
Measuring Interference
Between Live Datacenter Applications

Melanie Kambadur
Columbia University

melanie@cs.columbia.edu

Tipp Moseley
Google, Inc.

tipp@google.com

Rick Hank
Google, Inc.

rhank@google.com

Martha A. Kim
Columbia University

martha@cs.columbia.edu

Abstract—Application interference is prevalent in datacenters
due to contention over shared hardware resources. Unfortunately,
understanding interference in live datacenters is more difficult
than in controlled environments or on simpler architectures.
Most approaches to mitigating interference rely on data that
cannot be collected efficiently in a production environment. This
work exposes eight specific complexities of live datacenters that
constrain measurement of interference. It then introduces new,
generic measurement techniques for analyzing interference in the
face of these challenges and restrictions. We use the measurement
techniques to conduct the first large-scale study of application
interference in live production datacenter workloads. Data is
measured across 1000 12-core Google servers observed to be
running 1102 unique applications. Finally, our work identifies
several opportunities to improve performance that use only
the available data; these opportunities are applicable to any
datacenter.

I. I NTRODUCTION

Application interference occurs when multiple applications
contend for shared resources such as processor time, cache
space, or I/O pins. In datacenters, interference is particularly
undesirable as it hurts performance and increases operating
costs. Chip multi-processors (CMPs), which are widely used
in datacenters, are a key contributor to interference. CMPs
offer increased throughput and reduced power consumption
over traditional single processor chips [41]. However, they also
exacerbate interference because more applications typically
run on a single physical machine. To leverage the performance
benefits of CMPs, system designers must understand and
prevent application interference to the greatest possibleextent.

Unfortunately, the complex characteristics of datacenter
workloads and architectures make application interference
difficult to reason about. High heterogeneity of applications
and high core utilization targets mean that datacenters’ CMPs
are filled with a wide variety of multi-threaded applications.
Because these applications are diverse in their performance
objectives, resource requirements, and inputs, and because
datacenters put severe limitations on performance monitoring,
it is a challenge to even measure application interference,
let alone to manage it. Yet, as more applications migrate to
datacenters, it has become critically important to keep negative
application interference under control.

Many current approaches to monitor and combat interfer-
ence work well on solitary machines, but fall short in a
datacenter environment. Some techniques involve predicting
application performance at a high level of detail, which is

feasible in controlled settings with simple benchmarks and
architectures, but becomes much more complex in datacenters.
While it is possible to guess application performance at a high
level and reduce interference to some degree, it is impossible
to accurately predict performance to the level of precisionre-
quired to eliminate it entirely. Other approaches use gladiator–
style match-ups between applications to measure interference
and find optimal scheduling solutions. This is not practicalin
a datacenter, mainly because of financial restrictions on how
data can be measured. A third approach observes benchmark
application performance (sometimes via simulation), thenat-
tempts to apply the observations to live applications. Some
of these techniques rely on statistics that are not measurable
in datacenters, while others are generous in their assumptions
that noiseless and controlled offline measurements are later
applicable in live, chaotic settings.

To measure live datacenter application interference, a new
methodology is needed. Such a methodology should ideally
be able to capture the interference effects of thousands of
applications, running with real user inputs on production
servers with diverse architectural platforms. Furthermore, the
methodology should be financially reasonable, not requiring
hundreds or thousands of machines for simulations and not
disturbing the performance of production services.

In this paper, we use our experience with and exclusive
access to live datacenter applications to expose the realities of
measuring and analyzing interference in a datacenter. Then, we
develop a methodology to measure live datacenter interference,
and test the methodology on production servers at Google.
Specifically:
(1) We identify eight sources of complexity in interference

measurement and analysis that are either unique to dat-
acenters or frequently not handled by previous works
(Section II).

(2) We introduce a generally applicable methodology for
measuring application interference in the restrictive en-
vironment of a datacenter (Section III).

(3) As a proof-of-concept, the methodology is implemented
and used in the first large–scale study of measured
application interference in a live datacenter. We collect
data from 1102 unique applications across 1000 Google
servers, each running on 12 core, 24 hyper–thread Intel
Westmeres. These measurements capture the performance
of production workloads, live schedules, and real user

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00c©2012 IEEE

interaction (Section IV).
(4) Given the information that can be measured in live

datacenters, we outline opportunities to control negative
application interference in datacenters (Section V).

II. COMPLEXITIES OF INTERFERENCE IN ADATACENTER

Application interference in a datacenter is much more
challenging to reason about, measure, or predict than in a
controlled environment or on a solitary machine. It is impor-
tant for scheduling experts and datacenter systems specialists
to understand what performance analysts are up against. This
section describes eight specific complexities that are unique
to datacenters or largely unaccounted for in past work, in
some cases preventing the use of established methodologies
for combating application interference. For example, many
past works run an application on an isolated machine to de-
termine its baseline performance, and then run the application
with a single application co-runner to measure interference
effects([8], [12], [17], [23], [27], [33], [34], [39], [46], [47],
[50]–[52]). The pairwise impacts are then incorporated into
scheduling policies or used to fairly allocate resources between
applications. Such techniques rely on well-defined, discrete
applications and isolated measurements, neither of which is
available in a datacenter. There are thousands of applications
to test, user inputs vary in non-obvious ways (such that they
cannot be simulated off-line), and applications are frequently
re-written and updated.

Other approaches estimate the resource usage of applica-
tions and attempt to schedule applications with complementary
needs together ([3], [5], [7], [10], [11], [15], [22], [24],[28],
[36], [38], [42], [49]). While some general predictions can
be made about application performance, it is challenging to
make such predictions precise in the complex environment of
a datacenter.

The eight complexities below are common to most data-
centers; to show that they are realistic, we use experiences
and data from our measurement study of production servers
at Google described in Section IV.

A. Large Chips with High Core Utilizations

When slow page loads translate into lost revenue, the
pressure to deliver web content quickly is high. Datacenters
are driving the demand for increasingly high-core-count chips.
CMPs with as many as 100 cores already exist [48], with
datacenters today using CMPs with tens of cores. The 1000
Google machines profiled in Section IV are 12-core machines
supporting up to 24 hyperthreads. These core-crowded chips
mean more applications are sharing resources, such as cache,
that they otherwise would not share. Despite this, a survey
of recent work in application interference shows that many
researchers validate their solutions on chips with only twoor
four cores ([3], [4], [10], [12], [13], [17], [21], [22], [27],
[33], [46], [47], [49], [51], [52]).

