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ABSTRACT

Measuring Network Security Using Bayesian Network-Based Attack

Graphs

Marcel Frigault

Given the increasing dependence of our societies on networked information systems, the

overall security of such systems should be measured and improved. Recent research has

explored the application of attack graphs and probabilistic security metrics to address this

challenge. However, such work usually shares several limitations. First, individual vulner-

abilities' scores are usually assumed to be independent. This assumption will not hold in

many realistic cases where exploiting a vulnerability may change the score of other vulner-

abilities. Second, the evolving nature of vulnerabilities and networks has generally been

ignored. The scores of individual vulnerabilities are constantly changing due to released

patches and exploits, which should be taken into account in measuring network security. To

address these limitations, this thesis first proposes a Bayesian Network-based attack graph

model for combining scores of individual vulnerabilities into a global measurement ofnet-

work security. The application of Bayesian Networks allows us to handle dependency

between scores and provides a sound theoretical foundation to network security metrics.

We then extend the model using Dynamic Bayesian Networks in order to reason about
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the patterns and trends in changing scores of vulnerabilities. Finally, we implement and

evaluate the proposed models through simulation studies.
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Chapter 1

Introduction

We first introduce the background and motivation of the research. We then summarize the

main contributions of this thesis.

1.1 Background and Motivation

Our society has become increasingly dependent on the reliability and proper functioning

of a vast number of interconnected information systems. To improve the security of these

systems, it is necessary to measure the amount of security provided by different configura-

tions sincero» cannot improve what you cannot measure [19]. The aim of this research is

to develop a coherent, logical and applicable security metric for computer networks.

There exists considerable research and standard techniques for measuring individual

vulnerabilities, such as the Common Vulnerability Scoring System (CVSS) [7]. such scor-

ing systems typically derive a score based on known facts or experiences about a vulner-

ability (e.g., whether it can be exploited remotely, whether it requires an authenticated

user account, or whether an exploit of the vulnerability is widely available). However, by

considering vulnerabilities on an individual basis, a network security administrator could

be misled in a situation where the score of each individual vulnerability may be low but
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these vulnerabilities can be combined to compromise a critical resource which may lead to

catastrophic consequences.

More recent research has started to examine quantitative measurements of the overall

security of networks. One promising research direction is to employ the model of causal

relationships between exploits, namely, attack graph (AG) to model the overall security of

a network. Existing work along this direction include a general framework [48], a real-

valued metric [50], and a probabilistic metric [44]. These works draw strength from both

existing security scoring systems of individual vulnerabilities and the attack graph model.

More specifically, they combine the measurements of individual vulnerabilities obtained

from existing scoring systems into an overall score of the network. Such a combination

of scores is based on the causal relationships between vulnerabilities encoded in an attack

graph.

However, these existing works share several limitations. First, they usually combine

scores of individual vulnerabilities in an arbitrary manner, which prevents them from han-

dling situations where the exploitation of a vulnerability may affect the score of other

vulnerabilities. Successfully exploiting a vulnerability at a particular stage of an attack

sequence can affect the probability ofexploiting a vulnerability at a later stage in the attack

sequence. Second, the evolving nature of vulnerabilities and networks has largely been

ignored in most existing work. The threat posed by a vulnerability may change over time

in today's dynamic network environments. As more technical details of a vulnerability

become available, its exploitability or severity may need to be adjusted; when patches are

released by vendors to counter an exploit, the vulnerability may become less severe; on

the other hand, when exploit codes become more widely disseminated, the severity of a

vulnerability may increase. Therefore, it is insufficient to rate vulnerabilities with fixed

scores.

To address these limitations, this thesis employs a Bayesian Network (BN)-based attack
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graph to model the overall security of networks [13] and extends the model using Dynamic

Bayesian Networks (DBN) to address the dynamics in network security [14]. More specif-

ically, we first borrow the scores of individual vulnerabilities from the CVSS standard to

make the results more applicable in practice. We then show how to interpret attack graphs

as special BNs and DBNs and how to combine individual base scores of CVSS based on

their causal relationships. Through modeling AGs as special BNs, we provide a sound

theoretic foundation for developing probabilistic metrics. In addition, our BN model natu-

rally provides the capability for handling cases where the scores of vulnerabilities may be

affected by the exploitation of other vulnerabilities. We extend the BN-based model to a

DBN-based model in order to account for the dynamic nature of networks in which vul-

nerabilities' scores will evolve over time. The DBN model incorporates relevant temporal

factors, such as the availability of exploit code or patches, into an attack graph-based se-

curity metric. To demonstrate potential applications of the DBN-based model, we present

cases where either the Exploitability metric (E) or the temporal score (TS) of a vulnera-

bility is unobservable and can be inferred through reasoning with the model. Finally, we

implement and evaluate the proposed models through simulation studies.

Figure 1 shows a framework for applying the security metrics proposed in this the-

sis in order to improve the security of a network. This thesis will address specifically the

generation of annotated AGs, the generation of BN and DBN-based AGs, and the calcula-

tion of network security metrics. How to employ the computed metric results to modify a

network's current configuration in order to improve its security is a subject of our future

work.

1.2 Thesis Contribution

This thesis contributes to the field of network security metrics by proposing two novel

models that can quantify network security for complex networks. Specifically, the main
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Figure 1 : A Framework for Applying Security Metrics for Hardening Networks

contributions are as follows:

A novel Bayesian Network-based attack graph model is proposed to combine CVSS

scores for individual vulnerabilities into a single score for the whole network in a

static environment. This model can handle cases where vulnerability scores are not

independent and previous models will fail.
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• A novel Dynamic Bayesian Network-based attack graph model is proposed to com-

bine CVSS temporal scores into an indicator of dynamic patterns and trends of net-

work security. This is to our best knowledge the first known effort in quantifying the

dynamic nature of network security.

• A hybrid model that integrates an existing probabilistic security metric model with

the proposed BN-based model is devised. The resulting model will maintain the

added capability of the BN-based model while improving the computational effi-

ciency of the model.

• As one of the potential applications, the proposed DBN-based model may provide a

sound methodology for refining the CVSS temporal scores.

• Two tools, Polaris and Sirius, that implement the BN-based models, support the

analysis of these models and provide a practical tool for computing network security

metrics.

1.3 Thesis Organization

The organization of the remainder of this thesis is as follows. Chapter 2 reviews the state

of the art on attack graphs and probabilistic security metrics. Chapter 3 reviews basic con-

cepts ofAGs, CVSS, BN and DBNs, and probabilistic network security metric. Chapter 4

describes the BN-based attack graph model and the hybrid model. Chapter 4. 1 discusses

methods for assigning probabilities to individual vulnerabilities. Chapter 5 describes the

DBN-based attack graph model. Chapter 6 presents the Polaris and Sirius tools and simu-

lation results. Finally, chapter 7 discusses future work and concludes this thesis.
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Chapter 2

Literature Review

Traditional vulnerability scanners [11] find known vulnerabilities in a network but they

cannot reveal how such vulnerabilities can be combined in a multi-step attack to infiltrate

a network. To qualitatively evaluate the security of a network against multi-step attacks, a

security analyst needs to take into account the effects of interactions between different vul-

nerabilities and find global security flaws. Traditional approaches to vulnerability analysis

of a network typically involve heavy human intervention by the so-called red team. First,

vulnerability scanners are used to identify vulnerabilities on individual hosts. Integrating

such identified vulnerabilities with other information about the network, such as connectiv-

ity between hosts, the red team produces sequences of attacks, namely, attack paths. Each

attack path leads to an undesirable state, such as a state where the intruder has administra-

tive accesses to a critical host. The red team approach heavily depends on the skills of the

team; the manual process is error-prone, tedious, and not scalable.

Early efforts on the defence against multi-step network attacks exist [8, 12,29,51]. The

general concept of attack tree is mentioned in [39] as trees with AND and OR for analyz-

ing the security of systems. An attack graph model is described in [33]. A tool is proposed

for building an attack graph using forward search in [42]. The inputs of an attack graph

include configuration files, attacker profiles, and a database of attack templates manually
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created; the nodes of the attack graph are attack templates instantiated with particular users

and machines; edges are labelled by probabilities of success or cost of attacks. The attack

graphs are analyzed to find the shortest paths between given start and end nodes. A require

andprovide approach to automatic attack graph generation is first proposed in [43]. This

approach is later widely adopted in defending against multi-step attacks. Attack scenarios

can be generated by linking attack steps through their preconditions requirements and post-

conditions capabilities. Each successful attack helps attackers to gain more capabilities.

