developed across Zt is buffered by the unity gain voltage follower. The

transimpedance of the CFA (Zt) becomes the output impedance of the conveyor and the output of

the VCCS.

If the AD844 were used only by itself, errors due to gain accuracy of the first stage and its

non-zero output resistance Rob are not overcome and another problem arises when applying any

current source, the changing of the DC-blocking capacitor because of residual DC currents.
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The circuit in figure 3.5 proposed by [56] overcomes these problems, by including an input

buffer in the feedback loop of wideband op amp; in addition the output resistance of the resulting

amplifier is virtually zero and adds no error to the intended transconductance. The DC output

voltage before the capacitor is kept near 0V by using a DC feedback loop, which measures the

actual DC voltage at the Z node and applies a correction to the input. This DC-feedback circuit

must have a very high DC gain and a negligible gain at frequencies of interest. Their passive

components are chosen in order to solve the trade-off between response time and low gain at the

lower frequency to be injected to the load.

3.3.4 Reference Resistor

As can be observed in figure 3.6 a reference resistor (Rs) will be connected in series with ZX

(electrode connector), the voltage drop across this resistor will be later used as a reference by

the GDP to calculate the magnitudes ratio and phase difference. Since 200Ω is the typical value

of human tissues [57], a non-inductive resistor of this value was used as reference, connected to

electrode LC in the excitation loop.

Figure 3.6: Excitation Loop. (In: [2])

3.4 Signal Acquisition

3.4.1 Instrumentation Amplifiers

A pair of instrumentation amplifiers are needed for measuring the voltage drop that will be sent

to the GPD. As explained in section 3.3, a sinusoidal excitation current will flow through ZX and

Rs via a pair of current electrodes HC and LC. Another pair of voltage electrodes HV and LV will
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detect the voltage drop across ZX (VX ) and the instrumentation amplifier IA1 will amplify this

value, while the voltage drop across Rs (V s) is amplified by the second instrumentation amplifier

IA2, as previously seen in figure 3.2.

The Texas Instruments INA163 was selected for both IA1 and IA2, which is a very low-

noise, low-distortion, monolithic instrumentation amplifier with a high input impedance and wide

frequency bandwidth [58].

The gain can be defined with the following equation:

G = 1+
6000
RG

(3.6)

Using a gain resistor RG = 2kΩ the gain was set to 4.

3.4.2 Input Buffers

Taking into account impedance matching between the amplified signal by the instrumentation

amplifiers and the Gain Phase Detector which has an input impedance of 50Ω, two input buffers

are needed. The decision was to use two high speed, low output impedance amplifiers Texas

Instruments THS3061 [59] as unity gain buffer and a voltage attenuator with a 750Ω resistor and

a 50Ω resistor (figure 3.7).

Figure 3.7: Input Buffers Circuit. (In: [2])

3.4.3 Gain Phase Detector

As the key component of the whole system for reliable measurement, GDP is based in the Analog

Devices AD8302, which is a fully integrated system for measuring gain/loss and phase in numer-

ous receive, transmit, and instrumentation applications. It provides an accurate measurement of

either gain or loss over a ±30dB range scaled to 30mV/dB, and of phase over a 0◦− 180◦ range

scaled to 10mV/degree [13]. Its input range is -60 dBm (316µV peak) to 0 dBm (316mV peak) in

a 50Ω system, having a large bandwidth (from low frequencies up to 2.7GHz).
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Figure 3.8: AD8302 Functional Block Diagram. (In: [13])

The AD8302 comprises a closely matched pair of demodulating logarithmic amplifiers, each

having a 60 dB measurement range. By taking the difference of their outputs, a measurement of

the magnitude ratio or gain between the two input signals is available.

The chip also includes a phase detector of the multiplier type, but with precise phase bal-

ance driven by the fully limited signals appearing at the outputs of the two logarithmic amplifiers

making the phase accuracy measurement independent of signal level over a wide range.

A stable reference of 1.8V (output upper limit) is available at pin VREF for precise repositioning

of the output range.

