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Abstract

Accumulating evidence indicates that the capacity to integrate information in the brain is a

prerequisite for consciousness. Integrated Information Theory (IIT) of consciousness pro-

vides a mathematical approach to quantifying the information integrated in a system, called

integrated information,Φ. Integrated information is defined theoretically as the amount of

information a system generates as a whole, above and beyond the amount of information

its parts independently generate. IIT predicts that the amount of integrated information in

the brain should reflect levels of consciousness. Empirical evaluation of this theory requires

computing integrated information from neural data acquired from experiments, although dif-

ficulties with using the original measureΦ precludes such computations. Although some

practical measures have been previously proposed, we found that these measures fail to

satisfy the theoretical requirements as a measure of integrated information. Measures of

integrated information should satisfy the lower and upper bounds as follows: The lower

bound of integrated information should be 0 and is equal to 0 when the system does not

generate information (no information) or when the system comprises independent parts (no

integration). The upper bound of integrated information is the amount of information gener-

ated by the whole system. Here we derive the novel practical measureΦ* by introducing a

concept of mismatched decoding developed from information theory. We show thatΦ* is

properly bounded from below and above, as required, as a measure of integrated informa-

tion. We derive the analytical expression ofΦ* under the Gaussian assumption, which

makes it readily applicable to experimental data. Our novel measureΦ* can generally be

used as a measure of integrated information in research on consciousness, and also as a

tool for network analysis on diverse areas of biology.

Author Summary

Integrated Information Theory (IIT) of consciousness attracts scientists who investigate

consciousness owing to its explanatory and predictive powers for understanding the neural
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properties of consciousness. IIT predicts that the levels of consciousness are related to the

quantity of information integrated in the brain, which is called integrated information F.

Integrated information measures excess information generated by a system as a whole

above and beyond the amount of information independently generated by its parts.

Although IIT predictions are indirectly supported by numerous experiments, validation is

required through quantifying integrated information directly from experimental neural

data. Practical difficulties account for the absence of direct, quantitative support. To

resolve these difficulties, several practical measures of integrated information have been

proposed. However, we found that these measures do not satisfy the theoretical require-

ments of integrated information: First, integrated information should not be below 0; and

second, integrated information should not exceed the quantity of information generated

by the whole system. Here, we propose a novel practical measure of integrated informa-

tion, designated as F� that satisfies these theoretical requirements by introducing the con-

cept of mismatched decoding developed from information theory. F� creates the

possibility of empirical and quantitative validations of IIT to gain novel insights into the

neural basis of consciousness.

Introduction

Although its neurobiological basis remains unclear, consciousness may be related to certain

aspects of information processing [1, 2]. In particular, Integrated Information Theory of con-

sciousness (IIT) developed by Tononi and colleagues [2–9] predicts that the amount of infor-

mation integrated among the components of a system, called integrated information F, is

related to the level of consciousness of the system. The level of consciousness in the brain varies

from a very high level, as in full wakefulness, to a very low level, as in deeply anesthetized states

or dreamless sleep. When consciousness changes from high to low, IIT predicts that the

amount of integrated information changes from high to low, accordingly. This prediction is

indirectly supported by recent neuroimaging experiments that combine noninvasive magnetic

stimulation of the brain (transcranial magnetic stimulation, TMS) with electrophysiological

recordings of stimulation-evoked activity (electroencephalography) [10–14]. Such evidence

implies that if there is a practical method to estimate the amount of integrated information

from neural activities, we may be able to measure levels of consciousness using integrated

information.

IIT provides several versions of mathematical formulations to calculate integrated informa-

tion [2–8]. Although the detailed mathematical formulations are different, the central philoso-

phy of integrated information does not vary among different versions of IIT. Integrated

information is mathematically defined as the amount of information generated by a system as

a whole above and beyond the amount of information generated independently by its parts. If

the parts are independent, no integrated information should exist.

Despite its potential importance, the empirical calculation of integrated information is diffi-

cult. For example, one difficulty involves making an assumption when integrated information

is calculated according to the informational relationship between the past and present states of

a system. The distribution of the past states is assumed to maximize entropy, which is called

the maximum entropy distribution. The assumption of the maximum entropy distribution

severely limits the applicability of the original integrated information measure F as indicated

by [15]. First, the concept of the maximum entropy distribution cannot be applied to a system

that comprises elements whose states are continuous, because there is no unique maximum
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entropy distribution for continuous variables [15, 16]. Second, information under the assump-

tion of the maximum entropy distribution can be computed only when there is complete

knowledge about the transition probability matrix that describes how the system transits

between states. However, the transition probability matrix for actual neuronal systems is prac-

tically impossible to estimate.

To overcome these problems, Barrett and Seth [15] proposed using the empirical distribu-

tion estimated from experimental data, thereby removing the requirement to rely on the

assumption of the maximum entropy distribution. Although we believe that their approach

does lead to practical computation of integrated information, we found that their proposed

measures based on the empirical distribution [15] do not satisfy key theoretical requirements

as a measure of integrated information. Two theoretical requirements should be satisfied as a

measure of integrated information. First, the amount of integrated information should not be

negative. Second, the amount of integrated information should never exceed information gen-

erated by the whole system. These theoretical requirements, which are satisfied by the original

measure F, are required so that a measure of integrated information is interpretable in accor-

dance with the original philosophy of integrated information.

