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This article presents a methodology for building measures of influence in regression models 
with time series data. We introduce statistics that measure the influence of each observation 
on the parameter estimates and on the forecasts. These statistics take into account the 
autocorrelation of the sample. The first statistic can be decomposed to measure the change 
in the univariate autoregressive integrated moving average parameters, the transfer-function 
parameters, and the interaction between both. For independent data, they reduced to the D 
statistic considered by Cook in the standard regression model. These statistics can be easily 
computed using standard time series software. Their performance is analyzed in an example 
in which they are shown to be useful in identifying important events, such as additive outliers 
and trend shifts, in time series data. 

KEY WORDS: ARIMA models; Influential observations; Missing data; Outliers. 

The distinction between additive and innovational 
outliers in time series was introduced by Fox (1972). 
Since then, the study of outliers has been an active 
area of research in time series. Abraham and Box 
(1979), Martin (1980), Chang, Tiao, and Chen (1988), 
Tsay (1986, 1988), and Abraham and Chuang (1989) 
are some of the relevant references. The study of 
influential observations in time series, however, has 
received little attention in the statistical literature. 
Pefia (1987, 1990) showed that the study of influential 
observations can be carried out for univariate time 
series using a missing-value approach. We can use 
any suitable measure of distance, such as the likeli- 
hood distance or the change in the predictive or pos- 
terior distribution, to measure the model change when 
it is assumed that one observation, or a subset of 
observations, is missing. 

In this article, the missing-value approach is ap- 
plied to build measures of influence for dynamic 
(transfer-function) regression models. When the re- 
siduals are not autocorrelated and therefore we are 
using the particular case of the standard regression 
model, the statistic suggested reduces to Cook's D. 
This article is organized as follows: Section 1 analyzes 
the problem of building a measure of change in the 

autoregressive moving average (ARMA) parame- 
ters; Section 2 presents a global measure for the change 
of the whole model. It is shown that this measure 
can be decomposed to study the effect on the trans- 
fer-function parameters and the autoregressive in- 
tegrated moving average (ARIMA) parameters. Sec- 
tion 3 applies these statistics to a dynamic system. 

1. INFLUENCE ANALYSIS IN UNIVARIATE 
ARIMA MODELS 

1.1 A Measure of Influence in Univariate 
ARIMA Models 

Assume the use of the ARIMA model 

O(B)Vdz, = O(B)a,, (1.1) 
where )(B) = (1 B - ..B . - pBP) and O(B) 
= (1 - 01B - .- - OqBq) are polynomial operators 
in the backshift operator B with roots outside the 
unit circle and V = 1 - B is the difference operator. 
It is also assumed here that the stationary series Vdz, 
has zero mean and a, is a white-noise sequence of iid 
N(0, a2) variables. Let k = p + q be the number 
of parameters. Let us call q and e the maximum 
likelihood (ML) estimators of the parameters with 
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the complete data set and +(i) and @(,) those when 
observation z, is missing (these computations will be 
discussed in Section 1.2). Then the parameter esti- 
mates f and nf(i)of the autoregressive representation 

r(B)z, = a, (1.2) 

can be computed from 

Vd?(B) = O(B)ir(B), (1.3) 

and the change in the model structure can be mea- 
sured by a Mahalanobis-type distance 

Pi (ri)= 
)-~ 

- t() 
, ( (1.4) 

where Y.7a is the variance-covariance matrix of the 
ML estimator ft. As shown by Pefia (1990), by build- 
ing the measure of change (1.4) using the 7 param- 
eters, we avoid the problems linked to near cancel- 
lation between AR and MA structures. For large 
samples, approximately , = (Z_ Zt,-1)-1, where 
Z,_ is the matrix 

Zk .. Z1 

Zt- 1 - 

Zt- '"1 Zt-k 

Now let Zt = 'Z,_1- be the vector of forecasts and 
Z(I) = Zt- 7(,) be the vector of forecasts using 7f,) 
instead of if. Then 

