Measuring Interference
Between Live Datacenter Applications

Melanie Kambadur Tipp Moseley Rick Hank Martha A. Kim
Columbia University Google, Inc. Google, Inc. Columbia University
melanie@cs.columbia.edu tipp@google.com rhank@google.com martha@cs.columbia.edu

Abstract—Application interference is prevalent in datacenters
due to contention over shared hardware resources. Unfortunzly,
understanding interference in live datacenters is more difficult
than in controlled environments or on simpler architectures.

feasible in controlled settings with simple benchmarks and
architectures, but becomes much more complex in datasenter
While it is possible to guess application performance at & hig
Most approaches to mitigating interference rely on data that level and reduce mterference to some degree, it is |mph53|b
cannot be collected efficiently in a production environment. This t0 accurately predict performance to the level of precisin
work exposes eight specific complexities of live datacenters that quired to eliminate it entirely. Other approaches use glad-
constr_ain measurement of i_nterference. It t_hen introduces _new Sty|e match_ups between app”cations to measure intexdere
generic measurement techniques for analyzing interference inthe g4 fing optimal scheduling solutions. This is not practical
face of these challenges and restrictions. We use the measurerhen . . . s
techniques to conduct the first large-scale study of application a datacenter, mainly becaus_e of financial restrictions am ho
interference in live production datacenter workloads. Data is data can be measured. A third approach observes benchmark
measured across 1000 12-core Google servers observed to bapplication performance (sometimes via simulation), taen
running 1102 unique applications. Finally, our work identifies tempts to apply the observations to live applications. Some
several opportunities to improve performance that use only nf thege techniques rely on statistics that are not measurab
the available data; these opportunities are applicable to any -
datacenter. in datacenters, while others are generous in their assangpti
that noiseless and controlled offline measurements are late
|. INTRODUCTION applicable in live, chaotic settings.

Application interference occurs when multiple applicaio To measure live datacenter application interference, a new
contend for shared resources such as processor time, cavkghodology is needed. Such a methodology should ideally
space, or 1/O pins. In datacenters, interference is paatigu be able to capture the interference effects of thousands of
undesirable as it hurts performance and increases opgragpplications, running with real user inputs on production
costs. Chip multi-processors (CMPs), which are widely us&grvers with diverse architectural platforms. Furtheenadhne
in datacenters, are a key contributor to interference. CMR®ethodology should be financially reasonable, not reqirin
offer increased throughput and reduced power consumptioundreds or thousands of machines for simulations and not
over traditional single processor chips [41]. Howeverythlso disturbing the performance of production services.
exacerbate interference because more applications typica In this paper, we use our experience with and exclusive
run on a single physical machine. To leverage the performarccess to live datacenter applications to expose theiesatit
benefits of CMPs, system designers must understand dneasuring and analyzing interference in a datacenter., Tyen
prevent application interference to the greatest possiktient. develop a methodology to measure live datacenter interéere

Unfortunately, the complex characteristics of datacentand test the methodology on production servers at Google.
workloads and architectures make application interfezenSpecifically:
difficult to reason about. High heterogeneity of applicasio (1) We identify eight sources of complexity in interference
and high core utilization targets mean that datacentersPE€M measurement and analysis that are either unique to dat-
are filled with a wide variety of multi-threaded application acenters or frequently not handled by previous works
Because these applications are diverse in their perforenanc (Section II).
objectives, resource requirements, and inputs, and becag) We introduce a generally applicable methodology for
datacenters put severe limitations on performance mamigor measuring application interference in the restrictive en-
it is a challenge to even measure application interference, vironment of a datacenter (Section IlI).
let alone to manage it. Yet, as more applications migrate {8) As a proof-of-concept, the methodology is implemented
datacenters, it has become critically important to keeatieg and used in the first large-scale study of measured
application interference under control. application interference in a live datacenter. We collect

Many current approaches to monitor and combat interfer- data from 1102 unique applications across 1000 Google

ence work well on solitary machines, but fall short in a
datacenter environment. Some techniques involve predicti
application performance at a high level of detail, which is

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.002012 IEEE

servers, each running on 12 core, 24 hyper—thread Intel
Westmeres. These measurements capture the performance
of production workloads, live schedules, and real user

interaction (Section V). “bin-packing” problem discussed in [18]). Because it leads
(4) Given the information that can be measured in liviedo power savings and better parallel performance, high core
datacenters, we outline opportunities to control negativilization is desirable, and it has been increasing aloith w
application interference in datacenters (Section V). per-chip core counts [26]. Today, core utilization is athga
high: in profiling the 24-hyperthread machines, we found
Il. COMPLEXITIES OFINTERFERENCE IN ADATACENTER iha¢ gn average of about 14 hyperthreads were occupied.
Application interference in a datacenter is much moreigure 1 shows the full distribution of observed hypertidrea
challenging to reason about, measure, or predict than inoecupancies.
controlled environment or on a solitary machine. It is impor
tant for scheduling experts and datacenter systems sigéxia 8%
to understand what performance analysts are up againg. 1
section describes eight specific complexities that are ugniq
to datacenters or largely unaccounted for in past work,
some cases preventing the use of established methodolo:
for combating application interference. For example, mar
past works run an application on an isolated machine to ¢
termine its baseline performance, and then run the apjgicat
with a single application co-runner to measure interfegen
effects([8], [12], [17], [23], [27], [33], [34], [39], [46][47],
[50]-[52]). The pairwise impacts are then incorporated ini
scheduling policies or used to fairly allocate resourceas/éen 0%
applications. Such techniques rely on well-defined, dtscre 0 2 4 6 8 10 12 14 16 18 20 22 24
applications and isolated measurements, neither of wiich Number of Hyperthreads Occupied
available in a datacenter. There are thousands of applitati

to test, user inpUtS vary in non-obvious ways (SUCh that thﬁﬂj 1. Datacenter machines are filled with applications.Profiling 1000

cannot be simulated off-line), and applications are fretjye 12-core, 24 hyperthread Google servers running produstiorkloads, we
re-written and updated. found the average machine had more than 14 of the 24 hyperthieadse.

