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Abstract

Demand formangrove forest resources has led to a steady decline inmangrove area over the past

century. Land conversions in the formof agriculture, aquaculture and urbanization account formuch

of the deforestation ofmangrovewetlands. However, natural processes at the transition zone between

land and ocean can also rapidly changemangrove spread. In this study, we applied a robustfield-based

carbon inventory and new structural and temporal remote sensing techniques to quantify the

magnitude and change ofmangrove carbon stocks inmajor deltas across Africa andAsia. From

2000–2016, approximately 1.6% (12 270 ha) of the totalmangrove areawithin these deltas

disappeared, primarily through erosion and conversion to agriculture. However, the rapid expansion

ofmangroves in some regions during this same period resulted in new forests that were taller and

more carbon-dense than the deforested areas. Because of the rapid vertical growth rates and horizontal

expansion, newmangrove forests were able to offset the total carbon losses of 5 332 843MgCby 44%.

Each hectare of newmangrove forest accounted for∼84% to∼160%of the aboveground carbon for

each hectare ofmangrove forest lost, regardless of the net change inmangrove area. Our study

highlights the significance of the natural dynamics of erosion and sedimentation on carbon loss and

sequestration potential formangroves over time. Areas of naturally regeneratingmangroves will have

amuch larger carbon sequestration potential if the rate ofmangrove deforestation of taller forests is

curbed.

1. Introduction

Forest growth and reforestation rates are crucial

information for sustainable forest management prac-

tices and informed decision-making for restoration

projects (Diaz-Balteiro and Romero 2008). There have

been an increasing number of mangrove forest

restoration projects because of the ecosystem’s unique

ability to sequester large amounts of carbon. Globally,

it has the potential to stock over 1000 Mg ha−1 of

carbon (Donato et al 2011), a figure almost unmatched

by other ecosystems (Pendleton et al 2012). Although

mangrove forests account for only 2%–3% of the

global forested surface (Giri et al 2011), they provide

many ecosystem benefits that have attained values in

the billions of U.S. dollars (Jerath et al 2016).

Unfortunately, information about the decline and

expansion of mangrove areas is extremely limited, and

this is combined with uncertainty and biases in

estimating total ecosystem carbon stocks. Mangrove

deforestation has recently been estimated at between

0.16%–0.39% per year at regional and global scales.

However, the underlying datasets used capture neither

the dynamic changes caused by natural processes and

human disturbances, nor the local scale variability in

canopy structure and vegetation biomass (Richards

and Friess 2015, Hamilton and Casey 2016, Hamilton

and Friess 2018) for accurate accounting of carbon and

payments for ecosystem services (PES). Most recently,

the dynamics of mangrove gains and losses have been
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captured using globally available radar imagery

(Thomas et al 2017), but this still does not provide the

fine-scale spatial and structural details needed for the

valuing of different mangrove forest types for local

management and restoration efforts (Ewel et al 1998).

The major cause of mangrove decline has been

deforestation through conversion to aquaculture and

agriculture (Richards and Friess 2015, Thomas et al

2017). However, natural erosional and depositional

processes such as aggradation, transgression, and

regression play a pivotal, and largely unreported, role

in changing the extent of mangrove ecosystems

(Fromard et al 2004, Thomas et al 2017). The global

forest change dataset has been an extremely useful tool

for determining the changes for terrestrial forests

(Hansen et al 2013), particularly whenmeasuring large

drivers of change, but it can be fundamentally flawed

when used for inundated forests, such as mangroves.

The global forest change datasets screen the remote

sensing imagery based on ‘cloud/shadow/water pix-

els’ (Hansen et al 2013). Therefore, it identifies only

those forested regions that do not exhibit flooding, or

where the forest canopy is sufficiently dense enough to

obscure underlying water. Because of the screening pro-

cess, the global forest change dataset does not perform

well inmany wetland forests (i.e. mangroves), and com-

munities looking to develop PES should be aware of this

when using these global data to estimate gross and net

mangrove deforestation, and the subsequent upscaling

of global carbon stock data or latitude- or climate-based

models (Richards and Friess 2015, Hamilton and

Casey 2016,Hamilton andFriess 2018).