(2, - ZA),Z - 2';) 
-- ( 

- 
)7(i-)En ( - 

- 
() )* (1.5) 

Therefore, (1.4) can be written as 

t,- z2())' (2 - Z(i)) P (r) = - Z) (1.6) 

Equation (1.6) shows that, as in the regression 
model, the Mahalanobis distance that measures the 
change in the parameters can be expressed as the 
Euclidean distance of the change in some forecast 
vectors. In the regression model, however, Zj') is 
computed by replacing the ith observation by its mean, 
whereas here Z') is computed by replacing the ith 
observation with its conditional expectation given the 
rest of the data. Pefia (1990) showed that the statistic 
(1.6) can be written as a function of the likelihood- 
ratio test to check for additive outliers. 

1.2 Computing Uriivariate Influence 

The computation of (1.6) requires the estimation 
of the parameters when one observation is missing. 
Jones (1980), Harvey and Pierce (1984), and Kohn 
and Ansley (1986) showed how to solve this problem 
by setting up the model in state-space form and ap- 

plying the Kalman filter. An alternative method is 
the following. The conditional likelihood function of 
the parameters when observation zi is missing can be 
written (see Ljung 1982) as 

L(f., a2 Z(,i, u) = l( n ) 2 -- fln f -2 2 (1.7) 
1 

22 S(, u, Z(i)i/n), (1.7) 
2U2 

where fi is the vector of 0 and 0 parameters, Z(i) is 
the observed data set without zi, u is the vector of 
starting values, fia2 is the variance of the estimator 
of the missing value given the rest of the data, Zi,, is 
the expected value of zi given Z(i), and S(f,, u, Z(,), 
,iln) is the residual sum of squares given the vector 
of parameters and starting values f/ and u in a data 
set in which observation Zi/, has been substituted for 
Zi. 

This estimation can be carried out easily using in- 
tervention analysis (Box and Tiao 1975) as follows. 
Let 

tr(B)(z, - wil(')) = a, (1.8) 

be an intervention model, where Ij) is an impulse 
variable that takes the value 1 at t = i. Then it can 
be shown (Pefia 1987) that the likelihood function 
for the parameters can be written as 

L(fl, a2 | Z, U) 

= -~ In a2 - 22 S(f,, ZU,, i zin) (1.9) 2 2U2 

Therefore, if the sample size is large, and the term 
In fi can be disregarded, the estimation of the pa- 
rameters using (1.7) or (1.9) will be practically iden- 
tical. 

In summary, t(i) can be easily computed with any 
computer package that includes intervention analy- 
sis. The computation of the vector of forecasts in 
(1.6) depends on the starting values, but if the sample 
is large, its effect will be negligible. 

In the measure (1.6), the vector 2Zj) does have zi 
as one of its components, because 2') = Z,tlft(i) and 
Z,_ includes it. If we were interested in the influence 
of zi on the forecast generated from the model, we 
could monitor the change with a vector of forecasts 
that does not depend on the ith observation at all. 
In the vector of forecasts generated by the interven- 
tion model (1.8), observation zi is always replaced 
by Zi/,, and therefore we will suggest as a measure 
of the change in forecast the statistic 

D( Z,) - 
z 

INT) '(2- 2~ NT) 
A,Z) 

~ 
, 11ka0 ) 
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MEASURING INFLUENCE IN DYNAMIC REGRESSION MODELS 

where ZINT is the vector of forecasts from the inter- 
vention model (1.8). 

