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While conceptual definitions provide a foundation for the study of disasters and their
impacts, the challenge for researchers and practitioners alike has been to develop objective
and rigorous measures of resilience that are generalizable and scalable, taking into account
spatiotemporal dynamics in the response and recovery of localized communities. In this
paper, we analyze mobility patterns of more than 800,000 anonymized mobile devices in
Houston, Texas, representing approximately 35% of the local population, in response to
Hurricane Harvey in 2017. Using changes in mobility behavior before, during, and after the
disaster, we empirically define community resilience capacity as a function of the magnitude
of impact and time-to-recovery. Overall, we find clear socioeconomic and racial disparities in
resilience capacity and evacuation patterns. Our work provides new insight into the beha-
vioral response to disasters and provides the basis for data-driven public sector decisions that
prioritize the equitable allocation of resources to vulnerable neighborhoods.
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ities face significant risks from extreme weather events, sea

level rise, and heat waves associated with anthropogenic

climate change. Between 1980 and 2000, there were a total
of 51 major hurricanes, severe storms, and flooding events in the
United States, resulting in more than $254 billion in damage and
the loss of 1331 lives!=3. Since 2000, the number of these events
has more than doubled, to 125, with damage exceeding $1 tril-
lion and loss of life increasing approximately five times!=3. While
the impacts of the growing frequency and devastation of climate
hazards are being disproportionately felt in coastal cities*~13,
urban policy-makers and emergency responders have few tools to
understand patterns of evacuation, impact, and recovery at high
spatial and temporal resolutions®!415. Such granular information
could be used to evaluate the effectiveness of, and disparities in,
local evacuation behavior and to help fully understand the
recovery lifecycle of communities, which in turn could support
localized need-based resource allocation and long-term planning
strategies.

While the concept of resilience has been defined and measured
across a range of scientific disciplines, such as biology, material
science, psychology, ecology, and engineering!®-22, few studies
examine urban resilience within a framework of complex adaptive
systems. Here we focus on an integrated, socio-behavioral defi-
nition of community resilience across temporal and spatial scales,
namely the ability of a complex urban system—characterized by
the nonlinear interactions of social, environmental, and physical
subsystems—to withstand and rapidly recover from an extreme
event, including natural or man-made disasters!®-2%4 While
conceptual definitions provide a foundation for the study of
disasters and their impacts, the challenge for researchers and
practitioners alike has been to develop objective and rigorous
measures of resilience that are generalizable and scalable, taking
into account spatiotemporal dynamics in the response and
recovery of localized communities?!.

Emerging sources of large-scale mobility data can be used to
model human behavior in response to natural disasters. Accurate
assessment of spatiotemporal mobility patterns of people in cities
could provide new insights into many urban operational and
planning decisions, such as traffic forecasting, resource allocation,
crisis and outbreak prediction, and disaster management?>-28. By
extension, the application of geo-tagged big data in this context
can move us toward more robust, validated urban dynamics
models that can begin to account for the socio-ecological com-
plexities unique to the urban environment!%:1526:29-32  Eor
example, mobile phone data offer the opportunity to understand
detailed human mobility patterns in cities at unprecedented
resolution?0-31. In particular, large-scale geo-tagged information
has been especially useful for travel demand estimation and
inferring land use patterns at granular spatial resolutions26-2,

Despite the rapid growth of big data and urban computing,
applications to the fields of urban resilience and disaster man-
agement are limited and piecemeal?!3334. Previous empirical
studies have been constrained by data limitations and incon-
sistent and diverging indicators of resilience?. In the case of
hurricanes, for example, studies have focused on descriptive,
citywide evacuation statistics and correlative factors of evacuation
by using post-disaster surveys with relatively small samples, such
as the National Household Travel Survey20:2935-41, In an effort to
capture the spatiotemporal dynamics of event response, some
studies have used social media data like Facebook or Twitter to
understand disaster-related online behavior changes and detect
crisis regions during natural disaster events!>*2-47. While
research using these digital traces can help to measure the overall
impact of a disaster, social media data are characterized by
representativeness bias and often require aggregate spatial reso-
lutions, such as the county or city scale, to capture sufficient geo-

tagged samples!>42-47 Despite the increased interest in mobility
data by scholars in disaster management fields, limited attention
has been paid to neighborhood-level evacuation and recovery
patterns at scale and the disparate behavioral responses across
communities with divergent socioeconomic and demographic
characteristics.

Understanding hyper-local disaster response is an important
foundation for effective and equitable community planning and
urban resilience strategies. Spatiotemporal evacuation and
recovery patterns, represented by mobility dynamics before,
during, and after a disaster, are directly connected to the socio-
behavioral resilience of urban systems. This requires the identi-
fication and quantification of emergent mobility networks within
and across neighborhoods impacted, directly or indirectly, by an
event of sufficient magnitude to disrupt normal activity patterns.
Since individuals and neighborhoods represent interconnected
social and physical urban systems, their dynamics at high spa-
tiotemporal resolution can signal local distress, growth, and
recovery. This information can be used to assess disaster-related
impacts and community resilience at scale and thus inform both
operational emergency management decisions and long-range
community planning and preparedness.