Here, we propose a novel practical measure of integrated information, F�, by introducing

the concept of mismatched decoding developed from information theory [17–20]. F� repre-

sents the difference between “actual” and “hypothetical”mutual information between the past

and present states of the system. The actual mutual information corresponds to the amount of

information that can be extracted about the past states by knowing the present states (or vice

versa) when the actual probability distribution of a system is used for decoding. In contrast,

hypothetical mutual information corresponds to the amount of information that can be

extracted about the past states by knowing the present states when the “mismatched” probabil-

ity distribution is used for decoding where a system is partitioned into hypothetical indepen-

dent parts. Decoding with a mismatched probability distribution is called mismatched

decoding. F� quantifies the amount of loss of information caused by the mismatched decoding

where interactions between the parts are ignored. We show here that F� satisfies the theoretical

requirements as a measure of integrated information. Further, we derive the analytical expres-

sion of F� under the Gaussian assumption and make this measure feasible for practical compu-

tation. We also compute F� and the previously proposed measures in electrocorticogram

(ECoG) data recorded in monkeys to demonstrate that the previous measures violate the theo-

retical requirements even in real brain recordings.

Results

While its central ideas are unchanged, IIT updated measures of integrated information. The

original formulation, IIT 1.0 [2], underwent major developments leading to IIT 2.0 [6] and the

latest version IIT 3.0 [8]. In the present study, we focus on the version in IIT 2.0 [3, 6], because

the measure of integrated information proposed in IIT 2.0 is simpler and more feasible to cal-

culate compared with that in IIT 3.0 [5, 8].

Here, we briefly review the original measure of integrated information, F, in IIT 2.0 [3, 6]

and describe its limitations for practical application [15]. From the concept of the original mea-

sure, we point out the lower and upper bounds that a measure of integrated information should

satisfy. We introduce next two practical measures of integrated information, FI and FH, pro-

posed by [15] and show that FI and FH fail to satisfy the lower and upper bounds of integrated

information. Finally, we derive a novel measure of integrated information, F�, from the decod-

ing perspective, which is properly bounded from below and above.

Measuring Integrated Information from the Decoding Perspective
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Intrinsic information and extrinsic information

In IIT, information refers to intrinsic information as opposed to extrinsic information (See S1

Text for details). Intrinsic information is quantified from the intrinsic perspective of a system

itself and only depends on internal variables of the system. On the other hand, extrinsic informa-

tion is quantified from the extrinsic perspective of an external observer and depends on external

variables. For example, in neuroscience, extrinsic information is quantified as mutual informa-

tion between neural states X and external stimuli S, I(X;S) [21–24]. In contrast, intrinsic informa-

tion can be quantified by the mutual information between the past states Xt−τ and the present

states Xt of the system, I(Xt−τ;Xt). The mutual information, I(Xt−τ;Xt), is expressed by

I ðXt�t;XtÞ ¼ H ðXt�tÞ � H ðXt�tjXtÞ; ð1Þ

whereH(Xt−τ) is the entropy of the past states andH(Xt−τ|Xt) is the conditional entropy of the

past states given the present states. In IIT, the distribution of the past states is assumed to be the

maximum entropy distribution so that the entropy of the past states is maximized, i.e., the past

states are maximally uncertain. We can interpret that intrinsic information, I(Xt−τ;Xt), quantifies

to what extent uncertainty of the past states can be reduced by knowing the present states from

the system’s intrinsic point of view. IIT considers such quantity as the amount of information

intrinsically generated by the system.

Measure of integrated information with the maximum entropy distribution

Consider partitioning a system intom parts such asM1,M2, � � �, andMm and computing the

quantity of information that is integrated across them parts of a system. As detailed in S1 Text,

the measure of integrated information proposed in IIT 2.0 can be expressed as follows:

F ¼ I ð
max

Xt�t;XtÞ �
X

m

i¼1

I ð
max

Mt�t

i ;Mt
i Þ; ð2Þ

where the superscriptmax indicates that the distribution of the past states is the maximum

entropy distribution. The first term of Eq 2, I(max Xt−τ;Xt), represents the mutual information

between the past and present states in the whole system, and the second term represents the

sum of the mutual information between the past and present states in the i-th part of the sys-

tem Ið
max

Mt�t
i ;Mt

i Þ. Thus, F, the difference between them, gives the information generated by

the whole system above and beyond the information generated independently by its parts. If

the parts are independent, no extra information is generated, and the integrated information is

0. We can rewrite Eq 2 in terms of entropyH as follows:

F ¼
X

m

i¼1

H ð
max

Mt�t

i jMt
i Þ � H ð

max
Xt�tjXtÞ: ð3Þ

To derive the above expression, we use the fact that the entropy of the whole systemH(max Xt−τ)

equals the sum of the entropy of the subsystems
Pm

i¼1
Hð

max
Mt�t

i Þ when the maximum entropy

distribution is assumed.