2. INFLUENCE IN TRANSFER-FUNCTION 
MODELS 

2.1 Statistics of Influence 

Suppose now that we have an explanatory variable 
x, for the time series y,. The variable x, can be either 
deterministic or stochastic, but I consider the stan- 
dard case in which the inference is done conditional 
on the given values of x,. Then one can write the 
model as 

m(B) O(B) Y' = (B) x, + (B) a, 6(B) O(B) 
(2.1) 

where m(B) = mo + mjB + ... + mmBm and 5(B) 
= (1 - 61B - .. - (aBa) have roots outside the 
unit circle. It can also be written as the standard lag 
regression equation 

y, = Y7jy,-j + aiX,_i + a, (2.2) 
where a(B) = v(B)7c(B). Now Model (2.2) can be 
written as 

Y = Zr + TXv + U, (2.3) 
where Y is the n x 1 vector of observations of the 
output series, Z is an n x h matrix of past values of 
the output, n is a vector h x 1 of coefficients, T is 
a triangular matrix given by 

1 0 
- nr 1 
- 2 - 1 

0- * 0 

1 

-7r 

0 -7p 
* - rr -1 1 

X is the n x s matrix of current and pas 
the explanatory variable, and s is the dir 
the v vector. Let 7r and v be the ML est 
Model (2.3). The forecast vector is 

Y = Z1i + txv, 
where T is the estimated T matrix using z 
now that observation y, is missing, and 1 
v(j) be the ML estimators of the paramete 
discuss their computation in Sec. 2.3.) The 
tor of forecasts using the new parameters 

Y(i) Z (i)+ T(o) i (i) 

Following the same principles used in th 
ate case, we define as the global measure ol 

Pi(fA) 
( - 

(i) (Y Y(i)) 

Equation (2.7) shows that to compute Pi,(f) it is 
necessary to obtain only the vector of forecasts from 
the standard transfer-function formulation (2.1). 
Therefore, the order h does not need to be specified, 
and C = p + q + m + a, the number of parameters 
used to compute the vector of forecasts. 

2.2 A Decomposition of the Statistic 

An observation can be influential because it changes 
the parameters in the noise model, in the transfer 
function, or in both. Since it may be useful to identify 
these cases separately, we can decompose the statis- 
tic to show these effects. A possible decomposition 
is to use 

(Y - Y(i)) = Z( - (i)) + TX( - (i)) 

+ (T - T(i))Xv(i). (2.8) 
If we let cl = (p + q)/C and c2 = (m + a)/C be 
the proportion of parameters in the noise and trans- 
fer-function structure, we may write 

P(fl) = c,P,(r) + c2P,(v | n) + INTi(7r, v), (2.9) 
where the term 

Pi(7r) = ( - (i))ZZ(^ - (i))/l^(p + q) 

(2.10) 
is a measure of the change in the univariate param- 
eters. Assuming that A-~ = T'T, the second term 
can be written as 

P,(v I n) = (V - V(i)) 

x (X'A-lX)(v - v(,))/a(m + a), (2.11) 

(2.4) and is proportional to the Mahalanobis distance be- 
tween b and v(;) (we will see in Sec. 2.3 that a 2X'A - 1X 
is the inverse of the variance-covariance matrix for 
the generalized ML estimator v) and represents the 

t values of change in the transfer-function parameters given the 
nension of 7n parameters. Finally, the third term is 
timators in Ca INT(7tv) = 2(t - 7n(Z))Z(X - T()Xv(i)) 

(2.5) + 2(& - (,))'X'T( - T(,))Xv(i) 

(2.12) z. Suppose 
et fi(i) ad and represents the interaction between the change 
rs. (I shall in the transfer function and the noise parameters. 
mn the vec- This interaction term will in many cases be negative, 
is because a decrease in the transfer-function param- 

eters will be linked to a change in the opposite di- 
(2.6) rection of the noise model. We will see an example 

ie univari- of this situation in Section 3. 
f influence The breakdown of Statistic (2.7) into its compo- 

nents shows clearly that (a) if there are no explan- 
(2.7) atory variables in the model, (2.7) reduces to the 

univariate statistic previously defined, and (b) if the 
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noise is white and therefore we have a regression 
model, (2.7) reduces to the D statistic introduced by 
Cook (1977) for the regression model. 