3.4.3.1 Theory of Operation

Logarithmic amplifiers (log amps) provide a logarithmic compression function that converts a

large range of input signal levels to a compact decibel-scaled output. The general mathematical

form is:

VOUT =VSLP · log

(

VIN

VZ

)

(3.7)

where VIN is the input voltage, VZ is called the intercept (voltage), and VSLP is called the slope

(voltage). It is assumed throughout that log(x) represents the log10(x) function. VZ is the value

of input signal that results in an output of zero and need not correspond to a physically realizable

part of the log amp signal range.
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The AD8302 takes the difference in the output of two identical log amps, each driven by

signals of similar waveforms but at different levels. Since subtraction in the logarithmic domain

corresponds to a ratio in the linear domain, the resulting output becomes:

VMAG =VSLP · log

(

VINA

VINB

)

(3.8)

where VINA and VINB are the input voltages, VMAG is the output corresponding to the magnitude

of the signal level difference, and VSLP is the slope. Important to notice that VZ has dropped

out. Unlike the measurement of power, when measuring a dimensionless quantity such as relative

signal level, no independent reference or intercept needs to be invoked.

The limited outputs from both log amps drive an exclusive-OR style digital phase detector. Op-

erating strictly on the relative zero-crossings of the limited signals, the extracted phase difference

is independent of the original input signal levels. The phase output has the general form:

VPHS =Vθ [θ(VINA)−θ(VINB)] (3.9)

where Vθ is the phase slope in mV/degree and θ is each signal’s relative phase in degrees.

3.4.3.2 Measurement Mode

Connecting the output pins, VMAG and VPHS, directly to the feedback setpoint input pins, MSET

and PSET , the default slopes and center points are invoked; this connection is called measurement

mode [13] (figure 3.9).

Figure 3.9: Connections in Measurement Mode. (In: [13])

A precise offset voltage of 900mV is introduced internally to establish the center-point (VCP).

In the low frequency limits in measurement mode, VMAG and VPHS can be expressed as:
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VMAG = RF ISLP · log

(

VINA

VINB

)

+VCP (3.10a)

VPHS =−RF · Iθ (|θ(VINA)−θ(VINB)|−90◦)+VCP (3.10b)

where RF is the transimpedance that represents the setpoint interface block. ISLP and Iθ are char-

acteristic slope current of the gain and phase detector, respectively.

For the gain function, the slope represented by RF ISLP is 600mV/decade or, dividing by

20dB/decade, 30mV/dB. With a center point of 900 mV for 0 dB gain, a range of −30 dB to

+30 dB covers the full-scale swing from 0V to 1.8V . For the phase function, the slope repre-

sented by RF Iθ is 10 mV/degree. With a center point of 900 mV for 90◦, a range of 0◦ to 180◦

covers the full-scale swing from 1.8V to 0V . The range of 0◦ to −180◦ covers the same full-scale

swing but with the opposite slope.

Two 47µF capacitor were connected to the ac grounding pins OFSA and OFSB setting the

corner frequency to 43Hz according to the formula fHP(MHz) = 2/CC(nF), where CC is the total

capacitance from OFSA or OFSB to ground, including the internal 10pF .

The magnitude ratio |K| and phase differences θ in equations (3.11) can be solved from (3.10):







|K|= |VAZ |
|VAS|

= |VINA|
|VINB|

= 10
VMAG−900mV

600mV

θ = (θVINA
−θVINB

) =±
(

900mV−VPHS

10mV/degree
+90◦

) (3.11)

Taking into account that AD8302 does not distinguish between positive and negative phase

differences and (3.10), the complex impedance formula (2.11) can be worked out in a polar-plane

form:







|Zm|= RS ·10
VMAG−900mV

600mV

θ =−
(

900mV−VPHS

10mV/degree
+90◦

) (3.12)

3.4.4 Analog-to-Digital Converter

MAX11612 is a low-power, 12-bit, multi channel ADC that can operate from a single supply

of 4.5V to 5.5V [16]. The full-scale analog input range is determined by the internal reference

(4.096V ) or by an externally applied reference voltage ranging from 1V to VDD. An external

reference of 1.8V was chosen for use, supplied by the pin VREF of the AD8302, defining the upper

limit of the conversion.

This ADC features a Inter-Integrated Circuit (I2C) protocol consisting of a serial-data line

(SDA) and a serial-clock line (SCL) that are connected to the Pandlets core.

Output buffers with unity gain are necessary between the outputs of AD8302 (VPHS and VMAG)

feeding into the ADC, aiming to provide enough current driving for the ADC [2].
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3.5 Power Circuit

The circuit configuration requires a ±5V power supply. In order to achieve these differential

values, a step-up conversion will need to be applied to the battery voltage (VBAT = 3.6−4.2V ) to

10V and by creating a virtual ground between 10V and the battery ground the required ±5V are

achieved.

The pandlet core is supplied with the 5V and reduced to 1.8V by an internal regulator. In order

to communicate with the ADC (I2C) and the Signal Generator (SPI), two level shifters will be

necessary to convert the 1.8V signals into 5V signals.