The potential stock and flux of total ecosystem car-

bon has been difficult to measure because of the vari-

ety of mangrove stock estimates collected in varying

environmental settings. One particular drawback,

which has been acknowledged in aggregating field

measurements for neotropicalmangrove biomass esti-

mates to the existing mangrove field datasets, is the

often biased selection of sites, due to logistical con-

straints (Rovai et al 2016). In some areas, mangrove

carbon density can reachmean values in excess of 1000

Mg C ha−1 (Donato et al 2011, Pendleton et al 2012).

However, many of these sites are selected based on

ease of access, location, or other preferential factors.

Although mangrove carbon can be extremely high in

certain geographic settings, this is not the case every-

where, as has been shown by case studies inMozambi-

que and West Africa (Stringer et al 2015, Kauffman

and Bhomia 2017). Extrapolating high local carbon

values can skew regional and global estimates. If PES is

to facilitate mangrove restoration and deter land cover

changes as a climate change mitigation strategy or

other carbon inventory protocol (Siikamäki et al 2012,

Alongi 2015), unbiased field inventories must be pre-

pared and local scale height variability must be

measured.

Mangrove canopy height is a strong predictor of

biomass at the field scale (Mizanur Rahman et al 2014,

Stringer et al 2015, Trettin et al 2016), and can be read-

ily adapted to regional, continental, and global scales

(Simard et al 2006, Fatoyinbo and Simard 2012,

Shapiro et al 2015, Feliciano et al 2017). Remotely

sensed canopy height has been incorporated into

mangrove field inventories in East and West Africa

(Stringer et al 2015, Shapiro et al 2015, Fatoyinbo and

Simard 2012). Canopy height information provides an

unbiased, readily accessible, and spatially explicit data-

set (Fatoyinbo and Simard 2012) that has been used to

stratify the forest inventory area into discrete height

classes and, ultimately, carbon stocks. Canopy height

measured from space has an error of ∼2 m (Lee and

Fatoyinbo 2015, Lagomasino et al 2015, 2016b),

but because of data access has not been used in recent

globalmangrove biomass calculations (Hutchison et al

2014, Rovai et al 2016). The height-based inventory

approach has achieved the precision of a 95% con-

fidence interval, equal to 6% of the mangrove carbon

stock estimate and well within the REDD+guidelines

(Stringer et al 2015). Canopy height data provides local

scale information that complements PES, but it can also

contribute to information on regional and global chan-

ges to current and futuremangrove forest resources.

The uncertainties in mangrove land cover change

and changes in carbon stocks can be addressed using a

combination of remote sensing and unbiased field

inventory datasets. Here, we applied this approach

to four major delta regions: the Rufiji (Tanzania),

Zambezi (Mozambique), Ganges (Bangladesh), and

Mekong (Vietnam). These river deltas present a range

of human impact factors, ranging from heavily used

in the Rufiji to completely protected (Ganges and

Zambezi) and restored (Mekong) forests. Here, we

present estimates of vertical growth and aboveground

and total carbon stocks through a combination of ver-

tical, spatial, and temporal changes in mangrove eco-

systems. This approach provides a precise estimate of

carbon loss and productivity in dynamic mangrove

ecosystems.

2.Methods

2.1.Mangrove extent

The data used for this analysis consisted of a 30 m

resolution Landsat 8 Operational Land Imager (OLI),

Sentinel-1C, and Shuttle Radar Topography Mission

(SRTM) elevation data. Landsat data were prepro-

cessed, which included image resampling, conversion

to top of atmosphere reflectance, cloud and shadow

removal and quality assessment, and image normal-

ization. Landsat 8 OLI bands were used as inputs for

the classification, as well as the normalized band ratios

of Normalized Difference Vegetation Index (NDVI),

normalized water index, normalized burn ratio, and
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others outlined in Green et al (1997). Additionally,