In this paper, we develop and demonstrate a generalizable
method using large-scale smartphone geolocation data to mea-
sure and evaluate neighborhood response and recovery to natural
disasters. We utilize Hurricane Harvey as a case study. Hurricane
Harvey struck Houston, Texas in August 2017, resulting in the
second costliest disaster in U.S. history with at least $125 billion
in damage due to extreme flooding, described as an unprece-
dented 1000-year flood event*®4°. We analyze geolocation data
derived from smartphone applications over a 2-month period
(August 1, 2017 to September 30, 2017) covering ~1 million
unique users in Houston, equivalent to ~35% of the total popu-
lation of the metropolitan area. We measure and analyze com-
munity resilience by estimating variations in resident mobility
patterns as a proxy for human behavior and social activity, a
central indicator of urban system dynamics, before, during, and
after Hurricane Harvey. The findings provide insight into the
timely evaluation of disaster impact and time-to-recovery for
individual communities, as well as the correlates of neighborhood
resilience capacity. We highlight the disparities in evacuation and
recovery patterns associated with varying socioeconomic, demo-
graphic, and geophysical community attributes.

Results

After data preprocessing in order to ensure data confidentiality
(see Methods and Supplementary Information for a detailed
description of the data and data processing workflow), we focus
exclusively on data points representing smartphone activity fall-
ing within the boundaries of Harris County (central Houston,
including the Downtown Houston area) for the 2-month period
between August Ist, 2017 and September 30th, 2017. For the
purpose of this study, we assume that a single device represents
an individual. We begin by identifying daily neighborhood resi-
dential activity levels using 829,350 unique devices, representing
~35% of the Houston population. We define neighborhoods by
using ~4500 one-kilometer by one-kilometer (0.6214 mile x
0.6214 mile) grid cells and each ping location from an individual
device is assigned to the corresponding neighborhood grid cell
based on its location.

The spatial distribution of activity before, during and after the
hurricane clearly demonstrate the impact of the event on mobility
behavior, as shown in Supplementary Fig. 1. During the pre-
impact period (Supplementary Fig. la), activities are heavily
concentrated along major roadways and in the Downtown
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Fig. 1 Distinct neighborhood groups based on disaster response and recovery patterns as identified by agglomerative clustering. a This time series plot
shows community activity level trends over the time period from August 4th through September 26th. The agglomerative clustering algorithm identifies
four distinct groups that represent similar patterns of disaster response and recovery at the neighborhood level. Plots denote mean activity of each cluster
with one standard deviation uncertainty band. b The map shows spatial patterns of identified clusters. Most dark blue neighborhoods show a significant
decrease in community activities due to devastating flooding near reservoir areas. ¢ lllustrative neighborhood activity curves for each cluster group

associated with their location in (d).

Houston area. This pattern is disrupted when Hurricane Harvey
hits the area (Supplementary Fig. 1b), resulting in significantly
lower levels of activity scattered across the city. We also observe
that activity patterns gradually return to pre-impact levels after
the hurricane (Supplementary Fig. 1c).

Neighborhood clustering and community resilience capacity.
To understand the disparities in disaster response and recovery
patterns across neighborhoods, we classify neighborhoods into
four groups based on changes in community activity levels over
time using an unsupervised machine learning technique. We
implement an agglomerative hierarchical clustering algorithm to
identify similarities in neighborhood-level response behaviors.
Figure 1 illustrates the clustering results. Notably, we observe
empirical activity curves that reflect theoretical resilience and
recovery patterns!®17:20.21,50_ The curves clearly demonstrate four
phases of disaster response: pre-event equilibrium, event impact,
recovery, and post-event equilibrium, as shown in Fig. la and
Supplementary Fig. 2. While conceptual resilience curves were
developed through disaster scenario simulations or sampled
survey data, our findings demonstrate the potential of high spa-
tiotemporal data to quantify hyper-local resilience patterns
derived directly from observed mobility trajectories.

We utilize these empirical resilience curves to quantify
localized Harvey impacts and community resilience capacity.
We also introduce a unified metric of resilience capacity that
integrates both the magnitude of impact and recovery duration,
calculated as the area under/over the curve (shadowed in
Supplementary Fig. 3).