. These results reveal the extent of multi-way interferenceichw is largely
Other approaches estimate the resource usage of appliganandied by existing interference management techniques.

tions and attempt to schedule applications with compleargnt
needs together ([3], [5], [7], [10], [11], [15], [22], [24]28],
[36], [38], [42], [49]). While some general predictions carB- Heterogeneous Application Mixes
be made about application performance, it is challenging toDatacenter servers not only support many application
make such predictions precise in the complex environmenttbfeads at once, but frequently also execute a diverse mix of
a datacenter. applications on each machine. This is not surprising censid
The eight complexities below are common to most dataring the massive number of different applications thatirun
centers; to show that they are realistic, we use experiencigacenters today. For example, our profiling of the Google
and data from our measurement study of production serveesrvers revealed 1102 unique applications. While a couple of
at Google described in Section IV. these were system support applications and thus constantly
or periodically running on all machines, the vast majority
could be flexibly scheduled among servers in the fleet. Our
When slow page loads translate into lost revenue, thgeasurements also showed that a machine runs at least five
pressure to deliver web content quickly is high. Datacentespplications half of the time, and sometimes runs as many
are driving the demand for increasingly high-core-coupgh as 20 (see Figure 2). Characterizing interference is much
CMPs with as many as 100 cores already exist [48], wikimpler if only a couple of unique applications are schedlule
datacenters today using CMPs with tens of cores. The 10@@ether, so a lot of prior work assumes only two application
Google machines profiled in Section IV are 12-core machinggning on a machine at a time. According to Figure 2, such
supporting up to 24 hyperthreads. These core-crowded chipgthodologies would apply only abo26% of the time.
mean more applications are sharing resources, such as, cache o))
that they otherwise would not share. Despite this, a survly Fuzzy Application Delineations
of recent work in application interference shows that many Sometimes, even trivial issues become complex in datacen-
researchers validate their solutions on chips with only two ter settings. To measure application interference, theust m
four cores ([3], [4], [10], [12], [23], [17], [21], [22], [2F be some definition of an application. Applications might be
[33], [46], [47], [49], [51], [52]). defined as narrowly as on a per process basis, or they can
In the early days of CMPs, resource contention was not the delineated by user, input, or code segment. The division
issue it is today: core counts per chip were low, and datacentof applications is tricky though; define them too narrowly,
have historically struggled to use all cores on a chip (see tand there will be insufficient data to get useful interfeenc

6% |

40/° -

% of Total Samples

2% r

A. Large Chips with High Core Utilizations

V% ————— our measurement study, Google would not allow us to measure
the baseline performance of applications on isolated mashi
due to the cost.

8 15% |

% G. Limited Measurement Capabilities

% 109% | Performance analysts at datacenters are restricted im othe
° ways as well. For example, an extremely limiting restrictio

5 that we had to work around in developing our methodology

¥ 5% for the Google study was that we had to keep our profiling

overhead as low as possible, and preferably well under one
percent. Google’s rationale, which is likely to be echoed
by other datacenter companies, is that excessive overhead
in measuring is not always a worthwhile investment. The
financial losses caused by too much measurement perturbatio
Fig. 2. Datacenter servers have diverse application mixessoogle server in the present may outweigh future performance gains tteat ar

profiling reveals that most machines run five or more unique egiplins at discoverable with the additional measurements
once, and sometimes as many as 20. Many past works considervamly t '

applications running together at a time, a scenario preselgt20% of the .
time in to this data. H. Corporate Policy and Structure

0%
0 2 4 6 8 10 12 14 16 18 20 22 24

Number of Unique Co-running Applications

Other difficulties relate to corporate policy and the often

_ _) large size of datacenter companies. For example, perfor-
|nf0rmat|on. Define them to_o cc_:arsely, and performance Vathance analysts and scheduling policy makers might work in
ations unrelated to application interference may ina@vely o pietely separate teams. That means performance analysi
be captured. There is no clear right choice for how appBesti oq,ts must be sufficiently flexible to be fed into completel

should be delineated. In the Section IV study and in Figure @yenendent scheduling tools. A large company might also
each unique binary is considered to be an application, whigRjay the deployment of new performance monitoring tools
is a fairly coarse-grained classification. for strategic or accounting reasons. As a result, new swisti

D. Varying and Sometimes Unpredictable Inputs might not be testable or applicable for months. Performance

Unlike in controlled environments, applications in a dataquectlves of an individual application may also competwi

center are added or refactored frequently. Many applinatios.ySte‘m'W'(.je goals. Even if I.t were easy to Id?n.tlfy and quan-
accept user inputs and can experience significant perfcmanag‘ffy every mstange of negative interference, it is not lwa
swings based on usage, sometimes with predictable perioo%ear how each instance shp_uld be _resc_;lve’d. For ex_ample,
ity, and sometimes without. It is intuitive that input couwlffect in most cases a latency-sensitive application’s perforads

how an application interferes or is interfered with (Jiamgl a pr|0rt|t|z|ed t? Vir lless |gnp$;]tant tapfp;_h(?atlons_,rhbut perfare
Shen [22] show this formally), but most prior studies use ju ust also be balanced with cost-efficiency. Thus, evendgten

single—input benchmarks. sen§|t|v¢ applications are I|I.<ely to be co-scheduled witteo
applications to keep utilization up.

E. Varying Micro-architectural Platforms
Performance changes depend on the micro architecturIa{' A M ETHODOLOGY FORMEASURING INTERFERENCE
9 P IN LIVE DATACENTERS

platform as well as inputs. In a large datacenter, it is un-

common for all servers to use the same micro-architecture.Put together, all of the complications outlined in the pre-
As new Chips become ava“ab]e, datacenters incrementé{iyus section make for intricate interference scenarioth wi
update their servers, resumng in an evo|ving, heterogeﬂe restricted means to collect data about interference. Hare w
mix of platforms. Most past work does not consider this, bi@utline a series of techniques that form the first complete
interference measurement and mitigation techniques gholilethodology for measuring application interference inrtre

ideally be micro-architecture independent. strictive environment of a live production datacenter.ufég3
) shows an overview of this methodology. First, performance
F. Unknown Optimal Performance data is measured in small samples on live production servers

Many existing interference solutions rely on knowing amsing a small number of remote collection machines. Next,
application’s optimal performance without interferené@ar the data is examined to find per-application baseline perfor
static input benchmarks, this is as simple as running th@ance comparators and to identify interference relati@ssh
application on a dedicated machine. At a datacenter, idmetween applications. These relationships are then made to
lating a production application on a dedicated machine l® architecture independent so that performance data can be
a prohibitively expensive way to find baseline performancaggregated across all of the machines monitored. Aftersyard
especially given the number of applications to evaluate atiie aggregated performance data and the baseline perfoeman
the need for frequent re-evaluation as inputs, architestusr indicators can be used together to analyze system-widé- appl
even the applications themselves change. When we conduatation interference.

Sampling-based and collection duration per machine can be tuned so that they
Sl IEMEiE are high enough to record useful information, but not so high
that performance monitoring is overly intrusive.

Live
production

datacenter
servers

Remote

llect e isti i
Lo B. Statistical Performance Indicators

One challenge of assessing interference relationships in
datacenters is that the optimal performance of applicatisn
usually unknown. Because the cost of isolating an apptioati
on a machine is high, it is rarely possible to find out how an
application would perform with no application interferenso
performance measurements of an application in the wild are
usually clouded by several co-running applications. kdte

i) of using optimal performance as a baseline, we can use a
Filter by arch. indep. L A
interference classes statistical performance indicator.

After collecting sampled performance metrics, a statistic
estimator that aggregates these fine grained measurenaents c
be used as a comparator for future observed samples. An
example statistical indicator is the mean cycles per igstru
tion (CPI) of a large number of samples. Although some
dimensionality is lost in aggregation, a statistical perfance
indicator works well for a couple of reasons. First, only one
hardware counter needs to be monitored, so the necessary
information can be safely collected without perturbingeliv
applications. Second, the indicator can be compactly dtore
and updated for large numbers of samples and applications.
The biggest risk of using performance indicators is thatspha
changes of an application may be mistaken for application

_ , o ~interference. We outline a workaround in the discussion in
Fig. 3. A methodology for measuring application interference on e Section VI

production servers is described in Section IIl.

