
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1978

Measuring Improvements in Program Clarity Measuring Improvements in Program Clarity

Ronald D. Gordon

Report Number:
78-268

Gordon, Ronald D., "Measuring Improvements in Program Clarity" (1978). Department of Computer
Science Technical Reports. Paper 199.
https://docs.lib.purdue.edu/cstech/199

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

l!i ';, ,
,

, r
i ~ !

Measuring Improvements in Program Clarity

by Ronald D. Gordon

CSD-TR-268

Purdue University
Department of Computer Sciences

West Lafayette, Indiana 47907

Aprl] 1978

ABSTRACT

The sharply rising cost incurred during the production of
quality software has brought with it the need for the development
of new techniques of software measurement. In particular, the
ability to objectively assess the clarity of a program is
essential In order to rationally develop useful engineering
guidelines for efficient software production and language
development.

A functional relation between the clarity of a program and the
number and frequency of operators and operands which occur in the
program is presented. This measure of program clarity provides
an estimate of the amount of mental effort required to understand
the program, assuming that the reader Is fluent In the
programming language employed.

This measure is tested by applying it to several published
examples which demonstrate improvements in program clarity. The
objective assessment which is provided using this measure is
found to agree ~ith the experimental data gathered.

Keywords and Phrases: program clarity, software measurement,
software complexity, cognitive psychology, software science

CR categories: 4.0, 4.6

1

Introduction

Several program transformations have been documented which may
be appl led to programs containing styl istic flaws. These
transformations remove the flaw and enhance the program~s

clarity. A measure of program clarity, in order to be useful,
should Indicate that the amount of mental effort required for
comprehension has been reduced as a result of such a
modification. In this report, six transformations are
analytically studied and their effect on the program and the
measure Ec is presented. In most cases, the improvement In
clarity which results is appropriately reflected by a decrease in
the amount of effort estimated by this measure.

Early research in the area of software science led to the
identification of six impurity classes[1]. These classes
characterize specific flaws in programming style. Initially. the
presence of an impurity was observed to perturb the invariance of
V* and LV. In addition, the estimator of program length, N,
would provide results which were no longer an accurate
approximation of the observed program length, N. These
aberrations enabled researchers to identify and classify the
Impurities present in several program samples[6].

This initial research was undertaken because at that time the
fundamental relations between Nand N, and V* and the product LV
had yet to be substantiated. While many programs did obey such
invariant relationships, some programs, most noticeably those
written by novices, exhibited values of both V* and N which were
not in agreement with the hypotheses developed. A careful
analysis of these anomalous cases clearly Identified six classes
of impurities which contributed to the observed discrepancies.
SUbsequently, other researchers also verified the relationships
governing Nand V* for programs without such impurities[4].

At that time it was observed that the impurities which were
identified were found only in poorly written programs. Well
written. highly pol ished programs contained none of them. Yet no
consistent pattern was observed which would explain what aspect
of the program was improved as the impurities were removed. The
estimator N did not consistently increase, nor consistently
decrease as it approached N. At times, the removal of an
impurity would increase C while in other sItuations C would
decrease. The program volume might also rise or fall as an
impurity was removed. The product of C and V did not
consIstently vary, eIther.

Alone, these observations do not lead to the conclusion that
impurities are manifistations of "bad" programming, nor do they
explain why professionally prepared code contains none of them.
On the other hand, the decrease In the measured value of Ec In
response to the removal of impurities for a wide class of typical
programs provides a simple explanation for the motivation behind

2

program purification.

COMPLEMENTARY OPERATORS

The first Impurity class concerns the successive application
of two complementary operators to the same operand. The use of
complementary operators Is easily seen to be less desirable in a
programming language than the simple deletion of the pair of
operators altogether. This Is surely true in any language In
which such a construct accompl ishes nothing, as is the case in
all present programming languages. Even in Engl ish, a double
negative results In a positive, and because such a construction
is less clear than a simple statement of the fact, its use is
exceptional.

