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Abstract: The COVID-19 pandemic has changed our common habits and lifestyle. Occupancy
information is valued more now due to the restrictions put in place to reduce the spread of the
virus. Over the years, several authors have developed methods and algorithms to detect/estimate
occupancy in enclosed spaces. Similarly, different types of sensors have been installed in the places
to allow this measurement. However, new researchers and practitioners often find it difficult to
estimate the number of sensors to collect the data, the time needed to sense, and technical information
related to sensor deployment. Therefore, this systematic review provides an overview of the type
of environmental sensors used to detect/estimate occupancy, the places that have been selected to
carry out experiments, details about the placement of the sensors, characteristics of datasets, and
models/algorithms developed. Furthermore, with the information extracted from three selected
studies, a technique to calculate the number of environmental sensors to be deployed is proposed.

Keywords: indoor occupancy; environmental sensors; machine learning; deployment

1. Introduction

Occupancy information refers to the presence of occupants in a building, their move-
ment, and their behavior. The occupancy information can be used to optimize a building’s
energy consumption and reduce energy waste [1]. Furthermore, in a world where social dis-
tancing and space occupancy limitation policies have been enforced due to the COVID-19
pandemic, monitoring systems become tools not only to improve the management of spaces
but also to save human lives [2].

To acquire occupancy-related information, there are different sensing approaches.
For instance, intrusive sensors, such as cameras and pattern recognition, are used to
count people; nevertheless, personal privacy is one problem during implementation. In
contrast, the non-intrusive sensors types, such as passive infrared (PIR), ultrasonic, and
acoustic sensors, can only be used to determine whether the room is occupied rather than
determining the actual number of occupants [3].

Environmental sensors are frequently used in occupancy modeling because of their
non-intrusive nature, their flexibility in sensor selection and combination, and their ability
to provide continuous data streams for real-time occupancy modeling[4]. Most environmen-
tal sensors can measure CO2 concentration, temperature, relative humidity (RH), airspeed,
particulate matter (PM), and volatile organic compounds (VOC) [5]. Figure 1 presents
the commonly used sensors for CO2, temperature, RH, and barometric pressure. The
available CO2 sensors are MQ135 [6], CL11 (also measure temperature and RH) [7–9],
SenseAir S8 [10], and HOBO MX1102 Zhou2020, among others. To measure temperature,
RH, and barometric pressure, some commercial sensors are the SENSIRION STS31 [11],
BME280 [2,12], and MHB-382SD [8].
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Figure 1. Environmental sensors used for collecting occupancy-related information. (a) CO2 sensor
MQ135. (b) CO2 sensor SenseAir S8. (c) Temperature sensor SENSIRION STS31. (d) Temperature,
RH, Pressure sensor BME280. (e) CO2 sensor HOBO MX1102. (f) CO2, temperature and RH sensor
CL11. (g) Barometric pressure sensor MHB-382SD.

Occupancy modeling approaches are divided into categories based on their level of
accuracy. These approaches include binary detection of the occupant’s presence (occupancy
detection) and counting the number of occupants (occupancy estimation) [4]. However,
some authors have also developed models to estimate the levels of occupation as well as
the social interaction [13] and status (to determine whether a person is alive or not) that a
human being has [14].

Regarding practical implementations of occupancy detection and prediction, re-
searchers have proposed various models that involve common statics models. Some
models used are the Hidden Markov Model (HMM) and its variations [15–17], models
based on Bayes’ theorem [7,18], supervised Machine Learning models, such as Support Vec-
tor Machine (SVM) [19,20], Random Forest (RF) [21,22], and the popular Artificial Neural
Networks (ANN) as well as their variants [23,24]. Furthermore, some researchers have also
proposed combining multiple environmental parameters in the models to obtain higher
precision and accuracy [25–27].

Existing reviews articles have performed a comprehensive overview of current solu-
tions for occupancy estimation and detection using different categories of sensors [28–31].
All of them discuss and compare the characteristics of the sensors, both the advantages
and the disadvantages. Other reviews address the modeling techniques and evaluation
for occupancy inference [32–34]. Furthermore, some authors have carried out an extensive
review incorporating the type of sensors, prediction models, and potential uses of low-cost
sensors in buildings [35–37]. Nevertheless, none of them address the installation aspects
and the number of sensors needed to place in a specific enclosed space. As a consequence,
an intuitive deployment caused an increase in time and cost.

Hence, the purpose of this systematic review is to identify articles that present indoor
occupancy approaches using at least one environmental sensor. That is, the aim is to find
out indoor occupancy models, the number of sensors installed in occupancy environments,
a description of the enclosed spaces, and the details about sensor deployment. The main
interest of carrying out this research lies in reviewing how sensors are installed in test-
bed scenarios and the least number of sensors required to generate adequate data for
analysis. This information can be beneficial for future research works that are focused on
indoor occupancy.

The content of this work is organized as follows: Section 2 presents the methodology
used to perform this systematic review. Section 3 provides the results obtained from this
review, and Section 4 gives the discussion of the results. Finally, Section 5 presents the
conclusions of this study.
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2. Materials and Methods

This systematic review was conducted in accordance with the PRISMA (Preferred Re-
porting Items for Systematic Review and Meta-Analisis) checklist. The PRISMA statement
was designed to help systematic reviewers transparently report why the review was done,
what the authors did, and what they found. The PRISMA statement comprises a checklist
of 27 items recommended for reporting in systematic reviews and an “explanation and
elaboration” paper that provides additional reporting guidance for each item along with
sample reports [38].

Furthermore, a second methodology developed by Kofod-Petersen [39] was considered
in this study. The Kofod-Petersen method helps researchers conduct a structured literature
review within Computer Science.

The review process has been broken down into several steps. First of all, relevant
questions have been identified, and a specific strategy has been followed to answer them.
This strategy is described along with the specific search strings and keywords used. Next,
the inclusion and exclusion criteria for the selection of relevant literature are defined.
Subsequently, data extraction and synthesis are carried out based on the already conducted
search. Finally, the risk of bias and limitations of this systematic review process are
discussed. The aforementioned steps for this systematic review are described in detail in
the following subsections.

2.1. Research Questions

The purpose of this systematic review is to establish a relationship between the number
of environmental sensors to collect data and the enclosed space in which occupancy levels
will be estimated. The objectives for establishing this relationship are:

• Identify the environmental variables used.
• Obtain the number of sensors installed.
• Obtain the details of the sensor deployment.
• Obtain the algorithms and models used to calculate, predict, or estimate occupancy.

For this systematic review, some questions were identified:

• RQ1: How many sensors per square meter are necessary to install within a room in
order to estimate occupancy levels in real time using only environmental sensors (air
temperature, barometric pressure, relative humidity)?

• RQ2: Is it essential to add another environmental variable or non-intrusive sensor to
improve the classification?

• RQ3: How should the sensors be distributed within the indoor place?
• RQ4: Can data fusion improve the performance of predictors?
• RQ5: Is it possible to use unlabeled data to estimate occupancy levels?

2.2. Search Process

For this systematic review, the well-known scientific database SCOPUS [40] is used to
find relevant literature. The search process was initiated on 5 July 2021 and concluded on
10 September 2021. The search results were saved in SCOPUS and the selected publications
were downloaded and imported to JabRef reference manager.

The main search keywords used were “Occupancy estimation”, “Occupancy detection”,
“Occupancy Levels”, “Occupancy” as well as “environmental variables” and “environmental sensors”.

2.3. Inclusion and Exclusion Criteria

The inclusion and exclusion criteria used for screening and selecting relevant literature
from the search results are defined in Table 1.
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Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

IC1 Publications whose titles contain the word “occupancy” and at least one
environmental variable (e.g., CO2, Temperature, RH, etc.) considered. EC1 No match to the inclusion criteria.

