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Abstract. The intrinsic volumes – in 3d up to constants volume, surface
area, integral of mean curvature, and Euler number – are a very useful
set of geometric characteristics. Combining integral and digital geom-
etry we develop a method for efficient simultanous calculation of the
intrinsic volumes of sets observed in binary images. In order to achieve
consistency in the derived intrinsic volumes for both foreground and
background, suitable pairs of discrete connectivities have to be used.
To make this rigorous, the concepts discretization w.r.t. an adjacency
system and complementarity of adjacency systems are introduced.

1 Introduction

With the fast development of new materials like foams or fiber reinforced com-
posites there is a growing need for non-destructive testing and structure char-
acterization. In particular, computer tomography is now able to produce high
quality 3d images of very fine structures, yielding the demand for subsequent
quantitative analysis.

In many applications, geometric characteristics of the whole structure have to
be measured from the given image. A very attractive set of geometric character-
istics are the intrinsic volumes (or quermassintegrals or Minkowski functionals).
In 3d, they are, up to constants, volume, surface area, integral of mean curva-
ture, and Euler number. For fibrous structures, the integral of mean curvature
yields the total fiber length without need to segment individual fibers.

The Crofton formulae boil down computing the intrinsic volumes to com-
puting Euler numbers in lower dimensional intersections. Discretization of these
formulae (see Section 4) combined with an efficient calculation of the Euler num-
bers in the intersections yield a fast algorithm for simultaneously determining
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the intrinsic volumes based on observations in a digital image. The backbone of
the Euler number calculation are thorough investigations of digital connectivity
and consistency from [1,2, 3], summarized in Section 3.

The consistency results for the Euler number of foreground and background
established in [2] carry over to all intrinsic volumes. A remarkable observation in
this context is that the 18-neighborhood can not be used for consistent estimation
of the intrinsic volumes. This counteracts the fact that (18,6) is considered to
be a ’good pair’ in digital topology, see e.g. [4, Chapter 7].

In 3d, the presented method’s algorithmic core consists in a convolution of
the binary image with a 2×2×2 mask, resulting in an 8 bit gray value image [5].
All further steps are based solely on the gray value histogram whose size does
not depend on image size or content. Thus the advantage over other methods for
computing the intrinsic volumes [6,7] are simplicity and speed of the algorithm.
The surface area is measured directly from the binary volume image without
need to approximate the surface. Similar methods are [8] and [9], see Section 6
for a comparison.

2 Section Lattices and Translative Complements

In this paper, we restrict ourselves to the three-dimensional cubic primitive lat-
tice L

3 = aZ
3, a > 0, where Z is the set of integers. For a more general ap-

proach see [10]. Let u1, u2, u3 denote the standard unit vector basis of the three-
dimensional Euclidean space R

3. The closed unit cell of L
3 is the Minkowski

sum C = [0, au1] + [0, au2] + [0, au3]. Its volume is volC = a3. We denote by F0

the set of vertices of a polyhedron, in particular F0(C) = {0, a}3. The set of all
lattice cells covers R

3 =
⋃

x∈L3(C + x).
The Crofton formulae for computing the intrinsic volumes of a set X ⊂ R

3

use section profiles of X on affine subspaces of R
3. In order to obtain a digitized

version, we introduce section lattices of L
3 and their translative complements in

analogy to linear subspaces and their orthogonal complements:

Definition 1. A pair
(
L

k,T L
3−k

)
, k = 1, 2, is called a k-dimensional section

lattice L
k equipped with the translative complement T

L
3−k, if there exists a basis

v1, v2, v3 of L
3 with

(i) L
k = (v1, vk)Zk ,

(ii) T
L

3−k = (vk+1, v3)Z3−k,
(iii) there is an x ∈ F0(Č) with {v1, vk} ⊂ F0(C + x) where Č is the reflection

of C at the origin, Č = −C.

Condition (iii) ensures that integration over ’local knowledge’ on the image data
is possible as needed later. The translative complement T

L
3−k has properties

similar to those of the orthogonal complement of a linear subspace:

1. L
k ∩ T

L
3−k = 0,

2. If x1, x2 ∈ T
L

3−k, x1 �= x2, then (Lk + x1) ∩ (Lk + x2) = ∅,
3. L

3 =
⋃

x∈T L3−k(Lk + x).
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However, the translative complement is not necessarily uniquely determined.
Nevertheless, choosing one of the translative complements arbitrarily turns out
to work for all considerations presented in the following. For L

3, there are 13 sec-
tion lattices L

k
i for both k = 1 and k = 2. This restriction is due to condition (iii).