Theoretical requirements as a measure of integrated information

To interpret a measure of integrated information as the “extra” information generated by a sys-

tem as a whole above and beyond its parts, it should satisfy theoretical requirements, as follows:

First, integrated information should not be negative because information independently gener-

ated by the parts should never exceed information generated by the whole. Integrated informa-

tion should equal 0 when the amount of information generated by the whole system equals 0

Measuring Integrated Information from the Decoding Perspective

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004654 January 21, 2016 4 / 18



(no information) or when the amount of information generated by the whole is equal to that

generated by its parts (no integration). Second, integrated information should not exceed the

amount of information generated by the whole system because the information generated by

the parts should not be negative. In short, integrated information should be lower-bounded by

0 and upper-bounded by the information generated by the whole system.

One can check the original measure F satisfies the lower and upper bounds.

0 � F � I ð
max

Xt�t;XtÞ: ð4Þ

As shown in S1 Text, F can be written as the Kullback-Leibler divergence. Thus, F is positive

or equal to 0. Further, as can be seen from Eq 2, the upper bound of F is the mutual informa-

tion in the entire system, because the sum of mutual information in the parts is larger than or

equal to 0.

Practical measures of integrated information with empirical distribution. The original

measure F assumes the distribution of the past states to be the maximum entropy distribution,

which limits the practical application of F for two reasons. First, the maximum entropy distri-

bution can be applied only when the states of a system are discrete. If the states are represented

by discrete variables, the maximum entropy distribution is the uniform distribution over all

possible states of Xt−τ. When the states of a system are described by continuous variables, the

maximum entropy distribution cannot be uniquely defined [15, 16]. Second, the transition

probability matrix of a system, p(Xt|Xt−τ) must be known for all possible past states Xt−τ for

obtaining the mutual information I(max Xt−τ;Xt). However, it is nearly impossible to estimate

such a complete transition probability matrix experimentally in an actual neural system,

because some states may not occur during a reasonable period of observation.

A simple remedy for the limitations of the original measure F is not to impose the maxi-

mum entropy distribution on the past states but instead to use the probability distributions

obtained from empirical observations of the system. Barrett and Seth [15] adopted this strategy

to derive two practical measures of integrated information from Eqs 2 and 3 by substituting the

maximum entropy distribution with the empirical distribution as follows:

FI ¼ I ðXt�t;XtÞ �
X

m

i¼1

I ðMt�t

i ;Mt
i Þ; ð5Þ

FH ¼
X

m

i¼1

H ðMt�t
i jMt

i Þ � H ðXt�tjX tÞ: ð6Þ

Note that FI and FH are not equal when the empirical distribution is used for the past states,

because the entropy of the whole system H(Xt−τ) is not equal to the sum of the entropy of the

subsystems,
P

iHðMt�t
i Þ. FH was also derived from a different perspective from IIT, i.e. the

perspective of information geometry, as a measure of spatio-temporal interdependencies and is

termed “stochastic interaction” [25, 26].

Although these two measures appear as natural modifications of the original measure, they

do not satisfy the theoretical requirements as a measure of integrated information. We discuss

the problems of FI and FH in detail later.

Integrated information measure based on mismatched decoding. Here, we propose an

alternative practical measure of integrated information that satisfies the theoretical require-

ments which we call F� (phi star) (Fig 1). F�, which uses the empirical distribution, can be

applied to actual neuronal recordings. Similar to FI, we will derive F
� based on the original

measure F in Eq 2 based on mutual information. Given the problem of FI in Eq 5, we should

refine the second term of Eq 5, while the first term, the mutual information in the whole
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system, is unchanged. The second term should be a quantity that can be interpreted as infor-

mation generated independently by the parts of a system and should be less than information

generated by the system as a whole.

To derive a proper second term in Eq 5, we interpret the mutual information from a decod-

ing perspective and introduce the concept of “mismatched decoding”, which was developed by

information theory [17] (see S1 Text for details). Consider that the past states Xt−τ are decoded

given the present states Xt. From the decoding perspective, the mutual information can be

interpreted as the maximum information about the past states that can be obtained knowing

the present states. To extract the maximum information, the decoding must be performed opti-

mally using the “true” conditional distribution,

pðXtjXt�tÞ ¼ pðMt
1
; � � � ;Mt

mjM
t�t

1
; � � � ;Mt�t

m Þ: ð7Þ

Note that the expression on the right explicitly accounts for interactions among all the parts. The

optimal decoding can be performed using the maximum likelihood estimation. In the above set-

ting, the maximum likelihood estimation chooses the past state that maximizes p(Xt|Xt−τ) given a

present state. Decoding that uses the true distribution, p(Xt|Xt−τ), is called “matched decoding”

because the probability distribution used for decoding matches the actual probability

distribution.