annualmaximum ‘VV’ and ‘VH’ bands from Sentinel-

1C and elevation data from SRTM were resampled to

the Landsat projection and included in the classifica-

tion. Data from Landsat provide information on

vegetation function and the radar imagery provides

information on forest structure. Areas where the

SRTM elevation was over 50 m and areas where the

annual maximum NDVI value were less than zero

were masked out prior to analysis, to improve the

classification. By doing this, areas where the elevation

was too high and areas of permanent water bodies

were removed, respectively. A K-means clustering

algorithm was used to generate 60 land cover types

using 10 000 random sample points within the area of

analysis. The automatic detection of the land cover

types was then merged into mangrove and non-

mangrove classes using visual interpretation of the

annual 2016 Landsat composite. The predominant

band combination used for the visual interpretation

was near infrared (1.55–1.75 μm for Landsat 5 the-

matic mapper (TM), 0.85–0.88 μm for OLI), short-

wave infrared (SWIR) I (1.55–1.75 μm for TM,

1.57–1.65 μm for OLI), and SWIR II (2.08–2.35 μm

for TM, 2.11–2.29 μm for OLI), loaded into the red-

green-blue channels, as this combination allowed us to

discriminate forested areas easily. Google Earth ima-

gery was used extensively as an additional reference for

the 2016 classification.

2.2.Mangrove land cover change

ANDVI anomaly was calculated for each study region,

using the Landsat image archives. The reference period

covered Landsat 5TM images from January 1995 to

December 2000. Images were preprocessed, following

similar criteria to the mangrove extent. An average

reference NDVI was generated from the sum of

individual pixels across all the images and divided by

the total number of images used in the summation.

The reference NDVI for the period 1995–2000 was

then subtracted from each of the images in the

observation period, which was from January 2000–

December 2016. The anomaly value from each over-

lapping pixel was then summed across all the images in

the collection to determine an overall cumulative

anomaly. The cumulative anomaly values were also

normalized for the total number of images with non-

null values for individual pixels. Change thresholds on

the anomalous NDVI values were considered to be

those which fell outside the 5th and 95th percentiles

over the study region. Values greater than the 95th

percentile were considered areas of forested gain, while

values less than the 5th percentile were characterized

as forested areas that were lost. The percentiles were

selected based on the manual fine-tuning of cumula-

tive NDVI anomalies across all four study sites. We

also applied conditional statements using the reference

NDVI map and a mean NDVI for a two-year period

from 2015–2016. For a pixel to be considered a loss, it

had to have a NDVI anomaly value less than the 5th

percentile, and occur within the 2000 extent map (Giri

et al 2011), and have a mean reference NDVI value

greater than 0.3. For a pixel to be considered a gain, it

had to have a NDVI anomaly value greater than the

95th percentile, and occur within the 2016 mangrove

extent as mapped for this study, and have a mean

2015–16NDVI value equal to or greater than 0.35. The

frequency distribution of the NDVI anomaly values

can be seen in supplemental figure 1 (available online

at stacks.iop.org/ERL/14/025002/mmedia).

2.3. Canopy heightmodels

The TerraSAR-X add-on for Digital Elevation Mea-

surements (TanDEM-X) mission, led by the German

Space Agency (DLR), is a pair of similar Synthetic

Aperture Radar (SAR) satellite instruments that enable

single-pass interferometry to generate a consistent

global digital elevation model (DEM) (Krieger et al

2007). The simultaneous acquisition of data from the

two satellites that comprise the TDX mission greatly

reduces temporal decorrelation, allowing for success-

ful Pol-InSAR forest parameter estimation (Lee et al

2013). Single- and dual-pol spaceborne TDXdata have

been well-proven in estimating quantitative forest

parameters over tropical, temperate, and boreal forest

sites by means of the Random Volume over Ground

(RVoG) model (Kugler et al 2014). The X-band

wavelength may be expected to have less sensitivity for

a vertical forest structure, but the single-pol TDX

inversion can be applied to the forest height, if an

external digital terrain model (DTM) is available for

the site. To overcome these limitations, Lee and

Fatoyinbo (Lee and Fatoyinbo 2015) suggested esti-

mating the ground (water level) phase directly from

the TDX interferogram, with the assumption that the

underlying topography over mangroves is negligible

and flat as a result of the unique environment in which

mangroves grow, which is low-lying coastal areas. This

assumption reduces one of the unknown variables in

the RVoG model, resulting in a balanced inversion.

The inversion approach has been successfully proven

and has generated mangrove canopy height maps at

12 m spatial resolution over the Zambezi delta and

parts of the Yucatan peninsula (Lee and Fatoyinbo

2015) and the Florida Everglades (Feliciano et al 2017),

demonstrating the possibility to use TDX acquisitions

tomapmangrove height globally.