3.5.1 DC/DC Boost Converter

The TPS61040 is a high-frequency boost converter, capable of generating voltages up to 28V from

a single-cell Li-Ion battery and has an internal 400mA switch current limit [14].

With a few external components (figure 3.10), we can define the output voltage, calculated by

the following formula:

VOUT = 1.233V ×

(

1+
R1
R2

)

(3.13)

Figure 3.10: Typical Application Schematic (In: [14])

As stated before VOUT was defined as 10V , the feedforward capacitor and the inductor were

calculated taking into account the peak current, maximum switching frequency and the rectifier

diode forward voltage.

3.5.2 Single Buffer Virtual Ground

There is a requirement for a dual-voltage supply (±5V ) however there is only a single supply

available.

One solution is based on the BUF634 that can drive up to 250mA, that is a high speed, unity-

gain open-loop buffer recommended for a wide range of applications [60].
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As can be seen in figure 3.11, R1 and R2 create a “virtual ground”, there are 10V across the

circuit and the resistors are an 0.5× resistive divider, having 5V at the midpoint of the divider.

Between the midpoint of the divider and the negative side of the power supply there are −5V and

from the positive side of the power supply to the midpoint there there are +5V , providing two

equal but opposite voltages from a single supply.

Figure 3.11: Buffer Virtual Ground Driver Circuit (In: [15])

Using BUF634 the virtual ground is buffered, making the voltage divider appear to have a very

low impedance while still drawing little current, keeping the virtual ground centered between the

positive and negative side.

3.5.3 I2C Level Shifter

The 1.8V signal on the Pandlet side needs to be translated into 5V to communicate with the ADC.

TCA9406 is a 2-bit bidirectional I2C voltage-level translator with an output enable (OE) input

[61].

On the A-side (Pandlet) the range of operation is from 1.65V to 3.6V , referenced to VCCA, and

from 2.3V to 5.5V on the B-side (ADC), referenced to VCCB.

The TCA9406 features internal 10kΩ pullup resistors on SCLA, SDAA, SCLB and SDAB. In the

application external pullup resistors were added to the B-side to reduce the total pullup resistance

and speed up rising edges.
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Figure 3.12: I2C Level Shifter schematic.

3.5.4 SPI level Shifter

The same problem as in the I2C arises in the SPI communication, since the signal from the Pan-

dlet is at 1.8V and should be at 5V . The TXB0104 device is a 4-bit, directionless voltage-level

translator specifically designed for translating logic voltage levels [62].

The A port (Pandlet) accepts any supply voltage from 1.2V to 3.6V . The B port accepts any

supply voltage 1.65V to 5.5V , allowing low-voltage bidirectional translation.

Figure 3.13: SPI Level Shifter schematic.
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3.5.5 µUSB Charger

The design includes a Micro USB-B connector and a MCP73832 that is Li-Polymer Charge Man-

agement Controllers. The MCP73831/2 devices are highly advanced linear charge management

controllers for use in space-limited, cost-sensitive applications [63].

In the last years portable electronics have played an important role, due to the characteristics

of Li-Ion/Li-Polymer batteries, they are the most popular power sources for mobile devices. The

system Power Path Management allows end-users to charge their batteries without interruption.

By including this µUSB charger in our device we allow the user to charge his battery au-

tonomously just by connecting a µUSB cable to a power source.
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Chapter 4

Implementation

4.1 Prototyping

The first stage of the implementation phase was to organize the different pieces in different groups,

being the excitation source the one responsible for generating a current to be injected in the patient

and the signal acquisition circuit responsible for measuring the voltage drop across the electrodes

and calculating the phase and magnitude difference (figure 4.1).

Figure 4.1: Circuit’s two main groups.

41
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A schematic was created, providing all the necessary details to build the electronics including

how all the components are connected together. By specifying all the components it was possible

to create the BoM for the development of the device.

An intermediate prototype was constructed using breadboards to connect the components of

the excitation source and the signal acquisition circuit. For controlling the signal generator an

Arduino UNO was used, due to its simplicity and flexibility. A DC Power Supply was used

to provide energy to the prototype and an Oscilloscope allowed to validate independently the

performance of each component.

Figure 4.2: Intermediate prototype.

This prototype allowed the validation of the schematic and understanding how the different

components worked, allowing the integration with the Pandlet Core. To make the device portable,

a power circuit was later added to the design.

4.2 PCB Design

In medical devices it is important to assemble the circuit in a Printed Circuit Board (PCB) since

usually the wiring introduces noise and errors to the measurement, thereafter reducing the diagno-

sis accuracy.