2.3 Computing Diagnostics 

To compute Statistic (2.7) we need to estimate the 
parameters of the model when one observation is 
missing. To describe the nature of this estimation, 
let us write the model as 

Y = Xv + R, (2.13) 

= TR, the model is 

y = wi,(i) + Xv(i) + U, (2.18) 

where now E[UU'] = o21. Then it is shown in the 
Appendix that the least squares estimators of the 
parameters are 

w, = bI'()(Y - Xv) (2.19) 
and 

V(,) =- V - (X'X) 1XIjWi, (2.20) 

where R is a vector of noise that follows a multivari- 
ate normal distribution with mean 0 and positive- 
definite covariance matrix a2A, such that A - = T' T. 

Then the log-likelihood corresponding to (2.13) is 

-nInU2- ln |AI 

1 
22 (Y- Xv)'A-(Y - Xv), (2.14) 

and, conditional on A, the generalized least squares 
estimator of v is 

v = (X'A -X)-'X'A-Y, 

with covariance matrix 

E(v) = (X'A-'X),2. 

(2.15) 

(2.16) 
Since the n parameters, and therefore the A ma- 

trix, are usually unknown, ML estimation requires 
an iterative algorithm in which, given an initial 7r 
value, the matrix A is determined and an initial es- 
timator of v computed with (2.15). Then the error 
process R is generated using (2.13) and the usual 
univariate time series estimation method applied to 
R to produce a new value for n. The procedure is 
iterated until convergence. 

Now it is well known that, when A = I-the iden- 
tity matrix-and only one observation is missing, the 
estimation of the parameters can be obtained by in- 
cluding a dummy variable in the regression model. 
I have shown in Section 1.2 that, for large samples, 
this procedure works with univariate time series data. 
It will also work for Model (2.13) if we consider the 
X values as fixed. Then, if we estimate the model 

Y = w,(i) + Xv() + R, (2.17) 
where l(j) has a one in the ith position and zeros 
elsewhere, v(i) will provide the estimator of the v 
parameters when y, is missing. Since the A matrix is 
generally unknown, the estimation of (2.17) will re- 
quire an iterative algorithm. To describe its struc- 
ture, let us first analyze the case in which the param- 
eters 7r and therefore the matrix A are given. Then, 
using the Cholesky factorization A- = T' Tand as- 
suming that Y = TY, X = TX, (,i) = TI(,), and U 

where 

b = [('i)(I - 
H)(i)],-1 (2.21) 

and 

H = X(X'X)-1X'. (2.22) 
To understand the meaning of these estimators, let 
us consider the simple dynamic regression model 

a, 
y, = xt]+ 

at 
Yt xf +(1 - 4B)' 

Then the estimator f(i) for f, given 0, will be obtained 
from the model 

a, 
Yt = wil(i) + xt (i) + 

and it can be shown that it is given by 
A Sx(i I n) 
(,) = ,Sx(i I n) 

' 

where S,x(i I n) = E(y, - 49y,-)(, - 
n) = Y(x, - X,_-)2, 

Yt = Yt, 

(2.23) 

(2.24) 

x^, 1), Sx(i I 

t/ i 

= 
(il2) (yi+ + 'Yi-), 

and 

x, = x,, t # i 

= Xiln (1 + (42) (X+1 1+ - 1), t= i. 

Note that iy,, and Xi,, are the optimal estimators (in 
the minimum mean squared error sense) of the miss- 
ing values y, and xi. Both are computed using the 
inverse autocorrelation function of the output (noise) 
model (see Pefia 1990). Thus (2.24) is the estimator 
of the parameter fl using these interpolators instead 
of the observed values. Besides, 

W = yi - (Yiln + (i)(Xxi 
- 
-iln)) (2.25) 

is the difference between the observed value Yi and 
its estimator using all the information contained in 
the sample. 
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When the n parameters are unknown, the ML es- 
timator of all of the parameters of the model with y, 
assumed to be missing can be computed as follows: 

1. Assuming initial values for the parameters f(") 
= (f"), v()), compute the estimator r(i) I V(0) for the 
univariate parameters of the noise, as shown in Sec- 
tion 1.2. 