Decoding that uses a “false” conditional distribution, q(Xt|Xt−τ), is called “mismatched”

decoding. To quantify integrated information, we consider specifically the mismatched

Fig 1. Integrated information based on the concept of mismatched decoding. The figure shows a
system with five neurons in which the arrows represent directed connectivity and the colors represent the
states of the neurons (black: silence, white: firing, gray: unknown). The past states Xt−τ are decoded given the
present states Xt. The “true” conditional distribution p(Xt|Xt−τ) is used for matched decoding, while a “false”
conditional distribution q(Xt|Xt−τ) is used for mismatched decoding where the parts of a systemM1 andM2 are
assumed independent. The amount of information about the past states that can be extracted from the
present states using matched and mismatched decoding is quantified by the mutual information I(Xt−τ;Xt) and
the “hypothetical”mutual information I*(Xt−τ;Xt) for mismatched decoding, respectively. In this framework,
integrated information,Φ*(Xt−τ;Xt), is defined as the difference between I(Xt−τ;Xt) and I*(Xt−τ;Xt).

doi:10.1371/journal.pcbi.1004654.g001
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decoding that uses the “partitioned” probability distribution q(Xt|Xt−τ),

qðXtjXt�tÞ ¼
Y

m

i¼1

pðMt
i jM

t�t

i Þ; ð8Þ

where a system is partitioned into parts and the partsMi are assumed to be independent.

q(Xt|Xt−τ) is the product of the conditional probability distribution in each part pðMt
i jM

t�t
i Þ.

The distribution, q(Xt|Xt−τ), is “mismatched” with the actual probability distribution, because

parts are generally not independent in reality. As is matched decoding, mismatched decoding

is also performed using the maximum likelihood estimation, wherein the past state that maxi-

mizes q(Xt|Xt−τ) is selected. The amount of information obtained from mismatched decoding

is necessarily degraded compared with that obtained from matched decoding. The best decod-

ing performance can be achieved only when matched decoding is used with the actual probabil-

ity distribution p(Xt|Xt−τ).

We consider the amount of information that can be obtained from mismatched decoding,

I�(Xt−τ;Xt), as a proper second term of Eq 5 (see Methods for the mathematical expression of

I�). The difference between I(Xt−τ;Xt) and I�(Xt−τ;Xt) provides a new practical measure of inte-

grated information (Fig 1),

F
�ðXt�t;XtÞ ¼ I ðXt�t;X tÞ � I� ðXt�t;XtÞ: ð9Þ

F
� quantifies the information loss caused by mismatched decoding where a system is parti-

tioned into independent parts, and the interactions between the parts are ignored. F� satisfies

the theoretical requirements, because I� is greater than or equal to 0 and is less than or equal to

the information in the whole system I. F� is equivalent to the original measure F if the maxi-

mum entropy distribution is imposed on the past states instead of an empirical distribution

(see S1 Text for the proof). Thus, we can consider F� as a natural extension of F to the case

when the empirical distribution is used.

Analytical computation ofΦ* using Gaussian approximation

Although using an empirical distribution instead of the maximum entropy distribution makes

integrated information feasible to calculate, it is still difficult to compute F� in a large system,

because the summation over all possible states must be calculated. The number of all possible

states grows exponentially with the size of the system and therefore, computational costs for

computing F� also grow exponentially. Thus, for practical calculation of F�, we need to

approximate F� in some way such as approximating the probability distribution of neural

states using the Gaussian distribution [15]. F� can be analytically computed using the Gaussian

approximation (see Methods). The Gaussian approximation significantly reduces the computa-

tional costs and makes F� practically computable even in a large system.

Theoretical requirements are not satisfied by previously proposed
measures

In this section, by considering two extreme cases, we demonstrate that the previously proposed

measures FH and FI[15] do not satisfy either the lower or upper bound.

When there is no information. First, we consider the case where there is no information

between the past and present states of a system, i.e. I(Xt−τ;Xt) = 0. In this case, integrated infor-

mation should be 0. As expected, F� and FI are 0, because the amount of information for mis-

matched decoding, I�(Xt−τ;Xt), and the mutual information in each part, IðMt�t
i ;Mt

i Þ, are both

Measuring Integrated Information from the Decoding Perspective
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0 when I(Xt−τ;Xt) = 0;

F
� ¼ 0; ð10Þ

FI ¼ 0: ð11Þ

However, FH is not 0. FH can be written as

FH ¼
X

i

H ðMt�t
i Þ � H ðXt�tÞ: ð12Þ

FH is not 0 even when the information I(Xt−τ;Xt) is 0 because FH is not based on the mutual

information but on the conditional entropy (see Eq 6). Therefore, FH does not necessarily

reflect the amount of information in a system.

As a simple example that shows the above problem of FH, consider the following linear

regression model,

Xt ¼ AXt�1 þ Et: ð13Þ

Here, X is the state of units, A is a connectivity matrix, and Et is multivariate Gaussian noise

with zero mean and covariance S(E). Et is uncorrelated over time. For simplicity, consider a

system composed of two units (the following argument can be easily generalized to a system

with more than two units). We set the connectivity matrix A and the covariance matrix of

noise S(E) as follows:

A ¼ a
1 1

1 1

 !

; ð14Þ

SðEÞ ¼
1 c

c 1

 !

