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Measuring magnetic moments of polydisperse ferrofluids utilizing the inverse Langevin function
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The dipole strength of magnetic particles in a suspension is obtained by a graphical rectification of the

magnetization curves based on the inverse Langevin function. The method yields the arithmetic and the harmonic

mean of the particle distribution. It has an advantage compared to the fitting of magnetization curves to some

appropriate mathematical model: It does not rely on assuming a particular distribution function of the particles.
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I. INTRODUCTION

Ferrofluids, i.e., colloidal suspensions of magnetic parti-

cles, can be characterized by their magnetization curve, which

reveals superparamagnetic behavior [1]. In particular, it is pos-

sible to obtain an estimate of the dipole moment distribution

of the colloidal particles within the fluid from that curve [2],

which provides a convenient kind of magnetogranulometry

[3]. Knowledge of the size distribution is of importance to

understand the dynamic behavior of ferrofluids [4]. The un-

derlying analysis of the magnetization curves is well defined

for the case of small particle concentrations, where the inter-

action of the individual magnetic particles can be neglected.

The examination of the magnetization curves is thus a suitable

tool to get an idea about the particle size distribution within

the fluid, and in particular, it is suitable to resolve changes of

the distribution, i.e., to monitor and characterize the aging of

a colloidal suspension of magnetic particles. The extraction

of the moment distribution function is done by assuming

some continuous distribution function like, e.g., the gamma-

or log-normal distribution with adjustable parameters. The

distribution function is then obtained by fitting the corre-

sponding magnetization curve to the measured one. Some

examples, together with a critical comparison, are presented

in Ref. [5]. Alternatively, a distribution with discrete δ peaks

can be assumed [6,7]. If no knowledge about the particle

distribution function is available, an unprejudiced ansatz can

be made in connection with a regularization scheme. This

procedure yields at least reproducible results for the particle

distribution function, an example is given in Ref. [8]. If the

resulting distribution functions contain negative concentra-

tions, additional mathematical insights are needed in order to

interpret the results.

In the dilute limit, the computed magnetization curve is a

folding of the Langevin function—which describes the mag-

netization of a sufficiently dilute monodisperse solution—

with the assumed particle size distribution function. For this

kind of extraction procedure, the Langevin function has an

unpleasant feature: The folding of different distribution curves

with that function can give very similar, almost identical,

results [9]. The situation is comparable to the method of

extracting the characteristics of a polydisperse particle size

distribution from the analysis of dynamic light scattering

experiments, a prominent example for a mathematically ill-

conditioned problem [10]. The corresponding aspect of the

Langevin function has been discussed in some detail by Potton

et al. [11], who used a maximum entropy method to face the

ensuing complications.

In this paper we demonstrate a method which circumvents

these difficulties by not even trying to obtain the complete

distribution function. It is basically a graphical rectification of

the magnetization curve and reveals important parameters of

the magnetic moment distribution, but does not rely on assum-

ing a particular distribution function of the magnetic particles.

Our analysis of the rectified curves is, however, based on the

limit of small concentrations. For larger concentrations, the

interaction between the magnetic particles lead to additional

complications [5,12] which are not addressed in the present

paper.

To give a motivation for the method, Fig. 1 provides an

example of this rectification method to characterize an aging

process of a ferrofluid. It makes use of data taken from the

literature [6,7] describing the formation of magnetic clusters

in a colloidal suspension of nanocubes. They characterize the

aging of cubic nanoparticles (8 wt %, iron oxide, edge length

9 nm) in solution triggered by a magnetic field (800 kA/m

for 4 h). Figure 1(a) shows magnetization curves of that fluid

for three different times. They were obtained with a vibrating

sample magnetometer described in detail by Friedrich et al.

[13]. The first data set was obtained for a relatively fresh

sample, which had been exposed to a magnetizing field of

about 800 kA/m for 4 h. The magnetization curves in Fig. 1(a)

show an increasing slope with the time elapsed. This aging

process is interpreted as the manifestation of the clustering

of the magnetic particles. Some features of the change of

these curves can be seen more clearly in Fig. 1(b). Here the

appropriately scaled slope of the inverse Langevin function

L−1 of the magnetization data has been plotted. The ensuing

curves yield the arithmetic mean of the dipole distribution at

its center, and the harmonic mean as the asymptotic value for

large polarizing fields.
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FIG. 1. Aging of a nanocube fluid. (a) The magnetization of a

freshly prepared ferrofluid is presented together with one obtained

two (six) days later. During the measurements, the magnetizing field

strength went from about 750 to −750 kA/m and back within a

period of 108 min. The measurements are presented as polygonal

lines, every 30th data point is shown to label them. (b) The curves

shown in the lower part are derived from the magnetization curves

and give information about the magnetic moments of the suspended

particles. The maximum corresponds to the arithmetic mean ma, and

the asymptotic value for large polarizing fields to the harmonic mean

mh. The corresponding estimator for the coefficient of variation cv is

listed in the lower legend.