IC2 Articles that contain keywords that match the defined keywords. EC2 Duplicate publication.

IC3 The abstracts include search keywords or have a detectable relationship
with the selected theme. EC3 Research that involves datasets from

other authors.

IC4 Articles that include at least one environmental sensor in their experiments. EC4 Thesis, books, and preprint studies.

IC5 The publication is available in full text in an open manner or through any
of Tecnologico de Monterrey’s subscriptions.

2.4. Study Selection

For the selection of articles, the criteria involved the revision of the document title, the
abstract, and the skimming of the article. Furthermore, the inclusion and exclusion criteria
were also applied. A selection process based on the PRISMA flowchart [38], presented in
Figure 2, was also used.

Figure 2. PRISMA flow diagram for study selection.

The selected keywords provided around 3807 publications. Among these articles,
1063 mainly focus on occupancy prediction, estimation, and detection. Finally, 93 studies
were selected as only these studies fulfilled the search and inclusion criteria (Table 2).
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Table 2. Summary of selected studies.

Query No. Query Strings Results Selected

1
KEY ((“occupancy” OR “occupancy estimation” OR “occupancy detection” OR “oc-
cupancy building” OR “occupancy levels”) AND ((“Ambient” AND (“sensing” OR
“Variables”)) OR (“environmental” AND (“sensor” OR “variables” OR “parameters”))))

153 33

2 TITLE-ABS-KEY (((indoor OR enclosed) AND (occupancy) AND ((environmental OR
environment) AND (sensor OR variables OR parameters)))) 623 15

3
ALL ((indoor) OR (enclosed)) AND ((occupancy AND (estimation OR detection OR
prediction))) AND ((environmental AND variables) OR (environmental AND sensing)
OR (non-intrusive))

3031 45

Total 3807 93

2.5. Data Extraction and Synthesis

The general information for the registration of articles should include information
regarding the type of sensor and quantity, dimension of the enclosed space, design use of
the room, the data collection period, and the model or method used to estimate occupancy
levels as well as the accuracy obtained.

The data extracted from selected literature are tabulated in an Excel spreadsheet,
according to the following structure:

• Title and abstract of the literature;
• Author(s);
• Database type (available or private);
• Publication year;
• Type of sensor;
• Quantity of sensors;
• Type of place;
• Place dimensions;
• Description of the sensor deployment process;
• Test time;
• University–Country;
• Machine Learning algorithms;
• Data fusion methods;
• Results.

After the data extraction step, the extracted data are analyzed to answer the research
questions. For RQ1 and RQ2, the types of sensors used to estimate/detect indoor occupancy
are listed, and the respective number of sensors installed in that enclosed space are analyzed.
For RQ3, an analysis of the sensor deployment is reported, whereas for RQ4, the studies
that utilized data fusion methods are listed. Finally, for RQ5, Machine Learning methods
are analyzed based on their trend over time as well as the characteristics of the used dataset.

2.6. Risk of Bias

The risk of bias started during the initial query search in the database as the search
produced only the literature that was published between 2009 and 2021. Moreover, the
possible subjectivity of the inclusion and exclusion criteria defined by the authors can also
increase the bias in the selection process. Furthermore, there could be publications that
have been missed during the search process as the search was only performed through the
SCOPUS database.

In addition to the aforementioned biases, this systematic review has focused on publi-
cations involving at least one environmental sensor to estimate/detect indoor occupancy.



Sensors 2022, 22, 3770 6 of 34

3. Results

This section presents the findings from extracted data based on the questions provided
in Section 2. In the “Study Characteristics” section, a brief description of the selected
publications is presented. Next, RQ1 and RQ2 are answered in the respective sections
“Type of Sensors and Indoor Place Characteristics” and “Place Dimension vs. Total of
Sensors Deployed.” This is followed by the “Sensor Deployment Specifications” section,
where the proposed locations and the height of the sensors are detailed (RQ3). The “Data
Fusion” section addresses the methods proposed by different authors and answers RQ4.
Finally, the “Description of Algorithms and Datasets” section discusses the approaches for
occupancy estimation/detection, answering RQ5.

3.1. Study Characteristics

Interest in indoor occupancy detection and estimation using environmental sensors
has been growing over the years and has led to an increase in the annual output of articles
in the related domain from 2009 to 2021 (Figure 3). Lam et al. [41], pioneer in this domain,
developed algorithms to calculate the number of occupants based on the analysis of the
environmental data obtained. Later, in the year 2012, the research interest in this domain
had a strong increase. In subsequent years from 2012 to 2017, the number of scientific
publications on occupancy estimation increased significantly. The year with the most
publications is 2017 (17 papers), while in the following years, the publication trend has
slowly decreased.

Figure 3. Global annual publications on indoor occupancy estimation/detection using environmental
variables.

Figure 4 shows the distribution of publications on indoor occupancy by country. In
terms of publications by country, the United States of America (USA) has published the
most studies (20), representing 21.5% of the total publications in this field of research. The
USA is followed by Singapore and China with respective publications of 10 (10.75%) and 9
(9.67%). The average citations within SCOPUS of articles from USA, Singapore, and China
are 48.2, 31.3, and 29, respectively. Notably, the USA holds the leading position in the
research area of indoor occupancy estimation/detection using environmental variables.
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Figure 4. Publications on indoor occupancy by country.

Regarding the subject areas in which the studies are published (Figure 5), most of the
studies are concentrated in the field of Engineering (65.59%) and Computer Science (44.08%),
followed by Environmental Science (19.35%) and Energy (17.20%). However, the publi-
cations related to subjects such as Earth and Planetary Science, Chemistry, Biochemistry-
Genetics, and Molecular Biology are scarce and represent only 2.15% of the total number
of publications.

Figure 5. Publications on indoor occupancy by subject area.

Moreover, there are about 160 authors involved in this research area. Of these authors,
the number of discovered authors who have published at least three articles and are
included in this systematic review is 15 (9.35%). In total, 100 authors (62.5%) have only
one publication, while 42 authors (26.25%) have two publications, indicating that a limited
group of researchers (three publications, representing 1.87%) have focused on this domain.
The top 15 authors who have published at least three papers in the domain of indoor
occupancy estimation are shown in Figure 6. The top two researchers, M.K. Massod and
Y.C. Soh, are collaborating closely.

The institution with the highest number of publications related to indoor occupancy
estimation is Nanyang Technological University (nine publications, representing 9.67%) in
Singapore, followed by Institut Polytechnique de Grenoble (four publications, representing
4.30%) in France, University of Southern California (four publications, representing 4.30%)
in USA, and Sciences pour la Conception, l’Optimisation et la Production de Grenoble
G-SCOP (four publications, representing 4.30%) in France. Nevertheless, there are more
than 130 institutions that have conducted research in this field, and of those 130, 99 insti-
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tutions have only one publication, 25 institutions have two, and 6 institutions have three
publications. Figure 7 presents the top 10 institutions that have at least three publications.

Figure 6. Publications on indoor occupancy estimation by author.

Figure 7. Publications on indoor occupancy estimation by affilation.

When reviewing keywords from the literature, the keywords with a minimum co-
occurrence equal to five are presented in a network map (Figure 8), which was constructed
using the VOSviewer software—version 1.6.17 [42]. The size of the nodes and the words in
Figure 8 represent their respective weight. The bigger the node and the word, the greater
their weight. The distance between two nodes reflects their strength. That is, a shorter
distance reveals a stronger relationship. The line joining two keywords represents that they
have appeared together. The thicker the line, the more co-occurrence they have. The nodes
with the same color belong to a cluster [43].

The keyword “carbon dioxide” has the highest frequency of 43. Other keywords with
a high frequency include “occupancy detection” (24), “learning system” (21), “machine
learning” (21), and “energy efficiency” (20). On the other hand, keywords such as “wireless
sensor network”, “social interaction”, “information theory”, and “environmental sensor
networks” have the lowest frequency of one.