; ð15Þ

where a and c are parameters that control the strengths of connections and noise correlation,

respectively. We compute measures of integrated information using the above model. The time

difference τ is set to 1. We assume that the prior distribution of the system is the steady state dis-

tribution, where the covariance of the past states, S(Xt−1), and that of the present states, S(Xt),

are equal, i.e. S(Xt−1) = S(Xt) = S(X). The covariance of the steady state distribution S(X) can be

calculated by taking the covariance of both sides of Eq 13,

SðXÞ ¼ ASðXÞAT þ SðEÞ: ð16Þ

We consider a case where the connection strength a is 0. Fig 2 shows an exemplar time

series when the strength of noise correlation c is 0.9. Because there are no connections, includ-

ing self-connections within each unit, each unit has no information between the past and pres-

ent states, i.e., I1 = I2 = 0. As can be seen from Fig 2, however, the two time series correlate at

each moment because of the high noise correlation.

We varied the degree of noise correlation, c, from 0 to 1 while keeping the connection

strength a as 0 (Fig 3(A)). F� and FI stay 0 independent of noise correlation. However, an

entropy-based measure, FH, increases monotonically with c, irrespective of the amount of

information in the whole system (Fig 3(A)). As shown in Eq 12, FH is the difference between

the sum of entropy within each part and entropy in the whole system. When the parts correlate,

the entropy in the whole system decreases. In contrast, the sum of entropy of each part does

not change, because the degree of noise within each part (the diagonal elements of Et) is fixed.

Measuring Integrated Information from the Decoding Perspective
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Fig 2. Exemplar time series when there is no information between the past and present states. The
connection strength a and the strength of noise correlation c are set to 0 and 0.9, respectively in the linear
regression model (Eq 13). I1 and I2 represent the mutual information in units 1 and 2. Because there is no
connection, there is no information between the past and present states of the system: I1 and I2 are both 0. In
this case,Φ* andΦI are 0 as they should be, yetΦH is positive.

doi:10.1371/journal.pcbi.1004654.g002

Fig 3. Violation of theoretical requirements as ameasure of integrated information. The behaviors ofΦ*,ΦI, andΦH are shown in the left, middle, and
right panels, respectively, when the strength of noise correlation c is varied in a linear regression model (Eq 13). Red lines indicate the regime where the
theoretical requirements are violated, and the blue lines indicate that the theoretical requirements are satisfied. Dotted black lines are drawn at 0. (A)
Violation of the upper bound. The strength of connections a is set to 0. In this case, there is no information between the past and present states of the system
butΦH is not 0, i.e.,ΦH violates the upper bound. (B) Violation of the lower bound. The strength of connections a is set to 0.4. At the right ends of the figures
where c is 1, the two units in the system are perfectly correlated.ΦI is negative, i.e.,ΦI violates the lower bound when the degree of correlation is high.

doi:10.1371/journal.pcbi.1004654.g003
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Thus, FH increases as the degree of noise correlation c increases without reflecting the amount

of information in the system.

When parts are perfectly correlated. Next, we consider the case where the parts are per-

fectly correlated. More specifically, consider the case where the two partsM1 andM2 are equal

at every time, i.e.Mt�t
1

¼ Mt�t
2

¼ Mt�t andMt
1
¼ Mt

2
¼ Mt . Here, F� is 0 because the amount

of information extracted by mismatched decoding would not degrade even if the other part is

ignored for decoding (see S1 Text for the mathematical proof).

F
� ¼ 0: ð17Þ

Regarding FI, the mutual information of each part is equal to each other, IðMt�t
1

;Mt
1
Þ ¼

IðMt�t
2

;Mt
2
Þ ¼ IðMt�t;MtÞ and the mutual information in the whole system is equal to the

mutual information of each part, I(Xt−τ;Xt) = I(Mt−τ;Mt). Thus, the second term in Eq 5 is twice

the value of the first, and FI is the negative value of the mutual information in one part,

FI ¼ �I ðMt�t;MtÞ: ð18Þ

Thus, FI does not satisfy the lower bound as a measure of integrated information. FH is given

by

FH ¼ H ðXt�tjXtÞ � 2H ðMt�tjMtÞ; ð19Þ

which is larger than or equal to 0 (FH is always larger than or equal to 0 because it can be writ-

ten as the Kullback-Leibler divergence.).

We considered again the same linear regression model presented in the previous section (Eq

13). We varied the degree of noise correlation, c, from 0 to 1 while keeping connection strength

a as 0.4. When c is 1, the two units correlate perfectly. Fig 4 shows an exemplar time series

when c is 0.4 and a is 0.4. FI takes positive values when c is less than*0.2 but takes negative

values when c is greater (Fig 3(B)). F� decreases monotonically with c and becomes 0 when c is

Fig 4. Exemplar time series when correlation is high. The strength of noise correlation c and the
connection strength a are set to both 0.4 in the linear regression model (Eq 13). I1 and I2 represent the mutual
information in unit 1 and 2, and I represents the mutual information in the whole system. In this case, the sum
of the mutual information in the parts exceeds the mutual information in the whole system andΦI is negative.

doi:10.1371/journal.pcbi.1004654.g004
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1. FH increases monotonically with c reflecting the degree of correlation between the units. The

detailed behaviors of F�, FI and FH when a and c are both varied are shown in S1 Fig.

Electrocorticogram data analysis. The problems ofFH andFI can manifest in their appli-

cation to real neural recordings from the brain. Fig 5 shows the measures of integrated informa-

tion,F�,FI,FH, and the mutual information I computed from the electrocorticogram (ECoG)

recordings in an awake monkey as a function of the time lag τ (See Methods for details).