2. Using 7t(,) I v(0), compute the ML estimator of 
the transfer-function parameters v(i using (2.19) and 
(2.20). 

3. Iterate until convergence. 

In every step 1 or 2, using the initial value for the 
parameters, the minimum mean squared error in- 
terpolator for the missing value is computed using 
Ziln = - = ik(zi+k + Zi-k), where zj = 0 if either 
j < 0 or j > n, ,iln can be Yiln or iln, and in both cases 
Pik is the inverse autocorrelation function of the out- 
put process computed using the current estimate of 
the parameters. Then new series are constructed us- 
ing yil, and xiln instead of (yi, xi), and the ML estimates 
are computed. These values provide a new estimator 
of pi, that is used to build new estimators for the 
values Yiln and xiln. The iterations are repeated until 
convergence. 

Note that, although the nature of the estimators 
has been analyzed using the linearized or structural 
form of the model (2.2), all of the computation should 
be carried out in the parsimonious representation 
(2.1). Hence, the orders h and s in (2.3) need not 
be specified. Thus in practice we only need to esti- 
mate the model 

,() ,(B) 0() (B) 
(2.26) 

and the vector Y(,) needed to compute (2.7) can be 
obtained from the vector YlNT of forecasts generated 
from Model (2.26) using 

Y(, = y - wi(i)(B)n(i)(B)l(i) (2.27) 
where wi,, 0(i)(B), and 5(,)(B) come from the esti- 
mation of (2.26). The values 7t(,) and v(j) needed in 
the computation of statistics (2.10) and (2.11) can be 
obtained using the relations 6(,)(B)v()(B) = m(O(B) 
and @()(B)7(i)(B) = +()(B). 

The statistic (2.7) is designed to measure the change 
in the parameters of the model and is based on the 
vector of forecasts using the vector of parameters 
7t(,) and v(j) with the sample data. An alternative mea- 
sure that takes into account the change in the forecast 
is 

Di(Y) = ( T 
- '(? - ) T) 

koa 
(2.28) 

where Y^(T is the vector of forecast generated by the 

intervention model (2.26). This measure would re- 
duce to (1.10) if there were no explanatory variables 
in the model. 

In summary, the computation of (2.7) and (2.28) 
can be carried out with a program that computes ML 
estimators for the parameters of a transfer-function 
model. It is only necessary to introduce a dummy 
variable (an intervention impulse variable) at every 
point, estimate the model, and compute the vector 
of forecasts. Then, to obtain the statistic (2.7), we 
need the vector of forecasts (2.27), whereas to obtain 
the statistic (2.28), we use directly the vector of fore- 
casts from the intervention model. 

2.4 Finding Influential Points 

We can say that a point is influential at level a if 
the parameters estimated using a modified sample in 
which this point is assumed to be missing are not 
included in the 1 - a joint confidence region for the 
parameters estimated with the complete sample. For 
a time series model, the joint 1 - a confidence in- 
terval for the vector of parameters ,f is given by 

S() - SO(f) - F(p, n - p; 1 - a) 

(Priestly 1981, p. 369), where S(f) is the residual 
sum of squares for the parameter vector f, /B is the 
ML estimator, p is the number of parameters, Ob is 
the residual variance, and F(p, n - p; 1 - a) is the 
1 - a percentile of the F distribution with p and n 
- pdf. 
For large samples, Statistics (1.6) and (2.7) can be 

compared with x2 distributions with k and C df, re- 
spectively. Then if, for example, Pi(r) equals the 0,25 
value of the corresponding x2 distribution, assuming 
that the ith point is missing, it would move the es- 
timate of n to the edge of the 0,25 joint confidence 
region for 7t. 