We used TDX-based canopy height models

(CHMs) from the Zambezi delta (Lee and Fatoyinbo

2015, Lagomasino et al 2016a, Lagomasino et al

2016b), Rufiji delta (Lagomasino et al 2017) and the

Ganges delta. In addition, a new canopy height model

was generated over the Can Gio Reserve (Mekong

delta) using the methodology previously mentioned.

For more information on TDX CHM processing, see

(Lee and Fatoyinbo 2015). We used the TDXCHMs to
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estimate the current mangrove canopy height, as the

TDX images were collected between 2013 and 2014.

We used SRTM elevation data to determine what the

canopy height was in 2000 at each of the four sites. The

gridded elevation data from SRTM was converted to

canopy height using conversion models from

Fatoyinbo and Simard (Fatoyinbo and Simard 2012).

The spatial resolution of the TDX CHMs are

12 m×12 m while the SRTM spatial resolution is

3om×30 m. There are also wavelength differences

between the radar X-band of TDX and the C-band of

SRTM. Both these canopy models were corrected to

reflect the maximum canopy height and the TDX was

reprojected to the SRTM resolution. This provided the

means to make the two datasets directly comparable,

to assess forest structure.

2.4.Mangrove biomass

We determined mangrove biomass using a canopy

height stratification approach similar to that outlined by

Shapiro et al (Shapiro et al 2015). For each of the study

sites, the Zambezi, Rufiji, Ganges, and Mekong, we

stratified both the contemporary TDXCHM (2014) and

past SRTM CHM (2000) into similar height classes, as

outlined in Stringer et al (Stringer et al 2015) and Shapiro

et al (Shapiro et al 2015). Based on this height-based

stratified sampling approach, the aboveground and total

carbon stocks for each canopy height class were deter-

mined with a 95% confidence interval, equal to±6% of

the total. See supplemental table 3 for aboveground and

total carbonvalues by canopyheight class.

For this study, we remapped canopy height classes

to reflect the aboveground biomass carbon (AGC),

which accounted for overstory, understory, ground

vegetation, downed woody debris, litter, and standing

dead trees. Total Ecosystem Carbon (TEC), which

accounted for AGC, belowground biomass, and soil

carbon, was mapped in a similar approach. In order to

estimate the losses and gains of both AGC and TEC, we

overlaid the land cover change maps on the carbon

stockmaps. The 2000 canopy height and biomassmaps

were masked using the mangrove loss, while the 2014

canopy height map was masked using the 2016 man-

grove gain mask. When remapping the canopy height

classes to carbon density, in the areas where the canopy

elevationwas outside the canopy class criteria, we added

a Class 0 and a Class 6 where these values mirror the

carbon values of the closest class values, Class 1 and

Class 5, respectively (see supplemental table 3).

For this approach we assumed that the carbon loss

or gain, as estimated by the 16-year land cover change

modeling, was based on the presence or absence of the

mangrove forest on a pixel-by-pixel basis. For any gain

inmangrove extent, it was assumed that the entire ver-

tical column, of soil (2 m depth), belowground, and

aboveground carbon, was accumulated. Conversely,

for any loss, the entire vertical column of carbon

was lost.

2.5. Comparisonwith global forest changemap

We compared the mangrove forest change measured

using the NDVI anomaly against the Global Forest

Change (GFC) maps from 2000–2016 v1.5 (Hansen

et al 2013). Mapped forest changes in the GFC were

masked to include only the mangrove extent in 2000

(Giri et al 2011) or the 2016 extent map (this study).

The number of pixels of either mangrove gain or loss

was calculated for each change map dataset. Over-

lapping pixels between the two mangrove change

models were given a value of 2 while all non-over-

lapping valueswere given a value of 1.