The network map shows that the keyword “carbon dioxide” has a relationship with
the keywords “energy efficiency”, “occupancy detection”, “occupancy detections”, “office
buildings”, and “building occupancy”.
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Figure 8. The most relevant keywords of the selected publications.

Finally, Figure 9 shows the research trends of indoor occupancy resolution presenting
the changes and evolution of the desired precision over time. The number of occupants
estimated in the place is more common; 46 publications (49.46%) were focused on this
resolution. The second resolution most common is the detection (binary) of a person, which
has been addressed in 35 publications (37.63%), followed by indoor occupancy levels,
having been studied in 29 publications (31.18%). It is important to point out that of the
93 publications, 18 focused on more than one resolution.

Figure 9. Publications by indoor occupancy resolution.

3.2. Type of Sensor and Indoor Place Characteristics

Indoor occupancy is one of the important sources of information for designing smart
buildings. However, challenges such as user privacy, communication limit, and a sensor’s
computational capability make it difficult to develop occupancy monitoring systems [44].
Figure 10 shows the types of sensors that have been put into use by year, from 2009 to
2021. The type of sensor that has been used most often over the years is the CO2 sensor.
Similarly, sensors that can measure temperature and RH are also widely used for enclosed
spaces. In 2017, 15 publications (16.12%) used such sensors to collect environmental data.
As secondary sensors, the PIR and light/luminescence sensors have been discussed in
27 publications (29.03%) over the years, followed by the acoustic sensor being discussed
in 21 publications (representing 22.5%). While the interest in the PIR sensor increased
in the years 2017 and 2019 (five publications, representing 5.37%), in 2019, the interest
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in the light/luminescence sensor also increased (five publications, representing 5.37%).
Previously, the acoustic sensor was the most discussed in 2012 by four publications (4.30%).

Figure 10. Types of sensors reported in the publications by year.

Regarding the number of publications reporting on a type of sensor, 84 publications
(90.32%) documented the use of the CO2 sensor with other sensors, while 13 publications
(13.97%) described the use of the CO2 sensor only. For instance, Zuraimi et al. [45] installed
four CO2 sensors within a lecture theater (876 m2), obtaining a root-mean-square error
(RMSE) between 19.6% and 27.4%. Other authors who had only installed one CO2 sensor
in places with areas between 12 and 40 m2 obtained results with an accuracy value between
69.96% and 99.52% [46,47], between 88% and 94% [10], 86% [48], and an RMSE value of
77% [49]. In places with area between 89 and 186 m2, the results had an accuracy value
between 75.5% and 96.5% [50], 85.57% [7], 94% [51], and an RMSE value of 60.44% [52].

On the other hand, 32 publications (34.40%) have only used environmental sensors.
Of these 32 publications, only four plublications (4.30%) have used temperature and RH
sensors as the main sensors. Their results have accuracies between 83.33% and 87.03% [53],
and between 95.2% and 97% [12]. Viani et al. [20,54] installed between 23 and 28 sensors
in a place with an area of 1196 m2 to estimate occupancy levels. Their results show that
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the detection phase was able to correctly recognize more than 82% of the environmental
events related to occupancy variations. In addition, Fiebig et al. [55] installed six VOC
sensors to detect presence and estimate the occupancy levels in a place with an area of 60
m2, obtaining F1 scores for a binary classifier between 62% and 94%, while for multiclass,
scores were between 15% and 94%. On the other hand, Weekly et al. [56] had used eight
PM sensors combined with eight airflow sensors in a corridor to detect presence.

Regarding test-bed scenarios (Figure 11), the studies tend to be carried out in offices
(44 publications, 47.31%) in which their area varied from 5.03 to 62.92 m2, and 97 to
634.17 m2. The second scenarios are classrooms (10 publications, 10.75%) with areas
between 41 and 524.25 m2, and laboratories (10 publications, 10.75%) with a capacity for
about four to 70 occupants.

Figure 11. Test-bed scenarios reported in the publications.

There are particular places that were considered in at least one study (1.07%), such as
hospital rooms [57], a bus [58], an elderly caring institution [59], and a university gym [12].
Furthermore, in six studies (6.45%), specially designed places were used to carry out
experiments [24,55,60–63].

3.3. Place Dimension vs. Total Number of Sensors Deployed

In various scenarios, the size of the enclosed space varied significantly, causing envi-
ronmental variables to behave differently. For instance, the physical size of a room is the
primary factor in determining its ability to dissipate heat. The larger its area, the lower
the temperature rise due to the heat generated in it [64]. Therefore, the number of sensors
to be installed in a place should be in accordance with the surface area in order to obtain
reliable information.

There are around 145 test-bed scenarios in which the authors of the studies considered
in this systematic review have conducted experiments. However, not all studies share the
dimensions of their enclosure. Figure 12 shows the size of the 65 venues (area in squared
meters) and their co-occurrence in research works.
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Figure 12. Areas of the test-bed scenarios reported in the literature.

Regarding the size of the test-bed scenarios, the most common scenarios include offices
or apartments of 22 m2 or laboratories of 186 m2. The smallest size is of an office of 5 m2,
and the largest size is of a museum of 1196 m2. Other mostly documented sizes are offices
with an area between 11 and 15 m2 (12 test-bed places, which represent 18.46%). They are
followed by spaces with areas between 16 and 20 m2 (nine test-bed places, representing
13.84%) and those with areas between 21 and 25 m2 (eight test-bed places, representing
12.30%). However, there are some studies that have measured and collected data from
places with areas between 66 and 152 m2 and larger areas from 306 to 1196 m2.

Other authors have described the enclosed spaces based on their occupancy capacity.
Figure 13 presents the size of 21 places that were measured for their capacity. Offices
and laboratories with a capacity of one to five occupants are the most used in the studies
(10 test-bed places, representing 47.61%). These are followed by spaces with a capacity of
six to 10 occupants (seven test-bed places, representing 33.33%), and laboratories with a
capacity for 31 to 35 people (four test-bed places, representing 19.04%).

Figure 13. Test-bed scenarios by occupant capacity.

Regarding the number of sensors deployed in the enclosed space, there are researchers
who have deployed around 240 sensors in an office and achieved 91% accuracy [65]. In
contrast, there are other researchers who have installed a single sensor in an office with an
area of 186 m2, obtaining 94% accuracy [51] .
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Figure 14 depicts the number and type of sensors deployed per area (m2) and the
number of occupants. Most of the studies (61.29%) are concentrated on collecting data from
enclosed spaces with an area between 5 and 66 m2. The number of sensors and their type
also varies depending on the author.

Figure 14. Type and total of sensors deployed. (a) Sensors installed by area. (b) Distribution of
sensors installed by capacity.

For instance, Han et al. [66] deployed a total of eight CO2, temperature, RH, and PIR
sensors, as well as three VOC sensors in an office of 62.93 m2. In contrast, Szczurek et al. [67]
installed only one sensor for CO2, temperature, and RH in a classroom with an area of
66.24 m2.

On the other hand, 24 studies (25.80%) have conducted experiments in places with ar-
eas between 300 and 990 m2, in which the number of installed CO2, temperature, RH, VOCs,
PMs, PIR, acoustic, and light/luminescence sensors have increased. For example, Hob-
son et al. [68] installed a total of 26 CO2 and PIR sensors as well as one light/luminescence
sensor and plug meter in a 991 m2 floor. Additionally, only three studies (3.22%) have
considered large spaces (with an area of more than 1000 m2), in which the sensors used
focused mainly on measuring CO2, temperature, and RH. These studies also had secondary
sensors such as PIR, light/luminescence, and plug meters installed in smaller amounts.