Consider a program as a finite string of operators and
operands. At some point, a pair of operators, say ~ and S occur
whose use is complementary. The removal of the two operators
leaves the program functionally the same, and conceptually easier
to understand. How Is the measure Ec affected?

In this analysis. we assume that the operators ~ and S occur
elsewhere in the program, used in a noncomplementary context.
Then, slmpl ification will not reduce the number of unique
operators present. This is reasonable for suitably large
programs, and most importantly, this condition represents the
worst case, or minimal amount of improvement. which must be
reflected by a measure of program clarity. The net effect of the
purification is simply to reduce the total number of occurrences
of operators by 2.

For example, the program segment:

x - --V;

would become, after purification:

. X - Y;

The effort required to understand the original program,
consIdering it exhibited the measurable properties~" n2. N1 •

and N2 Is given by the equation Ec = VIC, which may be expanded
in terms of these basic variables so that their effect can be
visual ized:

E c impure = (N,+N 2)n,N 2 Io92(n1+n2)
2 no

The purified program is easier to understand, and as a result,
we would expect a measure of program clarity to yield a result,

3

Ec, which was less than that of the original. Since N1 fs
reduced by 2, we obtain:

Ec pure = (Nl+N2-2)nlN21og2(n,+n2)
2 71,

Clearly, Ec Impure> Ec pure as a result of removing the
impurity presented by the presence of the complementary
operators. Further, if such purification removes the last
occurrences of either or both of the operators, the amount of
effort which is measured will be further decreased. The effect
here would be to decrease n" The measured effort would
decrease, since nl appears in the numerator of the equation.
This is in agreement with the decrease in effort actually
observed. when the use of an operator may be e1 iminated from a
program entirely.

In some situations, complementary operators might also Involve
the use of operands, so that as a result of purification, N2 Is
decreased by 2. Such is the case if, for example, the program
adds and subtracts a term in an expression:

• X - Y + Z - z;

The effects of complementary operators on the clarity of a
program are most simply demonstrated in the context of algebraic
expressions. Of course, complementary operators may also appear
as impurities affecting the control flow of a program. This is a
very important area, as much of the recent work in the area of
programming style has been concerned with the proper use of
control structures within a language. Here too, the proposed
measure is most useful in assessing program clarity in view of
the presence of such control impurities. The following simple
example will serve to illustrate how the presence of this
impurity type results in programs which are ultimately more
difficult to understand.

IF (.NOT.condition) GO TO 100
GO TO 200

100 CONTI NUE

The structure above exhibits an instance of complementary
operators which affect the control flow of the program. The
operators .NOT. and GO TO 100, may both be removed from the code.
This purification will actually decrease N1 by 3 since an end-of
statement operator Is also eliminated. The code which results
is:

IF (condition) GO TO 200
100 CONTI NUE

Most of the time, however, the original code is "optimized" by
subsuming the operator . NOT. into the condition tested. For

4

example, A.NE.B may appear Instead of .NOT.A.EQ.B, and the
presence of the complementary operators would not be expl icit.
Reversing the condItion and removing the redundant GO TO-operator
will reduce N1 by 2 and perhaps decrease ~1 by 1. This
purification enhances the program~s clarity, and this is properly
reflected by the proposed measure as the amount of mental effort
estimated, E e , decreases.

Several authors have observed that the presence of
complementary operators, either in algebraic expressions, or
involved with the control flow of a program, degrade program
clarity. While they do not present the foregoing
conceptual ization. they do provide numerous examples which
demonstrate the types of purifications outl ined above. This
includes the material presented by Chmura and Ledgard[2] In
support of the I r c Iever proverb. "Don ~t GO TO, II and most of the
examples presented by Kernighan and Plauger[B] demonstrating the
proper formulation of expressions and the correct use of
conditional statements. Many of the techniques for avoiding GO
TO-statements presented by Knuth and Floyd[11] are simply methods
which remove complementary GO TO-operators of the type shown
above.