Neighborhood response and recovery profiles. We are able to
determine a range of neighborhood impact and recovery profiles.
As illustrated in Fig. 1, activity in Groups 1 and 2 form U-shape
curves, representing a decrease in regular community activity
levels during the hurricane. Activity levels in these neighborhoods
return close to (but distinct from) pre-event levels during the
post-Harvey equilibrium period. As shown in Table 1, the average
magnitude of impact for Group 1 and Group 2 is 0.48 and 0.34,
respectively, meaning these two neighborhood clusters experi-
enced nontrivial declines in normal activity levels during and
after the event. Additionally, the negative resilience capacity
values, measured by the area under the curve (AUC) for each
cluster, represent decreasing activity levels, and thus quantify the
relative disruption caused by the event in these neighborhoods.
We present neighborhood cluster characteristics in Table 2 and
find clear disparities based on measured community resilience
capacity. Many neighborhoods in Group 1, which we label
“abandoned”, are located in flood prone areas (~45% of the land
area is within a 500-year floodplain), indicating a higher exposure
risk to catastrophic flooding and infrastructural vulnerability. In fact,
the southwest part of the greater Houston area near the Addicks and
Barker Reservoirs was home to some of the most severely impacted
neighborhoods (e.g., the Energy Corridor), with many homes
flooded and streets impassable for several weeks®l. While Group 1
exhibits physical and topographical vulnerabilities to flooding, these
neighborhoods are found to have the highest household median
income, a result of the significant presence of oil and gas sector
employees. In contrast, Group 2 represents socio-economically
vulnerable communities characterized by lower household incomes,
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Table 1 Measurement of mean impact, time to recovery, and resilience capacity for each cluster.

Neighborhood cluster # Of neighborhoods Impact Time to recovery Resilience capacity
Group 4—Shelter-in-place (red) 958 0.37 2 weeks 5.67
Group 3—Stable (gray) 592 0.10 5 days 0.09
Group 2—Distressed (sky blue) 212 0.34 2 weeks —3.65
Group 1T—Abandoned (dark blue) 133 0.48 >3 weeks —-9.86
Table 2 Neighborhood cluster characteristics.
Feature 4—Shelter-in-place 3—Stable 2—Distressed 1—Abandoned
n=958 n=592 n=212 n=133
Demographic and socioeconomic features
Black (%) 0.16 (0.18) 0.17 (0.18) 0.20 (0.23) 0.12 (0.14)
Hispanic (%) 0.38 (0.24) 0.39 (0.23) 0.44 (0.26) 0.33(0.23)
Limited English speakers (%) 0.10 (0.1 0.11 (0.1 0.15 (0.15) 0.09 (0.12)
Educational attainment (College degree) 0.10 (0.09) 0.11 (0.10) 0.10 (0.11) 0.15 (0.13)
Educational attainment (High school 0.23 (0.08) 0.23 (0.09) 0.25 (0.10) 0.19 (0.10)
degree)
Median income (USD) $75,543 ($37,244) $71,718 ($36,951) $61,157 ($35,631) $82,126 ($42,390)
Unemployment rate 0.06 (0.03) 0.06 (0.04) 0.07 (0.04) 0.05 (0.03)
Households without health insurance (%) 0.18 (0.11) 0.19 (0.11) 0.23 (0.12) 0.16 (0.11)
Households with food stamps (%) 0.11 (0.09) 0.12 (0.09) 0.14 (0.10) 0.09 (0.09)
Households without internet (%) 0.15 (0.12) 0.17 (0.13) 0.22 (0.15) 0.14 (0.13)
Homeowners (%) 0.68 (0.20) 0.62 (0.22) 0.54 (0.24) 0.63 (0.23)
Households living in mobile homes (%) 0.03 (0.07) 0.03 (0.06) 0.05 (0.10) 0.03 (0.07)
Land use and topographical features
Median building age (years) 32 (16) 35 (56) 39 (14) 35 (14)
Median number of rooms 6.01 (1.16) 5.71 (1.22) 524 (1.11) 5.84 (1.27)
Vacancy rate (%) 0.07 (0.05) 0.08 (0.05) 0.10 (0.05) 0.09 (0.06)
Multifamily housing (%) 0.02 (0.03) 0.03 (0.05) 0.04 (0.08) 0.03 (0.05)
Lower elevation (% of land area) 0.07 (0.16) 0.08 (0.17) 0.09 (0.17) 0.13 (0.20)
Floodplain (% of land area) 0.30 (0.26) 0.30 (0.28) 0.34 (0.32) 0.45 (0.31)

highest values across the groups in bold.

Statistically significant differences between groups are tested using one-way ANOVA (analysis of variance) and Tukey's multi-comparison method. Mean values with standard deviation in parentheses;

higher unemployment rates, fewer homeowners, and a larger share
of minority population (see Methods for details). These neighbor-
hoods, which we label “distressed”, experienced the second-largest
impact, with activity levels falling 34% below pre-hurricane levels.
Furthermore, post-hurricane activity levels do not fully return to
pre-hurricane levels during the study period, indicating time-
invariant impacts that fundamentally shift community activity!$1°.
It is possible that the effects of the hurricane in these communities,
such as severe property damage, resultant financial burdens,
deterioration of infrastructure, or health-related impacts, resulted
in extended recovery periods beyond the study timeframe or
permanent changes in neighborhood composition. Group 3
(“stable”) neighborhoods maintain relatively constant levels of
community activity, meaning the number of residents staying in
these neighborhoods is consistent before, during, and after the event.
These communities have lower proportions of racial and ethnic
minorities, higher median income, and significantly higher home-
ownership rates than Group 2 neighborhoods, although their flood
risk is similar (Table 2). The observed difference in mobility
behavior supports previous research on the factors that influence
hurricane evacuation decisions, with homeowners being less likely to
evacuate in order to protect their property>-39, Activity patterns for
Group 4 (“shelter-in-place”) neighborhoods form a positive bell-
shaped curve, representing an increase in local activity above pre-
event equilibrium. This cluster is composed of the least vulnerable
neighborhoods with the second highest household incomes and
largest share of homeowners and single-family homes (Table 2),

while having the lowest relative flood risk. Some of those
neighborhoods with increased residential activity levels as compared
to the pre-hurricane period are also areas where large emergency
shelters are located. The measured magnitude of impact of the
hurricane for this group is 0.37 and the resilience capacity is positive
(5.67), indicating that these neighborhoods experienced increases in
residential activity and had the capacity to accommodate people for
evacuation purposes from other communities.