For the PCB design, the Eagle CAD software was used and as explained before. The PCB

was designed around Pandlet Core; therefore a socket was placed in the PCB layout so the Pandlet

Core could easily be connected to the PCB.

The layout is organized in three major sections: excitation source (center bottom), signal

acquisition (top left corner) and power circuit (right side) (figure 4.3).

After reviewing the components’ datasheets, all recommendations were followed and two dif-

ferent ground planes were created, one digital and one analog, the decoupling capacitors were

placed close to the power pins. For the boost converter distinct planes were created as suggested

in the datasheet (figure 4.4).
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Figure 4.3: PCB layout.

Figure 4.4: TPS61040 layout planes.

The power wires were designed with a width of 0.25mm, the signal lines with a width of

0.2mm and the vias with a drill of 0.3mm.

The Gerber files were then sent to a PCB producer and using a pick and place technique, the

Surface Mount Devices (SMD) were assembled to the PCB.

Figure 4.5: Assembly using pick and place technique.
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4.3 I2C Protocol

The ADC (MAX11612) will communicate with the Pandlet Core via a I2C Protocol and it will only

have two wires: SCL and SDA [16]. Since routines for writing and reading from the ADC were

implemented, we provide next an explanation of how the ADC works and how the communication

was handled.

I2C is a two-wire interface to connect low-speed devices like microcontrollers, EEPROMs,

A/D and D/A converters, I/O interfaces and other similar peripherals in embedded systems. It was

invented by Philips and now it is used by almost all major IC manufacturers and each I2C slave

device needs an address that can be obtained from NXP (formerly Philips semiconductors) [64].

The master initiates a transmission with a START condition (S), a high-to-low transition on

SDA while SCL is high. The master terminates a transmission with a STOP condition (P), a

low-to-high transition on SDA while SCL is high (figure 4.6).

Figure 4.6: START and STOP Conditions. (In: [16])

Data transfers are acknowledged with an acknowledge bit (A) or a not-acknowledge bit (A).

Both the master and the ADC (slave) generate acknowledge bits. To generate an acknowledge,

the receiving device must pull SDA low before the rising edge of the acknowledge-related clock

pulse (ninth pulse) and keep it low during the high period of the clock pulse (figure 4.7). To

generate a not-acknowledge, the receiver allows SDA to be pulled high before the rising edge

of the acknowledge-related clock pulse and leaves SDA high during the high period of the clock

pulse.

Figure 4.7: Acknowledge Bits. (In: [16])

Messages are broken up into two types of frames: an address frame, where the master indi-

catesto which slave the message is being sent, and one or more data frames, which are 8-bit data
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messages passed from master to slave or vice versa. Data is placed on the SDA line after SCL

goes low, and is sampled after the SCL line goes high.

A write cycle begins with the bus master issuing a START condition followed by seven address

bits (figure 4.8), and a write bit (R/W = 0). If the address byte is successfully received, the ADC

(slave) issues an acknowledge. The master then writes to the slave. The slave recognizes the

received byte as the set-up byte, if the most significant bit (MSB) is 1. If the MSB is 0, the slave

recognizes that byte as the configuration byte. The master can write either one or two bytes to the

slave in any order. If the slave receives a byte successfully, it issues an acknowledge. The master

ends the write cycle by issuing a STOP condition or a repeated START condition.

Figure 4.8: One Write Cycle. (In: [16])

A read cycle must be initiated to obtain the analog to digital conversion results. Read cycles

begin with the bus master issuing a START condition followed by seven address bits and a read bit

(R/W = 1). If the address byte is successfully received, the ADC (slave) issues an acknowledge.

The master then reads from the slave. The result is transmitted in two bytes; first four bits of

the first byte are high, then MSB through LSB are consecutively clocked out. After the master

has received the byte(s), it can issue an acknowledge if it wants to continue reading or a not-

acknowledge if it no longer wishes to read. If the ADC receive a not-acknowledge, they release

SDA, allowing the master to generate a STOP or a repeated START condition.

4.4 SPI Protocol

As stated before, one of the critical parts of the system is the Signal Generator. This part is

controlled by a SPI communication and in order to write to this chip, some SPI functions were

implemented. In this section a presentation of the protocol and a explanation of how to interact

with AD9833 will be made.

SPI is a synchronous protocol that allows a master device to initiate communication with a

slave device. Data is exchanged between these devices [65].