Table 1. The bases of the 13 section lattices L
k
i of L

3 = Z
3 and a possible translative

complement T
L

k
i for k = 1 (left), and k = 2 (right)

i basis of L
1
i basis of T

L
2
i

1 {u1} {u2, u3}
2 {u2} {u1, u3}
3 {u3} {u1, u2}
4 {u1 + u2} {u1, u3}
5 {−u1 + u2} {u1, u3}
6 {u1 + u3} {u1, u2}
7 {−u1 + u3} {u1, u2}
8 {u2 + u3} {u1, u3}
9 {−u2 + u3} {u1, u3}

10 {−u1 + u2 + u3} {u1, u2}
11 {−u1 + u2 + u3} {u1, u2}
12 {u1 − u2 + u3} {u1, u2}
13 {u1 + u2 − u3} {u1, u2}

i basis of L
2
i basis of T

L
1
i

1 {u1, u2} {u3}
2 {u1, u3} {u2}
3 {u2, u3} {u1}
4 {u1, u2 + u3} {u3}
5 {u1,−u2 + u3} {u3}
6 {u2, u1 + u3} {u3}
7 {u2,−u1 + u3} {u3}
8 {u3, u1 + u2} {u1}
9 {u3,−u1 + u2} {u1}

10 {u1 + u3, u2 + u3} {u3}
11 {−u1 + u3, u2 + u3} {u3}
12 {−u1 + u3,−u2 + u3} {u3}
13 {u1 + u3,−u2 + u3} {u3}

3 Adjacency and Euler Number

The Crofton formulae reduce the measurement of the intrinsic volumes V3−k of
a poly-convex set X to measuring the Euler number χ of section profiles of X
in k-dimensional sections, k = 1, 2. Thus it is essential to know how the Euler
number χ(X ∩ (L + y)) can be measured when instead of X ∩ (L + y) only
the observation X ∩ (Lk + y) on a translated section lattice is available with
L = spanL

k and y ∈ T
L

3−k.
The problem of measuring the Euler number based on images was consid-

ered by several authors [11, 12, 6, 7]. Here we apply the concept of adjacency
systems from [1,2, 3]. Good pairs of adjacencies for foreground and background
allow consistent calculation of the Euler number, see 3.3. It turns out that this
condition differs from the usually demanded Jordan surface theorem as the 18-
neighborhood can not be used for consistent calculation of the Euler number.
Note that for dimensions three and higher, a complete description of good adja-
cencies is not yet known.

3.1 Discretization with Respect to an Adjacency System

Let L
k be a (section) lattice with the basis v1, vk and the unit cell Ck. The

vertices xj =
∑k

i=1 λivi of Ck are indexed with j =
∑k

i=1 2i−1λi, λi ∈ {0, 1}.
Clearly, the unit cell Ck has 2k vertices xj ∈ F0(Ck), j = 0, . . . , 2k − 1. Analo-
gously, we introduce the index of a subset ξ ⊆ F0(Ck). Let 1 denote the indicator
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function of a set, i. e. 1(x ∈ ξ) = 1 if x ∈ ξ and 1(x ∈ ξ) = 0 otherwise. An index

� is assigned to ξ, and we write ξ� if � =
2k−1∑

j=0

2j1(xj ∈ ξ), i. e. � ∈ {0, . . . , ν}

with ν = 22k − 1. Note that ξ0 = ∅, ξν = F0(Ck), and ξν−� = ξν \ ξ�. The ξ� can
be considered as a local pixel configuration of the foreground of a k-dimensional
binary image. Finally, we introduce the convex hulls F� = conv ξ� forming convex
polytopes with F� ⊆ Ck and F0(F�) ⊆ F0(Ck), � = 1, . . . , ν. Let F j(F ) denote
the set of all j-dimensional faces of a convex polytope F . For a set F of convex
polytopes write F j(F) = ∪{F j(F ) : F ∈ F} for the set of all j-faces. Now we
are able to equip the lattice L

k with a (homogeneous) adjacency system defining
the neighborhood of the lattice points.