Identify
sample-sized
relationships

Per machine,
per core
event sample
data

Per machine,
» sample-sized
co-runner
relationships

Calculate
performance
indicators

< Analyze interference >

Aggregate same co-
schedules

Sample-sized
relationships
by
interference
class

Aggregate
application
interference data

C. Ildentifying Sample-Sized Interference Relationships

In a controlled experiment, two applications can be run
simultaneously on a machine, with applications’ perforogn

The most accurate way of capturing interference relatiointeractions monitored for the duration of their executidis
ships in a datacenter is to measure them live. Since it $&ction Il explained, such co-scheduling cannot be forced
critical not to degrade performance, all measurementsntaka a datacenter. Another complicating factor in determinin
must have as little overhead as possible. Past work shows tingerference relationships is that applications run fdremely
sampling-based performance monitoring minimally pemurlvarying amounts of time. One application may run for a week,
applications. For example, the Google-Wide Profiling (GWRpr example, during which time many different sets of other
tool [44], from which we borrow some measurement ideaapplications may alternately share the same machine. Tthus,
profiles live applications with less than 0.01% overheaagisiis difficult to attribute the original application’s perfoance
sampling-based monitoring. GWP samples performance dasaany one (or even any one set of) co-running applications.
using per f [1], a Linux performance monitoring tool. PerfTo learn specific interference relationships, live data tnies
not only has low overhead, but it also provides abstractiooarefully filtered.
over hardware capabilities, meaning the same monitoringEach performance sample includes a time-stamp, which can
commands can be issued on many different hardware platforbgs used to identify which samples overlap in runtime, and
in a datacenter. The tool samples a number of measurablentually reveal interference relationships. Speclficédr a
eventsincluding software events that interface with the kerngjiven base samplewe compile a list of the given sample’s
(such as page faults) and hardware events reported from tloerunners A co-runner is a sample that ran for the entire
processor (such as CPU-cycles and various types of cacligation of the base sample. We use an algorithm similar
misses). to liveness analysis in compilers to identify co-runnereeT

To further limit overheads, performance information camput is the starting time of each base sample, from which we
be reported to a small number of remote, non-productiovork backwards to find other samples that were “live” for the
machines for later analysis. Also, sampling periods ane frduration of the base sample.
guencies — the number of occurrences of an event per sampldrigure 4 shows an example of samples from two CPUs
and the average rate of samples per second, respectivelyand the corresponding co-runner relationships betweesetho

A. Collecting Low-Overhead Performance Metrics

CPU 1 CPU 2 D. Interference Classes

Time B2 Base App.] Co-runner Interference depends on the resources that two applisation
Al = Sample | Sample(s) are contending for. Depending on the topology of the archi-

Al B2+B3 tectural platform, all applications sharing a chip may nayen
e A2 C1 equal influence on one another. Consider, for example, two

B1 Cl applications which share all of their cache versus two appli
B2 Al cations that share only interfaces to peripheral devidés (|

BI B3 Al an 1/O hub). Our analysis distinguishes between such types

\J Cl none of interference using architecture independémerference
‘ classes An interference class defines the closest relationship

(in terms of resource sharing) that two applications rugrmin

the same chip might have. The closest interference rekdtipn
Fig. 4. Sample sized co-runners.Timelines of two CPUs on the same 1S bEt_Ween two appllcatlon_s mnnmg on different hype_rakise
machine are shown to the left. Each segment represents amparfoe sample Of a single core. Such applications contend for everythiomf

(e.g., 2 million instructions) from an application. For exdesf\1 is the first execution slots to cache to memory control and 1I/O resources
sample of applicatiol. The table to the right shows tle-runnersamples

for eachbase applicatiorsample. ApplicatiolA1 has two co-runners becauseA more distant relat'onSh'p would be between apphcatlons
two consecutive samples of applicatiBrrun for its duration. In this contrived Which share the same last level cache and resources beyond.

example, sampl€1 is especially long to illustrate the uncommon case of Fhe |oosest interference class is between two applications
sample having no co-runners. which are on the same chip, but which do not share any
resources except their interface to peripheral devi€gkers
have used interference classes to estimate the potentialram
of interference in various assignments of applications to a
machine (see contention groups in [19] for example). We see
samples. Each segment in the figure is a different samplefew additional reasons that defining interference clasaes
and letter labels are application names so #ais the first pe peneficial. First, it allows for data to be aggregated simp
sample of an applicatioA. Since by definition, co-running across samples on many-core machines — all shared core
samples must run for the same amount of time or longgp-runners, for example, can be considered equivalentt, Nex
than the base sample, it may not be possible to identify G@-allows for the aggregation of data across machines with
runners for long samples. This can be mitigated by combinigfifferent (but similarly symmetric) architectural platfos.
successive samples when we are looking for co-runners gfally, interference classes help reduce the complextgw

a base sample. In Figure 4, sam@ié& has two co-runners considering the range of possible co-schedules of multiple
because two successive samples of applicaBomun for gpplications at a time.

its duration. Some samples still may not have co-runners

(as illustrated by the long sampl@l). When applying this V. APPLYING THEMEASUREMENTMETHODOLOGY

methodology (Section 1V), we found that this is the case for We now apply the general application interference measure-

just 0.6% of the samples. This number can be kept low if theent techniques established in the previous section to con-

number of samples per scheduling context-switch is redbtiv duct the first large-scale study of interference on producti

high; if many samples in a row are of the same application, @oogle servers running workloads with live user interactio

is more likely that co-runner relationships can be idertifie Unlike past work, this study does not rely on benchmarks or

simulation. The study illustrates the noisiness of proiduct

Extrapolating application-level interference relatibips interference that any datacenter interference analystt mus

from a collection of sample-sized relationships is strH@h negotiate. It also reveals that some interference patteras

ward. First, all of the base samples for the base applicatien visible above the noise, leading to exploitable perforneanc
identified. Those samples are then sorted by their identified opportunities, which are discussed in Section V.