3. Results

Between 2000–2016 there was a total loss of 12 270 ha

ofmangrove forests among the four sites, representing

1.6%of the totalmangrove area determined in 2000 by

Giri et al (2011) (table 1). The decline in mangrove

extent was offset by a gain of 5444 ha of new forest,

resulting in a net loss of 6826 ha, or 0.9% of the

originalmangrove area. TheGanges had the largest net

loss, of ∼6594 ha, followed by the Mekong with

1747 ha lost. All four sites exhibited a net loss of

mangrove area (table 1). Mangrove loss primarily

occurred along the landward boundary of the man-

grove forests where freshwater input was high, along

eroding creek banks, or at the ocean margin where

wave energy was high (figures 1(A)–(D)). Mangrove

gains generally occurred along prograding point bars

Table 1.Total changes (gain, loss, and net) inmangrove
extent, total aboveground biomass carbon (AGC) and total
ecosystem carbon (TEC) for each of the four delta sites.

LandArea (ha)

Gain Loss Net

Rufiji 587.6 1436.9 −849.3

Zambezi 1280.7 2491.4 −1210.7

Ganges 2343.7 6594.2 −4250.5

Mekong 1231.7 1747.3 −515.5

TOTAL 5443.7 12 269.8 −6826.1

Total AGC (Mg)

Gain Loss Net

Rufiji 99 532 261 664 −162 132

Zambezi 175 360 279 951 −104 590

Ganges 219 671 735 275 −515 603

Mekong 164 936 145 033 19 903

TOTAL 659 501 1 421 924 −762 423

Total TEC (Mg)

Gain Loss Net

Rufiji 293 416 749 874 −456 457

Zambezi 588 922 1 074 424 −485 502

Ganges 943 570 2 834 829 −1 891 258

Mekong 560 774 673 714 −112 940

TOTAL 2 386 684 5 332 843 −2 946 159
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as well as on emerging mudflats (figures 1(C) & (D)).

In some regions, mangrove forests expanded over a

1 km distance during the 16-year study period

(figure 1(C)).

The areas of mangrove loss and gain provide

important information to understand the dynamic

changes of these ecosystems. By combining our esti-

mates of canopy growth and loss, we were able tomea-

sure the change in the three-dimensional (3D)

structure of the mangrove forest. Across all four study

sites, the canopy heights of newly established forests

(i.e. forests established between 2000–2016) were on

average taller than the forests that were removed or

eroded in the same period (supplemental table 1). The

expansion of mangrove forests at the Mekong site

resulted in a mean canopy height that was taller than

what was lost (supplemental table 1). The mean

canopy heights lost and gained at the Rufiji and

Zambezi deltas were nearly equal, but of varying

heights. The Rufiji lost a mean canopy of 13.4 m but

gained a canopy of 12.1 m. For the Zambezi, there was

a loss of 8.0 m and a gain of 8.9 m. Conversely, the

Mekong site had newly established forests that were

taller than the areas that were lost, at 8.5 m to 4.9 m,

respectively. Moreover, the growth of newly estab-

lished mangroves had much higher variability (stan-

dard deviations ranging from 3.6 to 8.3 m) than the

forested areas that were lost (standard deviations ran-

ging from2.0–4.3 m) (supplemental table 1).

Combining both the change in mangrove extent

and the change in the height of the mangrove cano-

pies, we were able to estimate the gains and losses of

both aboveground biomass carbon (AGC) and total

ecosystem carbon (TEC) during 2000–16 using carbon

values calculated in Stringer et al (Stringer et al 2015)

(table 1). The Ganges site had the largest net area defi-

cit (−6594.2 ha)which corresponded to the largest net

total AGC loss of 515 603 Mg and TEC loss of 1

891 258Mg.Mangrove loss was over four times higher

at the Ganges site than at the Rufiji, but taller forests

were removed in the Rufiji delta, resulting in a dis-

proportionate loss of AGC based on area alone. The

Mekong site showed a net gain of 19 903 Mg of AGC

but still had a net loss of 112 940 Mg of TEC from the

mangrove forest, a result of the combination of a net

loss of area and the replacement of taller mangrove

forests (table 1,figure 2).