As a validation of our resilience capacity measure, we use
Federal Emergency Management Agency (FEMA) disaster
assistance application data to correlate property damage with
community resilience capacity. As shown in Fig. 2b, the number
of verified damaged properties during Harvey in Group 1
neighborhoods, which include the most physically vulnerable
communities to flooding, is 151 per 1000 households, which is
44% more than the least impacted group. This may help to
explain why post-event neighborhood activity levels remain 20%
below pre-event levels (Fig. la), indicating that evacuees from
these communities may not have been able to return home within
the study period due to widespread property damage. The
number of damaged properties is plotted against the community
resilience capacity computed by the AUC in Supplementary
Fig. 4, with linear best fit line (p value = —0.37). The negative
correlation indicates that neighborhoods with higher resilience
capacity experienced fewer damaged properties. We caveat this
finding with the acknowledgement of self-selection bias caused by
individuals choosing to apply for federal assistance. Therefore,
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Fig. 2 Validation of neighborhood resilience measure. a Neighborhood resilience capacity calculated as the area under the curve (AUC) represented in
(). Top is grid cell and bottom is aggregation to the census tract. Red colored neighborhoods are less resilient, while blue colored cells are more resilient.
b The number of damaged properties based on the Federal Emergency Management Agency (FEMA) disaster assistance application data are illustrated at
two different spatial resolutions (grid cell and census tract). Residents in red colored areas experienced more severe property damage.

damage claims may skew toward homeowners and lower-income
households that would have greater financial need.

The evacuation divide: mobility and travel pattern of evacuees.
To identify evacuation patterns for individual neighborhoods, we
select 51,020 active users present throughout the study period
who (1) maintain a residential location in Houston and (2) stay in
their home neighborhood (grid cell) before Harvey was forecast.
As the Houston city government had not yet officially declared an
evacuation order, evacuees made decisions based on their own
risk tolerance and financial and housing context. Therefore, the
analysis accounts for those preemptively evacuating and those
later forced to evacuate due to damage from the storm. We
conduct a network analysis based on grid cell origin-destination
pairs during the study period at three spatial scales: within Harris
County, out of Harris County but within the state of Texas, and
across the United States (see Materials and Methods for details).
Approximately 82.9% of users (42,277) stayed in their home
neighborhood during Harvey and in the month afterwards (after
August 31), while ~11% of the analyzed residents (5322) left their
home neighborhoods during the impact period (the remainder were
inactive after the event). Of those who evacuated, 68.1% (3624)
stayed within the Houston Metropolitan area, 14.2% (758) traveled
to another location within Texas, and 17.7% (940) left to other
states across the country, with a majority traveling to Louisiana,
New Mexico, and California. This finding supports results found in
previous literature using post-disaster surveys and interviews®*!.

Focusing on the differences among the three different
evacuation destination geographies—within Houston, within
Texas, and out of Texas—we visually represent a network graph
of evacuation patterns and associated household characteristics of
evacuee neighborhoods in Fig. 3 and Supplementary Fig. 5. We
observe distinct spatial patterns of origins and destinations for
each evacuee group associated with evacuees’ socioeconomic
status (Table 3). First, evacuees staying within the Houston area
are more likely to be from the Distressed and Abandoned
neighborhood groups, particularly in communities around
Downtown Houston and the western edge of Downtown close
to the reservoirs where most neighborhoods were impacted by
flooding. The mean travel distance is found to be twelve (12)
miles and the major destinations are located in the Downtown
area proximate to evacuation shelters. Consistent with the
characteristics of the neighborhoods in Groups 1 and 2, these
evacuees are shown to be predominantly lower-income, minority
and vulnerable households, with significantly higher proportions
of residents without health insurance. On the other hand,
evacuees who left Houston and relocated either within Texas or
to other states traveled, on average, 140 miles and 540 miles,
respectively, and had the means to wait out the storm in areas
unaffected by it. These evacuee groups are composed of relatively
higher income, homeowner, non-Hispanic white households with
vehicles, and were more likely to be from neighborhoods in the
Stable or Shelter-in-place groups. Additionally, although there
was no official evacuation order, residents living along the eastern
edge of Harris County are found to proactively leave their