runners. Any base samples with the same sets of co-runners))

can be aggregated to determine the interference relatipnsfi- Collecting Performance Metrics

between the base application and a set of co-running applicaWe used the perf tool and remote collection methodology
tions. With enough samples, this technique becomes sahedulescribed in Section 1l to collect samples across 1000, 12-
independent. Depending on the schedule, more samples roase production servers at Google. As described, the basic
be collected that represent a certain interference reistiip, methodology allows for a choice between a number of dif-
but with prolonged sampling, all interference relatiopshthat ferent performance events to monitor. Unfortunately, e¢hisr
occur can eventually be identified. Thusterference relation- no single perfect hardware counter that accurately inegcat
ships can be determined without any prior knowledge of tiperformance across a variety of applications. There is sub-
scheduling policy This is extremely useful in a datacenterstantial debate about what, if any, hardware counter evamt c
because scheduling policies may be very complex, and meagcurately indicate performance across a variety of agplic
even be unknown to those trying to understand interferencéions. With such a large number of applications to compare, i

streetview bigtable video_transcoder scientific

n 0 n 7]
= 2 = =
[= [=¥
= I g 1 g g
3 3 5]
: | 6 | «n | 1%} |
2 | = =
2 | Q | Q | o |
=1 = -
kS I 5 I kS I kS I
IS] S] IS | IS |
Min IPC Med IPC Max IPC~ MinIPC Med IPC Max IPC~ MinIPC Med IPC Max IPC MinIPC Med IPC Max IPC

Fig. 5. Median IPC is a good performance indicator for the Google data ollected.Each graph shows the performance variations of the specffigétation
when scheduled with eight of their most common co-runners. Tieeali median IPCs for each base application correspondtaéfieir performance curves.

is nearly impossible to use application-specific metriegls PROFILING AND (T;‘gffEC'T,ON STATISTICS

as time per transaction) for this study. Application rundim

cannot be used either because it is not necessarily relateg@rformance Sample Size 2.5 x 10° instructions
to performance in datacenters (for example, an ads servéfonitored Indicator Instructions per cycle (IPC)
might run continually until stopped for an update). Someehav Number of Machines* 1000
suggested that last level cache (LLC) miss rates are the be#f‘ecgé’;e/sé%fgt'ca' in all respects (e.g., clock speed, RANE))
indicators for interference studies [8], while others ntitet cores / Socket 6
LLC will not accurately monitor all workloads, especially Sockets / Machine 2
those that are memory bound [46]. Other work suggests that"éads / Machine 24
contention for memory bandwidth and buses might be a good#Inique Binaries Encountered 1102
indicator [28], [38], [40]. To capture the effects of cacheda _Samples Collected (all 1102 applications) 3.45 x 10°

memory contention, we use instructions per cycle (IPC) to
indicate performance in this study. Although it has beerelyid
used in past interference studies (e.g., [7], [16], [33][B37], Provided our samples are representative of the system as a
[42]), there is debate about IPC too. In particular, Alareeldl Whole, a scheduling dependent performance indicator tells
and Wood found that architectural enhancements can cati§ewhat the normal performance of an application is in the
IPC to improve even as application performance worsens, @tacenter overall. We believe the samples were representa
vice versa — especially for multi-threaded applicationg [2as our collections spanned 1000 international machinesaand
To avoid such unexpected discrepancies, we ensured thatRR&od of twelve hours. Second, it did not make sense for
profiled servers were identical in all respects, includihgpc US to try to account for the scheduling system, because the
type, clock speed, RAM, and operating system. If futurolicies in place at Google are not only highly complex,
studies are conducted across multiple architecturalquta, but also highly secretive. If scheduling policies change in
it may be necessary to consider metrics other than IPC. the future, the methodology does not need to be revised, but
Application IPC was sampled every 2.5 million instructiong1ew statistical performance indicators should be caledlato
After 2.5 million instructions executed on a productionveels €valuate the choice of medians, we can look at where medians
core, a remote profiling machine recorded the time-stanfgll on the performance curves of the data collected. Fig-
the location of the core on its machine, and the applicati¢tie 5 shows the distributions of performance samples for fou
executing. In post-processing, the elapsed time per sangde common Google applicationss{(r eet vi ew, bi gt abl e,
connected with the machines’ clock speed to get the IPC ¢fdeo_transcoder, andsci entific). The y-axes on
each sample. Over the course of the study, the remote proffié¢ graph show the percentage of samples that range from the
encountered 1102 unique binaries and collected nearly 3%@imum to maximum IPC of each application on the x-axes.

million samples. See Table | for a summary of the collectiohh€ graphs reveal that medians are a representative aggrega
statistics. indicator. (Note that all absolute and relative IPC valuageh

been anonymized at Google’s request.)

B. Statistical Performance Indicators

From the raw samples we calculated a statistical perfo(l:-'
mance indicator to estimate a baseline performance for eactiReturning to the raw, unaggregrated performance samples,
application. Because the collected IPCs did not form a nbrnthe next step was to find co-runners among application sam-
distribution, we use medians rather than mean as an indicapes. As explained in Section IlI-C, by definition co-rungin
For each application and for each sample, we calculated esaimples must be longer running than or equal length to the
recorded the median IPC. Note that this aggregated metrichisse application sample. Because of this, we were concerned
schedulingdependentand we did not examine the schedul¢hat the samples dropped due to lack of co-runner might be
in our calculations. There are two reasons for this. Firdtjased towards the slower samples. However, the effects wer

Identifying Sample-Sized Interference Relationships

Shared Core Shared Socket Opposite Socket

24 Hyperthreads—/ \

12 Cores:

metrics from the sample-sized relationships of a partidodee
application and a particular co-running application. Hoere
up to 22 other hyperthreads may be occupied with various

N\

12 MB L3 0,:,:’,’,00 unrelated applications during each of the samples, so thi& m
ol and 1O 0,:,:,:,:,’ be taken into account. It was rare to find only two application
QPfan ORHKXXXX running together on a machine, which is not surprising con-

sidering our earlier observation that Google maintainsgg hi
thread occupation rate (Figure 1) and runs diverse apjaitat
together on a single machine (Figure 2). The shared core
interference relationship is especially important to ustind
Fig. 6. Westmere Interference ClassesThe profiled Intel Westmeres are _"is_ itis !'kely the strongest. Flndlng two app_llcatlons rungn
dual-socket machines, supporting 12 hyperthreads per solciterference iNn isolation on the same core with the remaining threads gmpt
relationships are partitioned into three classes as depivere:shared core was an extremely rare occurrence; probably due to intealtion
shared socketandopposite socket scheduling decisions to distribute resources.

Regardless of the reasons, it is clear that noiseless data is
hard to come by in a datacenter. Thus, pairwise comparisons

Identical
chip —»
in second
socket

2

not significant in the data collected. Across the most fratjye ull I th ¢ interf | S
occurring eight applications onlg.6% of the samples were c@n never fully capture all the causes of interferencel, 8id

dropped, with the peak beirky47% for sear ch. The impact wanted to attempt to see if shared core influences were strong
on median IPC was negligible; dropping samples reducedeﬁlough to be apparent over the noise of applications sobedul
by just0.23% on average. on the rest of the machine. Though necessarily incomplete,

if pairwise comparisons can yield any information, they are
D. Defining Interference Classes attractive for two reasons. First, reducing the comparggmace

The machines used for collection in this study all have tHBakes the resulting information easier to collect, unadewht
same chip, so only one set of interference classes was nee@dgl analyze. Also, some schedulers — including Google’s —
The chips are Intel Westmeres, which have two hyperthrea@f§ already prepared to accept pairwise scheduling infwma
per core and six cores sharing an L3 cache for a total gt not information about more complex relationships.