As we can see, the mutual information between Xt and Xt−τ monotonically decreases as τ

increases. F� is positive, peaks around τ = 20 ms, and less than the mutual information, always

satisfying the theoretical requirements. However, FI is negative when τ is small and FH

remains large even when I approaches 0 with increasing τ, both violating the theoretical

requirements.

Discussion

In this study, we consider the two theoretical requirements that a measure of integrated infor-

mation should satisfy, as follows: The lower and upper bounds of integrated information

should be 0 and the amount of information generated by the whole system, respectively. The

theoretical requirements are naturally derived from the original philosophy of integrated infor-

mation [3, 6], which states that integrated information is the information generated by a system

as a whole above and beyond its parts. The original measure of integrated information F satis-

fies the theoretical requirements so that we can interpret a measure of integrated information

according to the original philosophy. To derive a practical measure of integrated information

that satisfies the required lower and upper bounds, we introduced a concept of mismatched

decoding. We defined our measure of integrated information F
� as the amount of information

lost when a mismatched probability distribution, where a system is partitioned into

Fig 5. Measures of integrated information andmutual information computed in monkey ECoG data.
Time lag τ is varied from 1 to 500 ms. The behaviors ofΦ* (red line),ΦI (green line),ΦH (blue line), and
mutual information I (black line) are shown.ΦI andΦH violate the theoretical requirements.

doi:10.1371/journal.pcbi.1004654.g005
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“independent” parts, is used for decoding instead of the actual probability distribution. In this

framework, F� quantifies the amount of information loss associated with mismatched decod-

ing where interactions between the parts of a system are ignored and therefore quantifies the

amount of information integrated by the interactions. We show that F� satisfies the lower and

upper bounds, that FI does not satisfy the lower bound, and that FH does not satisfy the upper

bound. We consider F� a proper measure of integrated information that can be generally used

for practical applications.

Here, we briefly note a potential reason why the previous study [15] failed to identify these

problems of FI and FH. Although they calculated their measures in small networks by using

the autoregressive model in Eq 12, they did not extensively vary the connectivity matrix A and

the Gaussian noise E. In particular, they fixed the covariance of the Gaussian noise E to 0. As

we can clearly see in Fig 3 and S1 Fig, both connectivity strength a and the covariance of the

noise c strongly affect the amount of integrated information. In particular, when the covariance

of E is large, FI and FH violate the theoretical requirements. For future investigations of calcu-

lating integrated information in networks described by autoregressive model, we should note

that it is very important to take account of not only the effects of connectivity matrix A but also

the effects of covariance of E on the amount of integrated information.

The basic concept of Integrated Information Theory (IIT) was tested by conducting empiri-

cal experiments, and the evidence accumulated supports the conclusion that when conscious-

ness is lost, integration of information is lost [10–14]. In particular, Casali and colleagues [14]

found that a complexity measure, motivated by IIT, successfully separates conscious awake

states from various unconscious states due to deep sleep, anesthesia, and traumatic brain inju-

ries. Although their measure is inspired by the concept of integrated information, it measures

the complexity of averaged neural responses to one particular type of external perturbation

(e.g. a TMS pulse to a target region) and does not directly measure integrated information.

There are few studies that directly estimate integrated information in the brain [27, 28]

using the measure introduced in IIT 1.0 [2] or FH. Our new measure of integrated information,

F
�, will contribute to experiments designed to test whether integrated information is a key to

distinguishing conscious states from unconscious states [29–31].

We considered the measure of integrated information proposed in IIT 2.0 [3, 6], because its

computations are feasible. There are several updates in the latest version, IIT 3.0 [8]. In IIT 2.0,

integrated information is quantified by measuring how the distribution of the past states differs

when a present state is given (see S1 Text for details) whereas in IIT 3.0, it is quantified by mea-

suring how the distribution of the past and future states differs when a present state is given. In

other words, IIT 2.0 considers only the information flow from the present to the past while IIT

3.0 additionally considers the information flow from the present to the future. Our measure F�

does not asymmetrically quantify integrated information from the present to the past or from

the present to the future, because the mutual information is a symmetric measure for the time

points t − τ and t. An unanswered question is how integrated information should be practically

calculated taking account of the both directions of information flow, using an empirical

distribution.

An unresolved difficulty that impedes practical calculation of integrated information is how

to partition a system. In the present study, we considered only the quantification of integrated

information when a partition of a system is given. IIT requires that integrated information

should be quantified using the partition where information is least integrated, called the mini-

mum information partition (MIP) [3, 6]. To find the MIP, every possible partition must be

examined, yet the number of possible partitions grows exponentially with the size of the sys-

tem. One way to work around this difficulty would be to develop optimization algorithms to

quickly find a partition that well approximates the MIP.
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Besides the practical problem of finding the MIP, there remains a theoretical problem of

how to compare integrated information across different partitions. Integrated information

increases as the number of parts gets larger, because more information is lost by partitioning

the system. Further, integrated information is expected to be larger in a symmetric partition

where a system is partitioned into two parts of equal size than in an asymmetric partition. IIT

2.0 [6] proposes a normalization factor, which considers these issues. However, there might be

other possible ways to perform normalization. It is unclear whether there is a reasonable theo-

retical foundation that adjudicates the best normalization scheme. Moreover, it is unclear if the

normalization factor, which is proposed for systems whose states are represented by discrete

variables, is appropriate for systems whose states are represented by continuous variables. The

normalization factor, which is based on the entropies of the parts of a system, can be negative

because entropy can be negative for continuous variables. Thus, we need a different normaliza-

tion factor when we deal with continuous variables. Further investigations are required to

resolve the practical and theoretical issues related to the MIP.