NATURE COMMUNICATIONS | (2021)12:1870 | https://doi.org/10.1038/s41467-021-22160-w | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-22160-w

a
3,624 residents (7.10%)
relocated within Houston
area
| = T g
| 2
| Dal\as. $ .
- .
San Antonio :
e B
°8. 758 residents (1.53%)
/ left to the Texas state
iy
C
5 ok
- " ﬂ. v o» %
4 4 : ne
. ] ™ A &
L L
® 4
\e "gu g U 940 residents (1.84%) left to
"oy |, outof the Texas state
&

Fig. 3 Disparities in evacuation patterns during Hurricane Harvey. a 3624
residents (7.10% of the total sample) left their home neighborhood, but
stayed within the Houston area. Blue dots denote the outbound number of
people and red dots denote the inbound number of people for a given
neighborhood. Many people in the west area near reservoirs were forced to
leave their home due to flooding during and after Harvey. People who left
their neighborhood mostly evacuated to the Downtown area where multiple
mega-shelters were located (b) 758 people (1.53% of the total sample)
traveled to other parts of Texas (outside of the greater Houston area).
Major destinations of those evacuees are College station, San Antonio, and
Dallas where additional shelter programs were operating. ¢ 940 people
(1.84% of the total sample) left the Houston area to other states including
Louisiana, New Mexico, and California. Most evacuees traveling out of
Texas headed to Louisiana, the nearest neighboring state.

communities and travel to Louisiana because their neighborhoods
are located within evacuation zones, reinforcing findings from
previous literature about evacuation decision-making based on
behavioral awareness during a hurricane event2,

Discussion

We present a methodology to quantify neighborhood-level eva-
cuation and recovery patterns in Houston during Hurricane Har-
vey by analyzing large-scale mobility data. Mobility datasets have
significant advantages for disaster management and planning,
particularly as a complement to traditional data sources, such as
post-event surveys and qualitative methods. While conventional
data and methods can provide a rich resource for contextual
information from small samples and limited geographical areas,
the low cost and high coverage of geolocation data offer
new opportunities to identify, model, and, ultimately, understand

urban dynamics at scale. An important component of our
approach is its generalizability and scalability: using the same or
similar dataset, the methodology can be applied to other extreme or
unexpected events, beyond natural disasters. For decision makers,
these data can be used to better understand patterns and anomalies
in human behavior in response to any number of shocks and to
evaluate the impact of policy interventions in near-real-time.

Of particular concern, we find clear disparities in disaster
response behaviors and resilience capacities across neighborhoods
associated with their demographic, socioeconomic, and topo-
graphical characteristics. Mobility patterns during the hurricane
are clustered into distinct neighborhood groups, demonstrating
that predominantly low-income and minority neighborhoods are
most impacted by the hurricane while least able to evacuate to
safer areas outside of the impact area. When comparing neigh-
borhoods with similar flood risk, communities with higher pro-
portions of racial and ethnic minorities and renter households
experienced a 37% decline in local activity levels, a shock that
persisted into the post-event period. These communities are least
able to withstand the financial and health impacts of the disaster,
highlighted by the troubling fact that approximately one-quarter
of residents in the Distressed neighborhood group lack health
insurance. While it is often assumed that income and racial dis-
parities result in worse outcomes for poor, minority communities,
our method creates new opportunities to understand the
dynamics of these impacts and take action to support vulnerable
areas. Our work can help urban decision makers develop and
implement data-driven resilience and emergency planning stra-
tegies that account for localized variations in risk and resilience
capacity. Using large-scale mobility data enables proactive mon-
itoring of community activity before and during a disaster such
that the impact to neighborhoods can be evaluated in near-real-
time. Our research can be expanded to post-event studies con-
nected with long-term neighborhood recovery patterns and per-
manent migration patterns caused by natural disasters and global
climate change. In addition to the ex post analysis of disasters and
other anomalous events, rapid impact assessment based on
observed resilience capacities provides another tool for local
governments to prioritize the equitable allocation of resources,
such as optimizing shelter locations and evacuation routing,
targeting outreach to at-risk populations, and aiding more vul-
nerable neighborhoods.

Methods

Smartphone geolocation data and preprocessing. We use anonymized mobile
device geolocation data from VenPath, Inc.—a data marketplace company pro-
viding mobile application data and business analytics services extracted from more
than 200 various mobile applications and covering more than 120 million devices
every month across the U.S. The initial dataset is 23TB of compressed comma-
separated-value files (CSV) covering the period from June 2016 through October
2017 and contains more than 320 billion data points. Each data point represents a
ping from a mobile device identified by an anonymized advertisement ID (ad_id),
application ID, IP address of the network (if applicable), timestamp in unix format,
device make and model, operating system and version, device location in (geo-
graphic coordinates—latitude and longitude), and the accuracy of the geolocation.
Using ad_id as a key, one is able to link application activity and movement of the
device in both time and space.