AMBIGUOUS OPERANOS

In some situations It is possible to use the same variable to
represent different types of values in different portions of a
program. When the use of the variable Is suitably disjoint, such
a scheme may be carried out without affecting the operation of
the program adversely, and with some rudimentary compilers. the
technique might even save a few words of storage. Nonetheless,
such ambiguous usage makes a program more difficult to comprehend
because the meaning of the variable depends on the exact context
In which it is used.

To purify the program which contains an ambiguous operand, a
unique operand must be introduced. This will increase ~2 by 1,
while leaving the other parameters unchanged. For example, the
following program segment contains an occurrence of just such an
impurity:

P + Q - R; R * R - R;

Here, the variable R is used to store the sum of two
quantities, while later in the code, R represents the square of
this sum. In a low level language such a construction may be
required, and the expl iclt use of a temporary will improve the
program~s clarity:

5

. P + Q - SUM; SUM * SUM - R;

The effort required to understand the program after
purification [s easily calculated. Since only n2 has been
affected, we obtain:

The value Ec pure which results is strictly less than the
value obtained for the original. unpurified version. This must
be so since for n1~2 the first derivative of the function
I092(nl+n2)/n2 with respect to n2 is negative. The conclusion
which is reached on the basis of the proposed measure, Is that
the amount of effort required for comprehension has been
decreased by avoiding the use of ambiguous operands. This
conclusion is in agreement with the observed Improvement in
clarity which occurs in actual practice. Interestingly. measures
of clarity which use the number of unique variable names as a
factor simply contributing to the difficulty of comprehension, do
not properly assess this situation.

Hill, Scowen. and Wichmann[7] have recognized the degradation
in clarity which results as programmers attempt to reuse program
variables. They point out that "programs are easier to
understand if each variable has a constant meaning." The
proposed measure mirrors this observation.

SYNONYMOUS OPERANDS

Rather than use one name for two different quantities, we may
use two names for the same quantity. This represents an Instance
of synonymous operand usage, the third impurity class.

In order to remove this impurity, the assignment of a value to
the second operand Is el lmfnated. This will reduce N1 by 2 since
an occurrence of the assignment and end of statement operators
have been elIminated. In addition, N2 Is reduced by 2. Because
both occurences of the operand are then el imlnated, ~2 is
decreased by 1. As an example of this impurity, consider the
following simple program segment:

. P - T1; T1 + Q - T2; T2 * T2 - R;

After purification, the following code results:

P + Q - T2; T2 * T2 - R;

Since both P and T1 contain the same value at al I times, the
presence of both variables In the program text serves no useful

6

role, and only confuses the presentation of the algorithm. The
pr"ogrammer was forced to study one more variable and enter' it~

semantic meaning into the vocabulary being developed. The
removal of the impurity improves the program~s clarity, and "C('j!3

Is reflected by a decrease in the estimate provided by the
proposed measure.

In general, the presence of this type of
form of an extraneous assignment statement:

. expression - variable;

impurity takes

when the assigned variable and another have the same value pt
each point in the computation where the synonymous variabie is
referenced. Such a statement involves N, operators and N2
operands. I n the simp 1est case as in the prev i ous examp 1e. i'·;; -
Ni = 2. After purification, N1 and N2 are reduced by N, and N~

respectively and 772 is reduced by 1 as the synonymous operand i:;

replaced in each occurance with the alternate variable. Tile
resulting estimate of comprehensibil ity is:

Eo pure =

In order to study the ratio Ec pure / Eo impure as program
vocabulary, 77, increases, the following approximations are
introduced in order to transform the above equation into a
function of 77 and N,: N, ~ Ni, N1 ~ N2 , and 771 ~ 772' The length
equation[5] N ~ 7711092771 + 7721092772 reduces In this environmSI-i,:
to N ~ 77l092(77/2). The following ratio Is then obtained:

Eo pure
Eo impure

It is possible to solve for the critical value of N,. the
point at which Ec pure equals Eo impure as n for the impure
version varies. The results are summarized in Table 1.