Model checking is first applied to the analysis of multi-step network attacks in [35]

where known vulnerabilities on network hosts, connectivity between hosts, and the initial

capabilities of the attacker together form states, whereas exploits form transitions between

states executed by attackers. Such a formal model is given to a model checker as the

input while the reachability in terms of given goal states as a query. The model checker

will produce a counterexample if there exists a sequence of exploits leading to the goal

states. Such a sequence of exploits indicates a potential attack path that must be broken in

order to secure the network. The authors of [36] provide more details on how connectivity

should be modeled at different layers and the term topological vulnerability analysis is

introduced. Later, model checking is used differently in [20,40], that is, to enumerate all

attack paths. A modified model checker applied to the finite-state machine created from

network information provides all counterexamples to a query stating the safety of goal

states, which are essentially the collection of possible attack paths. Analysis is possible

on such a model, such as finding a cut set in the attack graph so that goal conditions can

no longer be reached. The problem of finding the minimum attack leading to given goal
conditions is shown to be intractable.

To address the scalability issue of model checking-based approaches, a monotonie as-

sumption is adopted in [1] that states the further exploits will never cause the attacker to

relinquish any obtained privileges. Attack paths can be implicitly represented as paths in a
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directed graph; the latter includes exactly one copy ofeach exploit and its pre- and post con-

ditions, with edges to interconnect exploits to these conditions. This assumption reduces

the complexity of attack graphs from exponential in the number of hosts to polynomial. It

may also cause some attacks that may disable services or invalidate vulnerabilities impos-

sible to be included in the model. Attack graphs can be created with a two-pass search; the

first connects exploits by starting from the attacker's initial state, and then prunes those ir-

relevant states by searching backward from the goal state. Other analyses are also possible,

such as finding minimal attacks leading to given goal conditions. More recently, a logic

programming-based approach to attack graphs is given in [31]. The Datalog language is

used to encode knowledge about attacks in a network. MuIVAL [30] is a security analyzer

built from off-the-shelf tools, which can be used to retrieve information regarding software

and vulnerabilities. The engine takes as input the network configuration information and

outputs attack steps leading to the compromise ofthe network. The analysis has polynomial

complexity in the size of the network.

A treatment of the scalability issue of attack graph representation is given in [37]. A

hierarchical approach builds rules at every level of aggregation and then integrates them

through common attribute values of attack graph elements or attack graph connectivity.

Attack subgraphs are recursively collapsed into single vertices so that compression is pos-

sible to a certain degree. Moreover, the abstraction of protection domains is proposed to

reduce complexity when groups of machines have complete connectivity. A quadratic com-

plexity is claimed. Another effort applies a matrix clustering algorithm to the adjacency

matrix of attack graphs so the resulting adjacency matrix indicates the feature ofprotection

domain on the main diagonal [38]. Two other improvements to the representation of attack

graphs are given in [16]. A directed graph is used to model subnets as nodes and potential

inter-subnet attacks as edges. A dominator tree is used to determine whether inter-subnet
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and intra-subnet attacks are possible based on the domination relationships. Then, an ab-

straction reduces groups of exploits to virtual nodes so as to increase the readability of the

attack graph. Both methods may reduce the complexity of visualized attack graphs and

allow human users to quickly grasp imminent threats.

Recently, much interest has focused on quantifying the threat of potential multi-step

attacks. General reviews of security metrics are given in [4, 19,25]. The NIST's efforts

on standardizing security metrics are given in [27] and more recently in [41] and in the

Common Vulnerability Scoring System (CVSS) [7]. Another overview of many aspects

of network security metrics is given in [17]. Dacier et al. gave intuitive properties that

should be satisfied by any security metric [8,9,29]. Based on the exploitability concept, a

qualitative measure of risk is given in [5]. The difficulty of attacks are measured in terms of

time and efforts spent by attackers. Founded on an exponential distribution for an attacker's

success rate over time, they use the Markov model and the MTTF (Mean Time to Failure)

to measure the security of a network. They discussed simple cases ofcombining individual

measures but did not study the general case. Another approach measures the relative risk

of different configurations using the weakest attacker model, that is the least conditions

under which an attack is possible [32]. Yet another series of work measures how likely a

software is vulnerable to attacks using a metric called attack surface [24]. These works

allow a partial order to be established on different network configurations based on their

relative security. The work by Balzarotti et al. [5] focuses on computing the minimum

efforts required for executing each exploit. However, the treatment of many aspects of

security is still qualitative in nature. For example, the resources are still treated equally

important (no explicit evaluation of damages) and the resistance to attacks is regarded as

binary (an attack is either impossible or trivial).

Relevant work exists in other areas, such as the study of trust in distributed systems.

Beth et al. proposed a metric for measuring the trust in an identity that has been established
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through overlapping chains of certificates [6]. The way they combine values of trust in

certificates into an overall value of trust proves to be useful in the study of security metrics.

Similarly, the design principles given by Reiter et al. are intended for developing metrics of

trust and we found these principles applicable to our study [34]. Structures similar to attack

graphs are used for risk analysis in safety-critical systems although the focus is not on vul-

nerabilities but on trust relationships [3]. Our model, used as a monitoring system, shares

similarity with the techniques for testing whether a finite execution of events generated by

a program violates a linear temporal logic (LTL) formula [15]. To generate attack graphs,

topological vulnerability analysis enumerates potential multi-step intrusions based on prior

knowledge about vulnerabilities and their relationships [35,40]. On the attack response

front, attack graphs have been used for the correlation of attacks, the hypotheses of alerts

missed by IDSs, and the prediction of possible future attacks [45,46,50].

Wang et al. [48] proposed a framework for using combining functions to determine

the combined effect of vulnerabilities in a network. They proposed the idea of using an

analogy to the resistance of electrical circuits in [49] and address the issue of additional

dependency between exploits although the solution is not entirely satisfactory since cycles

in attack graphs are largely ignored. Wang et al. also proposed a probabilistic network

security metric based on attack graphs [13, 14,44]. This work proposes the use of proba-

bility scores for each vulnerability to represent the likelihood that one attacker will exploit

the vulnerability or the percentage of attackers that successfully exploit the vulnerability.

Our work adopts this same concept but uses it to develop conditional probability tables for

each exploit and then demonstrates how the use of BNs can be used to determine network

security. The work on minimum-cost network hardening represents an early effort toward

the quantitative study of network security [47]. This work quantifies the cost of removing

vulnerabilities in hardening a network, but it does not consider other hardening options,

such as modifying the connectivity. It also has the limitation of adopting a qualitative view
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of damages (that is, all the given critical resources are equally important) and of attack

resistance (that is, attacks on critical resources are either impossible or trivial).

The idea of using BNs to model network vulnerabilities and determine a quantitative

value representing the security of a network has been explored by Liu and Man [23]. A BN

is used to model all potential atomic attack steps in a network. Each vertex represents a

single security property violation state and each edge corresponds to an exploitation of one

or more exhibited vulnerabilities. They assign edge weights to represent the probability of

successful exploits. The difference between their work and ours will be detailed later in this

thesis. Our application of DBN is inspired by the work ofAn et al. [2] for privacy intrusion

detection. They employ DBN to relate a database operator's intention to observable factors,

such as the time spent on a certain operation. Our work is based on similar ideas but applies

the concept of DBN model to combining the CVSS scores for measuring network security.
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Chapter 3

Preliminaries

To be self-contained, this chapter reviews the relevant concepts ofattack graphs, the CVSS

standard, BNs, DBNs, and a previous approach to a probabilistic network security metric.

3.1 Attack Graph

An attack graph (AG) models our knowledge about how multiple vulnerabilities may be

combined for an attack. The model represents system states using security-related condi-

tions, such as the existence of vulnerabilities on a host or the connectivity between hosts,

and state transitions using exploits of vulnerabilities. For the purposes of this thesis, an AG

is a directed graph with conditions and exploits as vertices, and their relationships as edges.

More formally, we have the following.

Definition 1 An attack graph G is a directedgraph G(E U C, Rx U R¿) where E is a set of

exploits, C a set ofconditions, and R1. Ç C ? E and R4 C E ? C.

The left-hand side of Figure 2 depicts a simple scenario where a file server (host 1)

offers the File Transfer Protocol (ftp), secure shell (ssh), and remote shell (rsh) services; a

database server (host 2) offers ftp and rsh services. The firewall only allows ftp, ssh, and
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rsh traffic from a user workstation (host 0) to both servers. The right-hand side depicts the

AG in which exploits of vulnerabilities are depicted as predicates in ovals and conditions

as predicates in clear texts. The two numbers inside the parentheses denote the source and

destination hosts, respectively. The AG represents three self-explanatory sequences of at-

tacks (attack paths). For example, the right path is: sshd_bof(0, 1) —>¦ ftp_rhosts(l, 2) —>¦

rsh(l,2) -? local_bof{2).

user(0)

?
ftp rhosts(0,l)

host O
trust(0,l)

:<uT)f sshosshd boflO, 1)rsh(0,l)
S

firewall user(l)

?%\ (Ò^Tnftp rhosts(0,2) ftp rhosts(l,2)

host 1 host 2 trust(0,2) trust(l,2)
i

rsh(0,2) rsh(l,2)ftp rsh ssh ftp rsh

user(2)
I

local bof(2,2)

Figure 2: Network Configuration and Attack Graph

We make two assumptions. First, the AG of a given network can be obtained using

existing tools, such as the Topological Vulnerability Analysis (TVA) system, which can

generate AGs for more than 37,000 vulnerabilities taken from 24 information sources in-

cluding X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [18]. Second, the CVSS scores

of vulnerabilities in the given AG can be obtained from existing vulnerability databases,
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such as the National Vulnerability Database (NVD) [28].