Definition 2. Let F0 ⊆ {F0, . . . , Fν} be a set of convex polytopes F� = conv ξ�

with the properties

(i) ∅ ∈ F0, C ∈ F0,
(ii) if F ∈ F0 then F i(F ) ⊂ F0 for i = 0, . . . , dim F ,
(iii) if Fi, Fj ∈ F0 and Fi ∪ Fj is convex then Fi ∪ Fj ∈ F0.

Then the system F0 is a local adjacency system and F =
⋃

x∈Lk F0 + x is called
an adjacency system of the lattice L

k.

From condition (i) it follows immediately that F0(F) = L
k. The pair Γ =

(F0(F),F1(F)) consisting of the set F0(F) of nodes and the set F1(F) of edges
is said to be the neighborhood graph of F. Due to homogeneity (Γ + x = Γ ,
x ∈ L

k), all nodes have the same valence – the connectivity of L
k. Note that for

n > 2 there can be two or more adjacency systems having the same neighborhood
graph. In other words, an adjacency system F is not uniquely determined by Γ .

Examples of Adjacency Systems for k = 3:

The 6-adjacency is generated from the unit cell C3, F0 = ∪3
j=0F j(C3).

The 14.1-adjacency is generated from the tessellation of C3 into the 6 tetra-
hedra F139, F141, F163, F177, F197, F209 which are the convex hulls of the
configurations

, , , , , ,

i. e. F0 consists of all j-faces of the tetrahedra, j = 0, . . . , 3, and their convex
unions. The edges of the corresponding neighborhood graph Γ are the edges
of C3, the face diagonals of C3 containing the origin 0, the space diagonal
of C3 containing 0, and all their lattice translations. The degree of Γ is 14.

The 14.2-adjacency is generated from the tetrahedra F43, F141, F147, F169,
F177, and F212 which are the convex hulls of

, , , , , .

The corresponding neighborhood graph Γ differs from that one for 14.1 in
the choice of one face diagonal of C3 not containing 0.
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The 26-adjacency is given by F0 = {F0, . . . , F255}.
Definition 3. The discretization X	F of a compact set X ⊂ R

3 with respect to
a given adjacency system F is defined as the union of all j-faces of the elements
of F for which all the vertices hit X, i. e.

X 	 F = ∪{F ∈ F : F0(F ) ⊆ X}. (1)

This means that a ’brick’ F ∈ F is a subset of the discretization of X if and
only if all vertices of F belong to X . The discretization is obtained from the
observation of the set on the lattice, i.e. X 	 F = (X ∩ L

3) 	 F.

3.2 Euler Number

Since X	F forms a (not necessarily convex) polyhedron on span L
k, the number

of elements of F j(X 	F) is finite. Therefore, the Euler number χ(X 	F) can be
computed via the Euler-Poincaré formula,

χ(X 	 F) =
k∑

j=0

(−1)j #F j(X 	 F).

In order to apply a ’local method’ for measuring the intrinsic volumes we deduce
now a local version. The discretization of a local configuration ξ� = X ∩Ck ∩L

k

of X ∩ L
k is ξ� 	 F = (X 	 F) ∩ Ck = X 	 F0. We compute weights for the edge

correction using κF = min {j : there is a G ∈ F j(Ck) with F ⊆ G}. Now define
the edge-corrected localization χ0 of χ as

χ0(ξ� 	 F) :=
k∑

j=0

(−1)j
∑

F∈Fj(ξ��F)

2κF−k, � = 0, . . . , ν. (2)

Then, additivity and translation invariance of the Euler number and the fact
that X 	 F = (X ∩ L

k) 	 F yield

χ(X 	 F) =
∑

x∈Lk

χ0(Ck ∩ ((X 	 F) − x))

=
∑

x∈Lk

ν∑

�=0

χ0(ξ� 	 F)1(ξ� + x ⊆ X)1(ξν−� + x ⊆ Xc)

=
ν∑

�=0

χ0(ξ� 	 F)
∑

x∈Lk

1(ξ� + x ⊆ X)1(ξν−� + x ⊆ Xc)

︸ ︷︷ ︸

. (3)

=: h�

Thus the Euler number can be written as a scalar product, χ(X	F) = wh, where
the components w� = χ0(ξ� 	 F) of the vector w = (w�) depend on F, but they
are independent of X . On the other hand, the vector h = (h�) is independent of
F; its components h� can be computed very efficiently from ’local information’
about X ∩ L