In the early days of CMPs, resource contention was not the
issue it is today: core counts per chip were low, and datacenters
have historically struggled to use all cores on a chip (see the

“bin-packing” problem discussed in [18]). Because it leads
to power savings and better parallel performance, high core
utilization is desirable, and it has been increasing along with
per-chip core counts [26]. Today, core utilization is already
high: in profiling the 24-hyperthread machines, we found
that an average of about 14 hyperthreads were occupied.
Figure 1 shows the full distribution of observed hyperthread
occupancies.

Fig. 1. Datacenter machines are filled with applications.Profiling 1000
12-core, 24 hyperthread Google servers running productionworkloads, we
found the average machine had more than 14 of the 24 hyperthreads in use.
These results reveal the extent of multi-way interference, which is largely
un-handled by existing interference management techniques.

B. Heterogeneous Application Mixes

Datacenter servers not only support many application
threads at once, but frequently also execute a diverse mix of
applications on each machine. This is not surprising consid-
ering the massive number of different applications that runin
datacenters today. For example, our profiling of the Google
servers revealed 1102 unique applications. While a couple of
these were system support applications and thus constantly
or periodically running on all machines, the vast majority
could be flexibly scheduled among servers in the fleet. Our
measurements also showed that a machine runs at least five
applications half of the time, and sometimes runs as many
as 20 (see Figure 2). Characterizing interference is much
simpler if only a couple of unique applications are scheduled
together, so a lot of prior work assumes only two applications
running on a machine at a time. According to Figure 2, such
methodologies would apply only about20% of the time.

C. Fuzzy Application Delineations

Sometimes, even trivial issues become complex in datacen-
ter settings. To measure application interference, there must
be some definition of an application. Applications might be
defined as narrowly as on a per process basis, or they can
be delineated by user, input, or code segment. The division
of applications is tricky though; define them too narrowly,
and there will be insufficient data to get useful interference

Fig. 2. Datacenter servers have diverse application mixes.Google server
profiling reveals that most machines run five or more unique applications at
once, and sometimes as many as 20. Many past works consider only two
applications running together at a time, a scenario present only 20% of the
time in to this data.

information. Define them too coarsely, and performance vari-
ations unrelated to application interference may inadvertently
be captured. There is no clear right choice for how applications
should be delineated. In the Section IV study and in Figure 2,
each unique binary is considered to be an application, which
is a fairly coarse-grained classification.

D. Varying and Sometimes Unpredictable Inputs

Unlike in controlled environments, applications in a data-
center are added or refactored frequently. Many applications
accept user inputs and can experience significant performance
swings based on usage, sometimes with predictable periodic-
ity, and sometimes without. It is intuitive that input couldaffect
how an application interferes or is interfered with (Jiang and
Shen [22] show this formally), but most prior studies use just
single–input benchmarks.

E. Varying Micro-architectural Platforms

Performance changes depend on the micro-architectural
platform as well as inputs. In a large datacenter, it is un-
common for all servers to use the same micro-architecture.
As new chips become available, datacenters incrementally
update their servers, resulting in an evolving, heterogeneous
mix of platforms. Most past work does not consider this, but
interference measurement and mitigation techniques should
ideally be micro-architecture independent.

F. Unknown Optimal Performance

Many existing interference solutions rely on knowing an
application’s optimal performance without interference.For
static input benchmarks, this is as simple as running the
application on a dedicated machine. At a datacenter, iso-
lating a production application on a dedicated machine is
a prohibitively expensive way to find baseline performance,
especially given the number of applications to evaluate and
the need for frequent re-evaluation as inputs, architectures, or
even the applications themselves change. When we conducted

our measurement study, Google would not allow us to measure
the baseline performance of applications on isolated machines
due to the cost.

G. Limited Measurement Capabilities

Performance analysts at datacenters are restricted in other
ways as well. For example, an extremely limiting restriction
that we had to work around in developing our methodology
for the Google study was that we had to keep our profiling
overhead as low as possible, and preferably well under one
percent. Google’s rationale, which is likely to be echoed
by other datacenter companies, is that excessive overhead
in measuring is not always a worthwhile investment. The
financial losses caused by too much measurement perturbation
in the present may outweigh future performance gains that are
discoverable with the additional measurements.

H. Corporate Policy and Structure

Other difficulties relate to corporate policy and the often
large size of datacenter companies. For example, perfor-
mance analysts and scheduling policy makers might work in
completely separate teams. That means performance analysis
results must be sufficiently flexible to be fed into completely
independent scheduling tools. A large company might also
delay the deployment of new performance monitoring tools
for strategic or accounting reasons. As a result, new solutions
might not be testable or applicable for months. Performance
objectives of an individual application may also compete with
system-wide goals. Even if it were easy to identify and quan-
tify every instance of negative interference, it is not always
clear how each instance should be resolved. For example,
in most cases a latency-sensitive application’s performance is
prioritized over less important applications, but performance
must also be balanced with cost-efficiency. Thus, even latency-
sensitive applications are likely to be co-scheduled with other
applications to keep utilization up.

III. A M ETHODOLOGY FORMEASURING INTERFERENCE

IN L IVE DATACENTERS

Put together, all of the complications outlined in the pre-
vious section make for intricate interference scenarios with
restricted means to collect data about interference. Here we
outline a series of techniques that form the first complete
methodology for measuring application interference in there-
strictive environment of a live production datacenter. Figure 3
shows an overview of this methodology. First, performance
data is measured in small samples on live production servers
using a small number of remote collection machines. Next,
the data is examined to find per-application baseline perfor-
mance comparators and to identify interference relationships
between applications. These relationships are then made to
be architecture independent so that performance data can be
aggregated across all of the machines monitored. Afterwards,
the aggregated performance data and the baseline performance
indicators can be used together to analyze system-wide appli-
cation interference.

Fig. 3. A methodology for measuring application interference on live
production servers is described in Section III.