3.2 The Common Vulnerability Scoring System (CVSS)

The models proposed in subsequent sections will borrow scores assigned to individual

vulnerabilities according to the Common Vulnerability Scoring System (CVSS) [7]. The

CVSS is an open and free framework that provides a means of assigning quantitative values

to vulnerabilities based on several metrics. The metrics are divided into three categories:

Base Scores, Temporal Scores and Environmental Scores. For the purposes of the work

presented in this thesis, only the Base and Temporal metric concepts will be considered.

3.2.1 Base Scores

The Base Score (BS) for each vulnerability quantifies its intrinsic and fundamental proper-

ties that are supposed to be constant over time and independent of user environments. The

Base Score ranges from 0 to 10 and is calculated based on the following six metrics:

• Access Vector - AV: This indicates the types of accesses required for exploiting the

vulnerability. Possible values are Local (numerical value 0.395), Adjacent Network

(0.646), and Network (1.0), which are all self-explanatory.

• Access Complexity - AC: A quantitative measure of the attack complexity required

to exploit the vulnerability. The range of values are: High (0.35), Medium (0.61) and
Low (0.71).

• Authentication - Au: A measure of the the number of times an attacker must authen-

ticate to a target in order to exploit a vulnerability. The defined range of values are:

Multiple (0.45), Single (0.56) and No (0.704).
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• Confidentiality - C: A measure of the impact on confidentiality following a suc-

cessful exploitation with the following defined range of values: None (0.0), Partial

(0.275) and Complete (0.660).

• Integrity - 1: A measure of the impact on integrity following a successful exploitation

with the following defined range of values: None (0.0), Partial (0.275) and Complete

(0.660).

• Availability - A: A measure of the impact on availability following a successful ex-

ploitation with the following defined range of values: None (0.0), Partial (0.275) and

Complete (0.660).

The CVSS Framework imposes the use of a vector which encodes the metric score

values used to compute the overall score for a vulnerability. The following is an example

vector:

AV : NIAC : L/Au : N/C : NfI :C/A:C

from which we can derive the numerical scores as indicated above.

The Base Metric score (BS) is computed as follows:

• Impact = IOAI*(1 — (1 — Conflmpact)*(l — Integlmpact)*(l — Availlmpact))

• Exploitability — 20 * AccessVector * AccessComplexity * Authentication

• f(impact) = 0 if Impact = 0, 1.176 otherwise

• BaseScore '= round_to_l_decimal((0.6 * Impact) + (0.4 * Exploitability) —

1.5) * f(Impact))

Using the example vector, the following demonstrates how to compute the BS:

• Exploitability = 20 * 1 * 0.71 * 0.704 == 9.9968
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• Impact = 10.41 * (1 - (1 - 0) * (1 - 0.660) * (1 - 0.660) == 9.2066

• f(impact) = 1.176

• BaseScore = round_io_ l_decima/((0.6*9.2066)+(0.4*9.9968)-1.5)*1.176 ==
9.4

3.2.2 Temporal Scores

The Temporal Score (TS) quantifies a vulnerability when considering properties of the

vulnerability that may change over time. The three temporal metric values used in CVSS
are:

• Exploitability - E: Indicates the current state regarding the availability of exploit

codes or techniques, with the following defined range of values: Unproven (0.85),

Proof-of-concept (0.90), Functional (0.95), High (1.00) and Not Defined (1.00).

• Remediation Level - RL: Indicates the current situation regarding the availability of

remediation solutions. The defined range ofvalues is: Official Fix (0.87), Temporary

Fix (0.90), Workaround (0.95), Unavailable (1.00) and Not Defined (1.00).

• Report Confidence - RC: Indicates the degree of confidence regarding the existence

of a vulnerability and the technical details. The range of defined values is: Uncon-

firmed (0.90), Uncorroborated (0.95), Confirmed (1.00) and Not Defined (1.00).

The Temporal Metric Score (TS) is computed as follows:

TS = roundjto_\_decimal(BS * E * RL * RC) (1)

For convenience, the following product is defined:

TGS =(E*RL* RC) (2)
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TS = roundJo_l_decimal(BS * TGS) (3)

Consider the example of a vulnerability with the above Base Score and the following

Temporal vector:

E : POC/RL : W/RC : C

The Temporal Score (TS) is calculated as follows:

• TGS = 0.90 * 0.95 * 1 == 0.855

• TS = 9.4 * 0.855 == 8.0

3.3 Bayesian Network (BN) and Dynamic Bayesian Net-

work (DBN)

BNs offer a compact means to encode the entire range of conditional relationships in the

system being modeled. A BN can be defined as a directed acyclic graph (DAG) with

nodes representing variables and arcs representing conditional independencies among the

variables [26]. More formally, the BN for a system X can be formally described as a pair

B = (G, Q) where G is a DAG and Q is the set of parameters that quantify the network,

such as the conditional distribution values for each variable (node). The joint distribution

for a BN is represented by:

?

P(X1-Xn) = l[P(Xî\parents(Xi)) (4)

In [44], the notion of assigning to each node of an AG a probability value that rep-

resents the likelihood that one attacker or the percentage of attackers that will exploit the
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vulnerability was discussed. However, they do not employ BN as the basis of their model.

In this thesis, the same AG annotated with the individual probabilities will be used, but the

Conditional Probability Tables (CPT) for each node of the AG will be developed. The AG,

represented as a DAG, coupled with the CPT that encodes the conditional independencies
for all nodes will constitute a BN.

It is important to distinguish the BN-based AG used in this thesis from that of Liu et

al. [23]. Liu et al. represent each node of the graph as a host with a specific security

violation state, whereas in the AGs of this thesis, each node represents vulnerabilities as

well as the pre- and post-conditions resulting from the exploitation of such vulnerabilities.

Liu et al. assign probabilities to the edges, whereas this thesis assigns them to nodes.

While the probabilities for nodes can be readily obtained from widely available standard

measures such as CVSS, We believe probabilities to be assigned to edges are harder to

obtain in practice.

In contrast to BNs, DBNs are graphical models for probabilistic inferences in dynamic

domains that can enable users to monitor and update the system as time proceeds, and

even predict further behaviors of the system [26]. Today's networks are certainly dynamic

environments, and the security of such environments involves many temporal factors, such

as the availability of exploit code, the availability of patches or fixes, the confidence in

reported vulnerabilities, and so on. To incorporate such temporal factors in measuring

network security, this thesis extends the BN-based model to DBNs.

In a typical DBN model, the system is represented as a sequence of BNs. Each BN

represents a time slice of the DBN corresponding to a particular instant of time. As with

the BN, arcs exists between the vertices within each time slice. In addition, the DBN will

have arcs between certain vertices of successive time slices. For simplicity, it is generally

assumed that a DBN satisfies the Markovian property which implies that the state of the

system depends only on the previous state. In addition, it is assumed that the conditional
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dependencies among the vertices across the time slices are the same. Therefore, the system

can be modeled with only 2 time slices (more strictly speaking, the first 1.5 slices).

In DBNs, the vertices can be classified as either observable or unobservable. The value

of observable vertices are known apriori to the analysis process, whereas the values of

the unobservable variables are not available but may be inferred. In order to provide the

required links between the time slices, arcs can be introduced between a set ofunobservable

vertices and the necessary conditional probability distributions can be developed to encode

the relationships existing between successive time slices.

3.4 A Probabilistic Approach to Network Security Met-

ric [44]

We briefly introduce an existing probabilistic approach to combining scores of individual

vulnerabilities [44], which will be required in later discussions. With this approach, the

events that an attacker can (and will) execute different exploits will be assumed as inde-

pendent, and removing such an assumption will be an important contribution of this thesis.

Also, a fixed probability for measuring vulnerabilities is assumed.

The approach will associate each exploit e and condition c with two probabilities,

namely, p(e) and p(c) for the individual score, and P(e) and P(c) for the cumulative score.

The individual score p(e) stands for the intrinsic likelihood of an exploit e being executed,

given that all the conditions required for executing e in the given attack graph are already

satisfied. On the other hand, the cumulative score P(e) and P(c) measures the overall

likelihood that an attacker can successfully reach and execute the exploit e (or satisfy the

condition c) in the given attack graph.