3.
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3.3 Complementarity

It is well-known that choosing an adjacency system F for the discretization of X
implies an Fc for the discretization of the complementary set Xc. In other words,
if the ’foreground’ X ∩ L

k is connected with respect to F then the ’background’
Xc ∩ L

k must be connected with respect to a complementary adjacency Fc.
The usual criterion for complementarity is the Jordan surface theorem (Jordan-
Brouwer theorem), see e. g. [13]. However, when aiming at computation of the
intrinsic volumes, another criterion seems to be more appropriate: In the con-
tinuous case the consistency relation

χ(X) = (−1)k+1χ
(
Xc

)

holds for all compact, poly-convex and topologically regular sets X ⊂ spanL
k,

see [2]. In the discrete case this leads to:

Definition 4. The pair (F, Fc) is called a pair of complementary adjacency
systems if

χ(X 	 F) = (−1)k+1χ(Xc 	 Fc)

for all compact X ⊂ R
3. An adjacency system F is called self-complementary if

χ(X 	 F) = (−1)k+1χ(Xc 	 F) for all compact X.

For a given adjacency system F, existence of a complementary adjacency system
Fc is not guaranteed. Even worse, until now, there is no constructive way to
find the complementary system Fc. However, most known ’good’ pairs of adja-
cencies w.r.t. Jordan curve or surface theorems are complementary in the sense
of our definition, too. Complementarity of adjacency systems can be checked
the following way: Let h be defined as in (3). Then for hc = (hc

�) with hc
� =∑

x∈Lk 1(ξ� + x ⊆ Xc)1(ξν−� + x ⊆ X) we obtain the relationship h� = hc
ν−�,

� = 0, . . . , ν. Using (3) and Definition 4 one can easily prove

Lemma 1. Let F and Fc be two adjacency systems and let w and wc be the
vectors with the coefficients w� = χ0(ξ� 	F) resp. wc

� = χ0(ξ� 	Fc), � = 0, . . . , ν.
Then (F, Fc) is a pair of complementary adjacency systems if and only if

w� = (−1)k+1wc
ν−�, � = 0, . . . , ν. (4)

Examples for 3d: The 6-adjacency is complementary to the 26-adjacency. The
14.1- and the 14.2-adjacencies are constructed to be self-complementary, see [2,3].
However, the 18-adjacency is not complementary to the 6-adjacency although
they are ’Jordan-Brouwer-complementary’, see e.g. [13]. In order to see this,
define F18 to be one of the 18-adjacencies with the neighborhood graph Γ ′ =
(L3,F1) where F1 consists of all edges and face diagonals of the cells of L

3.
Independent of the choice of F18 we get e. g. χ0( 	 F18) = 1

4 since the space
diagonals of the unit cell do not belong to F18. On the other hand we get for the
complementary configuration χ0( 	F6) = − 3

4 where F6 is defined as in Section
3.1. Thus, for the pair (F18, F6), the necessary condition for complementarity (4)
is violated.
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Remark: The example (F18, F6) shows that complementarity in the sense of
Definition 4 clearly differs from ’Jordan-Brouwer-complementarity’. So far, there
is no general result about the relationship of the two conditions known. Jordan
surface theorems for the two 14-adjacencies are expected to hold and subject of
further research.

4 Intrinsic Volumes of Poly-Convex Sets

Consider a poly-convex set X ⊂ R
3. The intrinsic volumes Vj , j = 0, . . . , 3 are –

up to constant factors – the volume V (X), the surface area S(X) = 2V2(X), the
integral of mean curvature M(X) = πV1(X), [14, p. 210] and the Euler number
χ(X) = V0(X). By means of the Crofton formula, the intrinsic volumes can be
written as

1
2
V3−k(X) =

∫

Lk

∫

⊥L

χ(X ∩ (L + y)) dλ⊥L(y)

︸ ︷︷ ︸

dμ(L), k = 1, 2, (5)

pk
X(L)

where Lk is the set of all k-dimensional linear subspaces of R
3, ⊥L denotes the

orthogonal complement of L ∈ Lk, λ⊥L is the 3−k-dimensional Lebesgue measure
on ⊥L, μ denotes the rotation invariant probability measure on Lk, μ(Lk) = 1.