Our gain and loss estimates are at least one order of

magnitude greater than the change detected by the

GFC v.5 maps and others (Hansen et al 2013, Richards

and Friess 2015, Hamilton and Casey 2016). Here, we

measured the largest mangrove forest loss as being in

the Ganges delta, with a total loss of 6594.2 ha, while

theGFCdetected a loss of only 68.1 ha. TheGFC forest

loss is thus only 1.0% of the actual mangrove forest

loss for the Ganges (supplemental table 2). For the

other delta sites, the GFC loss maps capture only

3.4%–21.8%, missing a total of 4593 ha (11 109 ha

Figure 1.Examples of areas showingmangrove canopy height and area losses and gains between 2000–2016. (A)Aportion of the
Zambezi delta showing naturalmangrove loss and gain. (B)A region of the Rufiji delta showingmangrove losses from illegal logging
andmangrove gains along progradingmud banks and point bars. (C)An area of theGanges delta in Bangladeshwhere loss primarily
occurs as thin strips along the distributaries, while other areas show substantial gains over 1 kmwide. (D) Southern region of theCan
Gio Biosphere Reserve located on the eastern edge of theMekong delta.
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with the Ganges loss included) as measured in this

study. The differences between the GFC and the

results from this study were highlighted more drama-

tically when comparing the areas of mangrove forest

gain. The maximum area overlap between the GFC

gainmap and our new gained area was only 0.7%. This

limited overlap between the two maps results in an

area of over 5430 ha that was not accounted for in

theGFC.

4.Discussion

From the results presented here, the mangrove forests

in these four delta regions are highly dynamic and

regenerate rapidly in both the horizontal and vertical

directions. The vertical growth rate estimates pre-

sented here for mangrove forests overlap with other

fast-growing tropical trees (0.3–2.5 m per year (Clark

and Clark 2001)). For replanted mangrove plantations

in Kenya, growth rates reached an average of 0.9 m per

year for mangrove less than 15 years old (Kairo et al

2008, 2009). Our results synthesize canopy height

measurements acquired from a variety of mangrove

environments, showing that rapid vertical growth

rates are universal across the natural establishment of

mangroves. The similarities between forest heights in

both the gained and lost areas suggest that some

pioneering mangrove species can reach a height

maturity in less than 16 years.

By understanding these rapid vertical growth pro-

cesses we can improve remote sensing-based classifi-

cation techniques and model primary and ecosystem

productivity inmangrove forests.

Overall, our maps show significantly more loss

and gain than the GFC datasets (figure 3). Our analysis

indicated that there was 11 109 ha of mangrove loss

and 5430 ha of mangrove gain that was not accounted

for in other change datasets. The fine-tuning of the

GFC and the rigorous pixel screening process for water

work well for terrestrial forests but may be the princi-

pal cause of differences with our results. Areas of over-

lap between our analyses and the GFC were in areas of

forest clear-cutting, as seen in the Rufiji delta, but

there is still only minimal overlap (figure 3, supple-

mental table 2). The rapid transition from forest to

forest-clearing may have a greater probability of being

detected by the GFC before the area becomes regularly

inundated from tides and river discharge. The inclu-

sion of flooding regions in this study can more readily

capture the rapid and subtle changes that occur

between vegetation and water at the coastal boundary.

Deforestation will continue to be the primary cause of

regional hot-spot mangrove loss (Richards and Friess

2015), although the rate of regional and global man-

grove loss (Hamilton and Casey 2016, Hamilton and

Friess 2018) may not be accurately representing the

extent of anthropogenic and natural losses. Because of

the underestimation of total mangrove forest change,

mangrove loss rates may actually be higher than

expected. However, mangrove forest gains through

regeneration and pioneering of mudflats could sig-

nificantly reduce those losses, both in area and vegeta-

tion biomass.

Mangrove gains as observed in this study can be

primarily attributed to natural processes related to

sediment accumulation and mudbank development.

In particular, several mangrove gain patterns were

identified across the different deltas; shore-parallel

banding, patch expansion, and channel closure. These

development patterns are similar tomangrove gains in

the Sinnamary River estuary of French Guiana

(Fromard et al 2004, Proisy et al 2009). However, in the

Figure 2. Structural variability of deltamangrove forests as it changed over time, from2000–2016. Black and dark gray bars indicate
themean canopy height for gained and lost forests, respectively.White and light gray bars represent the total area ofmangroves gained
or lost, respectively. The blue bar represents the net total ecosystem change between 2000–2016. Changes in total net ecosystem
carbon stocks are a function of both the net change inmangrove area and the forest structure of the areas that were changed.
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case of the four deltas, these patterns are exhibited

throughout multiple river tidal channels and not just

along the outer coasts. Mudflats along the river chan-

nels that were colonized quickly offered some of the

most optimal growing conditions, with full sunlight,

sediment supply, and proper hydrology. The rapid

colonization within these regionsmay be related to the

precociousness of some mangrove species. For exam-

ple, Avicennia species can reach reproductive maturity

in less than one year and, therefore, can spread rapidly

around pioneering mangrove areas (Proisy et al 2009).