12 hyperthreads per socket as pictured in Figure 6. With two To find shared-core influences, we aggregated the previously
sockets connected by an Intel Quick Path Interconnect (QEdgntified pairwise relationships of eight commonly rurgin
and to an 1/0 hub (IOH), each Westmere supports a total of agplications, filtering the samples to use only those that
hyperthreads. Given this topology, there are three digiern Were labelled as shared core. To reduce random performance
interference classes, also depicted in Figure 6. The dlos¥ariations, we required that a minimum of 1000 samples be
is between two applications on hyperthreads which sharePgsent for each aggregated metric to be significant; all 64
core Ghared corg then between two application threads o§r0ss-pairings satisfied this minimum.

different cores but sharing a socket and thus an L3 cache ‘ . . .
(shared sockgt and finally between two threads on the sam¢© L ___________ ———Jd+10
machine but on different socket®pposite sockefswhich xr wm B N N BN R
share only the QPI and IOH. .

For each of the sample co-runners previously identified, v
looked at the relative core locations of the applicationsing
these core locations, we assigned each pair of co-runners
appropriate interference class label. Between eight ofrtost
commonly running applications we encountered, the avera
number of shared core samples ranged from 2000 to
million, with about 1 million samples on average. Betwee
the same applications, the number of shared socket samj %
ranged from 12,000 to 400 million per application and 9. %, %, DS
million on average. The opposite socket relationships edng %
from to 14,000 to 500 million samples with 11 million on Co-running Applications
average.

IP

1an

0.75x

Factor of Med

0.5x%

E. Analyzing Interference Fig. 7. Streetview’s performance variations across co-runnersBars

A ori ti . t K i d b represenst r eet vi ews normalized median performance when co—located
. P”mafy question In pas WOI’. laow _Oes @ DASE€ ap- yith eight common co-runner applications. Dashed horizofitas show
plication’s performance change with a particular co-rumfe overall variance of all measurest r eet vi ew samples.

This is a very challenging question to answer in a datacenter

One approach is to examine the performance effects of a giverFigure 7 showst r eet vi ewas it shares a core with eight

application on another by aggregating all of the perforneanother applications (including different co-running instas of

its own binary). Other applications exhibit similar perfance incorporates all possible co-schedules. This metric atdie
effects in their shared core co-runner graphs. In Figure the average expected performance fluctuation of an applicat
bars along the x-axis show the shared core co-runner aifross diverse scheduling scenarios. Next, the measumed sa
st reetvi ew, and the y-axis gives the normalized mediaples of a particular co-scheduling relationship can be cmexqh
IPC across each of the aggregasdd eet vi ew and shared to the overall variance. If a co-schedule affects an apitina
core co-runner samples. The dotted horizontal lines shdeyond its normal variance, it is classified as a BNI.
the average variance across all of the measured (co-runnewe applied this procedure to the Google data to see if any
independentpt r eet vi ew samples. We note that whileis shared-core co-runners could be classified as BNIs. Figure 8
difficult to tell an exact ordering oft r eet vi ews best to shows the performance of eight common Google applications
worst co-runnergyiven the large variance of the samples, it isshen they were observed to be sharing a core with one
clear that a few shared core co-runners interfere beyond tifethe other eight applications. Boxes in the matrix show
noise. the difference from the average variance (across all 1102
We collected data on shared socket and opposite soclgplications encountered in the study) of each base afiplica
pairwise interference using similar techniques. The &l (on the y-axis) for each co-runner (on the x-axis). A whit& bo
data is not included here because it does not add much insighdlicates that the shared-core co-runner positively fates
In part, this is because the pairwise influence of sharingwath the base application beyond the average variance ewhil
socket or machine can be weaker than when sharing a caélack box indicates negative interference beyond theageer
Consider, for example, a co-runner sharing a socket withvariance. Several negative BNIs (6 of 64 possible, or nearly
base application. The base application has one shared @orel®%) emerge despite the fact that most of the observed data
runner and ten shared socket co-runners on a Westmerd (réig@ludes noise from other applications interfering ousif
Figure 6). So, if we try to examine the effects of a singléhe shared core.
shared socket co-runner on the base application, we are also

capturing the effects of at least ten other co-runners spari scientific I
as many or more resources with the base application. Fuliy video_ transcoder +2 var
understanding shared socket and shared machine influenge java
would require examining interference patterns betweegefar 8 task scheduler v
groups of co-runners than pairs. § streetview - avg var
2 bigtable
V. PERFORMANCEOPPORTUNITIES & sewits_daemon -1 var
Given a total ordering of interference relationships, some search - Svar
past works are able to find optimal schedules and sometimes %, 6‘%.%/ % B, L e% %%
nearly eliminate negative interference. An important gofl % % 6, 4, \@0‘9 26 %
this work was to show that such solutions cannot be im- % 6@%/ ‘9”@00
mediately successful when applied to datacenters, pidynari %o e o%,
because the precision required to determine a total omglerin Co-running Applications

of relationships is not available. The measurement tectasiq

in Section Il outline a path towards better understandin
appllc_atlon m_terfe_rence n da}tacenters’_ V_Ihere the meas_ﬁ?plications along the x-axis affect the performance of lbggdications along
able information is necessarily more limited. Although ithe y-axis. White boxes show co-runners that positivelyrfate beyond the

is disappointing that many insightful techniques cannot [ggerage variance with base applications, while black bekesv co-runners
immediately applied in datacenters, the good news is that!figt "egatively interfere beyond the average variance.

a datacenter even small reductions in application inteniees

are valuable. In this section, we outline two techniquesana Such observed BNIs do not yield a complete ordering of
immediately applicable in a datacenter once the data eatlinapplication co-schedule preferences, and thus do not allow

. 8. Beyond noisy interferers in the Google dataShared core co-runner

earlier in this paper has been collected. allow the compilation of an optimal schedule. Negative BNIs
o) can, however, indicate specific applications that shoutdumo
A. Restricting Beyond Noisy Interferers together. A simple scheduling policy change to restrictaneg

With many applications running on live machines, it is diftive BNIs from running alongside the base application could
ficult to observe isolated (noise-free) interactions. Mg, result in significant performance gains. Similarly, positi
measurement restrictions make the discovery of a full aimger BNIs might be purposely scheduled with a base application
of co-runner preferences difficult. Despite the noise, thed to improve its average performance.
still allow us to recognize that some applications intexfét/e In some cases, even eliminating one or two negative co-
definebeyond noisy interferer@NIs) as applications that canrunners could result in significant performance improveisien
be clearly seen to hamper another application’s perforemarfor an application. The potential for improvement can be
despite the noisy data. To identify BNIs, we find the averagestimated if we assume that in the absence of samples with
variance from the mean performance of a base applicatidn ttiee negative co-runner, the base application would perform

at its median performance with all other co-runners. Then, VI. FUTURE OPPORTUNITIES
the improved median performance can be reverse engineere
from the performance data already available as followst, fir%I
calculate the fraction of samples where the base applitati