3.4. Sensor Deployment Specifications

Sensor deployment, a method of placing sensors in the desired area, is considered
a challenging issue for researchers and developers [69]. In wireless sensor networks
(WSNs), sensor deployment is a fundamental problem to be solved as sensor deployment
determines the coverage and connectivity of a WSN and its robustness against attacks. In
addition, efficient sensor deployment can prolong the lifecycle of WSNs by reducing energy
consumption [69].

Figure 15 illustrates the different installation locations and their heights. These have
been extracted from 64 publications that share the details of the sensor deployment. The
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analysis is performed from enclosed spaces (92 places) in which the authors carried out
their research.

Figure 15. Specifications of the sensor deployment. (a) Placement of the sensors. (b) Installation
height (cm) of the sensors.

It can be observed that the center of a room is the most common place to place CO2
sensors (23 scenarios, representing 25%), temperature sensors (13 scenarios, representing
14.13%), and RH sensors (11 scenarios, representing 11.95%). Furthermore, these sensors
were installed close to the occupants of the place.

The CO2 sensor is mostly installed in HVAC ducts (nine scenarios, representing 9.78%),
and PIR sensors are commonly installed near a door (15 scenarios, representing 16.30%).
An easier way to place a sensor is by mounting it on a wall (17 scenarios, representing
18.47%) than placing it on a table (nine scenarios, representing 9.78%). It was also reported
that few sensors were placed on the ceiling (three scenarios, representing 3.26%).

Regarding the height, CO2 (11 scenarios, representing 11.95%), temperature (10 scenar-
ios, representing 10.86%), and RH (10 scenarios, representing 10.86%) sensors are usually
placed at about 100 cm from the ground. CO2 sensors were also reported to have been
placed at 110 cm and 160 cm (seven scenarios of each one, representing 7.60%, respectively)
from the ground. In contrast, for the temperature and RH sensors (five scenarios of each
one, representing 5.43%, respectively), the second most common height to place them is
150 cm from the ground.

3.5. Data Fusion

Several definitions of the term “data fusion” are presented in the literature. These
definitions differ mainly based on the degree of generality and the specific research areas
for which they have been used. One of the earliest and most popular definitions, at least
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in the multisensory area, was introduced by the Joint Directors of Laboratory and the US
Department of Defense. According to them, data fusion is defined as: “A process dealing
with the association, correlation, and the combination of data and information from single
and multiple sources to achieve refined position and identity estimates, and complete and
timely assessments of situations and threats as well as their significance” [70].

Figure 16 presents the methods and algorithms implemented in 26 studies that have
specified the use of data fusion. Figure 16 unveils that parameter combinations (12 pub-
lications) are the most common used for sensor data fusion. The authors have combined
different parameters to find the combination that achieves the best accuracy [4,57,71,72].
The second most used approach is the combination of relevant features (seven publications)
obtained from Information Gain or Information Theory [41,73–75]. Chen et al. [76] have
proposed to merge the output of data-driven models with occupancy models using a
Particle Filter algorithm.

Figure 16. Data fusion methods/algorithms reported in the selected publications.

Alternatively, Das et al. [26] have developed a framework to fuse data at the edge
node. The data are temporarily stored in a data stream buffer. Each piece of data retains its
spatial–temporal properties in the buffer. Then, the fusion module correlates measurements
of an entity from multiple points and reduces data redundancy. It uses a Kalman filter.

The most widely used algorithm is the conditional random field (CRF) (two publica-
tions), which is a relatively new type of discriminative probabilistic graphical model for
labeling sequence data. Each feature is a real value and is associated with a numerical
weight [16,77].

Almost all of the authors assert the improvement of the accuracy obtained from the
models by using data fusion [25,66,68,78] except for Wang et al. [1], who state, “The fused
dataset does not necessarily improve model accuracy but shows a better robustness for
occupancy prediction”.

3.6. Algorithms and Datasets

Numerous occupational estimation approaches have been proposed and applied to
various problems recently. Occupancy estimation provides information on the presence of
occupants (whether or not they exist), occupancy density, the actual number of occupants,
and individual occupant location [79]. The models extracted from the 93 selected publica-
tions include statistical, analytical, probabilistic, stochastic, and machine learning models.
Figure 17 presents the trends in the use of models over the years per study.
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Figure 17. Occupational estimation approaches/algorithms over time.

SVM, which belongs to the Machine Learning approaches, has had a constant presence
over the years (19 publications) and a greater application in 2018 and 2019. In the same
way, the famous HMM statistical approach (11 publications) and the ANN have been
frequently implemented in 24 studies, including their sub-models as well. For instance,
Multi-Layer Perceptron (MPL), Feed-Forward Neural Network (FFNN), Neural Network
with Random Weight (NNRW), Radial Basis Function Neural Network (RBFNN), Random
Neural Network (RNN), Single-Layer FFNN (SLFFNN), Dynamic Time Delayed Neural
Network Model (TDNN), and Artificial Neural Network with Bayesian Regulation Method
(ANN-BRM) have had greater applications between 2017 and 2020.

Moreover, since 2015, interest in the Random Forest (RF) algorithm has increased,
having 14 studies based on it. In contrast, only in 2018 and 2019, unsupervised ML
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algorithms and dynamic ML algorithms have emerged, showing that only a limited group
of researchers has focused on them.

On the other hand, the datasets used to train each of the models have particular
characteristics. The most important for this systematic review are the availability of data,
whether the data have labels, and the time-stamp resolution in these works (see Table A1).
Only 11 studies (11.82%) mention the availability of their datasets; that is, the data can be
downloaded for experimentation by anyone. Regarding the labeled datasets, 87 studies
(93.54%) have used data with labels to train and test their models. Only one study (1.07%)
has used both labeled data and unlabeled data to carry out their experiments [13]. The
developed models involve Linear Regression (LR), Instance-Bases learning with parameter
k (IBK), RF, K-means, Hierarchical Cluster Analysis (HCA), Fuzzy C-means, and k-medoids,
which provide an accuracy between 88.7% and 97.1%.

Of the five studies (5.37%) that used unlabeled datasets, three studies have devel-
oped models based on HMM, achieving accuracies of 90.24% [80] and between 89% and
91% [81,82] as well as Bayesian Networks (BN) [65]. On the other hand, a study developed
unsupervised ML algorithms such as HCA and a logical flow chart [78], obtaining an error
between 7% and 23%.

Finally, the most common time-stamp resolution is 1 min (25 publications, repre-
senting 26.88%), followed by 5 min (19 publications, representing 20.43%), and 15 min
(12 publications, representing 12.90%).

4. Discussion

To answer RQ1, it is necessary to discuss not only the number of sensors but also the
places in where they are installed. Each place has its own characteristics, not only in terms
of its size but also in terms of the equipment present in it and its construction. This may be
why researchers differ in choosing the number of sensors to be installed in spaces of similar
size. For instance, in an office with an area between 19 and 22.5 m2, Diaz et al. [83] deployed
two CO2 sensors, two temperature sensors, two RH sensors, one windows/door status
sensor, and three plug meters, among other sensors. They used the CO2 concentration
and the electricity consumption of the computer as indicators of the occupancy level. In a
similar space, Candanedo et al. [71] installed one CO2 sensor, one temperature sensor, one
RH sensor, and one light sensor. Their developed models included Linear Discriminant
Analysis (LDA), Classification And Regression Tree (CART), RF, and Gradient Boosting
Machines (GBM). Furthermore, the combination of parameters performed by Candanedo
et al. obtained an accuracy between 32.68% and 99.33%.