A. Collecting Low-Overhead Performance Metrics

The most accurate way of capturing interference relation-
ships in a datacenter is to measure them live. Since it is
critical not to degrade performance, all measurements taken
must have as little overhead as possible. Past work shows that
sampling-based performance monitoring minimally perturbs
applications. For example, the Google-Wide Profiling (GWP)
tool [44], from which we borrow some measurement ideas,
profiles live applications with less than 0.01% overhead using
sampling-based monitoring. GWP samples performance data
using perf [1], a Linux performance monitoring tool. Perf
not only has low overhead, but it also provides abstractions
over hardware capabilities, meaning the same monitoring
commands can be issued on many different hardware platforms
in a datacenter. The tool samples a number of measurable
eventsincluding software events that interface with the kernel
(such as page faults) and hardware events reported from the
processor (such as CPU-cycles and various types of cache
misses).

To further limit overheads, performance information can
be reported to a small number of remote, non-production
machines for later analysis. Also, sampling periods and fre-
quencies — the number of occurrences of an event per sample,
and the average rate of samples per second, respectively —

and collection duration per machine can be tuned so that they
are high enough to record useful information, but not so high
that performance monitoring is overly intrusive.

B. Statistical Performance Indicators

One challenge of assessing interference relationships in
datacenters is that the optimal performance of applications is
usually unknown. Because the cost of isolating an application
on a machine is high, it is rarely possible to find out how an
application would perform with no application interference, so
performance measurements of an application in the wild are
usually clouded by several co-running applications. Instead
of using optimal performance as a baseline, we can use a
statistical performance indicator.

After collecting sampled performance metrics, a statistical
estimator that aggregates these fine grained measurements can
be used as a comparator for future observed samples. An
example statistical indicator is the mean cycles per instruc-
tion (CPI) of a large number of samples. Although some
dimensionality is lost in aggregation, a statistical performance
indicator works well for a couple of reasons. First, only one
hardware counter needs to be monitored, so the necessary
information can be safely collected without perturbing live
applications. Second, the indicator can be compactly stored
and updated for large numbers of samples and applications.
The biggest risk of using performance indicators is that phase
changes of an application may be mistaken for application
interference. We outline a workaround in the discussion in
Section VI.

C. Identifying Sample-Sized Interference Relationships

In a controlled experiment, two applications can be run
simultaneously on a machine, with applications’ performance
interactions monitored for the duration of their execution. As
Section II explained, such co-scheduling cannot be forced
in a datacenter. Another complicating factor in determining
interference relationships is that applications run for extremely
varying amounts of time. One application may run for a week,
for example, during which time many different sets of other
applications may alternately share the same machine. Thus,it
is difficult to attribute the original application’s performance
to any one (or even any one set of) co-running applications.
To learn specific interference relationships, live data must be
carefully filtered.

Each performance sample includes a time-stamp, which can
be used to identify which samples overlap in runtime, and
eventually reveal interference relationships. Specifically, for a
given base sample, we compile a list of the given sample’s
co-runners. A co-runner is a sample that ran for the entire
duration of the base sample. We use an algorithm similar
to liveness analysis in compilers to identify co-runners. The
input is the starting time of each base sample, from which we
work backwards to find other samples that were “live” for the
duration of the base sample.

Figure 4 shows an example of samples from two CPUs
and the corresponding co-runner relationships between those

Fig. 4. Sample sized co-runners.Timelines of two CPUs on the same
machine are shown to the left. Each segment represents a performance sample
(e.g., 2 million instructions) from an application. For example, A1 is the first
sample of applicationA. The table to the right shows theco-runnersamples
for eachbase applicationsample. ApplicationA1 has two co-runners because
two consecutive samples of applicationB run for its duration. In this contrived
example, sampleC1 is especially long to illustrate the uncommon case of a
sample having no co-runners.

samples. Each segment in the figure is a different sample,
and letter labels are application names so thatA1 is the first
sample of an applicationA. Since by definition, co-running
samples must run for the same amount of time or longer
than the base sample, it may not be possible to identify co-
runners for long samples. This can be mitigated by combining
successive samples when we are looking for co-runners of
a base sample. In Figure 4, sampleA1 has two co-runners
because two successive samples of applicationB run for
its duration. Some samples still may not have co-runners
(as illustrated by the long sampleC1). When applying this
methodology (Section IV), we found that this is the case for
just 0.6% of the samples. This number can be kept low if the
number of samples per scheduling context-switch is relatively
high; if many samples in a row are of the same application, it
is more likely that co-runner relationships can be identified.

Extrapolating application-level interference relationships
from a collection of sample-sized relationships is straightfor-
ward. First, all of the base samples for the base applicationare
identified. Those samples are then sorted by their identifiedco-
runners. Any base samples with the same sets of co-runners
can be aggregated to determine the interference relationship
between the base application and a set of co-running applica-
tions. With enough samples, this technique becomes schedule-
independent. Depending on the schedule, more samples may
be collected that represent a certain interference relationship,
but with prolonged sampling, all interference relationships that
occur can eventually be identified. Thus,interference relation-
ships can be determined without any prior knowledge of the
scheduling policy. This is extremely useful in a datacenter,
because scheduling policies may be very complex, and may
even be unknown to those trying to understand interference.

D. Interference Classes

Interference depends on the resources that two applications
are contending for. Depending on the topology of the archi-
tectural platform, all applications sharing a chip may not have
equal influence on one another. Consider, for example, two
applications which share all of their cache versus two appli-
cations that share only interfaces to peripheral devices (like
an I/O hub). Our analysis distinguishes between such types
of interference using architecture independentinterference
classes. An interference class defines the closest relationship
(in terms of resource sharing) that two applications running on
the same chip might have. The closest interference relationship
is between two applications running on different hyperthreads
of a single core. Such applications contend for everything from
execution slots to cache to memory control and I/O resources.
A more distant relationship would be between applications
which share the same last level cache and resources beyond.
The loosest interference class is between two applications
which are on the same chip, but which do not share any
resources except their interface to peripheral devices.Others
have used interference classes to estimate the potential amount
of interference in various assignments of applications to a
machine (see contention groups in [19] for example). We see
a few additional reasons that defining interference classescan
be beneficial. First, it allows for data to be aggregated simply
across samples on many-core machines — all shared core
co-runners, for example, can be considered equivalent. Next,
it allows for the aggregation of data across machines with
different (but similarly symmetric) architectural platforms.
Finally, interference classes help reduce the complexity when
considering the range of possible co-schedules of multiple
applications at a time.