:Lg:]s Vgt;lt::]ee ngqa;\é_enco-;t:]rqmg ' 6}{?}2 522 'irgir:;%ﬁ':)ﬁr extensions to the methodology outlined here, there aredurt
lon . INing samples u ' ' opportunities to minimize interference and improve perfor

multiply the negative fraction by the median performanc&1ance

of the base application when running with the negative co-

runner and subtract this value from the overall median whege \yti-dimensional Scheduling Constraints
the base application runs with any application including th

negative co-runner. Finally, divide this value by the naltr
fraction to get the new expected median performance.
the data pictured in Figure 8 for example, thegt abl e
application is a negative BNI fogt r eet vi ew. If we elimi-
nate all instances dfi gt abl e running withst r eet vi ew
and assume thastreetvi ew will then perform at its

median, therst r eet vi ews overall performance will have h d i ! i |
improved by about 1.3%. If we also exclusear ch from C are both co-runners. One could identify triplet (or lajger

running with st r eet vi ew and make the same assumption?NIS_ gsing the same techniques as for pairwise BNIS. Once
streetvi ews performance could jump as much as 2_20)9ent|f|ed, larger groups of BNIs could be employed in all the

system-wide. Though these effects may seem small, whf e ways as pa_irwise BNIs. As discusseq i.n Section IV-E
multiplied across weeks or months of application executid IS wofuld be partlcularh:] useful when examining the efiect
on thousands of servers, such improvements could result®hintérference beyond shared core.

sizable monetary savings.

Bsing the data collected in the Google study, it is possi-
e to identify BNIs and to find sensitive and antagonistic
gpplications that can be isolated or exiled, respectiwaligh

This initial study focuses on pairwise interference efect
fﬁ)]r simplicity and because Google’'s scheduler was already
ready to accept pairwise scheduling inputs. There may also
be significant trios or even larger sets of application co-
schedules with relevant interference patterns. For exampl
some application A might not perform poorly with either B
or C as a co-runner, but may perform poorly whenaBd

B. More Fine-grained Application Definitions

B. Isolating Sensitive Applications and Exiling Antagé®is |t is well known that some applications exhibit distinct

It is interesting to know hovsensitivean application is to Phases with different performance characteristics. Shets@s
performance changes. Several previous studies have Iaiketnight obfuscate the process of identifying performanceatéf
application sensitivities in the context of resource cotiten In our Google study, we were able to observe fairly stable
([24], [28], [31], [32], [46]), some of them using datacenteperformance (Figure 5) by limiting our measurement study
workload benchmarks. In these studies, sensitivity is gefin 0 twelve hours because most of the applications had diurnal
terms of an application’s optimal performance. As expldime Phases based on the peak and off-peak usage of users. For im-
Section I, it is difficult to ascertain a datacenter applimais ~Portant applications, it may be worth the additional coritye
optimal performance, but we can extend the earlier work t@ identify distinct phases more precisely. Then, each @lods
comply with the available data. Specifically, the varianegad the applications could be considered as separate “apphsit
used to determine BNI application relationships in Figure \8hen analyzing co-runner relationships. Similarly, if aegi
can also be used to determine an application’s overall sé@pplication’s performance is known to vary widely based on
sitivity. Base applications with large performance vadias input, the application could be broken apart according o it
across co-runners can be identified as sensitive to perfarenausage pattern.
changes. For example, in Figure 8 tkei entific and))
street vi ew applications have shared core co-runners thf Correlating Multiple Performance Events
cause their performance to swing both above and below onénNhile data collection is limited to one performance event at
average variance. If the performance of these two appiicati a time, multiple events could be collected on separatestaiadl
(or any sensitive application) is important to the dataeentcompared to give a fuller picture of application performanc
systems managers can decide to isolate the applicationsamia interference. Correlating IPC with metrics such as LLC
their own core, or even their own machine. misses and I/O contention, could lead to more insight than

Antagonistic applications can be identified in a similarexamining any one metric on its own. The challenge of
manner. A co-running application is antagonistic if it frecorrelating multiple performance events is that applarati
qguently causes base applications to exhibit negative perfoo-schedules have to be matched across trials. When we
mance swings beyond their average variances. In the figurealyzed the Google data, we were able to greatly reduce the
bi gt abl e is a negative BNI for three applications, so itaggregation complexity by combining sample data acrosgsam
can be classified as antagonistic. Again, depending on tteared-core co-runners without filtering based on the rest o
performance goals of the datacenter, it might make sertbe applications co-scheduled on the machine. This method i
to exile such antagonistic applications to their own core arstarting point for correlating multiple events, but it idbbe
machine so that they do not negatively interfere with oth@nore precise to match the full machine co-schedules instead
applications’ performance. of just matching shared-core co-runners.

VIl. RELATED WORKS CMP platforms [50], while Zhao et al. took a more detailed
approach, monitoring not just cache sharing but occupancy
Several papers and textbook chapters highlight challenggfd interference as well [52].
associated with CMPs in datacenters. Ranganathan andiJoupfhere is no dearth of related previous research proposing
discuss challenges related to general trends in chandirasin gperating systems or hardware solutions to mitigate a@plic
tructures at large datacenters [43]. Kas writes about pm$l tjon interference. Unfortunately, many of the proposedagde
that must be solved as datacenters adopt CMPs, but degfinot accommodate the complexities outlined in Section II
not specifically address the difficulties involved in measyr |t js difficult to give credit to everyone who has contributed
application interference [26]. One relevant descriptiérth® to such a well studied area. We have already discussed a
challenges of resource interference between applicatians nymper of works in this area that use measured performance
be found in lllikkal et al’s work which discusses potentiaionitoring as input; another relevant body of work estiraate
performance problems due to shared resource interfer&ncegbpncaﬂonsv resource usage to improve scheduling ([B],[
does not detail the challenges of measuring interferen@k [2[11], [15], [23], [24], [28], [29], [38], [42]). There is ats a
While this work is the first to conduct a datacenter scalgries of work that adjusts access to computing resourkes li
application interference study on live production worklea CPU processing speed and cache partitioning size to make
other researchers have conducted application interfergd- resource sharing more fair ([14], [16], [17], [20], [21],7R
ies geared towards datacenters. Rather than measuring |38, [36], [39], [49], [51]).
applications with user interaction, the following studiese
benchmarks, simulations, and offline analysis of serveikkwor VIIl. CONCLUSIONS
loads. While a benchmark runs, Mars et al._use _performan_ce].his paper encourages researchers to develop scalable ap-
counters to detect cache miss changes and identify cooen

. lication interference solutions, and begins to pave thg wa
S0 thatbscltlﬂedules{ c?n be adaptlvEIy updqteq [:iA']' tAnot F such work. To establish the difficult nature of this task,
paper by Mars el al. measures changes in INSWUCLon T a4 etail the challenges of measuring and analyzing
to detect cross-core interference and adapt schedulesdaccg

. . . licati interf t dat t le, igot ei
ingly [33]. Tang et al. try different thread-to-core mapgsnof pplication interference at datacenter scale, exposight ei