In contrast, there are studies in which the area is larger than 100 m2, and fewer sensors
are deployed. For example, Rastogi et al. [6] installed one CO2, temperature, RH, and
infrared proximity sensor in a 524.5 m2 classroom. Their models included Multiple Linear
Regression (MLR) and Quantile Linear Regression, and the coefficient of determination (R2)
for each model was 0.88 and 0.91, respectively. Jiang et al. [51] used a single CO2 sensor
in a 186 m2 office, and they used the Feature Scaled Extreme Learning Machine (FS-ELM)
model, which achieved 94% accuracy with a tolerance of four occupants difference.

According to the 93 selected publications (see Table A2), the authors mostly prefer to
carry out their experiments in offices with an area between 5.03 and 62.92 m2, and between
97 and 634.17 m2, and in classrooms with an areas between 41 and 524.25 m2. These
scenarios are easier to monitor because they are within the universities with which the
researchers are affiliated. Fewer investigations have selected public spaces such as museums
(1196 m2) [20,54], hospital rooms (33 m2) [57], cinema theaters (300 occupants) [46,47], and
an elderly caring institution [59].

By analyzing the dimensions of the places, it is possible to make a size classification to
define how many meters are a large or small space. To avoid the subjectivity of each person
on the dimensions of the place, it makes sense to propose that spaces with an area between
1 and 70 m2 are small, whereas spaces with an area between 71 and 300 m2 are considered
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medium size. Finally, spaces with an area greater than 301 m2 should be considered large
spaces.

Furthermore, using all the information extracted from the publications selected in this
systematic review, it is possible to have an idea of the number of sensors to be installed
using the proposed linear regression model presented in Equation (1), where X would be
the value of the area in m2.

y = 0.0175X + 0.7132, (1)

To develop this linear regression, data were extracted from 66 publications that share
the test-bed dimension in m2 and the number of sensors deployed in their experiments.
Furthermore, it is important to point out that the sensors considered in these studies
are only for measuring CO2, temperature, and RH. Figure 18 shows the proposed linear
regression that obtained an R2 of 0.757.

For example, the last column of Table A2 shows the results of the theoretical esti-
mation of the number of sensors to be deployed using the proposed Equation (1). The
results coincide with 30 studies included in this systematic review. In 12 publications, the
estimation has a difference of one sensor versus the actual sensors deployed. Moreover, for
investigations where space is large, the estimation is extremely close to the actual number
of installed sensors. In other words, it is possible to figure out how many sensors to place
according to the size of the selected space. Nevertheless, this equation does not ensure
optimal sensing and will need to be tested with more scenarios to obtain reliable results.

Figure 18. Proposed linear regression to calculate the number of sensors per area.

To answer RQ2, the analysis shows that it is possible to obtain high accuracies using
only environmental variables. In total, 38.70% of the publications use only environmental
measures. For instance, Kampezidou et al. [84] have used one CO2 and temperature
sensor in a 12.96 m2 room. Their study proposes an approach that includes a physics-
informed pattern-recognition machine (PI-PRM) to detect occupancy, which achieves 97%
accuracy. Vela et al. [12] carried out an indoor occupancy-level estimation by deploying
one temperature, RH, and atmospheric pressure sensor in a university gym (33 occupants)
and in a living room (32 m2). Their models involve SVM, k-NN, and DT, which obtained
an accuracy between 95% and 97%.

The possibility of adding another type of sensor depends on the requirements, cost,
and expected outcomes of the research. As for the optional sensors, the most widely used
is the PIR, followed by the light and acoustic sensors.

On the other hand, answering the RQ3, the placement of sensors in an enclosed area
can influence reliable data collection. Based on the selected studies, the most common
locations for placement of CO2, temperature, and RH sensors are in the center of the room,
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ensuring that they are close to the occupants. Another option is to mount them on a wall or
place them on a table. Moreover, the sensors are commonly installed 1 m from the ground.

Regarding RQ4, data fusion improves the models for occupancy detection or esti-
mation. Most of the publications (83.87%) have used more than one type of sensor in
their experiments. However, only 27.9% have explicitly specified the use of data fusion.
The most used method is to combine parameters until an optimal combination is reached,
which provides the highest accuracy. In addition, there are authors who have implemented
more sophisticated methods, such as edge node fusion using Kalman Filter [26], Particle
Filter [76], ANFIS [27], and BP-ANN [85]. All publications have shown that data fusion
improves the accuracy of models to detect or estimate the occupancy, except for one study,
which contradicts the benefits of data fusion [1].

Finally, to answer RQ5, it is important to discuss the models as well as the datasets used
to train them. From the extracted information, it was discovered that Supervised Machine
Learning Algorithms such as SVM, RF, DT, and ANN are very popular among researchers
in addition to the models based on the Bayes Theorem and HMM. Since 2016, very few
authors have carried out experiments using HMM and unlabeled data to estimate/detect
indoor occupancy. In contrast, unsupervised and Dynamic Machine Learning models are of
little interest to researchers so far. There is not even a single study where Semi-Supervised
Machine Learning models have been used.

For instance, Crivello et al. [13] presented a system that is able to perform room
occupancy detection and social interaction identification, using data coming from both
energy consumption information and the environment (temperature and RH). Their aim
was to determine room occupancy status and to detect socialization events in the monitored
room. In order to use unsupervised methods, their approach relied on a minimal set of
domain-based knowledge, such as the number of workers assigned to each room and
the fact that, during each day, most of the time spent by them is on performing a usual
daily activity which involves social interactions. The unsupervised clustering techniques
implemented were K-medoids, K-means, hierarchical clustering, and fuzzy C-means. These
four methods have a fixed number of clusters: two clusters when the goal is room occupancy
detection and three clusters when the interest is in the identification of social interactions.
The accuracy obtained for occupancy detection in their study was between 88.7% and
97.1%, and for socialization, it was between 93% and 95.4%.

With these investigations, it is clear that it is possible to use data without labels to
detect/estimate occupancy in enclosed spaces. Only five authors have ventured into this
field, which allows for reducing costs and time in data collection.

5. Conclusions

This systematic review presented a discussion on occupancy estimation/detection,
sensor deployment, and a possible way to set the number of sensors, depending on the area
of the enclosed space. The aim is to help researchers and practitioners to identify the most
viable sensor placement to detect and estimate occupancy according to their objectives and
performance demands.

After the implementation of the inclusion and exclusion criteria to the articles discov-
ered in the SCOPUS database, 93 articles from 2009 to 2021 were considered and discussed.
The selected studies allowed achieving the objectives and answering the research questions
of this systematic review. Most of the studies (21.5%) were conducted in the USA. Other
contributions were from Singapore (10.75%) and China (9.67%). After analysis of the de-
scribed keywords, it was discovered that the keyword “carbon dioxide” has the highest
frequency of 43. Other keywords with a high frequency include “occupancy detection” (24),
“learning system” (21), “machine learning” (21), and “energy efficiency” (20). A summary
of the findings of this systematic review is presented according to each research question:
RQ1: Most of the studies (61.29%) are concentrated on collecting data from offices with an
area between 5 and 66 m2. However, the number of sensors used in these studies depends
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on the author. Therefore, a linear regression model is proposed as a tool to calculate the
number of sensors to be deployed according to the dimensions of the place.

RQ2: The results show that 90.32% of the total studies considered include CO2 sensing
as the main environmental parameter. However, 4.30% of the studies consider temperature
and RH as priority measures.

RQ3: In total, 68.81% of the publications share the details of the sensor deployment
from 92 places where the authors have conducted their research. The researchers preferred
placing sensors that measure CO2, temperature, and RH in the middle of the room, at a
height of 100 cm from the floor. Furthermore, it is sought that the installation of these
sensors is close to the occupants.

RQ4: Regarding data fusion, only 27.95% of the studies specified the use of data fusion
methods and unveiled that parameter combination is the most used method, which is
followed by the combination of relevant features.