For exploits, the individual score is assigned based on expert knowledge about the vul-

nerability being exploited. For conditions, it is assumed in this approach that the individual
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score of every condition is always 1. Intuitively, a condition is either initially satisfied or

immediately satisfied after a successful exploit (in practice, we can easily remove such

assumptions by assigning less-than-1 individual scores to conditions). It is proposed that

individual scores can be obtained by converting vulnerability scores provided by existing

standards, such as the CVSS base score and temporal score [7], to probabilities, although

no details are discussed.

Unlike individual scores, the cumulative score takes into account the causal relation-

ships between exploits and conditions. In an attack graph, such causal relationships may ap-

pear in two different forms. First, a conjunction exists between multiple conditions required

for executing the same exploit. Second, a disjunction exists between multiple exploits that

satisfy the same condition. The cumulative scores are defined in the two cases similar to

the probability of the intersection and union of random events. That is, if the execution of

e requires two conditions C1 and c2, then F(e) = P{c\) ¦ P(c2) · p(e); if a condition c can

be satisfied by either ex or e2 (or both), then P(c) = p(c)(P(ex) + P(e2) - P(ei) - P(e2)).
Definition 2 formalizes cumulative scores.

Definition 2 Given an acyclic attack graph G(E U C, Rn U Ri), and any individual score

assignmentfunction ? : E U C —» [0, 1], the cumulative scorefunction P : EU C —» [0, 1]

is defined as

• P(e)=p(e) -Uc^e)P(C)

• P(c) = p(c), ifRi(c) = f; otherwise, P(c) = p(c) ¦ ®eeßi(c)P(e) where the operator

f is recursively defined as ©P(e) = P(e)for any e e E and'©(Si U S2) = F-5? +

(BS2 — ©Si · ©S2 for any disjoint and non-empty sets Si C E and S2 Ç E.

Figure 3 illustrates the AG from Figure 2 but only includes the exploit nodes. The

individual probability scores for each node are shown in plaintext beside each node and the

cumulative score is shown in parentheses.
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Figure 3: Propagation of Probability Values

The cumulative scores of two exploits can be calculated as follows.

1. P(rsh{0} I)) = P(trust(0, 1) ? p(rsh(0, I)) = 0.8 ? 0.9 = 0.72

2. P(user(l)) = P{rsh{0, 1))+P(sshd_bof{0, 1))-P(rsh(0, l))xP(sshd_bof{0, 1))
0.72 + 0.1-0.72x0.1 = 0.748

The following can now be proposed as a definition of a network security metric:

Definition 3 Given an acyclic attack graph G(E U C, R1. U R1), any individual score as-

signmentfunction ? : EuC —> [0, 1], a cumulative scorefunction P : E U C ->¦ [0,1] and

a goal state g G C, the overall network security metric value (SM) is theprobability

SM = P(g = True) (5)

Using probabilities for a security metric has been criticized as violating a basic design

principle, that is, the value assignment should be specific and unambiguous rather than

abstract and meaningless [34]. However, there is a simple interpretation for the metric pro-

posed in this thesis. That is, the individual score p(e) is the probability that any attacker
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can, and will execute e during an attack, given that all the preconditions are already sat-

isfied. Equivalently, among all attackers that attempt to compromise the given network

during any given time period, p(e) is the fraction of attackers that can, and will execute e.

This interpretation of individual scores considers two factors in determining the indi-

vidual score p{e), namely, whether an attacker has the skills and resources to execute e and

whether he/she will choose to do so. For example, a vulnerability that cannot be exploited

remotely, or one that requires a valid user account will likely have a lower score due to the

first factor (that is, fewer attackers can exploit the vulnerability), whereas a vulnerability

that can be easily detected, or one less exposed to the public will likely have a lower score

due to the second factor (that is, fewer attackers will exploit the vulnerability).

The interpretation of individual scores also provides a natural semantics to the cumu-

lative scores. That is, P[e) or P(c) stands for the likelihood, or the fraction of, attackers

who will successfully exploit e or satisfy c in the given network. The cumulative score

of a given goal condition thus indicates the likelihood that a corresponding resource will

be compromised during an attack, or equivalently, among all attackers attacking the given

network over a given time period, the average fraction of attackers who will successfully

compromise the resource. Such a likelihood or fraction is clearly relevant in analyzing the

security of a network or in hardening the network for better security.
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Chapter 4

Bayesian Network-Based Attack Graph

This chapter proposes a BN-based attack graph approach to combining individual scores as

a measure ofthe overall security ofa network. We first discuss the assignment of individual

scores, and then introduce the model and apply it to several case studies.

4.1 Individual Score Assignment

In this section, we discuss how individual scores can be assigned with two different ap-

proaches.

4.1.1 A Simple Approach

An attack graph enumerates all possible sequences ofvulnerability exploitations leading to

a goal state. However, an AG is still qualitative in nature, and does not directly provide a

way to measure the security of a network. The approach we take in this thesis is to first

derive probability values for each exploitation of a vulnerability, and then use these values

to annotate the AG. The resulting graph will be referred to as an annotated attack graph.

The BN and DBN models developed later in this thesis are based on such an annotated

attack graph. We base the assignment of individual scores upon the CVSS standard [7]
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since it is widely accepted and the CVSS scores are readily available from many resources,

such as the NVD [28].

The first approach simply converts CVSS scores of a vulnerability to probabilities as

follows. First, we convert the score BS (or TS in the dynamic case) to a probability using

a simple approach of diving it by the domain size 10. We then associate this probabil-

ity to all the exploits that have this vulnerability (recall that an exploit is a vulnerability

bound to specific source and destination hosts). CVSS scores are proposed for quantifying

individual vulnerabilities only and ignore the causal relationships between exploits in the

context of a given network, which is modeled in attack graphs. Therefore, we define the

probability converted from a score as the conditional probability of an exploit when all of

its preconditions in the attack graph are already satisfied (by other exploits that imply those

conditions).

More formally, consider an attack graph G as a directed graph G(EuC, RrURi) where

E is a set of exploits, C a set of conditions, and Rr C C ? E and A¿ C E ? C are two

relations. The approach of this thesis regards each exploit as a binary variable that can take

discrete values of T (True), which signifies the exploit has been successfully performed

by the attacker, or F (False) indicating the converse. Given any exploit e 6 E, and its

corresponding score BS (or TS in the dynamic case), this proposal defines the Individual

Score Assignment Function used to assign the individual probability scores to each exploit

node of G as follows:

Definition 4 Given an acyclic attack graph G(EUC, RnURi) ande = T,F the Individual

Score Assignment Function ? : E U C —> [0, 1] can be defined asfollows:

p(e = T|Vc G Rr(e) c = T)= BSJlO (6)

For example, in Figure 2, we have P(rsh(0, 1) = T\trust(0, 1) = T) = BSrsh(o.i)/lO.
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Since the condition trust(0, 1) can only be satisfied by one exploit ftp_rhosts(0, 1), the

model can relate probabilities of the two exploits as P(rsh(0, 1) = T\trust(0, 1) = T) =

P(rsh(0, 1) = T\ftp_rhosts(0, 1) = T) = BSrshm)/10.

4.1.2 A Refined Approach

With the approach discussed in the previous section, we are essentially regarding the CVSS

base score assignment scheme as a blackbox. In this section, we shall take a closer look at

the internal structure of this scheme, and refine our previous approach accordingly.

As explained in Section 3.2, the CVSS Base Score is assigned based on metrics AV, AC,

Au, C, I, A. We discuss how these metrics would affect our individual score assignment as

follows.

• AV: The more remote an attacker can be from the target machine, the more likely a

vulnerability will be exploited since the number ofpotential attackers will be greater.

• AC: The lower the required access complexity, the greater the likelihood of attacks

becomes.

• Au: The stronger the authentication required for exploiting a vulnerability is, the

lesser the likelihood of attacks is.

• C, I, A: It can be argued that these three impact metrics have no direct relevance

to the determination of the likelihood of attacks since they measure the aftereffect.

However, they may in fact affect the likelihood ofexploitation in the following sense.

The greater the potential impact is, more attractive the vulnerability will be to an

attacker. Therefore, we believe that these impact metrics are also relevant to the

assignment of individual scores.

Therefore, the individual score, or the probabilistic values representing the likelihood
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of exploiting any particular vulnerability ? can be represented as a function of the six base

metric component scores:

P(V = T) = /(AV1AC, Au,C,I, A) (7)

In the previous section, we have implicitly defined /(AV, AC, Au, C, I, A) using the

equations provided within CVSS (with the division by 10). Upon a closer look, this ap-

proach has the following limitations. It cannot model the effect of an exploitation upon

subsequent exploitations of the same vulnerability. Logically, an attacker would employ

previously gained knowledge, skills, and tools to facilitate subsequent exploitations and

thus the probability of the latter would be greater. Moreover, other types of dependency

may also exist between exploitations, and the effect of such dependency may vary between

different base metric component scores. More specifically,

• AV Consider a situation in which multiple exploits exist on a single host and an

attacker must exploit them in a specific sequence to attain his objective. Clearly,

if some exploits require the same type of accesses, then we should not count such

accesses more than once since a gained access right will remain with the attacker.