In SPI, since it is a Synchronous protocol, the data is clocked along with a clock signal (SCK)

that controls when data is changed and when it should be read. The clock signal is provided by

the master to provide synchronization. The clock signal controls when data can change and when

it is valid for reading.

Often a slave select signal will control when a device is accessed. This signal is known as the

SS signal and stands for “Slave Select.” It indicates to a slave that the master wishes to start an SPI
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data exchange between that slave device and itself. The signal is most often active low, so a low

on this line will indicate the SPI is active, while a high will signal inactivity.

When data is sent from the master to a slave, it is sent on a data line called MOSI, for “Master

Out / Slave In”. If the slave needs to send a response back to the master, the master will continue

to generate a prearranged number of clock cycles, and the slave will put the data onto a third data

line called MISO, for “Master In / Slave Out”.

As seen in subsection 3.3.1, AD9833 is controlled through a standard SPI communication. As

such, only 3 wires will be needed, since there’s no need for a MISO data line because AD9833,

that works as a slave, do not need to send data, only receive [12].

Data is loaded into the device as a 16-bit word under the control of a serial clock input, SCK.

Figure 4.9: Serial Timing. (In: [12])

The SS input, from now on called FSYNC, is a level triggered input that acts as a frame

synchronization and chip enable. Data can be transferred into the device only when FSYNC is

low. To start the serial data transfer, FSYNC should be taken low. After that, data is shifted into

the input shift register of the device on the falling edges of SCK for 16 clock pulses. FSYNC may

be taken high after the 16th falling edge of SCK.

SCK can be continuous, or it can idle high or low between write operations. In either case, it

must be high when FSYNC goes low.

4.5 Bluetooth Low Energy

In section 2.8 we analysed some Low Power Technologies and concluded that BLE can be imple-

mented without losing the low-power and portability that are the main goals of this work. In this

section will be described how a custom service was defined so the different BLE functionalities

could be implemented; this service is presented in the attribute table 4.1:



4.5 Bluetooth Low Energy 47

Table 4.1: Implemented Attribute Table

Handle UUID

Type of Attribute

Attribute

Permission

Atrribute Value

Service

Declaration

0x000X Service
Declaration

Standard UUID
0x2800

Read Only,
No Authentication,
No Authorization

Custom Service
UUID

Characteristic

Declaration

0x000X Characteristic
Declaration

Standard UUID
0x2803

Read Only,
No Authentication,
No Authorization

Properties: Notify
Value Handle

(0x000X),
Custom

Characteristic
UUID

Characteristic

Value

Declaration

0x000X UUID found in the
Characteristic

Declaration Value

Read Only,
No Authentication,
No Authorization

Phase and Gain
Value

Descriptor

Declaration

0x000X Client
Characteristic
Configuration

Descriptor
(CCCD)

Standard UUID
0x2902

Read and Write,
No Authentication,
No Authorization

Notification
Enabled 0x00-XX

Characteristic

Declaration

0x000X Characteristic
Declaration

Standard UUID
0x2803

Read Only,
No Authentication,
No Authorization

Properties: Write
Value Handle

(0x000X),
Custom

Characteristic
UUID

Characteristic

Value

Declaration

0x000X UUID found in the
Characteristic

Declaration Value

Write Only,
No Authentication,
No Authorization

Start/Cancel
Measurement

Command
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At the top of every attribute table one finds the Service Declaration attribute. Its type is always

0x2800 which is the standard UUID for Service Declarations. Its permissions are always Read

Only without any authentication or authorization required. The value is our custom service UUID.

The Characteristic Declaration is similar to the Service Declaration. The type is always

0x2803, the standard UUID for Characteristic Declarations. And the permissions are always

Read Only without any authentication or authorization required. The Value contains a handle,

a UUID, and a set of properties describe the subsequent Characteristic Value Declaration. The

handle points to the Characteristic Value Declaration’s place in the attribute table. The UUID

descibes what type of information or value can be expected to find in the Characteristic Value

Delcaration and the properties describe how the characteristic value can be interacted with.

The Characterisitic Value Declaration is the attribute that contains the actual value and in the

attribute table implemented (table 4.1) it is defined an attribute with notify properties that will be

used to send to the Android App the Phase and Magnitude values measured by the device and

another attribute with write properties that will allow to send to the Pandlet an instruction to start

the measurement.

The Descriptor Declaration is an attribute with additional information about the characteris-

tic. In this situation it is used the Client Characteristic Configuration Descriptor (CCCD) that is

writable descriptor that allows the client to enable or disable notification or indication.

The Handle of each attribute will be dependent of how many attributes are already present in

the table.