RQ5: In total, 20% of research works preferred Machine Learning algorithms such as
SVM (20.43%), followed by RF (15.05%) and ANN (12.90%), including their sub-models
as well. Results show that five publications specify the use of unlabeled data to de-
tect/estimate indoor occupancy. However, the implementation of unsupervised models
using environmental variables is almost unexplored.

Future research should focus on exploring models that can use unlabeled or semi-
labeled data in order to conduct further research on these approaches. Furthermore,
it is important to study other methods to fuse data. The current studies have made
use of the most basic level of data fusion. Finally, the development of a tool to set the
number of sensors to be installed is important to do as well as the evaluation of the linear
regression proposed in this systematic review. This would allow a cheaper but trustworthy
development of experiments.

Even though all the answers were obtained, the current study also has limitations. The
defined inclusion and exclusion criteria limit the scope of this study. Consequently, this
systematic review does not provide details about monitoring systems that do not involve
environmental parameters. Furthermore, the publications were obtained from only one
database (SCOPUS), and the applied search restriction was for publications from 2009 to
September 2021.
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Abbreviations
The following abbreviations are used in this manuscript:

A.F.R/A.V Air Flow Rate/Air Volume
ADTree Alternating Decision Tree
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
ANNBRM Artificial Neural Network with the Bayesian Regulation Method
ARHMM Autoregressive Hidden Markov Model
ANN-PCA Artificial Neural Network with one Principal Component Analysis step
BE Bayesian Estimation
BMCMC Bayesian Markov Chain Monte Carlo
BN Bayesian Network
BR Bayesian Ridge
BTM Bagged Tree Model
CA Correlation Analysis
CAM Count Prediction Based on Data from 3D Stereovision Camera
CART Classification And Regression Tree
CDBLSTM Convolutional Deep Bi-Directional Long Short-Term Memory
CRF Linear chain Conditional Random Field
CS Cosine Similarity
Decision Stump Decision Stump
DFE Flow Detection Engine
DT Decision Tree
D/W Door/Windows status sensor
Dynamic ML Dynamics Machine Learning strategies
ELM Extreme learning machine
E.M Electricity plug meter
EV Ensemble voting
EWMA Exponentially Weighted Moving Average
FFNN Feed-Forward Neural Network
Flow Chart Flow Chart
FML Frequentist Maximum-Likelihood
FS-ELM Feature scaled Extreme Learning Machine
Fuzzy C-means Fuzzy C-means
GAFK Genetic Algorithm—unscented Kalman Filter
GBM Gradient Boosting Machines
GB Gray-Box model
GP Gaussian Processes
HAC Hierarchical Cluster Analysis
HMM Hidden Markov Model
HMSM Hidden Markov-Switching Model
IBK Instance-Bases learning with parameter k
IHMM Inhomogeneous Hidden Markov Model
IHMM-MLR Inhomogeneous Hidden Markov Model with Multinomial Logistic Regression
J48 A decision tree classification algorithm based on Iterative Dichotomizer 3
LAHMM Location-Aware Hidden Markov Model
LBE Learning-by-Examples
LDA Linear Discriminant Analysis
LR Linear Regression
LRF Local Receptive Fields
LSTM Long Short-Term Memory
LTP Law of Total Probability
MAP-HMM Maximum a Posteriori Probability estimation of Hidden Markov Model
MBM Mass Balanced Models
MLR Multiple Linear Regression model
MLP Multi-Layer Perceptron
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MSPRT Multiple-Hypothesis Sequential Probability Ratio Test
NB Naïve Bayes
NFA New Fussion Aproach
NMF-ELSR Non-Negative Matrix Factorization with Ensemble Least Square Regression
NNRW Neural Network with Random Weight
NP strategy Non-Parametric strategy
P strategy Parametric strategy
PEA Point Extraction Algorithm
PEM Prediction Error Minimization
PI-PRM Physics-Informed Pattern-Recognition Machine
PnP The novel Plug-and-Play Method
QDA Quadratic Discriminant Analysis
QL Quantile Regression
RBE Rule Based Engines
RBF-NN Radial Basis Function Neural Network
RBH Rule-Based Heuristic
REPTree A fast decision tree learner
RF Random Forest
RH Relative Humidity
RIG-ELM Rig Extreme Learning Machine
RNN Random Neural Network

RUP-STD
Room Utilization Prediction with carbon dioxide sensor—Seasonal
Trend Decomposition

RUP-STL
Room Utilization Prediction with carbon dioxide sensor—Seasonal
Trend decomposition based on Loess

SD-HOC Seasonal Decomposition for Human Occupancy Counting
SDE Stochastic Differential Equations
SDLM Sequential Deep Learning Model
SGF Savitzky–Golay Filter
SLFFNN Single-Layer Feed-Forward Neural Network
SMO Sequential Minimal Optimization
SSA Steady-State Approx
SURE Stein’s Unbiased Risk Estimator
SVM Support Vector Machine
TAN Tree Augmented Naïve Bayes
TDNN Dynamic Time Delayed Neural Network Model
TM Transient Method
TSE Triangular Shape Extraction
WRANK-ELM Wrank Extreme Learning Machine
Yolo v4 Yolo v4 tiny model
ZeroR Zero Rule



Sensors 2022, 22, 3770 23 of 34

Appendix A

Table A1. Datasets characteristics and algorithms developed.

Study Sensed Time Occ. Resol. Data Avail. Labels Time-Stap Resol. Algorithm Results

[25] 2 Y Detection NO YES 1 min LTP, NB, CART Accuracy 90.9–93.5%
[86] 10 D Num. People NO YES 15 min Yolo v4, BTM Accuracy 99.5%
[87] 15 D Detection NO YES 1 min LSTM Accuracy 96.8%
[84] 21 D Detection NO YES 5 seg SGF, SURE, PI-PRM Accuracy 97%
[88] 60 D Detection NO YES 5 min SDLM, LSTM, RF, SVM Accuracy 63–70%
[18] 20 D Num. People NO YES 1 min BMCMC Accuracy 43.5%
[89] 20 D Num. People NO YES 15 min K-NN, GP, RF, BR, MLP MAE 0.21–1.84
[26] Detection, Levels NO YES 15 sec SVM, LR, CS Accuracy 96.9–97.95%
[90] 120 D Num. People YES YES CA
[66] 6 D Detection, Num. People NO YES 1 min NFA Accuracy 98.3%
[7] 30 D Detection, Levels NO YES 1 min Bayes filter Accuracy 85.57%
[2] 11 H Num.People NO YES 1 seg DFE Recall 91.93–96.80%
[6] Num.People NO YES 1 min MLR, QL R2 88–91%
[12] 13 D Levels YES YES 10 seg, 30 seg, 1 min K-NN, SVM, DT Accuracy 88.39–99.67%
[48] 30 D Num. People NO YES 1 min GcForest Accuracy 86%
[11] 4 D Detection, Levels NO YES 5 min FNN Accuracy 83.6–94.3%
[65] 10 D Detection, Num. People YES NO 30 min BN Accuracy 82–91%

[91] 15 D Num.People NO YES 1 min RF, ELM RMSE of RF 2.75–10.44 Accuracy of ELM
67.92–69.17%

[63] 1 D Detection NO YES Dynamic ML
[68] 12 D Num. People NO YES 5 min ANN, MLR R2 96.5–97.5%
[78] 45 D Levels NO NO 1 min HCA, logical flow chart Error 7–23%
[19] 15 D Detection NO YES 10 seg SVM Precision 87%
[85] 14 D Num. People, Levels NO YES 5 min ANN, MLR MAE 2.15–3.40, F1-score 73.57–84.36%
[3] 120 D Num. People NO YES 10 min FML, BE, ELM NRMSE 0.2230–0.2470
[10] 4 D Num. People NO YES 5 min SDE Accuracy 88–94%
[22] 37 D Detection YES YES 5 min LR, LDA, K-NN, CART, NB, SVC, RF, GB Accuracy 79–85%
[92] 15 D Detection, Num. People YES YES 10 seg LR, SVM, ANN F-score 24.43–25.15%

[15] Num. People NO YES 5 seg SMO, HMM, IBK, RF, J48, Bagging, REPTree,
NB, Decision Stump Accuracy 8.66–90.1%
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Table A1. Cont.