Therefore, if the attacker has already gained the access required from an earlier ex-

ploit, we should compute an adjusted value for the current exploit, instead of simply

using the one provided by CVSS scores.

• AC: Similarly, in situations where multiple exploits exist on a single host and an

attacker must exploit them in a specific order, some exploits may reduce the access

complexity of subsequent exploits, and we should compute an adjusted value for the

latter instead of using the one provided by CVSS.

• Au: In this case, authentication measures required by different exploits form a hi-

erarchy. Certain exploits may require an authentication method that implies that an
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attacker will have the required credentials for subsequent exploits, an adjusted value

should be used for the latter.

• C2J1A1: We assume the C, I, and A metric scores of a vulnerability remains unaf-
fected by successful exploitations.

To compute adjusted probability scores for each AG node, two approaches are possible:

• Option 1 : Compute adjusted base score component metric values for each node of

the AG and then reuse the CVSS equations to recompute the base score metric (then

divide by 10).

• Option 2: Define new equations to compute the probability scores.

In this thesis, we will adopt the first approach and regard the second as future work.

More specifically, we define transformation functions for the adjusted base metric compo-
nent scores:

• AVI = oi(AVey. This transformation function adjusts the initial AV metric value

from CVSS by considering the network characteristics as follows. All predecessor

AG nodes (or ancestors) on the same host are examined through a backward search.

If a node has an AV metric equal to, or implies the access requirement of the node

being analyzed, then the transformation function should result in AV > AV. Later

in this section, we will describe an example of such transformation functions-.

• AC'e = ß(ACe): This transformation function adjusts the AC metric value from

CVSS by determining to what degree the attacker has acquired knowledge from ex-

ploiting previous vulnerabilities that will make this new exploitation easier (with less

complexity). Again, we will discuss an example later in this section.
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• Au'e = p(??,e): This transformation function adjusts the initial Au metric value

obtained from CVSS by considering if the attacker has already provided the same, or

implied, authentication credential during a previous exploit.

Definition 5 Given an acyclic attack graph G(E U C, R1. U Ri), the individual score as-

signmentfunction ? : E U C —» [0, 1] is defined as

p(e = T|Vc € Rr(e) c = T) = f(a(AVe), ß(ACe), 7r(Aue), Ce, Ie, Ae) (8)

Consider a simple example with two computers, host 0 and host 1, and assume that an

attacker has user access to host 0 (namely, condition cl(0)) and network connectivity to

host 1. Also, suppose host 1 is running services with vulnerabilities vl, v2 and v3. vl

can be exploited from host 0 to host 1 resulting in the post-condition c2(0, 1); v2 can then

be exploited resulting in c3(l); finally, v3 can be exploited, which is the goal state for the
attacker.

In this simple case, the base metrics component scores obtained from CVSS (divided

by 10) should be assigned to ? 1(0, 1) since it is the first exploit. For exploit i>2(0, 1) (and

similarly ?3(0, 1)), if the same access vector, access complexity or type of authentication

is already required by t/l(0, 1), then we set the value of AV, AC, or Au to be 1, which

is the greatest possible value, to indicate a dependency between these exploits. If ul(0, 1)

only meets partially the access requirements of f2(0, 1), then we can multiply the CVSS

scores for ^2(0, 1) (and similarly for ?3(0, 1)) by a user-defined value. Finally, if the access

requirements of ^1(0, 1) are completely different from those of ?2(0, 1) (and t>3(0, 1)),

then we should directly use the CVSS scores for the latter. This example of transformation

functions is summarized in Figure 4.
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AV/

Access Requirement AV1'=

Same or Implied 1.0

Partial AV "(user defined value)

None AV1

Au¡'

Access Requirement Au,'=

Same or Implied 1.0

Partial Au¡ * (user defined value)

None Au1

Figure 4: Example of Transformation Functions

4.2 The Model

Our model takes as input an annotated AG G(EuC, RrURi) where each vertex is annotated

with a probability, or individual score, assigned according to Equation 6. We generate a

corresponding BN-based attack graph B = (G, Q). G is a directed graph corresponding

to the AG but with different semantics, that is, the vertices represent the binary variables

of the system and the edges represent the conditional relationships among the variables. Q

is the set of parameters that quantify the BN including the conditional distribution values

for each variable. The CPD tables can then be developed to propagate probabilities, or

cumulative scores, along the AG until reaching the goal condition.

The unique aspect of this BN representation is the following. In an AG, the causal

relationships between exploits can be disjunctive or conjunctive based on how they are

related through conditions [13]. Such relationships are represented in the BN representation

through special conditional probabilities of 0 or 1 . More specifically,

• We say a disjunctive relationship exists between any exploits e\, e.2, ¦ ¦ · , en with re-

spect to en+i when eJR1C holds for all j = 1,2, ... ,n and some condition c, and
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cRren+i is true. In such a case, the probability assignment based on Equation 6 will

satisfy P(en+1 = T\X) = 1 for all X that has e, = T hold for at least one j e [I, ?}.

• We say a conjunctive relationship exists between exploits ei, ß2, . . . , en with respect

to en+i when ejRiCj and CjRren+i both hold for all j = 1, 2, . . . , ? and some con-

ditions Cj's. In such a case, we have P(en+i — T\X) — 0 whenever X has ej = F

hold for at least one j G [l,n].

We illustrate the above concept through the study of several special cases. Presently

there exists no standard against which to evaluate the accuracy of the BN model proposed

in this thesis given the short history of research in this field and the lack of availability

of experimental data. One method that is available to provide a degree of evaluation of a

security metric model's accuracy is to establish how adequately the model handles intuitive

properties that any security metric should satisfy. The development of a comprehensive

list of such intuitive properties is left as a subject for future research, however, it will be

demonstrated in the following cases that the BN model proposed in this thesis can handle

a set of intuitive properties that any security metric should satisfy.

Case 1: el and e2 must be exploited in the given order.

In Figure 5, each node has been annotated with an individual score. As previously

mentioned, these scores are assigned based on CVSS and the scores for conditions are set to

1. Next, the CPT is generated for each node to encode the cumulative score. In this model,

the nodes are assigned discrete values ofT indicating that the exploit has been successfully

executed, or F indicating otherwise. For conditions, T indicates that the condition has

been satisfied, and F otherwise. The CPT allows for the calculation of the joint probability

function. The objective is to determine the probability of satisfying the goal condition
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c3 = T. This can be calculated as follows:

cl

p(c3 = T)= Y^ P(c3 = T,e2,c2,el,cl)
e2,c2,el,clt{T,F}

= 0.12

c3 Goal State

el

.7

.3

e2

c2

.6

.4

cl
c2

el e2

c3

Figure 5: Case 1

Case 2: Either el or e2 must be exploited.

Figure 6 shows the second case where disjunctive relationship exists between two ex-

ploits. The probability of satisfying the goal condition c4 = T can be calculated as follows.

p(c4 = T)= J^ P(c4 = T,e3,c3,el,e2,cl,c2)
e3,c3,el,e2,cl,c2e{T,F}

= 0.204
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Figure 6: Case 2

e3

c4

Clearly, the probabilistic score of case 2 is greater than that for case 1 . This satisfies the

intuitive property whereby a security metric should satisfy the concept that as more paths to

a goal state exist, the security of the network decreases. Thus this simple example validates

this notion and the use of the probabilistic score as a security metric.

Case 3: Both el and e2 must be exploited.

Figure 7 shows a case of the conjunctive relationship between exploits. The result in

this case is P(c5 = T) = 0.036. That is, the probability of achieving the goal state is

significantly less than in cases 1 and 2. This meets the intuition that it is now more difficult

to exploit e3 compared to previous two cases.
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Figure 7: Case 3

c5

Case 4: A Successful exploitation affects other exploits with disjunctive relationships

In Case 2, exploits el and e2 are mutually independent, whereas in Case 4 shown in

Figure 8, the dotted line indicates that the likelihood of exploit e2 depends on exploit el. In

particular, an attacker may have gained knowledge and skills following exploit el, which

would increase his chances in exploiting e2. In Case 4, the likelihood of successfully

exploiting e2 without considering el is at 0.3 (same as in case 2), but this value will change

to 0.5 if the effect of el is considered. This will result from the recomputed BS score using

the adjusted scores for the AV, AC, Au, C,I and A parameters as described in section 4. 1 .2.

It is interesting to note that the probability of satisfying the goal condition is the same
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Figure 8: Case 4

value 0.204 as in Case 2. An interpretation of this result is that in order to exploit e3

we must have either a successful exploitation of el or e2. If el is successfully exploited

first, the likelihood of e2 increases. However, the attacker can go directly to e3 without

attempting to exploit e2 (in which case the adjusted score makes no difference), which is

the same as in case 2. If only e2 is exploited, then el can be ignored.