Table 1: Critical values of N, during the removal
of synonymous operands

T} N, critical

5
8

16
32
64

128
256
512

0.55
0.84
1 .28
1 .75
2.22
2.70
3.19
3.68

Because N; ~ 2 we have
Eo pure < Eo impure for
small modules.

When N; = 2 we may find
Ec pure> Ec impure for
large modules.

7

The crossover occurs when n = 46 at which point N; critical =
2. For small modules, whose length N is below roughly 208
operators and operands, the removal of the most trivial instance
of the synonymous operand Impurity Is reflected In the decrease
of Eo. It is somewhat unfortunate that for larger modules, such
a purification may result in an increase in the measured value of
Eo when the superflous assignment statement is simply of the form
A - B;. Nonetheless, more typical occurances of this impurity
involve more operators and operands and as can be seen in Table
1, their removal would be properly assessed by the measure.

COMMON SUBEXPRESSIONS

It is a common practice, whenever a specific combination of
terms must be used more than once, to assign a new name to that
combination and to util ize that new name in the subsequent
occurrence(s) of that term. The primary justification for this
procedure in the past had been to save space and speed execution,
but with the advent of modern optimizing compilers, the
programmer is no longer forced to do this optimization.
Nonetheless, the practice is still useful because the resulting
code may be more easily understood by the reader. In effect, the
programmer modularlzes the unwieldly expression much as one might
modularlze a large program.

Consider a program containing n instances of a subexpresslon.
This program will have the measured properties n1' n2' N1 , and
N2 . The subexpression itself will contain N; operators and N;
operands. Purification wil I introduce a unique operand. This
new operand will be used in n-1 of the n occurrences of the
common subexpression. The purified program will contain the same
number of unique operators, and the new operand will increase n2
by 1. In assigning a value to this new operand, an additional
assignment statement will have been introduced. This will
increase N1 by 2: one for the assignment operator, and one for
the end-of-statement operator. Since the expression need occur
only once, the number of operators is decreased by (n-1)N, and
the number of operands by (n-1)N 2 . Final ly, note that the n+1
occurrences of the new operand increases the total number of
operands in the purified version of the program. These results
are summarized in Table 2.

8

Table 2: The Effect of Removing a Common Subexpression

Parameter

Unique Operators
Unique Operands
Total Operators
Total Operands

Original Purified

711 711
712 712+1
N, N, +2-(n-1)N,
N2 N2+n+1-(n-1)N 2

The values I isted in Table 2 for the purified program version
may be used in order to obtain an estimate of the effort which is
required for the comprehension of the revfsed program. For the
case when the common sUbexpression occurs twice in the program
(n=2) the expression for the effort expended understanding the
purified program is:

Eo pure = (N1+N2+S-Nl-N2)n,(N2+3-N2)loga(n,+712+1)
2 (n,+1)

This expression indicates that the purified program will be
significantly easier to understand after removing a subexpression
which occurs only twice, if it consists of two or more operators
and three or more operands. This conclusion is easy to Justify.
Clearly, the factor 10g2(711+712)/712 is sl ightly greater than
1092(711+712+1)/(712+1) since the denominator Is Increasing faster
than the numerator. The smallest possible values of N1 and Ni
which would then guarantee that the value Eo pure is less than
the measured value Eo impure for the original version must
satisfy Nl+N2~5 and N2~3. Selecting N2=3 yields N1=2. For
example, the program segment

contains the simple common subexpression P*Q. Here, N1=1, N2=2,
and n=2. The program segment may be purified by introducing a
new operand, T, and the required assignment statement:

The resulting code Is, at best, only sl rghtly easier to
understand than the original I The overhead involved in
introducing the new variable. T, and the added assignment
statement, very nearly negates the increase in simpl icity which
results when the redundant expression is removed. If we were to
consider only the fragments of code shown above, the software
measure yields values of Eo of 303 and 300 elementary mental
discriminations respectively. As can be seen, the value of Eo
changes little. This result agrees with the subjective
assessment of clarity for just such a modification.