This reference distribution is only an approxima- 
tion. I believe, however, that the main usefulness of 
these statistics is as exploratory tools, and a plot of 
the values Pi(fl) over time will indicate if there are 
influential points and will suggest possible hy- 
potheses to be tested. 

3. AN EXAMPLE 

To illustrate the previous procedures, I analyze a 
dynamic system represented by two series. The input 
series is the gas-feed rate in a gas furnace, and the 
output is the CO2 concentration. Box and Jenkins 
(1976) included 296 pairs of data points with a sam- 
pling interval of nine seconds. To simplify the com- 
putations, I have selected a sample starting with the 
first observation and assuming that the system was 
sampled every 27 seconds and so taken one obser- 
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Table 1. Models for the Feed Rate and CO, Concentration 
(27-sec. sampling) 

Model a, Q(36) 

(1 - .93B + .48B2 - .24B3)x, = a, .745 17.8 
(1 - 1.28B + .82B2 - .36B3)y, = 9.21 + a, 1.641 24.2 

NOTE: 0(36) is the Ljung-Box statistic computed with 36 residual correlation 
coefficients. 

vation out of every three in the whole data set. From 
now on, I will use this sample of 99 observations. 

Table 1 gives the univariate models for these input 
(x,) and output (y,) series. The transfer-function 
modeling procedure of Box and Jenkins (1976) leads 
to 

y, = 53.38 - (1.27B + 1.76B2)x, + N,, 
(.16) (.09) (.09) 

(1 - .78B + .20B2)N, = a,, 
(.10) (.12) 

a, = .68. 

(3.1) 
Table 2 shows the largest values of the global in- 

fluence measure (2.7) and its breakdown according 
to (2.9). These statistics have been computed using 
intervention analysis as follows. To compute P,(/), 
the following model was fitted: y, = wol() + c + 
(w1B + w2B2)x, + N, and (1 - BB - 02B2)N, = 
a,. Letting (i) = (c(), w ') be the param- 
eters estimated with this model and YIN be the vector 
of forecasts generated with it, we compute Y(,) = 
y(,iT - w,(l - (B- ')B2\i), which is the vec- 
tor of forecasts using the parameters /(,) in the trans- 
fer-function model. Then P,(#) is computed using 
(2.7). 

To compute the components of Pi(/3), we have ig- 
nored the covariance between the estimators that 
were small, and hence 

Pi(7r) = 2 ( ?) 

and 

Pi (t) (, A= (i)' 
j:l a, a(W^ / 

Parameter Influence i nn 

0.75 

0.50 

0.25 

0.00 . t. 

Figure 1. Plot of the Statistic Pi (fl) in Model (3.1). 

Table 2 shows the diagnostic statistics Pi(/J) and 
D,(Y) that are plotted in Figures 1 and 2. It can be 
seen from them that Y9( is the most influential point 
both on the parameters of the model and on the 
forecasts. The table also shows that in this case P,(l) 
and D,(Y) pinpoint the same observations, and al- 
though there is a difference in the scale in both mea- 
sures, observation 90 is roughly five times the value 
of the next largest ones. The small value of P)(f) 
compared with a x2 distribution with 5 df, however, 
indicates that its effect on the parameter estimates 
in small; that is, it moves the estimator slightly within 
the joint confidence region for the parameters. This 
is confirmed by the breakdown of the statistic in the 
table. These results mean that the global structure 
of the model is robust to the sample. To illustrate 
this fact, Table 3 shows the parameters estimated 

Forecasting Influence 
6 

5 

4 

Table 2. Distribution of the Influence Statistics in 
Model (3.1) 

Interquartile 
Statistic Mean range 90 96 91 

P,iP) .004 .014 .93 .18 .14 
P,Iv ) .001 .013 .99 .08 .12 
P,4n) .003 .011 .49 .22 .24 
D,A ) .131 .315 5.05 1.03 1.16 
NOTE: The three important points (90, 96, 91) are shown, as well as the mean 
and interquartile range of the distribution of each influence statistic for the whole 
data set. 