II. METHOD

To explain this, we illustrate the data processing by arti-

ficial magnetization curves in Fig. 2. A monodisperse dilute

solution of particles with a magnetic moment m is expected to

be described by a magnetization

M = MsL

(

mB

kBT

)

, with L(x) = coth(x) −
1

x
.

In Fig. 2(a) the abbreviations

M∗ = M/Ms, m∗ = m/µB, and B∗ = B
µB

kBT

are used. It displays the magnetization of two monodisperse

fluids with m∗ = 1 and m∗ = 5, respectively, and one for a

bidisperse 30%/70% mixture. All three curves show a fairly

similar shape. To bring out the difference between these

curves more clearly, it helps to take the inverse Langevin func-

tion L−1(M∗) as shown in Fig. 2(b). The two monodisperse

curves reveal a constant slope—in this sense the magneti-

zation curve is rectified—while that of the mixture appears

FIG. 2. The data processing demonstrated by three artificial mag-

netization curves. (a) The magnetization curves of two monodisperse

(dashed and dotted lines) and a bidisperse solution. The first pair

of numbers in the legend represents the relative fraction a1 and

a2, and the second one the corresponding magnetic moments m1

and m2. (b) The inverse Langevin function L−1 of the relative

magnetization. The straight dashed and dotted lines correspond to

the two monodisperse distributions, the slightly curved solid line to

the bidisperse distribution. (c) The chord slope of the rectified curves.

The monodisperse distributions lead to constant values (dashed and

dotted lines) which represent the strengths of the magnetic dipole

moment. The bidisperse curve yields the arithmetic mean of the two

contributing moments as its maximum value, and the harmonic mean

as the asymptotic value for large polarizing fields. (d) The tangential

slope of the L−1(M∗) curves.

slightly more complicated. To bring out these differences

quantitatively, both the chord slope m∗
ch = L−1

B∗ or the tangen-

tial slope m∗
ta = dL−1

dB∗ can be used to obtain a value for what

can be called an “effective magnetic moment.” m∗
ch is shown

in Fig. 2(c) and the tangential slope m∗
ta in Fig. 2(d). In both

cases, the monodisperse curve yields the constant value m∗,

which is proportional to the magnetic moment of the particles.

The more interesting part is the interpretation of the non-

constant curves obtained for the bidisperse mixture. Both
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methods yield the same maximum in the center, i.e., for the

magnetizing field B∗ = 0. Near this point L(B∗m∗) ≈ B∗m∗

3
,

thus the derivative represents the appropriately weighted sum

of the two slopes of the monodisperse magnetization curves,

i.e., the arithmetic mean m∗
a = 〈m∗

i 〉 of the magnetic moments

involved. Its value is 0.3m1 + 0.7m2 = 3.8 for this particular

example.

Both methods also yield the same results for large values

of B∗. For the interpretation of this value, one has to recall

that the Langevin function converges to its asymptotic value

1, like 1/(B∗m∗), which means that the slope is inversely

proportional to the magnetic moment. Consequently, the slope

for the bidisperse curve can be obtained by the weighted sum

of the inverse moments, the harmonic mean m∗
h = 〈1/m∗

i 〉
−1.

It is (0.3/m1 + 0.7/m2)−1 ≈ 2.27 for this example.

Whether the chord slope or the tangential slope should be

used to obtain the effective magnetic moment for real data

is a practical issue. When dealing with a poor signal/noise

ratio, data obtained from the chord slope have the advantage

to show less scatter. On the other hand, the effective mag-

netic moments obtained from the tangential slope have the

advantage to converge faster towards the asymptotic limit,

which is important when the scaled applied field B∗ is still

far from the saturation field. A practical value for judging the

strength of the polarizing field could be given by that field

where the magnetization reaches 90% of Ms. The value for

the corresponding polarizing field is then given by L(m∗B∗) =
0.9, yielding B∗ = L−1(0.9)/m∗ ≈ 10.0/m∗.