4.6 Firmware

The firmware framework implements a set of basic functions that must be performed by the base

module processor, like functions for sensors and peripherals communication, access to communi-

cation bus, implementation of efficient energy management mechanisms and also Bluetooth radio

communications protocol implementation.

In this context, the nRF51 Software Development Kit (SDK) was considered, provided by

Nordic Semiconductor. This SDK contains all the drivers, libraries, examples and Application

Programming Interfaces (APIs) needed. Among the libraries used, these can be highlighted:

• Debug Logger – enables debug logs;

• Schedule Handling – used for transferring execution from the interrupt context to the main

context;

• Timer – enables the application to create multiple timer instances;

• Communications libraries – adds I2C and SPI functions to the Pandlet.

The nRF51 SDK also has a precompiled linked binary software, which implements the Blue-

tooth Low Energy stack, called SoftDevice (SD). The proprietary profiles were implemented using
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this SD and new features can be added to Pandlets using Over-the-Air (OTA) updates using the

bootloader provided.

Nordic implemented other SDs that provide Central Role that can be used to allow the Pandlets

to connect with other devices using Bluetooth Low Energy.

To provide access to the API, Nordic uses an ARM feature called Supervisor Call (SVC) to

access functions inside the binary of the SD. Those functions range from BLE interactions (discov-

ery, characteristics management, pairing/bonding, etc.) using the Protocol Stack, SD management

(enabling/disabling SD, Scheduler, Events, etc.) using the SoftDevice Manager and SoC features

access (Interrupts management, peripherals, etc.) using SoC Library. Most of these features are

encapsulated in ready to use libraries that ease their integration to the developer’s app.

All of this is developed over the nRF51 HW, and the application was built by integrating

everything together.

4.6.1 State Machine

The most important tasks of our device are asynchronous and some of them are event-driven,

creating a State Machine is an efficient way to guarantee a robust code, figure 4.10.

Figure 4.10: State Machine.

Initially the device is in an Idle State, when the Write instruction is sent by the user by SPI

the frequency is written to the Signal Generator, initializing the measurement. Only when the SPI

transfer is done, the value can be read from the ADC by I2C, this ensures that we are reading the

Phase and Magnitude of the correct frequency. When the I2C transfer is finished we can notify

through BLE the measured values. When the BLE transfer ends we go back to the Frequency

Write State, this cycle is done 32 times, each one for a different frequency, after completing the

measurement it goes back to Idle State, and is ready to start another measurement.

At any time the user can cancel the measurement by sending a Cancel instruction, going back

to the Idle State.
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4.7 Android App

Android 4.3 (API Level 18) introduces a built-in platform support for Bluetooth Low Energy in

the central role and provides APIs that apps can use to discover devices, query for services, and

read/write characteristics [66].

4.7.1 Main Features

In this section we will discuss the main features that were introduced with Android 4.3 by describ-

ing the classes and methods that allow us to perform Bluetooth communications.

The BluetoothAdapter class is required for any and all Bluetooth activity. The Bluetooth

Adapter represents the device’s own Bluetooth adapter (the Bluetooth radio), it allows to perform

fundamental Bluetooth tasks, such as initiate device discovery and query a list of bonded (paired)

devices.

To find BLE devices, it is used the startLeScan() method. This method takes a LeScanCallback

as a parameter. This callback needs to be implemented, because that is how scan results are re-

turned. Some guidelines need to be followed since power consumption is the key and scanning

is battery-intensive: after finding the device it is important to stop scanning; never scan on a loop

and create a time limit for scanning.

To start interacting with a BLE device the first step is connecting to it, more specifically,

connecting to the GATT server on the device. Using the connectGatt() method we can connect

to the GATT server hosted by the BLE device returning a BluetoothGatt instance that can later be

used to conduct GATT client operations.

With the Android BLE API it is possible to interact with the BLE device, and a group of

classes and methods allows for example to connect, read and write BLE attributes and receive

GATT notifications.

4.7.2 Integration

Based on the Android Developer Bluetooth LE sample [67] an Android App was developed with

the functionalities to instruct the device to start the measurement and to display the data measured

by the device.

The first step to start a BLE connection is to scan for devices using the startLeScan() method

previously described, an activity for scanning for BLE devices was created allowing only to display

devices selected by the developer, in this situation our device.

After selecting the device a connection will be created between the measuring device and the

smartphone. The next activity allows to start and cancel the measurement by writing to the device.