3 

2 

1 

0 

Figure 2. Plot of the Statistic D (Y) in Model (3.1 
Figure 2. Plot of the Statistic Di (Y) in Model (3.1). 
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MEASURING INFLUENCE IN DYNAMIC REGRESSION MODELS 

Table 3. Parameters of the Model With the Whole Sample and Assuming That Observation 90 
Is Missing 

Case c W1 W2 4, 02 a 

Whole sample 53 -1.27 -1.76 .77 -.20 .679 
Value 90 missing 53 -1.33 -1.65 .88 -.17 .608 

NOTE: The value of ygo is 54.5, and its optimal estimate is 52.15. 

assuming that y, was missing, and it can be seen that 
their change is small. 

The largest residuals from Model (3.1) are dis- 
played in Table 4, in which it can be seen that all of 
the larger values are concentrated at the end of the 
sample and after ygo. The plot of the residuals (Fig. 
3) shows some evidence of a change after y90, and if 
we apply the outlier-detection techniques developed 
by Chang, Tiao, and Chen (1988) and Tsay (1986), 
observation 90 is identified as an additive outlier. 
(The size of the outlier is estimated as 2.12 with a t 
value of 4.13.) Therefore, I conclude that observa- 
tion 90 is an additive outlier and that it is the most 
influential point both on the parameters and on the 
forecast (Figs. 1 and 2), but also that its effect on the 
estimated parameters is small, as shown by Tables 2 
and 3. 

The large residuals after observation 90 seem to 
indicate an important change after this point. Two 
hypotheses may be considered; the first is a level shift 
after this point, the second a trend shift. These effects 
may be modeled by a step function or a linear-trend 
function after t = 90. Therefore, we will estimate by 
maximum likelihood the models as 

Vy, = .24 S(90 - (1.29B + 1.78B2)Vx, 
(.06) (.09) (.09) 

+ ( Va, (3.2) 
(1 - .65B + .22B2)' 

(.10) (.12) 

and 

y, = 53.29 
(.10) 

where S9) is a step function that takes the value 1 
for t- 90 and 0 before. Model (3.2) includes a linear 
trend after t = 90 and Model (3.3) a step at this 
point. The residual standard error of a, is .629 in 
(3.2) and .638 in (3.3), and the residuals of Model 
(3.2) after t = 90 show a better behavior than those 
from Model (3.3). Note again the robustness of the 
parameters of the model comparing (3.2) with the 
results of Table 3. Since the statistics of influence for 
Model (3.2) keep showing an influential effect at t 
= 90 but nothing afterwards, we will add an impulse 
at this point in Model (3.2), and we finally estimate 
the model 

Vy, = (.24 + 2.27V2)S(9') - (1.40B + 1.66B2)Vx, 
(.07) (.47) (.07) (.08) 

(.03) 
(1 - .96B)a, 

(1 - .76B + .25B2)' 
(.10) (.12) 

(3.4) 

which has variance .588. This model shows that an 
unusual event (represented by an impulse) occurred 
at t = 90 and produced a big effect at this point, and 
from then on a linear trend of .24 units every period 
was added to the series. Note again that the param- 

Residuals transfer function model 

+ 2.49 S(90 - (1.31B + .82B2)x, 
(.78) (.09) (.09) 

+ a, 
(1 - .60B + .28B2)' 

(.11) (.12) 

(3.3) 

-1 

Table 4. Residuals Greater Than 2a, in the 
Transfer-Function Model 

t 91 98 97 90 99 

a,/a, - 3.53 3.43 3.14 2.57 2.34 

-2 

-3 

Figure 3. Plo t of the Residuals in Model (3.1 
Figure 3. Plot of the Residuals in Model (3. 1). 
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Table 5. Statistics of Influence for Model (3.5) (all other values are small) 

Statistic 38 39 40 41 42 43 

P,i) .49 .84 .71 2.39 1.1 .41 
Pi(, I 7r,) .32 .10 .76 8.25 .26 .20 
P,4) .64 1.34 1.34 3.51 2.05 .57 
D;(Y') 2.18 4.77 4.27 5.28 4.20 -1.8 
a, a, - .22 .55 - 6.6 -2.54 3.33 .89 

eters for the noise and transfer function in Model 
(3.1), and (3.4) are similar. Although the model for 
the noise in (3.4) seems very different from the one 
in (3.1), the n weights for these models are very 
similar. 