Remark: Note that the Crofton formula is also the base of stereological formulae
for the intrinsic volumes, see e.g. [15].

Here, the set X is observed in an image (a finite subset of the lattice L
3)

only. This implies that the integrand in the Crofton formulae (5) is known for
only a finite number of elements of Lk, and the translation L + y is possible
for discrete values of y, only. That is, both integrals in (5) are approximated
by sums. Furthermore, the intersection (X − y) ∩ L must be replaced by its
discretization (X − y)	F

k with respect to an adjacency system F
k in L

k where
L = spanL

k, and the translations y are from T
L

3−k instead of ⊥L, where T
L

3−k

is a translative complement according to Definition 1.

4.1 Discretization of the Translative Integral

Let Ck and TC3−k be the unit cells of L
k and T

L
3−k, respectively. Denote by

proj TC3−k the orthogonal projection of TC3−k onto ⊥L. Its volume is
vol proj TC3−k = volC/volCk.

Then – in analogy to the rectangular quadrature rule – the inner integral in
the Crofton formula (5) can be approximated by

pk
X(L) ≈ volC

volCk

∑

y∈T L
3−k

χ((X − y) ∩ L)) ≈ volC
volCk

∑

y∈T L
3−k

χ((X − y) 	 F
k))

=
volC
volCk

∑

x∈L3

χ0(Ck ∩ ((X − x) 	 F
k)) := p̃k

X(L). (6)
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The volume of proj TC3−k and thus p̃k
X(L) do not depend on the particular choice

of T
L

3−k. From the local Euler-Poincaré-Formula (2) it follows that
∑

x∈L3

χ0(Ck ∩ ((X − x) 	 F
k)) = wh (7)

where the vector w corresponds to the adjacency system F
k and h can be com-

puted via

h� =
∑

x∈L3

1(ξ� + x ⊂ X)1(ξν−� + x ⊂ Xc), � = 0, . . . , ν. (8)

Remark: For an effective algorithmic implementation it is useful to use one vector
h̄ with (7) which has to be determined just once for given set X and lattice L

3.
In order to use it for the dimensions k = 1, 2 and the different directions of
sections as well as for the computing the Euler number in 3d according to (3),
the vectors w̄ of weights can be adapted appropriately [5, 10], such that

∑

x∈L3

χ0(C ∩ ((X − x) 	 F
k)) = w̄h̄. (9)

h̄ can be interpreted as the gray value histogram of the gray value image obtained
by convolution of the binary image with a suitable 2 × 2 × 2 mask.

4.2 Discretization of the Integral over All Subspaces

As a consequence of the observation of X on L
3 and condition (iii) in Def-

inition 1 an approximation of pk
X is known for only finitely many subspaces

Li = span L
k
i , i = 1, . . . , 13, see Table 1. Hence, an appropriate approximation

of
∫
Lk pk

X(L) dμ(L) is needed. Applying a simple quadrature we get

∫

Lk

pk
X(L) dμ(L) ≈

∫

Lk

p̃k
X(L) dμ(L) ≈

13∑

i=1

γ
(k)
i p̃k

X(Li) (10)

where γ
(k)
i are the weights corresponding to the applied quadrature rule. The

choice of these weights is not trivial since the L1, . . . , L13 are not uniformly
scattered in Lk and moreover, the measurement values p̃k

X(Li) for the pk
X(Li)

are not of the same precision for different subspaces.
The weights γ

(k)
i can be chosen as follows, see [5]: For k = 1 the unit sphere S2

is divided into Voronöı cells with respect to the point field L1 ∩S2, . . . , L13 ∩S2

containing 26 points. Then the weight γ
(1)
i is the sum of the areas (Hausdorff

measure) of the two Voronöı cells corresponding to the two points of Li ∩ S2

divided by the surface area of S2. For k = 2, the same is done with ⊥Li instead
of Li. The numerical values are γ

(k)
i = 0.045 778 for i = 1, 2, 3; γ

(k)
i = 0.036 981

for i = 4, . . . , 9; γ
(k)
i = 0.035 196 for i = 10, . . . , 13.
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Summarizing formulas (5), (6), and (10) we obtain the approximation
V̂3−k(X) of V3−k(X) as