Increasing the seedling density around mangroves has

been shown to increase sediment accretion, survival

rates, and aboveground dry matter production

(Kumara et al 2010). Coastal landforms of mangrove

ecosystems (e.g. fringing, oceanic, and basin) vary in

the amount of carbon that can be sequestered in the

sediments (Bouillon et al 2008, Breithaupt et al 2012,

Ezcurra et al 2016). Therefore, our large-scale assess-

ments of growth rates and extent change in mangrove

forests helped to resolve the variability of carbon

among different coastal landforms, by comparing

young andmature forests.

The Rufiji had the tallest forests that were both lost

and gained. While the gains in the Rufiji were driven

by natural processes, the losses were primarily asso-

ciated with illegal felling (Wang et al 2003) (supple-

mental figure 2). These areas of loss also overlapped

with some of the taller trees that were closer to fresh-

water sources, as the areas have now been converted to

rice paddies and have removed the higher carbon den-

sity forest, exacerbating carbon losses. The rapid ver-

tical growth in the Rufiji may suggest more favorable

hydrological and salinity conditions, but because of

the anthropogenic impacts that were preferred in taller

forests, the amount of mangrove carbon loss in the

Rufiji was amplified (figure 2).

The Ganges and Zambezi deltas are mangrove

regions relatively removed from direct anthropogenic

activities. Much of the losses in these two regions can

be attributed to the landward migration of the ocean–

forest boundary as wind and waves eroded the shore-

line. Mangroves at the Mekong site had a different

response because deforested areas were limited to

small and short mangrove patches within already dis-

turbed ecosystems. Over the past three decades, this

site in the Mekong (the Can Gio Biosphere Reserve)

has been actively engaged in restoration to bring the

forest back from degraded conditions that occurred

during the Vietnam War (Hong 1996). The taller for-

est height gains and relatively high expansion of the

reserve can be attributed to these restoration activities,

management policies and enforcement, and favorable

environmental conditions.

The change in carbon stocks can be estimated for

each region by using a combination of the mangrove

cover change map and the canopy height models. A

similar technique was applied to mangrove land cover

data from the Zambezi delta (Shapiro et al 2015). At

the time, there were no new canopy height models

available; therefore, the height of the canopy could not

be determined for areas of mangrove gain. As a result,

conservative estimates were used, and areas of man-

grove gained were assumed to fall within the lowest

height class. However, the results presented here indi-

cate that mangrove forests can grow rapidly over just a

few years and have the potential to grow taller than the

conservative growth estimates. By using the new

height class information, we can now estimate the car-

bon capture potential for mangrove aboveground and

Figure 3.Herewe compare themangrove loss estimated in this study and theGlobal Forest Loss Layer (version 4) fromHansen et al
2013. (A)A comparison between the two datasetsmapped at 1 km×1 kmgrid cells. Gray grid cells representmangrove loss areas
detected by this present study. Black grid cells represent areas where this study and theGlobal Forest Loss Layermatch. Red grid cells
showmangrove loss areas detected by theGlobal Forest Loss Layer only. Each 1kmgrid cell was replacedwith themajority
comparison loss type. (B)A region of the loss comparisonmap (black outline inA) shown at the original 30 m×30 m resolution,
highlighting the underestimation of theGlobal Forest Loss Layer in estimating losses inmangrove forests.
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soil carbon. We do acknowledge that young and

mature forests can vary in carbon stocks for a given

canopy height. However, the stratification of the forest

inventory by canopy height class captures the varia-

bility in carbon density across a height class. Pre-

viously, a net TECwas estimated for the Zambezi delta

that indicated an increase of 691 000Mg C, using con-

servative estimates of stand height (Shapiro et al 2015).