The sheer size of the data and confidentiality concerns pose nontrivial
challenges in data management from both computation and privacy perspectives.
Data were managed in accordance with NYU Institutional Review Board approval
IRB-FY2018-1645 and stored and accessed in a secured environment at New York
University’s Center for Urban Science and Progress (NYU CUSP) Research
Computing Facility (RCF), which is equipped with High Performance Computing
(HPC) infrastructure, controlled access, and restricted connectivity. Data
processing are conducted using Python version 3.7 and Apache PySpark version
2.4. Each observation was pre-processed to standardize the format between various
reporting applications. The ad_id encoding was standardized to all uppercase
characters and devices with a generic ad_id (e.g., “00000000-0000-0000-0000-
000000000000 for randomized Apple devices) were excluded. In order to
standardize reporting frequencies across various applications and further obscure
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Origin group Sample size  Disaster response

Table 3 Disparities in disaster response and evacuation patterns across the four cluster groups.

Where evacuees go

US (outside
of Texas)

Texas (outside of
Harris County)

Inactive Harris County

(No ping)

Stay home Evacuate
Shelter-in-place 9953 8493 (85.33%) 837 (8.41%)
Stable 16,506 13,936 (84.43%) 1506 (9.12%)
Distressed 4187 3338 (79.72%) 559 (13.35%)
Abandoned 1960 1320 (67.35%) 438 (22.35%)

623 (6.26%)
1064 (6.45%)
290 (6.93%)
2020 (10.31%)

552 (65.95%)
1008 (66.93%)
381 (68.16%)
343 (78.31%)

133 (15.89%)
220 (14.61%)
57 (10.20%)
49 (11.19%)

152 (18.16%)
278 (18.46%)
121 (21.65%)
46 (10.50%)

This table summarizes evacuation destinations based on residents’ origin (home neighborhood) associated with neighborhood activity clusters.

users’ exact location, ping coordinates were averaged over a 5 min time interval and
aggregated to grid cell, census tract, and zipcode geographies. For this analysis, we
extract a subset of the data for the period directly preceding and following
Hurricane Harvey spanning 2 months (2017-08-01 to 2017-09-30) and falling
within the bounding box defined by —94.8285W and —95.9065W of longitude and
29.4492N and 30.0685N of latitude encompassing the Greater Houston Area. We
also localize timestamps to the Central Daylight Time (GMT-5) zone. Since the
analysis focuses on changes in daily residency locations, we also filter out pings
originating from highways or major roads to eliminate vehicular activity within a
given census tract or grid cell, as that activity could skew measures of residential
activity within a given neighborhood. The resultant dataset consists of a total of
829,350 unique devices.

Ancillary data listed in Supplementary Table 1 are used for contextual analysis
and validation of the results. Data from the 2017 5-year estimate U.S. Census
Bureau American Community Survey (ACS) are used to obtain census tract
geometries and relevant socioeconomic, housing, and demographic characteristics.
The locations of major roads are identified to flag observations associated solely
with vehicular travel. Other relevant datasets include United States Geological
Survey (USGS) elevation data along with FEMA floodplain areas, shelter locations,
and Evacuation Zone spatial boundaries.

Quantifying community-level spatiotemporal evacuation and recovery pat-
terns. We develop a four-step methodology to quantify impact, evacuation, and
recovery patterns across neighborhoods before, during, and after Hurricane Har-
vey. The geographical scope of this analysis is Harris county (1777mi?), covering
the central section of the Houston Metropolitan Area. This research uses the
Python programming language (version 3.7) and Quantum GIS version 3.4
Madeira to implement geospatial analyses and machine learning applications.

Step 1: Identifying users’ daily residence activity areas. Daily residence activity areas
for each of the 829,350 users during the study period are identified based on an
argmax value of pings for each individual user. Each ping is represented by the
vector < p, t, >, where p denotes a device’s location at time #,. We use an ~1 km by
1km grid cell (0.6214 mile x 0.6214 mile) as the areal unit of p to preserve privacy
and minimize re-identification risks. The residence activity area of each user is
specified as:

)
where Hy, ; y is the main activity area of user u on day 1, and P, is the set of all grid
cell locations with pings by user u. In other words, a daily residence activity location
(home/shelter/hotel/temporary residence, etc.) for each user is defined by the grid cell
with the most frequent pings for that user for a given day. For weekdays, we only use
pings from 8 p.m. to 7 a.m., when people are more likely to be present at their location
of residence. The results provide a daily grid cell home location for each device that
can be used to analyze changes in residence patterns over the study period.

H,q = argmax(¥, € P,|t, € R, : XR,(i,p))

Step 2: Quantifying the change in the number of users staying in a neighborhood.
Based on the output from step 1, we calculate a baseline for neighborhood activity
levels as the average number of users in a given grid cell before August 16th. We
assume that activity in this period is not affected by Hurricane Harvey so that the
residential population of a given neighborhood is relatively stable. For the
remaining period, we calculate a percentile distance from the average value to the
number of daily users in a given grid cell, specified as:

Und

— Una
DNdn =

g 2
Ul @)
where Dy, is the percentile distance between the average number of users to the
number of users on a given day 1, Uy, is the number of users in grid cell Non a
day n, and Uy, is the average number of users in grid cell N during the pre-
hurricane equilibrium (2017-08-01 to 2017-08-16). These time series values
represent the changing pattern of the number of users staying in a given neigh-
borhood (grid cell), providing a measure of the variance in residential activity levels
over the time period.