When the "Start Measurement" is pressed a value of 0xAA is written in the Characteristic Value

Declaration Attribute, if the "Cancel Measurement" button is pressed a value of 0xFF is written

to the same attribute. This values are then received by the measurement device that start or cancel

the measurement according to the value received.
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Figure 4.11: Scan Activity.

When the measurement is finished another activity pops up allowing the user to select if he

wants to see the Phase or Magnitude graph. The hexadecimal values transmitted from the mea-

surement device are then converted to voltage using the ADC transfer function and using equa-

tion (3.12) the actual Phase and Magnitude values are calculated.

Figure 4.13: Graph Select Activity.

Using the Androidplot library two different graphs were displayed providing the measure-

ment values already converted to Phase (degree) and Magnitude (Ω) over the frequencies of the

measurement (kHz).
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Figure 4.12: Start and Cancel Activity.

Figure 4.14: Phase and Magnitude Graph Display Activity.



Chapter 5

Results

This chapter will evaluate the performance of the measurement device by performing some mea-

surements using a RC circuit, with the hypothesis that the ECF and ICF act like resistors and

the cell membrane like an capacitor in biological tissues, as seen in section 2.1. The goal of this

measurement is to evaluate the robustness of the measuring device in a controlled environment.

An evaluation of the platform will be carried by discussing the advantages of the measuring

device when compared with the solutions available in the market.

5.1 Measurement Analysis

In order to evaluate the performance of the system, five different RC circuits were prepared (fig-

ure 5.1); the nominal values of R1, R2 and C are described in table 5.1, and the cutoff frequency is

given by equation (5.1) as proposed by [2].

f c =
1

2πC
·

√

R1 +R2

R1R2
2

(5.1)

Figure 5.1: Four-terminal topology of the RC circuit measurements. (In: [2])

In these circuits the two 51Ω resistors are used to simulate the resistance between the current

output and voltage measurement electrodes.

53
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Table 5.1: Parameters of the five measurements.

Measurement Number R1(Ω) R2(Ω) C(nF) f c(kHz)

1 150 150 10 150
2 200 200 10 113
3 200 200 68 16.6
4 300 300 68 11
5 270 270 10 83

Each circuit was measured within a range of 32 frequencies from 20kHz to 1MHz logarithmi-

cally spaced (20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250,

300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1000 kHz). It is important to space the

frequencies logarithmically to ensure a proper density of data [68]. The values of Phase and Mag-

nitude were stored in a CSV file and the phase-frequency (figure 5.2) and magnitude-frequency

(figure 5.3) characteristics were plotted.

Figure 5.2: Impedance Phase Plot.

we

It is possible to observe in the phase plot that the characteristic frequency is the point where the

phase has its minimal value. This can be observed in the measurements 1, 2 and 5 as the cutoff fre-

quency increases the plot moves proportionally. In the measurements 3 and 4 the cutoff frequency

is below the 20kHz, this was previously reported by Yuxiang Yang et al. [2]. Due to electronic
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constraints our device cannot perform measurements below 20kHz whereas bioimpedance spectra

below 20kHz contains useful information [69].

Figure 5.3: Impedance Magnitude Plot.

In the first stage (low frequencies) the capacitor in the RC circuit works as an open circuit and

after the cutoff frequency it starts to work as a short circuit. This can be verified in the magni-

tude plot, for example in measurement 1 below the cutoff frequency (150kHz) the magnitude is

approximately 330Ω (the sum of both resistors) while after 150kHz, it decreases to approximately

170Ω (only R1).

When comparing the values of the different RC circuits with the values of the measurements it

is easy to identify similarities. However measurement errors are nearly inevitable, random errors

in measurements can be eliminated by performing a set of measurements and calculate the average,

but systematic errors could only be eliminated for example by calibration.

5.2 Averaging Review

As noticed in section 5.1, some random errors reduce the accuracy of our prototype, and these

errors can be introduced for example by the ADC conversion errors.

By making more measurements for each frequency and averaging these values, a more accurate

result will be obtained and the curves will be smoother. The difficulty to find the number of
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(a) 10 Samples Group. (b) 20 Samples Group.

(c) 50 Samples Group. (d) 100 Samples Group.

measurements needed to have a good result motivated us to perform an averaging test. Four each

of the 32 frequencies we acquire 10, 20, 50, and 100 samples. Then for each frequency the average

value was calculated. This test was repeated 40 times for each number of samples (i.e. 10, 20, 50,

and 100) and the values were stored in a CSV file.

Using the MATLAB function shadedErrorBar [70] the average of the 40 measurements for

each number of samples was calculated and plotted, this function also creates a continuous shaded

error region around the mean value.