Case 5: A Successful exploitation affects other exploits with conjunctive relationships

The case shown in Figure 9 is similar to case 3 with the exception that el and e2 are

dependant in the sense that successfully exploiting el increases the likelihood of exploiting

e2. The result is 0.06 in this case. The calculation is simply based on the adjusted value of

e2, since el must always be exploited, which in turn means that e2 will always take on the

adjusted value.

4.3 Applying the Model

We now show how the model can be applied to handle some interesting cases. Consider

the two AGs in Figure 10. In the graph on the left, an attacker must exploit A or B, then

C and D in order to reach the goal state. The graph on the right differs slightly. In order to

achieve the goal state, an attacker must execute the same steps as those to the left. However,

if the attacker exploits A, he acquires knowledge that will make exploiting D easier. This
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Goal State

Figure 9: Case 5

is denoted by the score of 0.4 (when A is not exploited before reaching D) and 0.8 (when

A has been exploited before reaching D). The case can be modelled using the BN model as

shown in Figures 1 1 and 12. The probability scores for reaching the goal states are 0.0816

and 0.1296, respectively, which matches the aforementioned intuition.

Goal Slate Goal State

Figure 10: An Example ofApplying the Model

Figure 1 3 shows another example of applying the model. Using the propagation of

probabilities approach in Section 3.4, we would have P(CVE - 2006 - 5302(1, 2)) =

P(user(l) * P(trust2, 1) *p(CVE - 2006 - 5302(1, 2)) = .3433. However, upon closer
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Figure 1 1 : Conditional Probability Tables for the Left Side Case

.8

Figure 12: Conditional Probability Tables for the Right Side Case

scrutiny, this method of calculation is valid only if trust(2, 1) and user(l) are mutu-

ally independent in which case P(trust(2,l)\user(l)) = P(trust(2, 1) = .5859 leads

to P(CVE - 2006 - 5302(1,2)) = .3433. However, this is clearly not the case. In

fact, our model will show P{trust{2, l)\user(l)) = .75 which yields P(CVE - 2006 -

5302(1, 2)) = .4395. Therefore, our model can deal with this case correctly while the

previous method is not sufficient.

Although our BN-based model is more general and can handle cases where the prob-

ability propagation method in Section 3.4 cannot, the latter can be more efficient in its

applicable cases. This is partly due to the fact that BNs constructed under our model have
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Figure 13: Another Example of Applying the Model

very special structures. More specifically, we use special conditional probabilities of 0 and

1 to model the conjunctive and disjunctive relationships between exploits, while most other

conditional probabilities will not be useful in the modeling process. Therefore, a general-

purpose BN inference may not be as efficient as the probability propagation method that is

equivalent to a BN inference in special cases.

We thus propose a Hybrid model in which we combine the probability propagation

method in Section 3.4 with our BN-based method. More specifically, we search backward

from the goal condition in an AG to find subgraphs of the AG that are trees. We apply the
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probability propagation method to such subgraphs while adopting the BN-based method in

other cases, as illustrated in Figure 14.

Use BN Mode! to Evaluate

This Segment of the AG

Figure 14: AG Hybrid Model
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Chapter 5

Dynamic Bayesìan Network-Based

Attack Graph

5.1 The Model

As described in Section 3.2, CVSS provides several temporal metric scores in addition to

base metric scores in order to model the time variant factors in determining the severity of a

vulnerability. Such scores are, however, still intended for individual vulnerabilities and not

for the overall security of a network. The objective of this research is to evolve the afore-

mentioned BN-based model to a DBN model that can model the security of dynamically

changing networks. The temporal links between time slices of the DBN will be established

between the unobservable variables of the model. With these links, the model will enable

the inference of the unobserved variables based on the observed variables within the same

time slice and those of the previous slice of the DBN.

The model introduces three additional sets ofvertices into the previous BN model. The

first is the collection of E vertices that correspond to the Exploitability scores of the vul-

nerabilities. The second is the collection of RL vertices that correspond to the Remediation
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Level scores. Finally, the third is the collection of RC vertices that correspond to the Re-

port Confidence scores. These temporal metrics are defined in Section 3.2. The existing

exploit vertices will then carry the final metric score -Temporal Score TS (instead of the

BS in the static case), which has a similar role as the calculated scores in the case of the

static domain as described in Chapter 4. However, in the static domain, the final score for

an exploit is calculated based on its BS and the causal relationship between this exploit and

others, whereas in the dynamic domain, the final score of each exploit will depend on three

factors: the temporal score, the causal relationship between this exploit and others within

the same time slice, and the causal relationships with exploits in the previous time slice

(this will become clearer later with discussions using concrete cases).

Formally, given an attack graph G as a directed graph G(E U C, Rr U Ri), we define

Ee, Erl and ERc with the same cardinality as E to represent the set of E,RL and RC

nodes. We then obtain an enriched set of nodes as E' = E U EE U ERL U ERC. Let G' be

the directed graph corresponding to E' in which the relations R7. and R¿ remain the same.

Then we can have the one slice BN as a pair (G', Q) where Q represents the conditional

probabilities assigned as before. We then define a DBN as a pair (B0, Bd), where B0 defines

the prior P(Xi), and Bd is a two-slice temporal Bayes net(2TBN) that defines P(Xt\Xt-i)

by means of a DAG: P(X1[X^1) = ?^? P(X¡\parents(X¡)).
For B0, conditional probabilities are assigned in a similar way as in the static case

except that now the model uses the TS scores instead of the BS scores. More specifically,

the TS scores are derived as the product of BS and TGS using Equation 3. The derived

TS scores are then assigned as conditional probabilities based on Equation 6. For Bd, the

assignment of interslice conditional probabilities will depend on specific requirements of

applications, since different variables in a time slice may be regarded as unobservable, and

the effect of a previous slice will depend on the semantics of the variables in question. To

make the discussions more concrete, this thesis shall discuss cases to illustrate the potential
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of the model.

The use of the DBN attack graph model offers the possibility of using a rich repertoire

of DBN theory and advanced applications to allow researchers in the field of network se-

curity to solve network security problems such as, inferring node values, learning about

unknown (hidden) parameters based on observed characteristics of the network, determin-

ing most probable explanations (MPE) for the networks (ie. most probable explanation that

a particular set of nodes have been successfully exploited) and others.

5.2 Application 1 : Inference of Exploit Node Values

In this proposed application, we derive the probability values for the exploit nodes (the

TS scores) which represent the probability of successful exploitation. Recall, that the

values of these exploit nodes represents the probability that an attacker will exploit this

vulnerability. The capability ofdetermining the TS score for each vulnerability is of interest

(for example, to security administrators ofa network) and needs to be derived from the base

metric scores, temporal metric scores, intraslice and interslice dependencies. The model

for this application is illustrated in Figure 15. In the model, the observable criteria are

illustrated in the nodes with thin double lines and the unobservable criteria are illustrated

in the nodes with the single thick line.

The objective of this application is to infer the values of the exploit nodes at different

time intervals (time slices) based on observed criteria. In this case, a security administrator

can observe the E, RL and RC metric values for each exploit of the graph at each time

slice. Based on these observed values, the security administrator can use the model to infer

the probability values for each of the exploit nodes. In addition, the application can be

used to forecast future security characteristics of a network by integrating interesting work

by Jonsson et al. [21] in which the attacking phases within a network are defined. We

could quantify the security threat with respect to known attacking phases, or inversely, to
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Figure 15: Inference of Exploit Node Values

infer the attacking phases based on the probability values computed from our model. Our

application could also be used within the framework discussed in the introduction section to

allow an administrator to establish a threshold value beyond which corrective actions must

be taken. By plotting the node values as a function of the time slices, the administrator

could make more effective decisions as to when corrective action should be taken.

Next we address the effect of a previous time slice on the present time slice as repre-

sented by the interslice arcs and the corresponding CPD. In the context of our model, the

interslice dependencies will be application dependant and thus be user defined values. We

introduce a variable r, namely, the Exploit Temporal Coefficient. We use t to adjust the
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TS score of an exploit in a time slice (i) based on whether or not the same exploit was

successfully exploited in the previous time slice (t — 1). In the case where an exploit has

been successfully exploited in a previous time slice, t will increase the TS score of the ex-

ploit for the present time slice. The possible value of t ranges from 1, where the successful

exploit of the vulnerability in a previous time slice has no effect on its TS score for the

present time slice, to 1/(BS * TGS), which will result in a TS value of 1 meaning that

once an exploit has been successfully exploited in a previous time slice, it will always be

considered exploited in subsequent time slices.

This latter case implies that an attacker never relinquishes acquired knowledge or capa-

bilities. This is reasonable when an attacker has compromised a vulnerability in a previous

time slice (e.g., successfully uploading a malware that provides user accesses on a remote

machine). In subsequent time slices, the attacker may retain this same remote access de-

spite the possibility of having the previous vulnerability fully patched. In such a case, the

interslice CPD assigning a TS value of 1 to an exploit node is appropriate. On the other

hand, changes to the temporal component metrics may affect the overall network secu-

rity in such a way that a previously possible exploit may become inaccessible (e.g., if the

RL factor was Temporary FL· in the previous time slice and it now becomes Official Fix).