The difference between the arithmetic and the harmonic

mean values, ma − mh, can be taken as a direct order pa-

rameter for the amount of polydispersity: It is zero for a

monodisperse distribution and increases with the width of the

distribution. In fact, this difference divided by the harmonic

mean provides an estimator for the relative standard deviation

(RSD, also called coefficient of variation cv). More precisely,

we obtain the coefficient of variation as cv =
√

ma−mh

mh
. Addi-

tionally, the square root of their product yields an estimator for

the geometric mean mg = √
mamh. However, these last two

statements are only correct for certain distribution functions of

the magnetic moment, including the log-normal distribution,

which seems to be the most prominent one assumed within

the granulometric analysis of magnetization curves.

To illustrate the procedure with more realistic distributions

than the artificial bidisperse one used in Fig. 2, we compare

this bidisperse distribution with a suitably chosen log-normal

and gamma distribution [5]. More precisely, in both cases

we chose that distribution which has the same arithmetic

and harmonic mean as the bidisperse one. This is possible

because both functions contain two adjustable parameters.

The comparison is presented in Fig. 3. The inset of Fig. 3(a)

shows the distribution function for the three cases. The con-

tinuous functions are the log-normal and gamma distribution,

while the bidisperse distribution function is basically zero,

except for the two δ peaks. The corresponding cumulative

distribution functions for the three examples are shown in the

inset of Fig. 3(b).

Note that in spite of the drastically different distribution

functions, the corresponding magnetization curves displayed

in Fig. 3(a) are almost nondistinguishable. This is an exem-

FIG. 3. A comparison between magnetization curves calculated

for the bidisperse distribution with two δ peaks introduced in the

example in Fig. 2 (dashed gray line), the log-normal distribution

(solid red line), and the γ distribution (dotted green line). The

parameters are chosen such that all three distributions have the

same values of the harmonic and the arithmetic mean. Therefore, all

curves in (b) start for B∗ = 0 at the same value of 3.8 and approach

the value of 2.27 for high field strength. The inset (a) shows the

partial and inset (b) the cumulative distribution functions of the three

distributions.

plary illustration of the ill-conditioned nature of magnetogran-

ulometry mentioned in the Introduction.

Taking the derivative of the inverse dL−1(M∗)/dB∗ helps

to bring out the differences in the three magnetization curves

more clearly, as shown in Fig. 3(b). More importantly, this

effective magnetic moment m∗
ta reveals the correct arithmetic

and harmonic mean for all three distribution functions, as

expected.

III. EXPERIMENTAL RESULTS

Finally, we would like to illustrate the method by analyzing

magnetization curves of two additional samples of ferroflu-

ids. The one measured for commercially available EMG909

(EMG909, Lot H030308A, Ferrotec) is presented in Fig. 4(a).

The “polarizing field” used for the horizontal axis is the field

acting on a magnetic particle. We used the lowest order to

determine that field, namely the Weiss correction He = Hi +
M/3, see, e.g., Ref. [5] for a discussion of this correction. Note

that in our case the correction term M/3 exactly cancels out

the demagnetization factor provided by our spherical sample
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FIG. 4. The method illustrated by the the commercially available

ferrofluid EMG909. (a) The measured magnetization curve (red dots,

only every 10th data point is shown) is fitted by a superposition of

four Langevin functions (solid blue line) indicated by the Mk given

in kA m−1. The corresponding βk yields the magnetic moment mk

provided in kµB. The resulting saturation magnetization Ms and the

initial susceptibility χ0 are listed as well. (b) The effective magnetic

moment mch obtained from the data (red dots) and the fitting function

(solid blue line). The cv obtained from the arithmetic and harmonic

mean of the magnetic moments is listed, and the blue arrow points

to the value of the corresponding geometric mean. (c) The effective

magnetic moment mta obtained from the data (red dots) and the fitting

function (solid blue line)

holder, leading to He = H0, and Be = B0. Thus, in our case the

polarizing field Be turns out to be the one measured far from

our magnetized sphere B0. Note that the resulting plot—with

the effective Be field used for the x axis—is slightly different

from the more common practice, where the inner magnetic

field Hi is used for the horizontal axis of the magnetization

curve. For the latter kind of plot, however, taking L−1(M/Ms)

would not produce a straight line even for a monodisperse

ferrofluid. This would make the rectification method proposed

here less powerful.

The measured magnetization data can well be represented

by a superposition of four Langevin functions

M(Be) =
4

∑

k=1

MkL

(

Be

βk

)

, with
1

βk

=
mk

kBT
.