In this study, we calculated a net TEC loss of 485 502

Mg C, which is in overall direct contrast to what was

previously reported. There are a number of factors to

be considered.We also detected a net loss ofmangrove

areas which was attributed to differences in the

approaches used tomeasure change in the delta; a clas-

sification approach versus a change detection

approach. Combining the changes in spatial extent

along with the `before and after’ height information,

which accounts for mangrove growth, implies that

average carbon concentrations in mangrove ecosys-

tems are higher than previously reported for the

region (Shapiro et al 2015).

The type of loss or gain that has occurred can influ-

ence the degree to which mangrove soil carbon and

belowground carbon change. In this study we used the

presence or absence of mangrove forests to reflect the

full vertical column of mangrove carbon: above-

ground, belowground, and soil. For AGC, the pre-

sence or absence is a relatively straightforward

estimate of loss or gain. However, the type of loss, for

example erosion or deforestation, could affect the

amount of soil carbon lost. Presumably, erosion

would cause a loss of significantly more soil carbon

than deforestation or conversion to agriculture. The

study sites presented here reflect mangrove loss from

primarily natural processes, such as erosion. The Rufiji

and Mekong sites do have some loss associated with

mangrove conversion to aquaculture. There are

opportunities to improve mangrove carbon account-

ing by improving the estimates of soil loss and gain for

each of the various causes of change.

The fourmangrove deltas can be divided into three

distinct groups based on the mangrove growth char-

acteristics: (1)Net Neutral Change; (2)Growth>Loss,

and; (3) Growth<Loss. The Rufiji and Zambezi sites

fall into the Net Neutral Change group, where the

height of the forest that was lost was similar to the

canopy height that was gained. For these two sites,

even though there was a net mangrove carbon loss, the

concentration of mangrove carbon that was lost was

nearly equal to that which was gained, per unit of area.

An additional separation could be made between the

two Net Neutral Change sites, one including the con-

sequences of human impact (i.e. Rufiji) and the other

one the direct impacts from coastal transgression (i.e.

Zambezi) (figure 1). The Mekong site falls into the

Growth>Loss group. Here, the canopy height of the

mangrove forest that was gained was, on average,

nearly twice as tall as the mangrove forests that were

lost (supplemental table 1). Replacement with a taller

mangrove canopy plus a large increase in mangrove

area in the Mekong contributed to a gain in AGC

(table 1). The Ganges site falls into the last group,

Growth<Loss. Here, the old forested areas that were

eroded were taller than the newly established forests.

Elevated salinity and sediment supply may lead to this

type of condition, as much of the gains in the delta

were confined to the ocean margin, where sediments

are reworked and deposited by ocean processes.

Recent studies have highlighted the need to incor-

porate vertical growth and age into models that can

predict changes in productivity and carbon concentra-

tions (Fischer et al 2016, Hurtt et al 2016). Both the

maximum and potential growth rates of mangroves

would be useful for restoration and biomass estimates

(Clarke and Clarke 1994, Clark and Clark 2001). The

accurate measurement of vertical and horizontal

growth using remote sensing can provide important

information for appropriate reforestation and affor-

estation policies (Lewis 2005, Cormier-Salem 2017),

sustainable mangrove harvesting (Goessens et al 2014,

Sillanpää et al 2017), and individual ecosystemmodels

(Chen and Twilley 1998, Berger and Hilden-

brandt 2000). The results reported here are a step for-

ward in improving the globalmonitoring of vegetation

dynamics and mangrove blue carbon modeling across

a range of geomorphology and coastal landforms.

5. Conclusion

Threats from humans, climate change, and rises in sea

levels result in large uncertainties about the future of

mangroves across the world. Mangrove deltas, in

particular, are dynamic systems where natural pro-

cesses and human development are intimately linked.

For mangrove forests to meet the needs of local

communities and to serve as coastal protection zones,

a balance between conservation, sustainable use, and

forest management is imperative. Understanding

where mangrove forests are expanding and being lost

is crucial to the modeling and implementation of

evidence-based management and conservation. In

addition to changes in mangrove extent, vertical

growth is a crucial component when estimating

primary production and carbon sequestration poten-

tial, and identifying areas suitable for harvesting or

protecting. Mangroves are among the fastest growing

forests, and we have shown here that the natural

expansion ofmangroves can help to offset total carbon

loss by an average of 44%.
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