Step 3: Classifying neighborhoods based on disaster response and recovery patterns.
In order to identify disaster response patterns, we first decompose observed values
from step 2 based on a 3-day moving average to extract a trend from which we
implement an agglomerative clustering algorithm. An agglomerative clustering
algorithm is a widely-used bottom-up hierarchical clustering method based on
mathematical distance. The algorithm starts by considering each data point as a
single cluster and, at each iteration, similar clusters are merged with neighboring
clusters based on the proximity matrix until all clusters are merged into one
cluster?3. An input variable is a vector of the trend of the number of users in each
neighborhood from August 4 through September 26 (the shorter time range results
from the moving average transformation). The optimized number of clusters is
selected by the hierarchical clustering dendrogram based on similarities/dissim-
ilarities of observations, aiming to minimize the variance within the clusters, while
maximizing the variance between the different groups. We use Ward’s metric to
calculate distance between clusters C; and C;, specified as:

D,(C,C) = X (x — )+ T (x- ’j)z - X (x- 7;j>2
x€C; x€G x€Cy

3)

where Cj; is a merging the two clusters C; and C;, r;, rj, and r;; are the centroids of
C;, Cj, and Cj; respectively.

Step 4: Measurement of community resilience capacity. Once we have identified
neighborhood-level hurricane response activity patterns, the magnitude of impact
and time-to-recovery can be measured as described in Supplementary Fig. 2. The
magnitude of impact is measured as the maximum depth or maximum height of
the community activity curve during the hurricane impact period. Time-to-
recovery is measured as the number of days between the date of peak amplitude
and the date when the neighborhood reaches post-event activity equilibrium. To
this end, we introduce a unified measure of resilience capacity that reflects both a
magnitude of impact and recovery duration, calculated as the area under/over the
curve (shadowed in Supplementary Fig. 2) using the formula:

oy
RCy = / Aquitivrium — An(t)dt (4)
0
where t is the date of maximum impact, f, is time to reach post-event equilibrium,
and Ax(f) is a function of community activity for neighborhood N over time. Since
resilience capacity must account for both the magnitude of a shock and the time
to return to pre-event equilibrium activity levels, our approach can provide a
generalizable measure of community resilience that extends beyond static indices
of impact or recovery. After clustering, we integrate and spatially join other data
sources to estimate correlations between community resilience capacity and
neighborhood characteristics described in Supplementary Table 1. All of the
ancillary data are publicly available and extracted from open data platforms. The
neighborhood clustering outputs are contextualized to understand the profile of
cluster groups based on neighborhood social, geophysical, and economic char-
acteristics, such as evacuation zone and floodplain areas, topography, land use, and
household demographic and socioeconomic attributes.

Validation of community resilience capacity. FEMA disaster assistance appli-
cation data include the number of grant applications from homeowners and renters
and the number of verified damaged properties that are eligible to receive federal
grants based on inspections. We use data on the number of damaged properties,
initially provided at zipcode aggregation, to estimate the actual neighborhood-level
impacts from Hurricane Harvey. We calculate the number of damaged properties
per household and multiply it by the number of households in a given grid cell to
estimate the hurricane-related damage for each grid cell to match the spatial
resolution of the activity measures.

Mobility patterns of evacuees during and after Hurricane Harvey. In order to
gain a better understanding of evacuees’ mobility patterns and disparities in eva-
cuation behavior, we subset devices active in the Houston area during the direct
impact period (between August 21, 2017 and August 31, 2017) and extract the top
25% most active users living in the Houston area and for whom geolocation data
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are available throughout the study period (51,020 unique devices). We then expand
the geographical scope of our analysis to include all pings generated from those
devices covering the entire territory of the United States in order to identify the full
extent of evacuation patterns.

To define mobility behavior before, during, and after the hurricane, one needs to
identify areas of activity for each device, namely home, work, and other places, such as
recreation, entertainment, or shopping, as well as potential temporary locations of
residence if displaced during the hurricane. Since behavior patterns vary significantly
across devices, there is no predefined number of areas of activity. To define these
areas, we use a density-based spatial clustering of applications with noise (DBSCAN)
clustering algorithm®. The advantages of DBSCAN in this instance are (1) that it
does not require a priori information about the number of clusters, (2) the clusters
can be of arbitrary shape defined by the chosen distance measure, and (3) the
algorithm is robust to outliers identified as noise (not belonging to any of the clusters).
Two parameters required to be specified are the distance between the observation
points (&) and minimum number of points required to form a cluster (n). The
algorithm defines a cluster C as a set of density — connected points within the Eps —
neighborhood of a point p, denoted as N,(p), where:

N.(p) = {q € Cldist(p.q) <} A [Cl > s)
To identify the most common areas of activity for each ad_id, we perform
DBSCAN in three dimensions: latitude, longitude, and time. Since the geographical
extent for each device’s activity is unique and varies significantly, both latitude and

longitude were rescaled to kilometers based on the size of the bounding box
encompassing the full range of each user’s activity. Temporal clustering is based on
hour of activity and was rescaled from a 0-288 range (the number of 5 min periods
within 24 h) to 0-1. Using the rescaled values, we set the Euclidean distance
parameter ¢ to 0.25, corresponding to 250 meters and 6 h for the spatial and
temporal dimensions, respectively. The minimum point number (#) is dependent
on the number of days the device was active. The resultant database contains the
clusters of activity identified for each device, characterized by their size, average
geographical location, list of dates when the cluster was activated, and the hourly
distribution of activity within the cluster.