9

The proposed measure has simply identified that situation in
which 1ittle improvement can be made, and has resulted in a
formulation of an easily appl ied engineerIng guidel ine: The
removal of a common sUbexpression will noticeably improve the
clarity of the resulting program. only if the expression contains
two or more operators and three or more operands, or occurs more
than twice in the orrginal code. This engineering principle has
been developed from the proposed measure of clarity and is
consistent with the observed improvements In program clarity in
actual practice. The hypothesis is robust in this respect, as
the impl ication drawn from the formulation of the equation is
val id.

Yohe[12] recommends this type of modification because it
improves program c 1ar I ty. He states: "Assumi ng that descr i pt i ve
variable names have been chosen for the subexpressions, and that
choices of sUbexpressions have been made carefully, readability
will be enhanced." The measure of program clarity which is
proposed, reflects this observation and provides a useful
engineering principle which may be used as a gUide as one
"carefu 11y" chooses su i tab 1e sUbexpress ions.

The appearance of a common sUbexpression, as with other
impurities, is not confined to algebraic expressions. Quite
frequently, this particular impurity is observed to affect the
structure of the program. Many times in this context, however,
the programming language is unable to provide the needed
facil ities required for the removal of the redundant code. A
simple example is that of a repeated parameter 1 ist. In most all
programming languages, two modules, invoked with the same
argument 1 ists, must exp1 icitly present that 1 ist twice:

CALL PERIOD (RADIUS, MASS, BODY[I]);
CALL VELOCITY (RADIUS, MASS, BODY[I]);

Here, the complex parameter 1 ist must appear with both
procedure cal Is because the language contains no mechanism
may be used to effectively factor out this redundant term.
simpler representation would accrue if a new item could be
defined as a parameter 1 ist, and used for these two calls.
code might appear as:

ORBIT - (RADIUS, MASS, BODY[I]);
CALL PERIOD ORBIT;
CALL VELOCITY ORBIT;

which
A

The

A common sUbexpression may also appear as executable code,
repeated in two or more locations in the program, when that code
may not be broken down into separate modules. For example,
conditional statements often lead to this situation as the code
below demonstrates:

10

IF (condition)
THEN WORKER[EMPLOYEE NO] .SALARY-RATE[I]
ELSE WORKER[EMPLOYEE NO].SALARY-O;

The variable WORKER[EMPLOYEE NO].SALARY must be specified
twice, and the operators for sUbscripting, record item
specification, and assignment, along with the operands involved,
lead to the formation of quite a complex structure. As suggested
by Hill, Scowen, and Wichmann[7]. much of this can be removed
from the program, if we write:

WoRKER[EMPLoYEE NO] .SALARY
IF(condition) THEN RATE[I] ELSE 0;

This type of simpl ificatlon Is not new. Many other authors
have advocated its use in improving program clarity, and several
languages allow such structures to be freely used. What is
Important here. is that the proposed measure of clarity handles
just such purifications, as simply as it does the simpl ification
of algebraic expressions. The measure of clarity indicates that
such a transformation does improve the clarity of the program,
and it provides a result which specifies how much easier the code
will be to understand.

The proposed hypothesis may simply identify those features of
a language which assist in preparing programs which are easy to
understand. ·In COBOL, for example, one may increment the
contents of a field quite simply by coding:

ADD 1 TO WoRKER[EMPLoYEE NO] . DAYS WORKED.