Study Sensed Time Occ. Resol. Data Avail. Labels Time-Stap Resol. Algorithm Results

[93] 90 D Num. People NO YES 30 seh LR Accuracy 90–95%
[94] 7 D Levels NO YES 1 min CA

[13] 90 D Detection, socialization NO YES/NO 5 min LR, IBK, RF, K-means, Hierarchical, Fuzzy
C-means, k-medoids Accuracy 88.7–97.1%

[14] 4 D Detection, status (alive or
dead) NO YES 1 min PEA, TSE

[52] 7–10 h Num. People YES YES 30 min Proxy model RMSE 60.44%

[62] 12 D Detection, status (active
or not) NO YES 30 min MLR Accuracy 50–99.8%

[58] Num. People NO YES ELM RMSE 4.83–6.64
[1] 9 D Num. People NO YES 5 min K-NN, ANN, SVM MAE 2.3–2.6

[75] 49 D Detection, Num. People YES YES 15 seg ZeroR, JRip, NB, J48, LR, K-NN, RF Occ. Accuracy 50.8–75.1%, Num. People.
Accuracy 42.7–64.3%

[83] 7 Y Detection, Levels NO YES 1 min CO2 concentration and computer electricity
consumption indicators of occupancy leves Error 0.25–73.71%

[77] 1 Y Detection, Num. People NO YES 5 seg CRF Detection Accuracy 84–98%, Num. People.
NRMSE 0.105–0.15

[24] 4 D Num. People NO YES 15 min RNN Accuracy 88%
[8] 31 D Levels NO YES 15 min WRANK-ELM, RIG-ELM Accuracy 75.63–79.17%
[95] 8 D Detection NO YES 4 min, 20 min PnP MAE 0.002–0.54
[96] 30 D Num. People NO YES GAKF, CAM NRME 0.075–0.71
[67] 16 D Num. People NO YES 3 min K-NN, LDA MCR 1.58–3.27%
[9] 30 D Levels YES YES 15 min ELM-LRF Accuracy 77.27%
[45] 120 D Num. People NO YES 5 min MBM, ANN, PEM, SVM RMSE 12.1–27.4

[71] 1 D Detection YES YES LDA, CART, RF, GBM Training Accuracy 83.38–100% Testing Ac-
curacy 32.68–99.33%

[72] 90 D Levels NO yes 5 min RF Accuracy 71–95.9%
[51] 30 D Num. People NO YES 1 min FS-ELM Accuracy 94%

[16] 90 D Num. People, Detection,
Levels NO YES 10 min CRF, HMM Acuracy 85–93%

[74] 16 D Levels NO YES 30 min C4.5 F1-Score 0.47–0.65

[57] 210 D Num. People NO YES 5 min The Beam-break method, and the CO2
method test p > 0.05

[17] 2 D Levels NO YES 20 seg 5 seg HMM, ARHMM Accuracy 25.2–84%
[54] 1 Y Detection, Levels NO YES 10 seg RBE, LBE Accuracy 82%
[56] 7.8 H Detection NO YES 10 min BE, CA Accuracy 66%
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Table A1. Cont.

Study Sensed Time Occ. Resol. Data Avail. Labels Time-Stap Resol. Algorithm Results

[4] 20 D Detection, Num. People NO YES 1 min SVM, K-NN, ANN, NB, TAN, DT Local occ. RMSE 0.109–0.311 Global occ. RMSE
0.211–1.192

[27] Levels NO YES 2 min, 10 min ANFIS
[97] 90 D Num. People NO YES 20 seg ARHMM, SVM, HMM RMSE 0.94–1.08
[98] 20 D Num. People NO YES 1 min RBF-NN Accuracy 86.50–88.74%
[73] 300 D Num. People NO YES 1 min SVM, ANN, HMM Accuracy 65–75%
[41] 300 D Num. People NO yesYES 20 min SVM, ANN, HMM Accuracy 70–75%
[53] Detection NO YES 15 min EWMA Accuracy 83.33–87.03%
[46] 1 M Num. People NO YES 5 min SD-HOC Accuracy 93.71–97.73%
[47] 1 M Num. People NO YES 5 min RUP-STD, RUP-STL, SVM, NMF-ELSR Accuracy 69.96–99.52%
[99] 31 D Levels NO YES 15 min CDBLSTM Accuracy 76.04%
[80] 43 D Num. People YES NO 5, 10, 20, 30 min HMM Accuracy 90.24%
[76] 32 D Levels NO YES 15 min ELM, SVM, ANN, K-NN, LDA, CART Accuracy 81.25–93.45%
[21] 8 M Levels NO YES 1 min SVM, NB, TAN, ANN, RF Error 9.2–18.2%
[100] 1 M Levels NO YES 5 min ELM Accuracy 81.37%
[20] Levels NO YES 10 seg SVM Occ. Index approx. 51%

[101] 10 W Levels NO YES 1 min ADTree The correlation 48.05% for acoustic, 35.70% for
CO2, 32.49% for RH, and 11.98% for temperature.

[102] Detection, Num. People NO YES 15 min RBH, MLP, GP, LR, SVM, EV Accuracy 46–92%
[99] 31 D Detection NO YES 15 min IHMM-MLR Accuracy 78.13%
[23] 10 H Levels NO YES 1 seg NNRW Accuracy 52–100%

[103] 33 H, 10.4 H, 4
H Num. People NO YES 7.5 seg SMO, HMM, IBK, RF, J48, Bagging, REPTree,

NB, DecisionStump Accuracy 46.6–99.9%

[104] 102 D Num. People NO YES 15 min SSA, TM, FFNN NMSE 0.23–1.60
[105] 28 D Num. People NO YES 1 min IHMM, GcForest EA% 74.3–83.3
[49] 9 W Num. People NO YES 5 min GB RMSE 0.66–0.77
[106] 9 M Num. People NO YES 15 min CART, SMV Accuracy 93.84–95.59%
[50] 1 M Detection NO YES 5 min HMSM Accuracy 75.5–96.5%
[107] 7 D Detection NO YES 1 min SLFN Accuracy 99.79%

[61] 56 D arrival time—departure
time—number of People NO YES ANNBRM R2 92%

[108] 7 D Levels NO YES 3 min LAHMM Accuracy 90%
[59] 1 Y Detection NO YES 10 min Adaboost, C5.0, SVM, QDA, ANN-PCA Accuracy 80%
[109] 34 D Levels NO YES 30 min C4.5, RF Accuracy 86–88%



Sensors 2022, 22, 3770 26 of 34

Table A1. Cont.