By observing the plots of the averaging test it is possible to notice that by averaging 10 samples

the result is satisfactory, since the shaded area is really small, and as we increase the number of

samples the curve becomes smoother.

The number of collected samples will increase the time of the measurement, consequently

spending more battery, but this result in more accurate measurement. We leave the decision of

the number of samples to be collected to the user, that will need to consider the trade-off between

measurement quality and battery lifetime.
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5.3 Platform Evaluation

At the time the project began to be developed the main goals were to develop a low-cost and

portable solution with an easy to use interface that could be operated by a big range of users.

Regarding the portability, two aspects were taken in consideration: the size and the power con-

sumption.

During the development it was decided to develop a PCB with the size of 80× 60mm (fig-

ure 5.5). Most of the chips used were SMD so it could be saved some space.

The system has a power consumption of 260mA when in idle state and it goes to 280mA during

measurements. The battery used is a Lithium-ion Polymer rechargeable battery, considering a

power consumption of approximately 270mA (alternating between idle and measurement state).

Each measurement takes only 1.4 seconds, during a battery life approximately 220 measurements

can be done [71].

Figure 5.5: Measurement Device Assembled.

The BoM of the measuring device is of 147,11$ and the price of its PCB is 102,91$; this price

could be decreased in a next version by developing a minor version using passive components of

smaller sizes.

The Pandlets Core developed by Fraunhofer has a production price of 22$, but the fact that

this measuring device can be integrated in a bigger solution of multiparameter monitoring, being

the Pandlet Core the “heart” of this system makes its price insignificant.

Our end-to-end solution is completed with the Android App allowing the user to start the

measurement and previously receive the values of the measurement. By linking this device with a

smartphone the additional cost of inserting a display in the device can be cut out and no additional
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knowledge to understand the device operation is needed, since nowadays most of the population

have a smartphone and knows how to operate it.



Chapter 6

Conclusions and Future Work

This thesis aimed to develop a method for measuring the bioelectrical impedance of the thorax so

fluid overload in the lungs could be detected long before hospitalization due to Heart Failure.

By using multifrequency measurement method like Bioelectrical Impedance Spectroscopy a

lot more information was provided about the tissue properties which helped to get better results in

the measurement.

The MRPDD technique allowed to simplify the electronics providing a wide frequency range,

small circuitry dimensions, small power consumption; being this a cost effective alternative to the

classical methods.

The power circuit created was responsible to supply the Pandlets Core and the measurement

device, it allowed the system to be supplied by a Lithium-ion Polymer rechargeable battery, not

needing to be connected to a plug.

The use of a BLE communication proved to be very efficient due to its low-cost and low-power

consumption, adding the fact that was possible to use the Pandlet for this communication, a hybrid

solution was created, once that in the future this measuring device can be integrated in a multi

parameter monitoring system.

An user friendly Android App provides an easy way for the patient to monitor his status with-

out needing to operate a medical device and the values of the measurement can be later saved in a

database or sent to the caregiver or the medical clinician.

The results obtained in the test measurements allowed to conclude the validity of the system,

tested in different conditions in a controlled environment. The next step will be to test in a clinical

environment with the supervision of a medical specialist.

There are some solutions available in the market, but the fact that they are expensive and have a

big size makes them not suitable for a user to have them at home or continuously monitor himself.

During the development of this project two aspects were always kept in mind: the portability and

the low-cost solution. Both of these goals were achieved, having in the end a small size and low

power device for less than 300$ that can be carried anywhere.
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6.1 Future Work

Although almost all goals were achieved, there is always something more to be done and some

aspects to improve, such as:

• System Calibration - After removing the random errors it is important to make sure the

systematic errors introduced mainly from the analog input/outputs channels. This can be

achieved by calibrating the entire system;

• Cole Parameters Extraction - By applying some nonlinear models to the complex impedance

it is possible to extract these parameters, as seen in section 2.3, however this approach

requires more processing power;

• Body Fluid Volumes Estimation - After finding the Cole Parameters it is possible to estimate

the body fluid volume of an individual, this is the parameter of most interest to physicians;

• Reduce the device size - The actual size is already satisfactory, however after testing the

first PCB, if a next version is developed this size can be decreased by reducing the size of

passive components and arrange the components in an improved layout;

• Improvements in the Android App - User login, database to store the measurements values

and a tutorial for how to apply the electrodes are examples of some features that could be

introduced in a next version;

• Clinical Setting Tests - A daily monitoring of heart failure patients will allow a final valida-

tion of the device.
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