Many programming languages do not support a facil ity which
allows for such a simple statement for this operation.
Inevitably, in such languages, a certain number of common
sUbexpressions must remain, even after the code has been
po 1 Ished. Remov i"ng these impur i ties wou Id improve the
understandabil ity of the program. In ALGOL 68, for example, the
statement 1:=1+1 may be more simply expressed as I:+=1.
Dijkstra[3] used the construction 1~ 1 to simply express the
reflexive use of the variable I. Hoare-s notes indicate a
similar scheme for the selective updating of sets. For example,
to exclude from the set x all members which are also members of
y, the notation x:-y is used[12]. Knuth[10] recognizes the need
for such a notation and suggests that a reflexive operator be
employed. Denoting the required operator by *=, the statement
X:=X+Y is coded X*=+Y. When the specification of X is complex,
the simplification which results when one uses such schemes
noticeably improves the clarity of the program for those fluent
with the adopted conventions.

11

UNWARRANTED ASSIGNMENTS

When an expression is evaluated, given a unique name, and then
used only once, we have an occurrence of the fifth type of
impurity, unwarranted assignment. This impurity is removed by
first deleting the assignment statement from the program. This
decreases N, by 2 since the assignment operator and the end-of
statement operator are el iminated. The expression itself is
sUbsequently used in place of the operand where it occurs. This
will decrease N2 by 2, and n2 will be reduced by 1 since we have
removed the only two occurrences of the operand. After
purification, the value which is obtained as a measure of the
program~s clarity Is given by:

Ec pure = (N 1 +N 2 -4)n, (Nt-2)]092(n1+n2-1)
2 TJ, 1)

This is precisely the same result which is obtained for the
removal of synonymous operands when N, = N2 = 2. Clearly this Is
to be expected since the simplest examples of these two impurity
classes are indistinguishable. Consider, for example, the
program fragment

. p - T1; T1 + Q - R; .

which may be considered to contain either an unwarranted
assignment to the variable T1, or the synonymous variables P and
T1. More complex examples, however, make the distinction between
unwarranted assignment and synonymous operands evident. The
fol lOWing code segment, suggested by Kernighan and Plauger[40]
contains unwarranted assignments to the variables F1 and F2:

F1~X1-X2*X2

F2~1 .O-X2
FX=F1+F2

As an example of their proverb "Avoid temporary variables,"
they state: "The fewer temporary variables there are In a
program, the less chance there is that one will not be properly
Initial jzed, or that one will be altered unexpectedly before it
Is used, and the easier the program will be to understand."
Their suggestion leads to the following version:

FX = X1-X2**2 + 1.0-X2

The proposed measure of program clarity reflects the improved
comprehensibil ity of the later version. A value of 120
elementary mental discriminations is obtained for the improved
versIon, down from a value of 288 for the original.

We may investigate the effect of removing an unwarranted
assignment from a program by examining the ratio E c pure / Ec
impure as program vocabulary increases. In order to express the

12

ratIo as a function
are again employed.
as n for the Impure

of n. the approximations util ized
Table 3 summarizes the effect on

version varies.

previously
this ratio

Table 3: The effect of removIng an unwarrented assignment
as program vocabulary increases

n Ec pure / Ec impure

5
8

16
32
64

128
256
512

0.22
0.70
0.94
0.99
1.003
1 .004
1 .003
1.002

removal of the impurity
decreases the measure Ec .

For large modules the
Removal of the impurity
does not effect Ec greatly,
but Ec pure> Ec impure.

Above a vocabu Iary of 46, pur If Icat ion i ncre'ases Ec s light Iy.
Although the removal of the impurity does not in this case result
in the cons i stent reduct ion in Ec , it is perhaps not
unreasonable. For very large modules. the use of a meaningful
variable to represent the value of a complex expression may
assist in program comprehension even though that variable is used
only once. In this I ight, the behavior of the measure appears
most satisfactory.

UNFACTORED EXPRESSIONS

It is clear that an expression which could be factored would
be easier to understand after factoring. Yet, no general method
of removing this impurity Is available. This makes the general
analysis which we have been following impossible for this
particular impurity class. We can, however, examine the behavior
of the proposed measure of clarity for an expression which
represents a minimal amount of improvement as it is removed, and
insure that the proposed measure of effort decreases for this
case. Much more profitable situations would lead to more
significant reductions under the measure.