IV. A PPLYING THE MEASUREMENTMETHODOLOGY

We now apply the general application interference measure-
ment techniques established in the previous section to con-
duct the first large-scale study of interference on production
Google servers running workloads with live user interaction.
Unlike past work, this study does not rely on benchmarks or
simulation. The study illustrates the noisiness of production
interference that any datacenter interference analyst must
negotiate. It also reveals that some interference patternsare
visible above the noise, leading to exploitable performance
opportunities, which are discussed in Section V.

A. Collecting Performance Metrics

We used the perf tool and remote collection methodology
described in Section III to collect samples across 1000, 12-
core production servers at Google. As described, the basic
methodology allows for a choice between a number of dif-
ferent performance events to monitor. Unfortunately, there is
no single perfect hardware counter that accurately indicates
performance across a variety of applications. There is sub-
stantial debate about what, if any, hardware counter event can
accurately indicate performance across a variety of applica-
tions. With such a large number of applications to compare, it

Fig. 5. Median IPC is a good performance indicator for the Google data collected.Each graph shows the performance variations of the specified application
when scheduled with eight of their most common co-runners. The overall median IPCs for each base application correspond wellto their performance curves.

is nearly impossible to use application-specific metrics (such
as time per transaction) for this study. Application run time
cannot be used either because it is not necessarily related
to performance in datacenters (for example, an ads server
might run continually until stopped for an update). Some have
suggested that last level cache (LLC) miss rates are the best
indicators for interference studies [8], while others notethat
LLC will not accurately monitor all workloads, especially
those that are memory bound [46]. Other work suggests that
contention for memory bandwidth and buses might be a good
indicator [28], [38], [40]. To capture the effects of cache and
memory contention, we use instructions per cycle (IPC) to
indicate performance in this study. Although it has been widely
used in past interference studies (e.g., [7], [16], [33], [36], [37],
[42]), there is debate about IPC too. In particular, Alameldeen
and Wood found that architectural enhancements can cause
IPC to improve even as application performance worsens, or
vice versa — especially for multi-threaded applications [2].
To avoid such unexpected discrepancies, we ensured that the
profiled servers were identical in all respects, including chip
type, clock speed, RAM, and operating system. If future
studies are conducted across multiple architectural platforms,
it may be necessary to consider metrics other than IPC.

Application IPC was sampled every 2.5 million instructions.
After 2.5 million instructions executed on a production server’s
core, a remote profiling machine recorded the time-stamp,
the location of the core on its machine, and the application
executing. In post-processing, the elapsed time per samplewas
connected with the machines’ clock speed to get the IPC of
each sample. Over the course of the study, the remote profiler
encountered 1102 unique binaries and collected nearly 350
million samples. See Table I for a summary of the collection
statistics.

B. Statistical Performance Indicators

From the raw samples we calculated a statistical perfor-
mance indicator to estimate a baseline performance for each
application. Because the collected IPCs did not form a normal
distribution, we use medians rather than mean as an indicator.
For each application and for each sample, we calculated and
recorded the median IPC. Note that this aggregated metric is
schedulingdependent, and we did not examine the schedule
in our calculations. There are two reasons for this. First,

TABLE I
PROFILING AND COLLECTION STATISTICS

Performance Sample Size 2.5 × 10
6 instructions

Monitored Indicator Instructions per cycle (IPC)

Number of Machines* 1000

*Machines identical in all respects (e.g., clock speed, RAM, O/S)
Threads / Core 2

Cores / Socket 6

Sockets / Machine 2

Threads / Machine 24

Unique Binaries Encountered 1102

Samples Collected (all 1102 applications) 3.45 × 10
8

provided our samples are representative of the system as a
whole, a scheduling dependent performance indicator tells
us what the normal performance of an application is in the
datacenter overall. We believe the samples were representative,
as our collections spanned 1000 international machines anda
period of twelve hours. Second, it did not make sense for
us to try to account for the scheduling system, because the
policies in place at Google are not only highly complex,
but also highly secretive. If scheduling policies change in
the future, the methodology does not need to be revised, but
new statistical performance indicators should be calculated. To
evaluate the choice of medians, we can look at where medians
fall on the performance curves of the data collected. Fig-
ure 5 shows the distributions of performance samples for four
common Google applications (streetview, bigtable,
video_transcoder, and scientific). The y-axes on
the graph show the percentage of samples that range from the
minimum to maximum IPC of each application on the x-axes.
The graphs reveal that medians are a representative aggregate
indicator. (Note that all absolute and relative IPC values have
been anonymized at Google’s request.)

C. Identifying Sample-Sized Interference Relationships

Returning to the raw, unaggregrated performance samples,
the next step was to find co-runners among application sam-
ples. As explained in Section III-C, by definition co-running
samples must be longer running than or equal length to the
base application sample. Because of this, we were concerned
that the samples dropped due to lack of co-runner might be
biased towards the slower samples. However, the effects were

Shared Core Opposite SocketShared Socket

24 Hyperthreads

12 Cores

12 MB L3

QPI and IOH

Identical
chip

in second
socket

Fig. 6. Westmere Interference Classes.The profiled Intel Westmeres are
dual-socket machines, supporting 12 hyperthreads per socket. Interference
relationships are partitioned into three classes as depicted here:shared core,
shared socket, andopposite socket.

not significant in the data collected. Across the most frequently
occurring eight applications only0.6% of the samples were
dropped, with the peak being3.47% for search. The impact
on median IPC was negligible; dropping samples reduced it
by just 0.23% on average.

D. Defining Interference Classes

The machines used for collection in this study all have the
same chip, so only one set of interference classes was needed.
The chips are Intel Westmeres, which have two hyperthreads
per core and six cores sharing an L3 cache for a total of
12 hyperthreads per socket as pictured in Figure 6. With two
sockets connected by an Intel Quick Path Interconnect (QPI)
and to an I/O hub (IOH), each Westmere supports a total of 24
hyperthreads. Given this topology, there are three discernible
interference classes, also depicted in Figure 6. The closest
is between two applications on hyperthreads which share a
core (shared core); then between two application threads on
different cores but sharing a socket and thus an L3 cache
(shared socket); and finally between two threads on the same
machine but on different sockets (opposite sockets) which
share only the QPI and IOH.