Study Sensed Time Occ. Resol. Data Avail. Labels Time-Stap Resol. Algorithm Results

[60] 7 D Num. People NO YES 1 min CART, HMM F-statistic 24
[82] 1 M Detection NO NO 5 min HMM
[110] 6 M Num. People NO YES 1 min TDNN RMS 0.684–0.811
[111] 1 M Levels YES YES 5 min P-strategy, NP-strategies, SVM, ANN Accuracy 81.1–88%
[112] 2 W Levels NO YES 1 min MAP-HMM, MSPRT, ANN RMSE 1.2–2
[81] 10 D Levels NO NO 30 min HMM, BN Accuracy 89–91%
[55] 56 D Detection, Levels NO YES 10 seg MLP, K-NN, DT, RF F1 scores 0.15–0.94
[113] 18 D Detection NO YES 1 min k-NN Accuracy 74.51–97.36%

Table A2. Resume of the sensors deployed, place, place dimension, and theoretical estimation of the sensors to deploy.
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m2 Num. Occ

[25] 2 2 2 1 1 1 1 Office 19 5 1
[86] 1 1 1 1 1 1 1 Kitchen Apartment 20 1
[87] 1 1 1 1 1 Office 0
[84] 1 1 Room 12.96 1
[88] 1 1 1 Office 31 1

1 1 1 Office 30 1
1 1 1 Office 15 1

[18] 3 1 1 Office 37 1
3 1 1 Office 97 2

[89] 2 2 Office 8 0
[26] 4 4 4 4 Room 9.2 1
[90] 4 4 4 Large Classroom 336 6

2 2 2 Medium Classroom 131 3
[66] 8 8 8 3 8 Office 62.92 2
[7] 1 Office 186 4
[2] 1 1 1 1 1 1 5 Indoor Univ. Hallway 400 0

1 1 1 1 1 1 5 Outdoor Food Court 400 0
[6] 1 1 1 1 Classroom 524.25 10

[12] 1 1 1 University Gym 35 0
1 1 1 Living Room 32 1

[48] 1 Office 14.62 1
[11] 1 1 1 1 1 1 1 1 2 0 Secretary’s Section 1 0
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m2 Num. Occ

1 1 1 1 1 1 1 1 2 0 Office 4 0
[65] 30 30 30 30 30 30 30 30 Office 0

5 5 5 5 5 5 5 5 Apartment 0
1 1 1 1 1 1 1 1 House 0

[91] 1 1 Classroom 70 0
1 1 Clasroom 40 0
1 1 Study Zone 30 0
1 1 Study Zone 35 0

[63] 1 1 1 2 1 EEBLab 12 1
[68] 26 26 1 1 3 Floor A 991 18

13 10 1 1 5 Floor B 1139 20
20 21 1 1 2 Floor C 944 17
16 19 1 1 4 Floor D 1152 21

[78] 2 2 2 1 1 1 1 Office 19 1
[19] 2 2 2 2 2 2 Classroom 25 0
[85] 3 3 3 3 Office 200 4
[3] 1 1 1 1 Office 152 3

[10] 1 Office 30 1
1 Office 42 1

[22] 1 1 Office 12 1
[92] 2 2 3 1 Office 46.75 1
[15] 1 1 1 2 Office 13.37 1

1 1 1 2 Office 44.59 1
1 1 1 2 Office 55.74 1

[93] 2 2 2 2 Classroom 0
[94] 4 4 4 Lab 70 0

2 2 2 Lab 31 0
[13] 1 1 1 1 1 1 Office 3 0

1 1 1 1 1 1 Office 2 0
1 1 1 1 1 1 Office 1 0

[14] 2 2 2 7th Floor House 26 1
2 2 2 1st Floor House 21.3 1
2 2 2 Office 33 1

[52] 1 Meeting Room 140 3
[62] 1 1 1 4 1 1 1 Control Testbed 20 1
[58] 1 Bus 0
[1] 3 3 3 3 Office 200 4

[75] 1 2 2 1 Apartment 1 22 1
1 2 2 1 Apartment 2 22 1
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1 2 2 1 Apartment 3 22 1
1 2 2 1 Apartment 4 22 1

[83] 2 2 2 1 3 3 Office 22 1
2 2 2 1 3 3 Office 22 1

[77] 1 1 1 1 2 4 Kitchen 24 0
1 1 1 1 Researcher’s Office 9 0
1 2 3 2 2 Office 3 0

[24] 2 2 2 1 1 1 Chamber 8.86 1
1 2 2 1 1 1 Office 10 0

[8] 3 3 3 3 Office 186 4
[95] 1 1 1 1 1 1 Office 5.04 1

1 1 1 1 1 1 Living Room Apartment 14.2 1
[96] 1 1 1 4 Study Zone 125 3

1 1 1 4 Classroom 139 3
[67] 1 1 1 Clasroom 66.24 2
[9] 2 2 2 2 Lab 24 0

[45] 4 Lecture Theatre 876 16
[71] 1 1 1 1 Office 20.47 1
[72] 1 1 2 Seminar Room CP103 20 0

1 1 2 Classroom CP106 58 0
1 1 2 Classroom CP108 58 0

[51] 1 Office 186 4
[16] 1 1 1 1 Meeting Room 16 0

1 1 1 1 2 Kitchen 40 0
1 1 2 4 Office 10 0
1 1 1 1 Open Space 4 0

[74] 1 1 1 1 1 1 3 6 Office 45 1
[57] 1 1 1 1 1 1 Hospital Rooms 33 1
[17] 4 4 4 2 4 2 1 Lab 10 0
[54] 28 28 Museum 1196 21
[56] 8 8 Main Corridor 0
[4] 1 1 1 1 1 1 1 1 1 Office 18.58 1

1 1 1 1 1 1 1 1 1 Office 39.94 1
[27] 3 3 3 1 3 4 3 4 Office 104.08 2
[97] 1 1 1 1 1 1 Lab 6 0
[98] 1 1 1 2 1 1 Lab 1 40 1

1 1 1 2 1 1 Lab 2 40 1
[73] 20 11 11 17 17 11 11 11 Open Office 634.17 12
[41] 20 11 11 17 17 11 11 11 Open Office 634.17 12



Sensors 2022, 22, 3770 29 of 34

Table A2. Cont.

Study

Sensors

Place Type

Place Size

Est. Sensors
to Deploy

C
O

2

Te
m

R
H

A
.P

re
ss

V
O

C
s

PM
s

A
.F

.R
/A

.V

PI
R

IR

A
co

us
.

Li
gh

t/
Lu

m
.

D
/W

El
ec

.M
et

er

O
th

er

m2 Num. Occ

[53] 1 1 Office 12 3 1
[46] 1 Academic Staff Room 12 1

1 Cinema Theatre 300 0
[47] 1 Room 12 1

1 Cinema Theatre 300 0
[99] 2 2 2 2 Lab 186 4
[80] 5 5 5 House First Floor 128 3

5 5 5 House Second Floor 92.65 2
[76] 1 1 1 1 Lab 186 4
[21] 1 1 1 1 1 1 1 Office 0 0
[100] 3 3 3 3 Tutorial Room 57.75 37 1
[20] 23 23 Museum 1196 21
[101] 20 11 11 17 11 11 11 Open Office 634.17 12
[102] 2 2 2 2 Lab 1 4 0

2 2 2 2 Lab 2 10 0
[99] 3 3 3 3 Lab 186 4
[23] 1 Classroom 60.75 1
[103] 1 1 1 5 Room 1 13.4 1

1 1 1 5 Room 2 44.6 1
1 1 1 5 Room 3 55.74 1

[104] 3 1 Univeristy Auditorium 306 182 6
[105] 1 Office 14.62 4 1
[49] 1 Office 1 40 6 1

1 Office 2 27.5 5 1
[106] 1 1 1 1 1 Office 22.51 1
[50] 1 Summerhouse 89 2

1 Classroom 41 1
[107] 1 1 Office 16.8 1
[61] 1 2 1 1 Office 19.2 1
[108] 1 5 5 5 5 1 Apartment 0
[59] 5 5 5 Elderly Caring Institution 0
[109] 2 3 2 4 1 1 2 3 4 Office 4 0
[60] 1 1 1 4 1 BICT 20 1
[82] 1 1 1 1 1 House 62 1
[110] 3 6 2 5 1 2 Office 39 1
[111] 1 1 Lab 32 0
[112] 1 6 Office 58 1
[81] 2 3 2 2 1 1 2 3 4 Office 4 0
[55] 6 2 KIT-ESHL 60 1
[113] 1 1 1 Clasroom 66.24 2
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The column Num. Occ. refers to the place dimension based on number of persons
capacity.
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