Therefore, the user defined Exploit Temporal Coefficient (t) will allow our model to handle

different scenarios.

Definition 6 Given an acyclic attack graph G(E U C,Rr U Ri), we define a two-slice

temporal Bayes net(2TBN) (B0, Bd) based on a DAG in which arcs point from the set of

observable nodes O = {Ee,Erl, Erc} to the set of unobservable node U = {expl}.

Given a temporal coefficient TEi € [1, 1/(BSeì * TGSeJ], we assign inter-slide probabil-

ities as P(E\ = T I Ej-1 =T) = rE* BSE* * TGSE* and P(E¡ = T | E^1 = F) =

JdSeí ' i Gt>Ei-
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5.2.1 An Example

To security administrators, the score of each exploit is !inobservable, whereas the E, RL

and RC scores are observable for each vulnerability by consulting resources such as the

NVD [28]. To model the temporal dependencies between time slices, arcs linking the

time slices are introduced between the exploit vertices since they are unobservable. Our

objective is to infer their values and calculate the likelihood of attackers reaching the goal

state. For this example, we consider only the E and RL temporal metrics for simplicity.

Figure 16 shows the DBN model in this case through a toy example of two exploits. In

the model, the exploit vertices addusrphp and sunvect for this example are defined to be

conditionally dependant on their respective E and RL vertex values as represented graph-

ically in Figure 16. Note that it was decided not to include a node representing the Base

Score in this version of the model since it is a fixed value and is invariant throughout the

time slices. The model does, however, use the value of the Base Score as input into the

calculation of the TS score as shown in Equation 3. In the example, the value of exploit

sunvect is conditionally dependant on the value of exploit vertex addusrphp. This causal

relationship implies that vulnerability addusrphp must be exploited first in order for vulner-

ability sunvect to be exploited. In this example, the goal state is the successful exploitation

of vulnerability sunvect.

To model the temporal dependencies, arcs linking the time slices are introduced be-

tween addusrphp and sunvect (unobserved parameters). To complete the model, it is nec-

essary to develop the CPDs for the intraslice relationships (within the same time slice) and

the interslice relationships (from one time slice to the next).

We will illustrate this application with two options each using the same DBN (B0, Bd)

with the difference that the first sets Tphp = 1.81 (l/(BSphp * min(TGSphp))) and rsun =

1.36 (l/(BSsun * min(TGSsun))). The effect of this is that P{E\ = T \ ?\_? = T) = 1

for all of the exploit nodes. This implies that once an attacker has successfully exploited a
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Figure 16: The DBN Model

node, he never relinquishes this ability and the model assigns the value for all subsequent

time slices such that the node is considered exploited. Figures 1 7 and 1 8 show the intraslice

CPDs in tabular format whereas Figures 19, 20 and 21 shows the interslice CPDs.

For the second option, we assign t?1?? = 1.25 and rsun = 1.1. Although the model uses

the same intraslice CPDs, the interslice CPDs will be modified and are shown in Figures

24 and 25. Notice that the table entries are calculated using CVSS equations as explained

in section 3.2.

Suppose the objective is to calculate the probability value of an attacker successfully

exploiting sunvect for any time slice. From NVD we obtain the BS for each vulnerability as

follows: BS(addusrphp) = 7.5 and BS(sunvect) = 10.0. In this example, we consider

only the E and RL temporal metrics from CVSS. Because they are observable for all time
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Figure 17: Intraslice CPDs for php (time slice 0)

slices, we can set them to any values from the set E={U,POC,F,H} and RL={OF,TF,W,U}

which correspond to the CVSS domain values for these metrics. To illustrate the model,

we show the results for 3 example runs of the application. The values used for each of

these runs is shown in Figure 23 for the first option and in Figure 27 for the second. The

resulting value for the probability of exploitation of sunvect for each time slice is shown

in Figure 22 and Figure 26.
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Figure 18: Intraslice CPDs for sunvect

5.3 Application 2: Inference of TGS Node Values

Now we consider applications where the temporal metric scores of a vulnerability are of

interest (for example, to security vendors who maintain these scores) and can be derived

from base scores and the observed TS or exploit node scores (determined from reported

security incidents involving that vulnerability).

More formally, in this case, the DBN (B0, Bd) defines a DAG including the same in-

traslice arcs as in Case Study 1, however, the interslice arcs now link some or all of the
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Figure 19: Interslice CPDs for PHP rphp = l/{BSphp * TGSphp)

temporal metric nodes (ie. E or RL) depending on the objective and upon which nodes are

unobservable. The model for this application is illustrated in Figure 28. The exploit nodes

are observed at regular time intervals or time slices. The intraslice relationships remain

unchanged and only the interslice arcs change.

We shall infer only the E metric, although the model itselfcan also be used to infer other

temporal metric node scores. Also, we shall rely on a simple choice regarding the transition

probabilities of the E metric value from one time slice to the next. In this application, the

exploit nodes are observable. That is, for each time slice, the value of each exploit node is

observed to be either {T,F} (exploited or not). The values of the E metric can be inferred

which can then be matched to a value in {{/, POC, F, H}.
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php. php.

Figure 20: Interslice CPDs for SunVect Part 1 rsun = l/(BSsun * TGSsun)

Definition 7 Given an acyclic attack graph G(E U C, Rn U Ri), we define a two-slice

temporal Bayes net(2TBN) (Bq, Bd) based on a DAG in which the set ofobservable nodes

O = {E} and the set ofunobservable node U = {Ee, Erl, Erc}-

The inter-slice probabilities P(EEt | EE ) = s are to be assigned using user-defined

values. In our case, we shall define s in Figure 29.

5.3.1 An Example

To vendors who create and maintain the CVSS databases, temporal scores may be unob-

servable and must be estimated from base scores and reported security incidents. We now

consider the case where the E temporal metrics for each vulnerability are unobservable.

In the previous case, the model was able to observe the E metric values and then infer the

Exploit node values. In this case, we have the reverse situation. The goal in this case is
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php. php,

Figure 21 : Interslice CPDs for SunVect Part 2 rsun = \/{BSsun * TGSsun)

to update the E Temporal Metric values for maintaining the CVSS databases based on the
DBN model.

Figure 30 illustrates the DBN model for this case where only the unobservable E metric

vertices are linked from one time slice to the next. The interpretation is that the value of

the E metric in the previous time slice will have an impact on determining the likelihood

of which state the E metric vertex will be in during the subsequent time slices. Figures 17

and 1 8 show the intraslice CPDs in tabular format whereas Figure 29 shows the interslice
CPDs.

Suppose reported security incidents show that that addusrphp and sunvect have been

observed to have the values indicated in Figure 31 for 5 time slices. The DBN model can

then infer the probabilistic scores for each of the E nodes. For example, in time slice 2,

the model infers that P(Esun2 = U) = 0.612 whereas P(Esun2 = H) = 0.062 implying
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Figure 22: P(sunvect) = T at Each Time Slice rphp = l/(BSphp * TGSphp) and rs.
l/(BSsun * TGSsun)

that it is ten times more likely that Esun3 is in state U (Unproven) than in state H (High).

5.4 Case Study

Now we apply the DBN model to a more complex case to demonstrate its potential by

examining the network from Figure 2. For this case, we will apply the methodology de-

scribed in Application 1 ofthe model. That is, we assume E and RL are observable and the

objective is to infer the values of the exploit nodes. Specifically, the example will examine

the value of the goal state local_bof(2) .
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Figure 23: 3 Sample Runs t???? = l/(BSphp * TGSphp) and rsun = l/(BSsun * TGSsun)

Figure 32 shows the corresponding DBN produced by GeNIe [10]. Figure 33 shows

2 slices unrolled of the corresponding DBN network. We will run our DBN for 10 time

slices and show the changing values for P(localJbof(2)) = T. The example uses the

following values as the Base Metric Score for each vulnerability: ftp_rhosts=0.8, rsh=0.9,

sshd_bof=0. 1 and local_bof=0. 1 . Figure 34 shows the results when E in all time slices is

set to U and RL to TF.
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Figure 24: Interslice CPDs for PHP rphp = 1.25
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Figure 31: Inferred Values of E Metric When Exploit and RL Nodes Observed
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Chapter 6

Implementation and Simulation

This section first describes the implementation of tools supporting the proposed models,

and then studies the scalability of the models through simulation studies. The simulations

were performed on a PC equipped with one Intel Core 2 Duo 2 GHz CPU, 4 GB of RAM,

Microsoft Windows Vista (64 bits). For graph rendering we use the GraphViz visualization

package [22]. For development, Netbeans 5.5 and jdkl .6.0_01 are used. Simulation studies

were conducted in lieu of experiments due to the lack of availability of publicly available

data sets of real world attack graphs.