For each of the sample co-runners previously identified, we
looked at the relative core locations of the applications. Using
these core locations, we assigned each pair of co-runners the
appropriate interference class label. Between eight of themost
commonly running applications we encountered, the average
number of shared core samples ranged from 2000 to 45
million, with about 1 million samples on average. Between
the same applications, the number of shared socket samples
ranged from 12,000 to 400 million per application and 9.5
million on average. The opposite socket relationships ranged
from to 14,000 to 500 million samples with 11 million on
average.

E. Analyzing Interference

A primary question in past work ishow does a base ap-
plication’s performance change with a particular co-runner?
This is a very challenging question to answer in a datacenter.
One approach is to examine the performance effects of a given
application on another by aggregating all of the performance

metrics from the sample-sized relationships of a particular base
application and a particular co-running application. However,
up to 22 other hyperthreads may be occupied with various
unrelated applications during each of the samples, so this must
be taken into account. It was rare to find only two applications
running together on a machine, which is not surprising con-
sidering our earlier observation that Google maintains a high
thread occupation rate (Figure 1) and runs diverse applications
together on a single machine (Figure 2). The shared core
interference relationship is especially important to understand
as it is likely the strongest. Finding two applications running
in isolation on the same core with the remaining threads empty
was an extremely rare occurrence; probably due to intentional
scheduling decisions to distribute resources.

Regardless of the reasons, it is clear that noiseless data is
hard to come by in a datacenter. Thus, pairwise comparisons
can never fully capture all the causes of interference. Still, we
wanted to attempt to see if shared core influences were strong
enough to be apparent over the noise of applications scheduled
on the rest of the machine. Though necessarily incomplete,
if pairwise comparisons can yield any information, they are
attractive for two reasons. First, reducing the comparisonspace
makes the resulting information easier to collect, understand,
and analyze. Also, some schedulers — including Google’s —
are already prepared to accept pairwise scheduling information
but not information about more complex relationships.

To find shared-core influences, we aggregated the previously
identified pairwise relationships of eight commonly running
applications, filtering the samples to use only those that
were labelled as shared core. To reduce random performance
variations, we required that a minimum of 1000 samples be
present for each aggregated metric to be significant; all 64
cross-pairings satisfied this minimum.

Fig. 7. Streetview’s performance variations across co–runners.Bars
representstreetview’s normalized median performance when co–located
with eight common co-runner applications. Dashed horizontallines show
overall variance of all measuredstreetview samples.

Figure 7 showsstreetview as it shares a core with eight
other applications (including different co-running instances of

its own binary). Other applications exhibit similar performance
effects in their shared core co-runner graphs. In Figure 7,
bars along the x-axis show the shared core co-runner of
streetview, and the y-axis gives the normalized median
IPC across each of the aggregatedstreetview and shared
core co-runner samples. The dotted horizontal lines show
the average variance across all of the measured (co-runner
independent)streetview samples. We note that whileit is
difficult to tell an exact ordering ofstreetview’s best to
worst co-runnersgiven the large variance of the samples, it is
clear that a few shared core co-runners interfere beyond the
noise.

We collected data on shared socket and opposite socket
pairwise interference using similar techniques. The additional
data is not included here because it does not add much insight.
In part, this is because the pairwise influence of sharing a
socket or machine can be weaker than when sharing a core.
Consider, for example, a co-runner sharing a socket with a
base application. The base application has one shared core co-
runner and ten shared socket co-runners on a Westmere (recall
Figure 6). So, if we try to examine the effects of a single
shared socket co-runner on the base application, we are also
capturing the effects of at least ten other co-runners sharing
as many or more resources with the base application. Fully
understanding shared socket and shared machine influences
would require examining interference patterns between larger
groups of co-runners than pairs.

V. PERFORMANCEOPPORTUNITIES

Given a total ordering of interference relationships, some
past works are able to find optimal schedules and sometimes
nearly eliminate negative interference. An important goalof
this work was to show that such solutions cannot be im-
mediately successful when applied to datacenters, primarily
because the precision required to determine a total ordering
of relationships is not available. The measurement techniques
in Section III outline a path towards better understanding
application interference in datacenters, where the measur-
able information is necessarily more limited. Although it
is disappointing that many insightful techniques cannot be
immediately applied in datacenters, the good news is that in
a datacenter even small reductions in application interference
are valuable. In this section, we outline two techniques that are
immediately applicable in a datacenter once the data outlined
earlier in this paper has been collected.

A. Restricting Beyond Noisy Interferers

With many applications running on live machines, it is dif-
ficult to observe isolated (noise-free) interactions. Moreover,
measurement restrictions make the discovery of a full ordering
of co-runner preferences difficult. Despite the noise, the data
still allow us to recognize that some applications interfere. We
definebeyond noisy interferers(BNIs) as applications that can
be clearly seen to hamper another application’s performance
despite the noisy data. To identify BNIs, we find the average
variance from the mean performance of a base application that

incorporates all possible co-schedules. This metric indicates
the average expected performance fluctuation of an application
across diverse scheduling scenarios. Next, the measured sam-
ples of a particular co-scheduling relationship can be compared
to the overall variance. If a co-schedule affects an application
beyond its normal variance, it is classified as a BNI.

We applied this procedure to the Google data to see if any
shared-core co-runners could be classified as BNIs. Figure 8
shows the performance of eight common Google applications
when they were observed to be sharing a core with one
of the other eight applications. Boxes in the matrix show
the difference from the average variance (across all 1102
applications encountered in the study) of each base application
(on the y-axis) for each co-runner (on the x-axis). A white box
indicates that the shared-core co-runner positively interferes
with the base application beyond the average variance, while
a black box indicates negative interference beyond the average
variance. Several negative BNIs (6 of 64 possible, or nearly
10%) emerge despite the fact that most of the observed data
includes noise from other applications interfering outside of
the shared core.

Fig. 8. Beyond noisy interferers in the Google data.Shared core co-runner
applications along the x-axis affect the performance of baseapplications along
the y-axis. White boxes show co-runners that positively interfere beyond the
average variance with base applications, while black boxesshow co-runners
that negatively interfere beyond the average variance.

Such observed BNIs do not yield a complete ordering of
application co-schedule preferences, and thus do not allow
allow the compilation of an optimal schedule. Negative BNIs
can, however, indicate specific applications that should not run
together. A simple scheduling policy change to restrict nega-
tive BNIs from running alongside the base application could
result in significant performance gains. Similarly, positive
BNIs might be purposely scheduled with a base application
to improve its average performance.