1
2
V̂3−k(X) =

13∑

i=1

γ
(k)
i

volC
volCk

i

∑

x∈L3

χ0(Ck
i ∩ ((X − x) 	 F

k
i )), k = 1, 2 (11)

where F
k
i is an adjacency system on the respective section lattice L

k
i and Ck

its unit cell. Using this approximation, consistent measurement of the intrinsic
volumes for both foreground and background is possible:

Theorem 1. Let (Fk
i , Fk

c,i) be pairs of complementary adjacency systems on the
lattices L

k
i , i = 1, . . . , 13, where X and Xc are discretized w.r.t. the F

k
i and the

F
k
c,i, respectively. If X is compact then the following consistency relation holds:

V̂n−k(X) = (−1)k+1V̂n−k(Xc), k = 1, 2. (12)

This follows directly from Definition 4.
From (6), the remark in Section 4.1, (7), (8), and (10) it can be seen that the

two intrinsic volumes V1 and V2, and thus the integral of the mean curvature M
and the surface area S, can be computed by scalar products, Ŝ(X) = v(1)h̄ and
M̂(X) = v(2)h̄, respectively, where

v(1) = 4
13∑

i=1

volC
volC1

i

γ
(1)
i w̄

(1)
i , v(2) = 2π

13∑

i=1

volC
volC2

i

γ
(2)
i w̄

(2)
i ,

and w̄
(1)
i , w̄

(2)
i are the vectors corresponding to w̄ (as in (9)) for L

1
i and L

2
i , see

also [5].

5 Congruence Classes of Configurations

In this section, we derive another version of (11) using congruence classes of the
local pixel configurations ξ� w.r.t. rigid motions and counting 1(ξ� + x ⊆ X)
instead of 1(ξ� + x ⊆ X)1(ξc

� + x ⊆ Xc), comparable to [8, 9].
To this end, chose a pair of complementary adjacency systems (F, Fc) for the

lattice L
3. As in Section 4.2 the section lattices L

k
i of L

3 are equipped with
pairs (Fk

i , Fk
c,i) of complementary adjacency systems, i = 1, . . . , 13, k = 1, 2. It

is assumed that the section lattices L
k
i and the adjacency systems F

k
i , F

k
c,i are

chosen such that for each element F of F
k
i ∪F

k
c,i there exists a translation x ∈ L

3

such that F + x ⊂ C. (Note that not necessarily Ck ⊂ C.) Then it is sufficient
to consider local configurations ξ� ⊆ F0(C), � = 0, . . . , 255.

Consider first replacing 1(ξ� ⊂ X)1(ξc
� ⊂ Xc) in (3) and (8), respectively, by

1(ξ� ⊂ X). For each set ξ ⊆ F0(C), ξc = F0(C) \ ξ and a point y ∈ ξc we have

1(ξ ⊂ X, ξc ⊂ Xc) = 1(ξ ⊂ X, ξc \ {y} ⊂ Xc) − 1(ξ ∪ {y} ⊂ X, ξc \ {y} ⊂ Xc).
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Table 2. The coefficients g3j of the 21 congruence classes of the local pixel con-
figurations in 3d-images. The columns of g0j correspond to (F26, F6), (F14.1, F14.1),
(F14.2, F14.2), and (F6, F26), in this order. g1j = g2j = 0 for the congruence classes
11-21. Note that the weights are those in (11). That is, the configurations are counted
if the black dots are foreground and the other vertices are background.

j ηj g0j g1j g2j

0 ξ0 0 0 0 0 0 0

1 ξ1 1 1 1 1 0.751 0.751

2 ξ3 −3 −3 −3 −3 −0.861 −0.275

3 ξ9 0 −3 −3 −6 −1.076 −0.314

4 ξ129 0 −1 −1 −4 −0.314 −0.163

5 ξ11 0 6 6 12 0.549 0

6 ξ131 0 6 4 24 0.628 0

7 ξ41 0 0 2 8 0.325 0

8 ξ15 3 0 0 −3 0 0

9 ξ43 0 0 −2 −8 0 0

10 ξ139 0 −6 −2 −24 0 0

j ηj g0j

11 ξ195 0 0 0 −6

12 ξ105 0 0 0 −2

13 ξ99 0 0 −2 −24

14 ξ31 0 0 0 24

15 ξ151 0 0 0 8

16 ξ167 0 0 0 24

17 ξ63 0 0 0 −12

18 ξ159 0 0 0 −12

19 ξ231 0 0 0 −4

20 ξ127 0 0 0 8

21 ξ255 −1 0 0 −1

Recursion and translation by x yield

h� =
∑

x∈L3

1(ξ� ⊂ X − x, ξ255−� ⊂ X − x) =
255∑

m=0

qm�

∑

x∈L3

1(ξm ⊂ X − x),

� = 0, . . . , 255, where the qm� are integers with q�� = 1 for � = 0, . . . , 255 and
qm� = 0 for m < �. Further,