. . ecific challenges that are unique to datacenters or timaiine
benchmarks to methodically find the best co-schedules M?afrgely un-addressed in past research. These factors oertii

Another large scale study models resource interference rﬂgke interference effects in a datacenter exceedinglculiffi

Server consol|d_at|on workloads, fmd!ng core and cache ca predict, measure, and correct. To assist in the efforts of
tention [3]. This methodology requires estimates of cach

. . _u%derstandin interference between datacenter applisati
usage and considers only two jobs co-scheduled at a ti g ppit=3

s . € suggest a collection of measurement techniques to work
Bilgir et al. simulate Facebook workloads to look for energy 99 g

o o r?und the complexities. The new techniques are genaricall
and performance benefits in assigning the correct numbeéﬁ)plicable for any datacenter, but as a proof-of-concept, w

cores and mapping applications effectively across CMPs [plement them to conduct an application interferenceystud

-(Ie-hael \;Vtoe rksh;ﬁe?%ré?;aetnal'co[gg c?)n?]t Lg\r/]eé?;emeatcﬁ.lﬁb[e’ n production Google servers. The study is the first largdesc
evaluate whether | Sing r unts Y WesS Weasurement study of application interference, reveaing
improve scientific applications’ performance by estimgtin

. i . . 9plication interference “in the wild” on 1000 12-core maatsn
their memory bandwidth contention. Finally, Hood et al.][1 unning live commercial datacenter workloads. Using juad
and Jin et al. [25] break down expected contention by class {

different architectural platform ing microbenchmarkise Rat is feasible to collect in the restrictive environmeftao
erent architectural piatforms using microbenchmarksey datacenter, we have outlined several opportunities to akreor
then estimate how real applications will perform on diffare

. . . erformance by reducing negative application interfeeenc
architectural configurations. P y g neg bp

A number of other works have measured the use of IX. ACKNOWLEDGMENTS

shared resources on single machines. Moseley measured re-) o
source sharing between threads in simultaneous multifhrea W& would like to thank Google for providing the resources

ing (SMT) processors using hardware performance mo'_glp_at made this stu_dy poss_ible. The Work_ was also supported
toring [37]. Snavely and Tullsen conduct an impressivefj) Part by the National Science Foundation (CNS-1117135).
thorough study of application co-scheduling on SMT archfe thank Lingjia Tang, Dave Levinthal, Stephane Eranian,
tectures [45]. Like us, they use sample-based performarﬁ@er Dlwan., and other Google collieagugs for.thelr insights
monitoring, but their work uses simulation and benchmari@d1d suggestions as we worked on this project. Finally, wet wan
rather than live workloads and relies on testing a significalf @cknowledge William Kramer and our anonymous reviewers
number of permutations of all jobs co-scheduled togethd?! their helpful feedback on the paper.

Azimi et al. also use hardware sampling of benchmarks to
study how threads share resources so that they can optimize
cache locality and determine how caches should be pasition [1] perf: Linux profiling with performance counters. httgperf.wiki.kernel.
on SMT machines [4]. Zhang et al. perform an extensive eX{?] XTQ/IQ.JL,JAI)I/arzr?elIclléen and D. A. Wood. IPC considered harmful for
amination of cache contention between applications oningry multiprocessor workloadSEEE Micro, 26(4):8-17, July 2006.

REFERENCES

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

P. Apparao, R. lyer, and D. Newell. Towards modeling & gsa

of consolidated CMP serversACM SIGARCH Computer Architecture
News 36:38-45, May 2008.

R. Azimi, D. K. Tam, L. Soares, and M. Stumm. Enhancing opatati [24]
system support for multicore processors by using hardwarferpgance
monitoring. ACM SIGOPS Operating Systems Reyid@.56—65, April
2009.

M. Bhadauria and S. A. McKee. An approach to resourcerav-
scheduling for CMPs. IProceedings of the International Conference
on Supercomputing (ICSpages 189-199, 2010.

O. Bilgir, M. Martonosi, and Q. Wu. Exploring the potealtiof CMP
core count management on data center energy savifiggeedings of [26]
the Workshop on Energy Efficient Design (WEEI)ne 2011.

R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated ngeraent of
multiple interacting resources in chip multiprocessors: A nige learn- [27]
ing approach. IrProceedings of the Annual International Symposium
on Microarchitecture (MICRQ)pages 318-329, 2008.

S. Blagodurov, S. Zhuravlev, and A. Fedorova. Contenaware
scheduling on multicore systemdransactions on Computer Systemg28]
(TOCS) 28, December 2010.

J. Carter, Y. He, J. Shalf, H. Shan, E. Strohmaier, and Hsd&fEman.

The performance effect of multi-core on scientific applicagioln Cray

(25]

User Group MeetingSeattle, WA, USA, 2007. [29]
D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predictingeirthread
cache contention on a chip multi-processor architectur®rbdeceedings

of the Symposium on High Performance Computer ArchitetiiRCA),

pages 340-351, 2005. [30]

S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. @ihaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowrgnd
C. Wilkerson. Scheduling threads for constructive cacharis on
CMPs. InProceedings of the Symposium on Parallelism in Algorithms

and Architectures (SPAApages 105-115, 2007. [31]
R. C. Chiang and H. H. Huang. TRACON: Interference-avschedul-
ing for data-intensive applications in virtualized enwingents. In
Proceedings of the International Conference for High Perfance [32]

Computing, Networking, Storage, and Analysis (S@2ges 47:1-47:12,
2011.

M. Devuyst, R. Kumar, and D. M. Tullsen. Exploiting unaated thread
scheduling for energy and performance on a CMP of SMT processo[33]
In Proceedings of the International Parallel and DistributBdbcessing
Symposium (IPDPSR006.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairnesa v
source throttling: a configurable and high-performancenéasis substrate [34]
for multi-core memory systems. IRroceedings of the International
Conference on Architectural Support for Programming Laages and
Operating Systems (ASPLO®Rnges 335-346, 2010.

S. Eyerman and L. Eeckhout. Probabilistic job symbiosisietiag for
SMT processor schedulinddCM SIGPLAN Notices45:91-102, March
2010.

A. Fedorova, M. Seltzer, and M. D. Smith. Improving penfance
isolation on chip multiprocessors via an operating systenedualer. In
Proceedings of the International Conference on Parallethitectures
and Compilation Techniques (PAGPages 25-38, 2007.

A. Herdrich, R. lllikkal, R. lyer, D. Newell, V. Chadhand J. Moses.
Rate-based QoS techniques for cache/memory in CMP platforms. [B8]
Proceedings of the International Conference on SupercompylCS)

pages 479-488, 2009.

U. Hoelzle and L. A. Barroso.The Datacenter as a Computer: An [39]
Introduction to the Design of Warehouse-Scale Machiridsrgan and
Claypool Publishers, 1st edition, 2009.