In some cases, even eliminating one or two negative co-
runners could result in significant performance improvements
for an application. The potential for improvement can be
estimated if we assume that in the absence of samples with
the negative co-runner, the base application would perform

at its median performance with all other co-runners. Then,
the improved median performance can be reverse engineered
from the performance data already available as follows: first,
calculate the fraction of samples where the base application
runs with the negative co-runner and call it the “negative frac-
tion”. Call the remaining samples the “neutral fraction”. Next,
multiply the negative fraction by the median performance
of the base application when running with the negative co-
runner and subtract this value from the overall median where
the base application runs with any application including the
negative co-runner. Finally, divide this value by the neutral
fraction to get the new expected median performance. In
the data pictured in Figure 8 for example, thebigtable
application is a negative BNI forstreetview. If we elimi-
nate all instances ofbigtable running withstreetview
and assume thatstreetview will then perform at its
median, thenstreetview’s overall performance will have
improved by about 1.3%. If we also excludesearch from
running withstreetview and make the same assumption,
streetview’s performance could jump as much as 2.2%
system-wide. Though these effects may seem small, when
multiplied across weeks or months of application execution
on thousands of servers, such improvements could result in
sizable monetary savings.

B. Isolating Sensitive Applications and Exiling Antagonists

It is interesting to know howsensitivean application is to
performance changes. Several previous studies have lookedat
application sensitivities in the context of resource contention
([24], [28], [31], [32], [46]), some of them using datacenter
workload benchmarks. In these studies, sensitivity is defined in
terms of an application’s optimal performance. As explained in
Section II, it is difficult to ascertain a datacenter application’s
optimal performance, but we can extend the earlier work to
comply with the available data. Specifically, the variance data
used to determine BNI application relationships in Figure 8
can also be used to determine an application’s overall sen-
sitivity. Base applications with large performance variations
across co-runners can be identified as sensitive to performance
changes. For example, in Figure 8 thescientific and
streetview applications have shared core co-runners that
cause their performance to swing both above and below one
average variance. If the performance of these two applications
(or any sensitive application) is important to the datacenter,
systems managers can decide to isolate the applications on
their own core, or even their own machine.

Antagonistic applications can be identified in a similar
manner. A co-running application is antagonistic if it fre-
quently causes base applications to exhibit negative perfor-
mance swings beyond their average variances. In the figure,
bigtable is a negative BNI for three applications, so it
can be classified as antagonistic. Again, depending on the
performance goals of the datacenter, it might make sense
to exile such antagonistic applications to their own core or
machine so that they do not negatively interfere with other
applications’ performance.

VI. FUTURE OPPORTUNITIES

Using the data collected in the Google study, it is possi-
ble to identify BNIs and to find sensitive and antagonistic
applications that can be isolated or exiled, respectively.With
extensions to the methodology outlined here, there are further
opportunities to minimize interference and improve perfor-
mance.

A. Multi-dimensional Scheduling Constraints

This initial study focuses on pairwise interference effects,
for simplicity and because Google’s scheduler was already
ready to accept pairwise scheduling inputs. There may also
be significant trios or even larger sets of application co-
schedules with relevant interference patterns. For example,
some application A might not perform poorly with either B
or C as a co-runner, but may perform poorly when Band
C are both co-runners. One could identify triplet (or larger)
BNIs using the same techniques as for pairwise BNIs. Once
identified, larger groups of BNIs could be employed in all the
same ways as pairwise BNIs. As discussed in Section IV-E
this would be particularly useful when examining the effects
of interference beyond shared core.

B. More Fine-grained Application Definitions

It is well known that some applications exhibit distinct
phases with different performance characteristics. Such phases
might obfuscate the process of identifying performance effects.
In our Google study, we were able to observe fairly stable
performance (Figure 5) by limiting our measurement study
to twelve hours because most of the applications had diurnal
phases based on the peak and off-peak usage of users. For im-
portant applications, it may be worth the additional complexity
to identify distinct phases more precisely. Then, each phase of
the applications could be considered as separate “applications”
when analyzing co-runner relationships. Similarly, if a given
application’s performance is known to vary widely based on
input, the application could be broken apart according to its
usage pattern.

C. Correlating Multiple Performance Events

While data collection is limited to one performance event at
a time, multiple events could be collected on separate trials and
compared to give a fuller picture of application performance
and interference. Correlating IPC with metrics such as LLC
misses and I/O contention, could lead to more insight than
examining any one metric on its own. The challenge of
correlating multiple performance events is that application
co-schedules have to be matched across trials. When we
analyzed the Google data, we were able to greatly reduce the
aggregation complexity by combining sample data across same
shared-core co-runners without filtering based on the rest of
the applications co-scheduled on the machine. This method is
a starting point for correlating multiple events, but it would be
more precise to match the full machine co-schedules instead
of just matching shared-core co-runners.

VII. R ELATED WORKS

Several papers and textbook chapters highlight challenges
associated with CMPs in datacenters. Ranganathan and Jouppi
discuss challenges related to general trends in changing infras-
tructures at large datacenters [43]. Kas writes about problems
that must be solved as datacenters adopt CMPs, but does
not specifically address the difficulties involved in measuring
application interference [26]. One relevant description of the
challenges of resource interference between applicationscan
be found in Illikkal et al.’s work which discusses potential
performance problems due to shared resource interference but
does not detail the challenges of measuring interference [20].

While this work is the first to conduct a datacenter scale
application interference study on live production workloads,
other researchers have conducted application interference stud-
ies geared towards datacenters. Rather than measuring live
applications with user interaction, the following studiesuse
benchmarks, simulations, and offline analysis of server work-
loads. While a benchmark runs, Mars et al. use performance
counters to detect cache miss changes and identify contention
so that schedules can be adaptively updated [34]. Another
paper by Mars et al. measures changes in instruction rate
to detect cross-core interference and adapt schedules accord-
ingly [33]. Tang et al. try different thread-to-core mappings of
benchmarks to methodically find the best co-schedules [47].
Another large scale study models resource interference of
server consolidation workloads, finding core and cache con-
tention [3]. This methodology requires estimates of cache
usage and considers only two jobs co-scheduled at a time.
Bilgir et al. simulate Facebook workloads to look for energy
and performance benefits in assigning the correct number of
cores and mapping applications effectively across CMPs [6].
The works by Carter et al. [9] and Levesque et al. [30]
evaluate whether increasing core counts on Cray machines will
improve scientific applications’ performance by estimating
their memory bandwidth contention. Finally, Hood et al. [19]
and Jin et al. [25] break down expected contention by class for
different architectural platforms using microbenchmarks. They
then estimate how real applications will perform on different
architectural configurations.