∑255
m=0 qm� = 0 for � = 0, . . . , 254, as follows from

the case X = C.
Finally, we average the approximations of the intrinsic volumes w.r.t. rotations

and inversions that leave the lattice L
3 invariant, i.e. w.r.t. the symmetry group

{θ1, . . . , θ48} of the octahedron. Let D0, . . . , D21 be the congruence classes of
{ξ0, . . . , ξ255} w.r.t. translations and the octahedral group and let {η0, . . . , η21}
be a system of representatives, η� ∈ D�. Now, using the coefficients

g3−k,j =
2

a3−k

13∑

i=1

γ
(k)
i

volC
volCk

i

255∑

�=0

q̄j� χ0(ξ� 	 F
k
i ), k = 1, 2,
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and

g0j =
255∑

�=0

q̄j� χ0(ξ� 	 F)

with q̄j� =
∑255

m=0 qm�1(ξm ∈ Dj) the approximations of the intrinsic volumes
(11) and (3) can be rewritten as

Ṽ3−k(X) = a3−k
21∑

j=0

1
48

48∑

i=1

∑

x∈L3

1(θ−1
i ηj ⊂ X − x) g3−k,j , k = 1, 2, 3. (13)

The g3−k,j are normalized such that they are independent of the lattice dis-
tance a and Ṽ3−k(X) is the mean of V̂3−k(X) w.r.t. the octahedral group.

For particular cases, the coefficients g3−k,j can easily be computed and be pre-
sented in tables. Table 2 contains the g3j for the pairs (F, Fc) of complementary
adjacency systems from Section 3.1. The coefficients g1j and g2j are computed
for the section lattices listed in Table 1. The 2-adjacency is applied for k = 1 and
the 6-adjacency is applied for k = 2. The weights γ

(k)
i are chosen as described

in 4.2.

6 Discussion

We introduce a new method for measuring the intrinsic volumes based on
weighted local 2 × 2 × 2 configurations. Due to the restriction to these small
configurations, an efficient and simple algorithm can be derived. Given a proper
choice of connectivities for foreground and background, consistency of the results
for foreground and background can be ensured. This is remarkable in particular
for the Euler number, as many other algorithms ignore this.

3d imaging techniques like computed tomography and nano-tomography us-
ing transmission electron micorscopy combined with focused ion beam sample
preparation often produce anisotropic lattices. The results presented in this pa-
per carry over to these cases as well as higher dimensions, see [10]. Note that for
anisotropic lattices, the sets of weights γ

(k)
i for k = 1, 2 from 4.2 do not coincide

anymore.
There are various methods of surface estimation based on weights for local

pixel configurations, see e. g. [8, 9]. In Table 3 the weights b
(L)
j published in [9]

are compared with the weights bj computed from the coefficients g2j given in
Table 2. The surface area weights for complementary representatives ηc

j are the
same as for ηj .

Clearly, the weights differ, for some of the directions considerably. In [10],
multi-grid convergence of the surface area approximation as given by (13) is
shown for an important class of random closed sets (Boolean models). A neces-

sary condition for this is
21∑

j=0

g2jbj = 0, obviously violated by the weights b
(L)
j .
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Table 3. Weights for the surface area depending on local configurations: top: the
weights from [9], bottom: the weights computed from the coefficients g2j given in Table
2. Note that the weights here are to be used with (13). That is, the black dots have to
be foreground while there is no condition on the others.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

ηj

b
(L)
j 0 0.636 0.669 1.272 1.272 0.554 1.305 1.908 0.927 0.421 1.573 1.338 2.544 1.190

bj 0 0.376 0.659 0.646 0.588 0.839 0.768 0.813 0.927 0.914 0.856 0.785 0.874 0.845
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