R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. aiav
D. Jespersen, K. Taylor, and R. Biswas. Performance impaetsolrce
contention in multicore systems. IRroceedings of the International
Parallel and Distributed Processing Symposium (IPDR&)ges 1 -12,
April 2010. [41]
R. lllikkal, V. Chadha, A. Herdrich, R. lyer, and D. NelkePIRATE:

QoS and performance management in CMP architect@®&METRICS [42]
Performance Evaluation Reviews7:3-10, March 2010.

R. lyer, L. Zhao, F. Guo, R. lllikkal, S. Makineni, D. NeW, Y. Soli-

hin, L. Hsu, and S. Reinhardt. QoS policies and architecfore
cache/memory in CMP platformsSIGMETRICS Performance Evalu- [43]
ation Review 35:25-36, June 2007.

Y. Jiang and X. Shen. Exploration of the influence of peog inputs

on CMP co-scheduling. IEuropean Conference on Parallel Processing44]
(EUROPAR) volume 5168 ot_ecture Notes in Computer Scienpages
263-273. 2008.

Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis apdroximation

(35]

(36]

(37]

(40]

of optimal co-scheduling on chip multiprocessors. Rroceedings of
the International Conference on Parallel Architecturesia@ompilation
Techniques (PACT)pages 220-229, 2008.

Y. Jiang, K. Tian, and X. Shen. Combining locality andywith online
proactive job co-scheduling in chip multiprocessors. Froceedings
of the International Conference on High Performance and Edaled
Architectures and Compilers (HIPEAQ)ages 201-215, 2010.

H. Jin, R. Hood, J. Chang, J. Djomehri, D. Jespersen, K/lofa
R. Biswas, and P. Mehrotra. Characterizing applicatiorfoperance
sensitivity to resource contention in multicore architeetu Technical
Report NAS-09-002, NASA Ames Research Center, 2009.

M. Kas. Towards on-chip datacenters: A perspective enegal trends
and on-chip particularsThe Journal of SuperComputing (SCOctober
2011.

S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing paditioning
in a chip multiprocessor architecture. Rroceedings of the Interna-
tional Conference on Parallel Architectures and CompdatiTechniques
(PACT) pages 111-122, 2004.

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.hréad
cluster memory scheduling: Exploiting differences in memorgeas
behavior. InProceedings of the Annual International Symposium on
Microarchitecture (MICRO) pages 65-76, 2010.

Y. Koh, R. Knauerhase, P. Brett, M. Bowman, W. Zhihua, &xdPu. An
analysis of performance interference effects in virtualiremments. In
Proceedings of the International Symposium on Performahualysis
of Systems Software (ISPAS&)ril 2007.

J. Levesque, J. Larkin, M. Foster, J. Glenski, G. Geissb. Whalen,
B. Waldecker, J. Carter, D. Skinner, H. He, H. Wasserman, alfSh
H. Shan, and E. Strohmaier. Understanding and mitigating couéi
performance issues on the AMD Opteron architecture. TeehRieport
LBNL-62500, Lawrence Berkeley National Laboratory, 2007.

J. Mars, L. Tang, and R. Hundt. Heterogeneity in homogese
warehouse-scale computers: A performance opporturdiBEE Com-
puter Architecture Lettersl0(2):29-32, July 2011.

J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.bBle-up:
increasing utilization in modern warehouse scale computarsensible
co-locations. InProceedings of the Annual International Symposium on
Microarchitecture (MICRO) pages 248-259, 2011.

J. Mars, L. Tang, and M. L. Soffa. Directly charactengicross core
interference through contention synthesis.Pimceedings of the Inter-
national Conference on High Performance and Embedded tectires
and Compilers (HIPEAC)pages 167-176, 2011.

J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. Goriion aware
execution: online contention detection and response.Prizceedings
of the International Symposium on Code Generation and Opdition
(CGO), pages 257-265, 2010.

M. R. Marty and M. D. Hill. Virtual hierarchies to supposerver
consolidation.ACM SIGARCH Computer Architecture NeV@$:46-56,
June 2007.

M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, avidValero.
FlexDCP: a QoS framework for CMP architectureACM SIGOPS
Operating Systems Review3:86-96, April 2009.

T. Moseley. Adaptive thread scheduling for simultareowiltithreading
processors. Master’s thesis, University of Colorado, 2006

O. Mutlu and T. Moscibroda. Stall-time fair memory accessesluling
for chip multiprocessors. IfProceedings of the Annual International
Symposium on Microarchitecture (MICRQJages 146-160, 2007.

R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: ragimg
performance interference effects for QoS-aware cloud®rateedings
of the European Conference on Computer Systems (Eurqig®s 237—
250, 2010.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fpieuing
memory systems. IRroceedings of the Annual International Symposium
on Microarchitecture (MICRQ)pages 208-222, 2006.

K. Olukotun and L. Hammond. The future of microprocess@seue
September 2005.

K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogidr Fact:
a framework for adaptive contention-aware thread migrations
Proceedings of the International Conference on Computinantiers
(CF), 2011.

P. Ranganathan and N. Jouppi. Enterprise IT trends ampdidations
for architecture research. IRroceedings of the Symposium on High
Performance Computer Architecture (HPC/Agpges 253-256, 2005.
G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundo@e-wide
profiling: A continuous profiling infrastructure for datanters. IEEE
Micro, pages 65-79, 2010.

[45]

[46]

[47]

(48]
[49]

A. Snavely and D. Tullsen. Symbiotic jobscheduling fosimultaneous
multithreading processor. Proceedings of the International Conference
on Architectural Support for Programming Languages and 1@peg

Systems (ASPLOS)ages 234-244, 2000.

L. Tang, J. Mars, and M. L. Soffa. Contentiousness vsisiwity:
improving contention aware runtime systems on multicore agchites.
In Proceedings of the International Workshop on Adaptive-Batiing
Computing Systems for the Exaflop Era (EXADAP&pes 12-21, 2011.
L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. f8of The
impact of memory subsystem resource sharing on datacentdcappl
tions.

Architecture (ISCA)pages 283-294, 2011.
Tilera Corporation. Tile-Gx Processor Family. httwww.tilera.com/

products/processors/TILE-Gkamily/, 2012.
C. Xu, X. Chen, R. Dick, and Z. Mao. Cache contention appliaation

(50]

(51]

In Proceedings of the International Symposium on Computdp2]

performance prediction for multi-core systems. Rroceedings of the
International Symposium on Performance Analysis of Systgoftware
(ISPASS)pages 76 —86, march 2010.

E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing atemdCMP

matter to the performance of contemporary multithreaded pnoegffain

Proceedings of the Symposium on Principles and Practiceacdliel

Programming (PPoPR)pages 203-212, 2010.
X. Zhang, S. Dwarkadas, and K. Shen. Hardware executioottling

for multi-core resource management. Mmoceedings of the USENIX

Annual Technical Conference (USENIX AT@xges 23—-23, 2009.
L. Zhao, R. lyer, R. lllikkal, J. Moses, S. Makineni, aml Newell.

Cachescouts: Fine-grain monitoring of shared caches in Clistiopms.
In Proceedings of the International Conference on Parallelhtectures
and Compilation Techniques (PACPages 339-352, 2007.