6.1 Simulation Environment

In order to examine the scalability of the proposed models, several tools have been imple-

mented or used. These tools together form the simulation environment in which our studies

were conducted. We describe their purposes and details in this section.

Attack Graph Simulator The Random Attack Graph Simulator is a simulator implemented

in [44] consisting of a set of Java programs that can generate random attack graphs

based on given parameters, including the number of total AG nodes and the distribu-

tion ofvarious dependency relationships, such as the ratio of initial conditions among
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all conditions. These parameters can be selected in order to generate a vast range of

AG with varying characteristics to simulate attack graphs of different networks. As

depicted in Figure 35, the simulator takes as inputs the total number of exploit nodes

to be generated, the number of condition nodes in the attack graph, and the distribu-

tion of conditional dependency relationships. The simulator then generates an attack

graph in the .dot format, which is the language used by the GraphViz visualization

package [22].

No. of exploits (e)

No. of conditions (c)

Random Attack Graph
Generator

Attack Graph in .dot format

Parent Distribution Mode:

{Normal,Random, Initial Conditions}

Figure 35: Attack Graph Generator

Security Metric Calculator (Polaris) Developed for this thesis, the Security Metric Cal-

culator named Polaris is a software program written in Java for applying security

metrics to given attack graphs. From the .dot attack graph files loaded into the pro-

gram, this application generates the annotated graphs by retrieving the CVSS scores

from the NVD files also loaded into the program and assigning a probabilistic score

to each node. The program has two modes as shown in Figure 36. In the, probabil-

itypropagation mode, the program will compute the overall probability of achieving

the goal state using the probability propagation method introduced in 3.4. In the BN

mode, the simulator will compute the BN model of the given attack graph and gen-

erate the CPTs for all nodes of the AG and the .xdsl file, which can subsequently
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be loaded into the GeNIe software program [10] for visualizing the BN model and

performing inference.

List of Attack Graphs
In .dot format

NVD (XML) file

Simulation Mode

Calculate Mode:{Propagate or BN}

Figure 36: Simulator - Security Metric Calculator (Polaris)

BN Attack Graph Analyzer (Sirius) Sirius is a second software application developed

for this thesis. As shown in Figure 37 it takes as input a specified list of BN attack

graph models generated by Polaris (.xdsl files), and processes them in a batch in order

to generate useful statistics in a comma separated value text file. This file can then be

analyzed by any numerical analysis tool (such as Microsoft Excel). For the purpose

of this thesis, the output allows us to study the variations in several characteristics

of the proposed BN Attack Graph models. In particular, we will show later in this

thesis, simulation results of the growth of BN attack graph model sizes with regards

to the size of attack graphs, which are produced by Sirius.

Graphical Network Interface (GeNIe) GeNIe is a development environment for build-

ing graphical decision-theoretic models [10] developed at the Decision Systems Lab-

oratory, University of Pittsburgh. GeNIe is implemented in Visual C++ based on the

MFC (Microsoft Foundation Classes). GeNIe allows for building BN models of any
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Comma separated value file
Characteristics of BN nodes, edges, cpt values etc

Figure 37: Simulator - BN Data Analyzer (Sirius)

size and complexity, limited only by the capacity of the operating memory of the

computer. GeNIe is a developer environment which produces models that can be

embedded or analyzed by any application, such as our simulator.

Graph Visualization Software (Graphviz) Graphviz is an open source graph visualiza-

tion software [22]. It includes several graph layout programs. It also has web and

interactive graphical interfaces, and auxiliary tools, libraries, and language bindings

that make it easy for us to visualize attack graphs. The Graphviz layout programs

take descriptions of graphs in a simple text language with .dot extension, and pro-

duce diagrams in formats such as Postscript or images.

6.2 Simulation Results

The main objective of our simulation studies is to examine the scalability of the proposed

models. Although general purpose BN-based models are known to have scalability issues,

our observation is that our proposed models are a special class of BNs in the following

sense. That is, only a small portion of the conditional probabilities in the BNs are non-

trivial and employed to model the logic relationships between exploits and conditions,

whereas all other conditional probabilities have the value 0 and thus can be disregarded

in storing and analyzing the models. Therefore, through optimizing the storage and analy-

sis techniques in our tools, we expect our models to possess scalability properties that are
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feasible for implementation when handling attack graphs with node distributions approxi-

mating those that can be realistically encountered in real world cases. In the following, we

shall present results to confirm this conjecture. In all of our experiments, we use AG size

for the total number of nodes (exploit or condition) in a given AG, and we use BN size for

the total number of non-zero conditional probability values (since we do not store the zero

values).

BN Size as a Function of AG Size - Normal Distribution For this experiment, the AG gen-

erator is set to use a normal distribution for the dependency relationships between

exploits and conditions in the AG. Specifically, for this experiment, we have: about

70% ofthe nodes have 4 incoming edges and 4 outgoing edges, 10% have 1 incoming

edge and 4 outgoing edges, 10% have 2 incoming edges and 3 outgoing edges and

the remaining 10% have 3 incoming edges and 2 outgoing edges. Figure 38 shows

the BN size as a function of the AG size and Figure 39 shows the size of the physical

file used to store BN models (.xdsl file) as a function of the AG size.

60 80 100 120
AG Size (Number of Nodes}

Figure 38: BN Size as a Function of AG Size: Normal Distribution
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Figure 39: BN File Size as a Function of AG Size: Normal Distribution

From these results, we can conclude that unlike in a general purpose BN model, the

number of non-trivial conditional probability values in our BN models does not increase

exponentially in the size of the DAG representing the BN (that is, attack graph in our case).

The file size actually increases in an approximate linear trend and can be easily managed

with modern computers. Therefore, our models can potentially be applied to large networks

(however, the generation of attack graphs for large networks has its own scalability issue,

which is outside the scope of this thesis).

To show the scalability of our models for attack graphs with different characteristics,

Figure 40 and 41 show similar results with dependency relationships that are uniformly

distributed. Similar conclusions can be drawn for such attack graphs, that is, our BN-based

model is still relatively scalable.

Finally, we study the scalability of our models for attack graphs with different struc-

tures. For this experiment, we set the AG generator to fix the total number of nodes in the

AG to be 60 but vary the ratio of initial conditions (that is, conditions that are not post-

conditions of any exploit) among all nodes. Figure 42 shows the BN size as a function of
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Non zero values

K » 30

60 80 100 120
AG Size (Number of Nodes)

Figure 40: BN Model Size as a Function of AG Size: Uniform Distribution

the ratio of initial conditions. Figure 43 shows the file size (.xdsl file storing the BNs))

as a function of the ratio of initial conditions. These results show that although the struc-

ture of attack graphs does have an impact on the size of the BN models, the change is not

significant, and our models are still scalable and feasible for implementation.
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Figure 41 : BN Model File Size as a Function of AG Size: Uniform Distribution

60 Nodes
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Figure 42: BN Model Size as a Function of AG Size: Initial Conditions

68



BO Nodes

0.3 0.4 0.5 0.6
Initial Conditions: % of Nodes

Figure 43: BN Model File Size as a Function of AG Size: Random Distribution
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Chapter 7

Conclusion and Future Work

This thesis has pointed out two limitations in existing network security metrics and scoring

systems, that is, the lack of consideration of the inter-dependency between exploits and the

lack of support for temporal factors. This thesis then proposed a novel BN-based model for

addressing such limitations. Specifically, it was shown that BN and DBN can be derived

from given AGs and CVSS metric values. The BN model could effectively handle cases

where existing approaches to network security metrics fail. The DBN model could be used

for useful analysis of the constantly changing security aspects of a network. The fact that

our metrics were based on the standard CVSS scores leads to actionable knowledge. The

research also provides hints for enhancing the CVSS standard to include mechanisms for

combining individual scores and for adjusting temporal metrics based on observed network

incidents.

Future research will continue to refine our approach using DBNs to encompass more

properties of the temporal metrics established in the CVSS in order to develop a more

accurate model. Future research will also examine how the model can be refined to take

into consideration the environmental factors of CVSS. We will study the application of the

proposed model for hardening a vulnerable network with the least cost. Finally, we will

strive to implement and evaluate the proposed models in real world applications.
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Publications

Publications related to this thesis are the following:

• M. Frigault, L.Wang, A.Singhal and S. Jajodia. Measuring Network Security Using

Bayesian Network-Based Attack Graphs. In Proceedings of the 3rd IEEE Interna-

tional Wortehop on Security, Trust andPrivacyfor Software Applications (STPSA '08),

2008.

• M. Frigault, L. Wang, A, Singhal and S. Jajodia. Measuring Network Security Using

Dynamic Bayesian Networks. In Proceedings of the 4th Worfahop on Quality of

Protection (QoPW), October 2008.
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