This M(Be) resulting from this “quad-disperse” distribution

function provides a convenient fitting curve for the magne-

tization data, with the Mk and βk as fit parameters, and is

shown as a solid line in the upper part. It serves primarily

FIG. 5. The method illustrated by a CoFe2O4 ferrofluid. The

features are the same as explained in Fig. 4, and in addition, a fit

to a γ distribution (solid green line) shown in the inset has been

performed here. While the differences of the two fitting functions

in (a) are barely visible, (b) and (c) bring out these tiny differences

more clearly. The geometric mean of both fits is indicated by the

arrows in (b).

for giving a smooth and analytic representation of the data. In

addition, it can be used to calculate the so called Langevin

susceptibility χL as the slope of the magnetization curve

in its origin. From χL, the initial susceptibility χ0 = dM
dHi

is

obtained as χ0 = χL

1−χL/3
, which is provided in the figure as

well. While this number is an important characteristic number

for ferrofluids in general, its value is not needed for the further

analysis presented here, but it helps to label the fluid and to

judge its concentration. The saturation magnetization can be

obtained from the fitting parameters as Ms =
∑4

k=1 Mk .

Figure 4(b) shows the effective magnetic moment mch

obtained from the chord slope. The red dots are obtained

directly from the data. The solid blue line stems from the fit

to the magnetization curve. Both numbers agree fairly well.

Note that there is a small asymmetry with respect to the y axis

within the data, which the ansatz for the quad-disperse fitting

function cannot produce.

These small differences between the data and the fitted

curve can be seen more clearly in Fig. 4(c), where the ef-

fective magnetic moment mta is shown. But even here the

signal/noise ratio seems good enough to extract the numbers

for ma and mh, and the corresponding guesses for the geomet-

ric mean mg and the relative standard deviation cv.

For demonstrating the method also with a different chem-

ical species, we use a cobalt-ferrite-based ferrofluid. It

was synthesized in a one-step process with a subsequent
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stabilization step after a modified synthesis procedure of

Nappini et al. [14]. For the synthesis both iron and cobalt salts

were precipitated in a boiling solution of sodium hydroxide.

The particles were magnetically separated by holding a per-

manent magnet (with a surface field of about 1 T and a diam-

eter of about 3 cm) onto the reaction vessel for a few minutes

and rinsed with water. This step was repeated until a neutral

pH value was reached, typically about three times, then the

particles were stabilized in a sodium citrate solution. The

resulting magnetization curve is shown in Fig. 5(a). It can also

fairly precisely be fitted by assuming a quad-disperse solution,

as shown by the blue line. In addition, we have also fitted a γ

distribution here, as advocated in [5]. The resulting distribu-

tion is shown in the inset. The corresponding magnetization

shown by the green line fits the data almost as good as the

quad-disperse one, which is just considered as another mani-

festation of the ill-posed character of this inverse problem.

Displaying the resulting magnetic moments in Figs. 5(b)

and 5(c) brings out the differences between the two mag-

netization curves more clearly. It also reveals that the quad-

disperse fit is closer to the data, which is no surprise, because

that fit contains eight fitting parameters, while the γ distri-

bution only has two. With a relative standard deviation of

cv = 2.2, the distribution function of the CoFe2O4 ferrofluid

is wider compared to the EMG909 fluid presented in Fig. 4.

That might be a manifestation of the fact that our fluid was rel-

atively freshly prepared, and no special measures were taken

in order to obtain a more monodisperse solution. On the other

hand, special measures to obtain monodispersity were taken

for the fluid analyzed in Fig. 1, which contained originally

fairly monodisperse nanocubes. Here the monotonic increase

of cv with time is interpreted as a result of the formation of

supercubes [6,7].

IV. CONCLUSION AND OUTLOOK

In summary, we have demonstrated the use of a graphi-

cal rectification method revealing the characteristic magnetic

moments of the particles in a ferrofluid from their magneti-

zation curves. In particular, the arithmetic and the harmonic

mean of the moments ma and mh can be read off from a

plot of the effective magnetic moment. The method works

without the need to assume a specific distribution function,

thus circumventing the difficulties stemming from an ill-

posed problem for the interpretation of those functions. As

secondary results, the method yields a guess for the relative

standard deviation cv and the geometric mean mg, although

that guess can strictly be justified only for certain distributions

including the log-normal one. The method applied here can

be justified for dilute solutions, higher order corrections for

larger concentrations [5,12] have not been taken into account.

A corresponding graphical method for the examination of

light scattering data in terms of granulometric information is

currently under investigation.

The open source Python code for the graphical display of

the magnetization curves together with the ensuing magnetic

moments is still under construction, but we are happy to

provide the current version on request.
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