Although we derivedF�, because we were motivated by IIT and its potential relevance to con-

sciousness,F� has unique meaning from the perspective of information theory, which is inde-

pendent of IIT. Thus, it can be applied to research fields other than research on consciousness

[32].F� quantifies the loss of information when interactions or connections between the units in

a system are ignored. Thus,F� is expected to be related to connectivity measures such as Granger

causality [33] or transfer entropy [34]. It will be interesting to clarify mathematical relationships

betweenF
� and the other connectivity measures. We expect that information geometry [25, 26,

35, 36] plays an important role for studying the properties of these quantities. Here, we indicate

only an apparent difference between them as follows:F� intends to measure global integrations

in a system as a whole, while traditional bivariate measures such as Granger causality or transfer

entropy intends to measure local interactions between elements of the system. Consider that we

divide a system into parts A, B, and C. Using integrated information, our goal is to quantify the

information integrated among A, B, and C as a whole. In contrast, what we quantify using

Granger causality or transfer entropy is the influence of A on B, B on C, C on A and the reverse.

It is not obvious how a measure of global interactions in the whole system should be defined and

derived theoretically frommeasures of the local interactions. As an example, one possibility is

simply summing up all local interactions and considering the sum as a global measure [37]. Yet,

more research is required to determine whether such an approach is a valid method to define

global interactions [36].F�, in contrast, is not derived from the local interaction measures but is

derived directly by comparing the total mutual information in the whole system with hypotheti-

cal mutual information when the system is assumed to be partitioned into independent parts.

Thus, the interpretation ofF� is straightforward from an information theoretical viewpoint. Our

measure, which we consider a measure of the global interaction, may provide new insights into

diverse research subjects as a novel tool for network analysis.

Methods

Mathematical expression of I*

The amount of information for mismatched decoding can be evaluated using the following

equation,

I�ðXt�t;XtÞ ¼ �
X

Xt

pðXtÞ log
X

Xt�t

pðXt�tÞqðX tjX t�tÞ
b

þ
X

Xt�t ;Xt

pðXt�t;XtÞ log qðXtjXt�tÞ
b
;

ð20Þ
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where β is the value that maximizes I�. The maximization of I� with respect to β is performed

by differentiating I� and solving the equation, dI�(β)/dβ = 0. In general, the solution of the

equation can be found using the standard gradient ascent method, because I� is a convex func-

tion with respect to β[17, 18].

For comparison, the mutual information is given by

I ðXt�t;XtÞ ¼ �
X

Xt

pðXtÞ log pðXtÞ þ
X

Xt�t ;Xt

pðXt�t;XtÞ log pðXtjXt�tÞ: ð21Þ

If a mismatched probability distribution q(Xt|Xt−τ) is replaced by the actual distribution p(Xt|Xt

−τ) in Eq 20, the derivative of I� becomes 0 when β = 1. By substituting q = p and β = 1 into Eq

20, one can check that I� is equal to I in Eq 21, as it should be. The amount of information for

mismatched decoding, I�, was first derived in the field of information theory as an extension of

the mutual information in the case of mismatched decoding [17]. I� was first introduced into

neuroscience in [18] and was first applied to the analysis of neural data by [19]. However, I� in

the prior neuroscience application [18, 19] was quantified between stimuli and neural states, not

between the past and present states of a system, as described in the present study.

Analytical computation ofΦ* under the Gaussian assumption

Assume that the probability distribution of neural states X is the Gaussian distribution,

pðXÞ ¼
1

ð2pÞ
N
jSðXÞj

� �1=2
exp �

1

2
ðX� �XÞ

T
SðXÞ

�1
ðX� �XÞ

� �

: ð22Þ

where N is the number of variables in X, �X is the mean value of X, and S(X) is the covariance

matrix of X. The Gaussian assumption allows us to analytically compute F�, which substan-

tially reduces the costs for computing F�. When Xt−τ and Xt are both multivariate Gaussian

variables, the mutual information between Xt−τ and Xt, I(Xt−τ;Xt), can be analytically computed

as

I ðX t�t;XtÞ ¼
1

2
log

jSðXt�tÞj

jSðXt�tjXtÞj
; ð23Þ

where S(Xt−τ|Xt) is the covariance matrix of the conditional distribution, p(Xt−τ|Xt), which is

expressed as

SðXt�tjXtÞ ¼ SðX t�tÞ � SðXt�t;XtÞSðXtÞ
�1
SðXt�t;XtÞ

T
; ð24Þ

where S(Xt−τ, Xt) is the cross covariance matrix between Xt−τ and Xt, whose element

S(Xt−τ, Xt)ij is given by covðXt�t
i ;Xt

j Þ.