The simplest unfactored expression is P*P + 2*P*Q + Q*Q, which
becomes (P+Q}**2, once factored. As can be seen, factoring may
introduce new operators. In this situation. we have used the
grouping operator and exponentiation. In addition, new operands
may appear as coefficients or exponents in the factored
expression. These new operators and operands mayor may not be
unique, and will contribute to n1 and n2 only occasionally. In

13

the example given above, we assume that the new operators are
indeed unique, and obtain a measure of effort, given by the
equation below. No new operands were introduced in this example.

Eo pure = (N 1 +N 2 -7)n, (N2-4)log2(n,+n2+2)
2 n2

This expression yields a value for the amount of effort
required for comprehension after the Impurity above has been
removed. It indicates that the resulting code will be easier to
understand since Eo pure is less than Eo impure, the value
obtained for the original program. This must be so since the
factor (N-7)log2(n+2) is less than N log2n whenever N <
2n log2(n+2). Because N ~ nlog2(n/2) the previous inequality is
expected to be val id. Similar results are obtained when more
complex expressions are factored, and corresponding decreases in
Eo are observed. This is in agreement with the improvement in
clarity which is observed whenever this type of impurity is
removed from a program.

PROGRAMMING GUIDELINES FOR PROGRAM CLARITY

Several authors have presented guidel ines which, when
followed, assist In the preparation of programs that are more
easily understood. Not all of these gUide! ines may be appl ied in
a general fashion, and the modifications which are necessary in
order to bring the code into compl iance with the rules, may not
be simply specified. Instead, ad hoc alterations are required,
and the programmer's ingenuity is put to the test in applying
many of the rules. In some instances, exceptions to such
guidel ines may be demonstrated, and the resulting code proves to
be more difficult to comprehend.

In spite of these serious drawbacks, such guidel ines have been
drawn up as the best means available for gUiding the production
of software. Consider, for example, the typical admonishment
against the use of the GO TO-statement: Avoid the use of GO TO
when a conditional statement, conditional expression, or FOR
statement can fulfil I the same purpose[7]. The authors present
several examples to demonstrate the app! ication of this rule.
They point out that the code

IF K~1

THEN GO TO L1
X :~ X+C;
GO TO L2;

L1: X := X+B;
L2: continue

14

may be noticeably improved by 61 iminating the GO TOs and writing
Instead

IF K~1

THEN X := X+B;
ELSE X :~ X+C;

Such a gUideline is indeed useful in improving the original
version of the program. Further enhancements are achieved by
writing

X :~ IF K~1

THEN X+B;
ELSE X+C;

A still better version is presented as

X :~ X + IF K = 1 THEN B ELSE C;

The code above may be improved by el iminating the common
subexpressions entirely. Fol lowing a syntax similar to that
developed by the designers of COBOL, we may more clearly state
the desired operation by coding

ADD (IF K=1 THEN B ELSE C) TO X;

The examples presented demonstrate the intended appl ication of
such a rule, which bans the use of the GO TO-statement. A
careful programmer may learn a great deal, general izing from such
examples. Analyzing the code and obtaining the estimate for the
amount of effort reqUired for comprehension, using the measure
Ec • verifies that the proposed measure properly reflects the
improvements in clarity which have been observed. More properly,
we note that the guidel ine presented, demonstrates a special case
of the general theory of program clarity being developed. Other
guidelines reported in the literature[7,B,9J are also impl ied by
the proposed measure, although in some instances they are not as
precise as the results obtained here:

o Do not calculate the same value more than once.
o Do not insert statements which can never be executed.
o Maintain a constant meaning for each program variable.
o Avoid forming conditional statements which result fn a

nul I-THEN clause.
o El iminate unnecessary intermediate variables.
o Use GO TOs to implement only the basic forms of break and

iterate structures.