Therefore, we can conclude that the relationship 
described for Model (3.1) is well defined, that an 
intervention happened at time t = 90 producing an 
increasing trend in the output and making the process 
nonstationary, and that Model (3.4) represents an 
adequate approximation to describe the effect of the 
intervention. 

To study the effect of an anomalous event in the 
middle of the sample, let us assume now that in the 
original sample at points 40 and 41 an error of mea- 
surement is made, and instead of the value 59.4 (the 
same at both points), we observed 49.4. Let us call 
this series y,. Then the estimated model is 

y, = 53.16 - (1.15B + 1.48B2)x, 
(.22) (.18) (.18) 

+ (1 - .66B + .28B2)-la,, 
(.10) (.10) 

(3.5) 
and some relevant statistics for diagnosis are dis- 
played in Table 5. It can be seen that the most in- 
fluential point, as far as affecting either the param- 
eters or the forecasts, is t = 41. Although the effect 
on both the parameters of the transfer function [Pi(v 
1 71) = 8.25] and the noise [P,(n) = 3.51] is strong 
(compared with a x2 distribution df), the global change 
is not very large because of compensation effects be- 
tween both parts. 

Note that the breakdown of the statistic P,(l) al- 
lows us to say that if the objective of the experi- 
mentation is to estimate the transfer-function param- 
eters, one should conclude that Model (3.5) is not 
robust because observation 41 is able, by itself, to 
modify the transfer-function parameters signifi- 
cantly. 

4. CONCLUDING REMARKS 
The identification of influential observations com- 

plements the study of outliers. As is well known from 
the standard regression setup, when the model in- 

cludes explanatory variables it is possible to have 
highly influential points that are not identified as out- 
liers. The importance of this analysis depends on the 
objectives of the study. When the model is built to 
interpret the parameters or to test the gain of the 
transfer function, we may want to know whether or 
not the conclusions we draw from the data are very 
much affected by some small number of observations 
that may or not be outliers. 

When a point is identified as influential in a given 
model, we should first check if this point is also an 
outlier. If it is, the usual procedure is to incorporate 
it into the model using dummy variables (see Tsay 
1986, 1988). If the point is not an outlier, we face 
essentially the same problem that has been studied 
in standard regression with high leverage points. There 
is not enough information with which to verify or 
deny the given point based just on the data. The a 
priori knowledge of the problem under investigation 
must be used to choose the appropriate model. A 
wise strategy may be to keep both models-the one 
that includes the suspicious data and the one that 
assumes that this point is missing-and to check them 
with new data as a means of finding a better model. 
In this latter case, the study of influential observa- 
tions may indicate the shadowy regions of present 
knowledge and suggest possible hypotheses to be ex- 
plored. 
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APPENDIX: ESTIMATION IN THE 
INTERVENTION MODEL 

The estimation of Model (2.18) will be 

1~i) = 1_il0(i) liS)?- X' Y' 
V(i) X'l(i) X' X' Y 

and, using the expression for the inverse of a parti- 
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tioned matrix, 

wj _ b -bi(iX(X'X) 
,) - (X'X) - x' (l,b (XX) -A 

X' Y 

where b = [(i)(I - X(X'X)-X')r)(i)], A = I + 
bX'I(i)i ')X(X'X)-1, and, after some straightfor- 
ward operations, results (2.19) and (2.20) are ob- 
tained. 

[Received February 1987. Revised July 1990.] 
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