Similarly, we can obtain the analytical expression of I� as follows:

I�ðbÞ ¼
1

2
Tr S Xtð ÞRð Þ þ

1

2
log jQjjSðX t�tÞjð Þ �

bN

2
; ð25Þ

where Tr stands for trace. Q and R are given by

Q ¼ SðXt�tÞ
�1

þ bSDðX
t�tÞ

�1
SDðX

t;Xt�tÞ
T
SDðX

tjXt�tÞ
�1
SDðX

t;Xt�tÞSDðX
t�tÞ

�1
; ð26Þ

R ¼ bSDðX
tjXt�tÞ

�1

�b
2
SDðX

tjXt�tÞ
�1T

SDðX
t;Xt�tÞSDðX

t�tÞ
�1
Q�1

SDðX
t�tÞ

�1
SDðX

t;Xt�tÞ
T
SDðX

tjXt�tÞ
�1
;

ð27Þ
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where SD(X
t−τ), SD(X

t, Xt−τ) and SD(X
t|Xt−τ) are diagonal block matrices. Each block matrix is

a covariance matrix of each part, SðMt�t
i Þ, SðMt

i ;M
t�t
i Þ, and SðMt

i jM
t�t
i Þ whereMi is a subsys-

tem. For example, SD(X
t−τ) is given by

SDðX
t�tÞ ¼

SðMt�t
1

Þ

SðMt�t
2

Þ 0

0 . .
.

SðMt�t
m Þ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: ð28Þ

The maximization of I� with respect to β is performed by solving the equation dI�(β)/dβ = 0.

The derivative of I�(β) with respect to β is given by

dI�ðbÞ

db
¼

1

2
Tr SðX tÞ

dR

db

� �

þ
1

2
Tr Q�1

dQ

db

� �

�
N

2
; ð29Þ

where

dR

db
¼ SDðX

tjXt�tÞ
�1

�2bSDðX
tjXt�tÞ

�1T
SDðX

t;Xt�tÞSDðX
t�tÞ

�1
Q�1

SDðX
t�tÞ

�1
SDðX

t;Xt�tÞ
T
SDðX

tjXt�tÞ
�1

�b
2
SDðX

tjXt�tÞ
�1T

SDðX
t;X t�tÞSDðX

t�tÞ
�1 dQ

�1

db
SDðX

t�tÞ
�1
SDðX

t;X t�tÞ
T
SDðX

tjX t�tÞ
�1
;

ð30Þ

dQ

db
¼ SDðX

t�tÞ
�1
SDðX

t;Xt�tÞ
T
SDðX

tjXt�tÞ
�1
SDðX

t;Xt�tÞSDðX
t�tÞ

�1
; ð31Þ

and

dQ�1

db
¼ �Q�1

dQ

db
Q�1; ð32Þ

¼ �Q�1
SDðX

t�tÞ
�1
SDðX

t;Xt�tÞ
T
SDðX

tjXt�tÞ
�1
SDðX

t;Xt�tÞSDðX
t�tÞ

�1
Q�1: ð33Þ

Inspection of the above equations reveals that dI�(β)/dβ = 0 is a quadratic equation with

respect to β. Thus, β can be analytically computed without resorting to numerical optimization

such as gradient ascent.

Electrocorticogram (ECoG) recording

The detailed recording protocols were described in [38]. Here, we briefly describe the aspects

of the protocols that are relevant for our analysis. We used customized multichannel ECoG

electrode arrays. An array of ECoG electrodes was embedded in an insulating silicone sheet.

The surface of the sheet was dimpled to expose the surface of ECoG electrodes with the diame-

ter of 1 mm. The electrodes were made of platinum discs, and inter-electrode distance was 5

mm. We implanted 128 ECoG electrodes in the subdural space in four adult macaque mon-

keys. The ECoG electrodes covered the left hemisphere over the frontal, parietal, temporal, and

occipital lobes. ECoG signal was recorded at a sampling rate of 1 kHz. All experimental and

surgical procedures were performed in accordance with the protocols approved by the RIKEN
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ethics committee. During the experiments, the monkeys were seated in a primate chair with

both arms and head restrained. We analyzed the data recorded when the monkeys were awake.

Data processing and calculation of integrated informationΦ*

To remove line noise and reduce artifacts in the ECoG data, we computed bipolar re-referenced

signals between two neighboring electrodes. We calculated integrated information F
� using all

the bipolar re-referenced signals (64 in total). We considered the simplest partition scheme,

“atomic partition” [39], in which the system is partitioned into its individual elements. For this

data set, it meant that we computed F� assuming that all the 64 channels are independent. The

atomic partition gives the upper bound of F� among all the possible partitions because it quan-

tifies the amount of information loss when all the interactions in the system are ignored for

decoding.

We approximated the probability distributions of the continuous ECoG signals with the

Gaussian distribution. Under the Gaussian assumption, we analytically computedF� by using

the equations derived in Methods. We estimated the covariance matrices of the data with a time

window of 2s and a time step of 2s. Then, we averaged the covariance matrices over 600s and

used the average of the covariance matrices for computation ofF�.
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