A number of other works have measured the use of
shared resources on single machines. Moseley measured re-
source sharing between threads in simultaneous multithread-
ing (SMT) processors using hardware performance moni-
toring [37]. Snavely and Tullsen conduct an impressively
thorough study of application co-scheduling on SMT archi-
tectures [45]. Like us, they use sample-based performance
monitoring, but their work uses simulation and benchmarks
rather than live workloads and relies on testing a significant
number of permutations of all jobs co-scheduled together.
Azimi et al. also use hardware sampling of benchmarks to
study how threads share resources so that they can optimize
cache locality and determine how caches should be partitioned
on SMT machines [4]. Zhang et al. perform an extensive ex-
amination of cache contention between applications on varying

CMP platforms [50], while Zhao et al. took a more detailed
approach, monitoring not just cache sharing but occupancy
and interference as well [52].

There is no dearth of related previous research proposing
operating systems or hardware solutions to mitigate applica-
tion interference. Unfortunately, many of the proposed ideas
cannot accommodate the complexities outlined in Section II.
It is difficult to give credit to everyone who has contributed
to such a well studied area. We have already discussed a
number of works in this area that use measured performance
monitoring as input; another relevant body of work estimates
applications’ resource usage to improve scheduling ([5], [10],
[11], [15], [23], [24], [28], [29], [38], [42]). There is also a
series of work that adjusts access to computing resources like
CPU processing speed and cache partitioning size to make
resource sharing more fair ([14], [16], [17], [20], [21], [27],
[35], [36], [39], [49], [51]).

VIII. C ONCLUSIONS

This paper encourages researchers to develop scalable ap-
plication interference solutions, and begins to pave the way
for such work. To establish the difficult nature of this task,
we first detail the challenges of measuring and analyzing
application interference at datacenter scale, exposing eight
specific challenges that are unique to datacenters or that remain
largely un-addressed in past research. These factors combine to
make interference effects in a datacenter exceedingly difficult
to predict, measure, and correct. To assist in the efforts of
understanding interference between datacenter applications,
we suggest a collection of measurement techniques to work
around the complexities. The new techniques are generically
applicable for any datacenter, but as a proof-of-concept, we
implement them to conduct an application interference study
on production Google servers. The study is the first large-scale
measurement study of application interference, revealingap-
plication interference “in the wild” on 1000 12-core machines
running live commercial datacenter workloads. Using just data
that is feasible to collect in the restrictive environment of a
datacenter, we have outlined several opportunities to improve
performance by reducing negative application interference.

IX. A CKNOWLEDGMENTS

We would like to thank Google for providing the resources
that made this study possible. The work was also supported
in part by the National Science Foundation (CNS-1117135).
We thank Lingjia Tang, Dave Levinthal, Stephane Eranian,
Amer Diwan, and other Google colleagues for their insights
and suggestions as we worked on this project. Finally, we want
to acknowledge William Kramer and our anonymous reviewers
for their helpful feedback on the paper.

REFERENCES

[1] perf: Linux profiling with performance counters. https://perf.wiki.kernel.
org/, July 2011.

[2] A. R. Alameldeen and D. A. Wood. IPC considered harmful for
multiprocessor workloads.IEEE Micro, 26(4):8–17, July 2006.

[3] P. Apparao, R. Iyer, and D. Newell. Towards modeling & analysis
of consolidated CMP servers.ACM SIGARCH Computer Architecture
News, 36:38–45, May 2008.

[4] R. Azimi, D. K. Tam, L. Soares, and M. Stumm. Enhancing operating
system support for multicore processors by using hardware performance
monitoring. ACM SIGOPS Operating Systems Review, 43:56–65, April
2009.

[5] M. Bhadauria and S. A. McKee. An approach to resource-aware co-
scheduling for CMPs. InProceedings of the International Conference
on Supercomputing (ICS), pages 189–199, 2010.

[6] O. Bilgir, M. Martonosi, and Q. Wu. Exploring the potential of CMP
core count management on data center energy savings.Proceedings of
the Workshop on Energy Efficient Design (WEED), June 2011.

[7] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of
multiple interacting resources in chip multiprocessors: A machine learn-
ing approach. InProceedings of the Annual International Symposium
on Microarchitecture (MICRO), pages 318–329, 2008.

[8] S. Blagodurov, S. Zhuravlev, and A. Fedorova. Contention-aware
scheduling on multicore systems.Transactions on Computer Systems
(TOCS), 28, December 2010.

[9] J. Carter, Y. He, J. Shalf, H. Shan, E. Strohmaier, and H. Wasserman.
The performance effect of multi-core on scientific applications. InCray
User Group Meeting, Seattle, WA, USA, 2007.

[10] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. InProceedings
of the Symposium on High Performance Computer Architecture(HPCA),
pages 340–351, 2005.

[11] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and
C. Wilkerson. Scheduling threads for constructive cache sharing on
CMPs. InProceedings of the Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 105–115, 2007.

[12] R. C. Chiang and H. H. Huang. TRACON: Interference-aware schedul-
ing for data-intensive applications in virtualized environments. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC), pages 47:1–47:12,
2011.

[13] M. Devuyst, R. Kumar, and D. M. Tullsen. Exploiting unbalanced thread
scheduling for energy and performance on a CMP of SMT processors.
In Proceedings of the International Parallel and DistributedProcessing
Symposium (IPDPS), 2006.

[14] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via
source throttling: a configurable and high-performance fairness substrate
for multi-core memory systems. InProceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 335–346, 2010.

[15] S. Eyerman and L. Eeckhout. Probabilistic job symbiosis modeling for
SMT processor scheduling.ACM SIGPLAN Notices, 45:91–102, March
2010.

[16] A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance
isolation on chip multiprocessors via an operating system scheduler. In
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 25–38, 2007.

[17] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha,and J. Moses.
Rate-based QoS techniques for cache/memory in CMP platforms. In
Proceedings of the International Conference on Supercomputing (ICS),
pages 479–488, 2009.