Many other guidel ines may also be included in such a 1 ist,
some very specific and with limited appl icabil ity. Yet, these
guidel lnes do not collectively form a simple. coherent, and
robust theory of program clarity. The proposed hypothesis,
however, does define just those conditions under which an

15

improvement In clarity will be ovserved. The Interaction of the
parameters n1 I n2' N1 , and N2 • and the role each plays In
determining a program's clarity is reflected in the formulation
of the equation Ec = VIC.

CONCLUSION

An estimator of program clarity should reflect an improvement
in clarity by indfcating a decrease in the amount of mental
effort required for comprehension. Six Impurity classes had been
presented which characterize program flaws shown to impede
program understanding. The removal of such impurities can be
handled deterministically. and the resulting program structure
easily ascertained. Typically, such modifications reduce the
estimated amount of mental work provided by the measure, Ec •
Alternate hypotheses which have been considered do not exhibit
this desired behavior. These fail ing measures include the number
of program steps. the program volume, and the implementation
level.

The removal of impurities from a computer program was shown to
reduce the amount of mental effort required for comprehension
estimated using the measure E c , for a wide class of typical
programs. These Impurities had been observed to disturb the
invariance between the minimum program volume, V*. and (V. the
product of the program volume and implementation level. When
such impurities are removed, equality is achieved, but neither
the program volume nor implementation level are affected in a
consistent manner. The impurities cited are not found in weI 1
written programs produced by professionals. This observation
alone. however, does not explain what aspect of the program or
the programming process is optimized by purification. On the
other hand, the measure of program clarity, ECI generally
decreases in response to the removal of such program
deficiencies.

16

BIBLI OGRAPHY

[1] Necdet Bulut and Maurice H. Halstead, "Impurities Found in
Algorithm Implementations, 'I ACM SIGPLAN Notices, Volume 9,
Number 3, March 1974, pages 9-12.

[2] Louis J. Chmura and Henry F. Ledgard, Cobol With Style:
Programming Proverbs, Rochelle Park, New Jersey: Hayden
Books, 1976.

[3] Ole-J. Dahl, Edsger W. Dijkstra, and C. A. R. Hoare,
Structured Programming. New York, New York: Academic Press,
1972.

[4] James L. Elshoff, "Measuring Commercial PL/I Programs Using
Halstead's Criteria," ACM SIGPLAN NotIces, Volume 11. Number
5, May 1976, pages 38 46.

[5] Maurice H. Halstead, "Natural Laws Control' ing Algorithm
Structure?", ACM SIGPLAN Notices, Volume 7, Number 2,
February 1972, pages 19 26.

[6] Maurice H. Halstead, "Software Physics: Basic Principles,"
Research Report RJ 1582, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, May 1975.

[7] I. D. Hi II, R. S. Scowen, and B. A. Wichmann, "Writing
Algorithms In ALGOL 60," SoftwarecPractice and Experience.
Volume 5, Number 3, July September 1975, pages 223 244.

[8] Brian W. Kernighan and Phill ip J. Plauger, The Elements of
Programming Style, New York, New York: McGraw-Hill, 1974.

[9] Brian W. Kernighan and Phillip J. Plauger, "Programming
Style: Examples and Counterexamples," ACM Computing Surveys.
Volume 6, Number 4, December 1974, pages 303 319.

[10] Donald E. Knuth, "A Review of ~Structured Programming~,"
Technical Report 371, Department of Computer Sciences,
Stanford University, Stanford, Cal ifornia, June 1973.

[11] Donaid E. Knuth and R. W. Floyd, "Notes on Avoiding GO TO
Statements," Information Processing Letters, Volume 1.
Number 1, February 1971, pages 2331.

[12] James M. Yohe, "An Overv i ew of Programm i ng Pract ices," ACM
Computing Surveys, Volume 6, Number 4, December 1974, pages
221 245.

17

	Measuring Improvements in Program Clarity
	Report Number:
	

	tmp.1307986960.pdf.ZAJOP