Using the hourly distribution of activity and the size of each cluster, we then identify
the most probable home location for each user. In order to do so we apply a k-means
clustering method of normalized hourly activity cluster profiles®>. The algorithm
classifies the set n of samples x into k nonoverlapping clusters C, of equal variance and
described by the mean y;, minimizing within-cluster sum-of-squares (SS) defined as:

SS = i;{)””i"%e(:(“ X — P’j”z) (6)

Prior to clustering, the time series data are smoothed using an exponentially
weighted moving average to remove noise from the ping observations. The results
yield four common profiles that can be associated with different types of activity,
particularly residential (with activity peaks in the early morning and later in the
evening or throughout the day on weekends) and work locations (with most of
activity occurring during traditional working hours and often extended into the
evening). Each user’s pre-hurricane home location was assigned to the most
commonly visited cluster of activity before Harvey from within the first two
categories described above. We validate the results of home location against census
tract level population from the U.S. Census Bureau ACS and obtain a 0.77
correlation coefficient. To track changes in daily home locations and potential
evacuation behavior, a similar process was performed using only the clusters
activated on that given day without constraint to cluster category, but with priority
given to residential profiles.

We are concerned with socioeconomic and demographic disparities in
evacuation behavior before, during, and after Hurricane Harvey. Based on the
computed daily residence neighborhoods for active users, we create origin-
destination pairs for each individual aggregated to the grid cell level based on the
(1) initial (pre-event) home location and (2) the residential location during and
after Harvey. We focus on the time period between August 23rd and September
2nd to identify evacuation locations for those that leave their home
neighborhood. The origin-destination pairs generate an origin-destination
matrix denoting a origin location, a destination location, and the number of
users associated with a given origin-destination pair. In addition to the
destination location (a centroid of a grid cell), we encode destination locations as
one of four different types: home, within Houston, within Texas but outside of
Houston, and outside of Texas. Evacuees are classified by their destination
location and we compare their travel distances and destination locations as a
function of origin neighborhood location demographic and socioeconomic
characteristics (Supplementary Table 1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The primary mobile phone geolocation data that support the findings of this study are
available from VenPath, Inc., but restrictions apply to the availability of these data, which
were used under data sharing agreement and are not publicly available. The aggregated
data used for this analysis may be available from the authors upon reasonable request

and with permission of VenPath, Inc. Figure 1 and Supplementary Fig. 2 are associated
with the geolocation data source. Additional data needed to evaluate the analyses in the
paper are described in Supplementary Table 1. All data related to this study may be
requested from the corresponding author upon reasonable request and with permission
of the data provider if data are not publicly available. Original Houston Harris County
parcel level land use information data is available through the Texas Natural Resources
Information System website (https://data.tnris.org/collection/2679b514-bb7b-409f-97f3-
ee3879f34448). Data on Houston park and open space is available from the City of
Houston GIS Open Data Portal (COHGIS) (https://cohgis-mycity.opendata.arcgis.com/
datasets/coh-park-boundary), and Harris County evacuation zones from the Harris
County Emergency Management (https://prepare.readyharris.org/evacuation-map). The
U.S. topology information was obtained from the USGS National Elevation Dataset
(NED 1/3 arc-second) (https://catalog.data.gov/dataset/national-elevation-dataset-ned-1-
3-arc-second-downloadable-data-collection-national-geospatial), the national flood
hazard layer and the disaster assistance appliation information from FEMA (https://
www.fema.gov/flood-maps/products-tools/national-flood-hazard-layer and https://www.
fema.gov/about/openfema/data-sets respectively), and the FEMA shelter locations
through the Rice University Houston Urban Data Platform (https://www.kinderudp.org/
#/datasetCatalog/va7b869ng5dv). Data on Texas major roads including highways is
accessible through the Texas Department of Transportation and the Houston
Department of Transportation (https://gis-txdot.opendata.arcgis.com/datasets/
d4£7206d27af4358acb70cb1cc819d10_0 and https://cohgis-mycity.opendata.arcgis.com/
datasets/coh-major-road respectively). All demographic and household socioeconomic
data were retrieved from the U.S. ACS administrated by Census Bureau (https://www.
census.gov/programs-surveys/acs/technical-documentation/table-and-geography-
changes/2017/5-year.html).

Code availability

All of the code used to process data and perform the analysis for this study, as well as the
resulting models and figures are available in the dedicated GitHub repository—https://
github.com/UrbanIntelligenceLab/measuring-inequality-in-community-resilience-to-
natural-disasters under MIT License.
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