[18] U. Hoelzle and L. A. Barroso.The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 1st edition, 2009.

[19] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali,
D. Jespersen, K. Taylor, and R. Biswas. Performance impact of resource
contention in multicore systems. InProceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), pages 1 –12,
April 2010.

[20] R. Illikkal, V. Chadha, A. Herdrich, R. Iyer, and D. Newell. PIRATE:
QoS and performance management in CMP architectures.SIGMETRICS
Performance Evaluation Review, 37:3–10, March 2010.

[21] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. Hsu, and S. Reinhardt. QoS policies and architecturefor
cache/memory in CMP platforms.SIGMETRICS Performance Evalu-
ation Review, 35:25–36, June 2007.

[22] Y. Jiang and X. Shen. Exploration of the influence of program inputs
on CMP co-scheduling. InEuropean Conference on Parallel Processing
(EUROPAR), volume 5168 ofLecture Notes in Computer Science, pages
263–273. 2008.

[23] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis andapproximation

of optimal co-scheduling on chip multiprocessors. InProceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 220–229, 2008.

[24] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with online
proactive job co-scheduling in chip multiprocessors. InProceedings
of the International Conference on High Performance and Embedded
Architectures and Compilers (HiPEAC), pages 201–215, 2010.

[25] H. Jin, R. Hood, J. Chang, J. Djomehri, D. Jespersen, K. Taylor,
R. Biswas, and P. Mehrotra. Characterizing application performance
sensitivity to resource contention in multicore architectures. Technical
Report NAS-09-002, NASA Ames Research Center, 2009.

[26] M. Kas. Towards on-chip datacenters: A perspective on general trends
and on-chip particulars.The Journal of SuperComputing (SCI), October
2011.

[27] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing andpartitioning
in a chip multiprocessor architecture. InProceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 111–122, 2004.

[28] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. InProceedings of the Annual International Symposium on
Microarchitecture (MICRO), pages 65–76, 2010.

[29] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, W. Zhihua, andC. Pu. An
analysis of performance interference effects in virtual environments. In
Proceedings of the International Symposium on PerformanceAnalysis
of Systems Software (ISPASS), april 2007.

[30] J. Levesque, J. Larkin, M. Foster, J. Glenski, G. Geissler, S. Whalen,
B. Waldecker, J. Carter, D. Skinner, H. He, H. Wasserman, J. Shalf,
H. Shan, and E. Strohmaier. Understanding and mitigating multicore
performance issues on the AMD Opteron architecture. Technical Report
LBNL-62500, Lawrence Berkeley National Laboratory, 2007.

[31] J. Mars, L. Tang, and R. Hundt. Heterogeneity in homogeneous
warehouse-scale computers: A performance opportunity.IEEE Com-
puter Architecture Letters, 10(2):29–32, July 2011.

[32] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up:
increasing utilization in modern warehouse scale computers via sensible
co-locations. InProceedings of the Annual International Symposium on
Microarchitecture (MICRO), pages 248–259, 2011.

[33] J. Mars, L. Tang, and M. L. Soffa. Directly characterizing cross core
interference through contention synthesis. InProceedings of the Inter-
national Conference on High Performance and Embedded Architectures
and Compilers (HiPEAC), pages 167–176, 2011.

[34] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. Contention aware
execution: online contention detection and response. InProceedings
of the International Symposium on Code Generation and Optimization
(CGO), pages 257–265, 2010.

[35] M. R. Marty and M. D. Hill. Virtual hierarchies to support server
consolidation.ACM SIGARCH Computer Architecture News, 35:46–56,
June 2007.

[36] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, andM. Valero.
FlexDCP: a QoS framework for CMP architectures.ACM SIGOPS
Operating Systems Review, 43:86–96, April 2009.

[37] T. Moseley. Adaptive thread scheduling for simultaneous multithreading
processors. Master’s thesis, University of Colorado, 2006.

[38] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. InProceedings of the Annual International
Symposium on Microarchitecture (MICRO), pages 146–160, 2007.

[39] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for QoS-aware clouds. InProceedings
of the European Conference on Computer Systems (EuroSys), pages 237–
250, 2010.

[40] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fairqueuing
memory systems. InProceedings of the Annual International Symposium
on Microarchitecture (MICRO), pages 208–222, 2006.

[41] K. Olukotun and L. Hammond. The future of microprocessors.Queue,
September 2005.

[42] K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogeraki. Fact:
a framework for adaptive contention-aware thread migrations. In
Proceedings of the International Conference on Computing Frontiers
(CF), 2011.

[43] P. Ranganathan and N. Jouppi. Enterprise IT trends and implications
for architecture research. InProceedings of the Symposium on High
Performance Computer Architecture (HPCA), pages 253–256, 2005.

[44] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-wide
profiling: A continuous profiling infrastructure for data centers. IEEE
Micro, pages 65–79, 2010.

[45] A. Snavely and D. Tullsen. Symbiotic jobscheduling for asimultaneous
multithreading processor. InProceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 234–244, 2000.

[46] L. Tang, J. Mars, and M. L. Soffa. Contentiousness vs. sensitivity:
improving contention aware runtime systems on multicore architectures.
In Proceedings of the International Workshop on Adaptive Self-Tuning
Computing Systems for the Exaflop Era (EXADAPT), pages 12–21, 2011.

[47] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The
impact of memory subsystem resource sharing on datacenter applica-
tions. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 283–294, 2011.

[48] Tilera Corporation. Tile-Gx Processor Family. http://www.tilera.com/
products/processors/TILE-GxFamily/, 2012.

[49] C. Xu, X. Chen, R. Dick, and Z. Mao. Cache contention and application

performance prediction for multi-core systems. InProceedings of the
International Symposium on Performance Analysis of Systems Software
(ISPASS), pages 76 –86, march 2010.

[50] E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing on modern CMP
matter to the performance of contemporary multithreaded programs? In
Proceedings of the Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 203–212, 2010.

[51] X. Zhang, S. Dwarkadas, and K. Shen. Hardware executionthrottling
for multi-core resource management. InProceedings of the USENIX
Annual Technical Conference (USENIX ATC), pages 23–23, 2009.

[52] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, andD. Newell.
Cachescouts: Fine-grain monitoring of shared caches in CMP platforms.
In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 339–352, 2007.

