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ABSTRACT The analysis of themovement of people in a shopping area with the aim of improvingmarketing

is an important research topic. Many conventional methods are dependent on the density of people in the

area, which is easily estimated by counting the people entering or exiting the area. However, a high density

does not always mean an increase in activity, as certain people are simply passing the area at a given time.

The primary goal of this study was to introduce a set of indicators for measuring the bustle of the area,

which we call ‘‘Nigiwai,’’ from pedestrian movement by using an analogy from classical kinematics. Such

indicators can be used tomeasure the impact of promotional events and to optimize the design of the area. Our

novel indicators were evaluated with simulated pedestrian scenarios and were demonstrated to distinguish

shopping scenarios from those in which people move around without shopping successfully, even when

the latter scenarios had much higher densities. The indicators were computed solely from the pedestrian

trajectory, which can easily be obtained from ordinary sensors using deep learning-based techniques. As a

demonstration with real data, we applied our method to a video of a street and provided a visualization of

the indicators.

INDEX TERMS People flow analysis, surveillance system, multi-agent systems.

I. INTRODUCTION

The analysis of pedestrian behavior has become an active

research topic. In addition to traditional qualitative methods

that rely on factors such as inquiry, quantitative methods have

become increasingly prevalent owing to the advances in the

collection and processing of big data (see Section II). Quanti-

tative analysis may lead to a drastic improvement in designing

areas such as shopping malls and streets. Quantitative metrics

offer a measure for assessing or predicting the effect of a

marketing strategy, such as a promotional event. By using

these metrics, the arrangements of shops and paths can be

optimized to increase the activity of shoppers. An effective

evaluation indicator for shopper activity is required to achieve

these goals. Although the sales data or inquiry surveys of

shoppers may provide substantial information, these are usu-

ally difficult to obtain. However, the trajectories of people are

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhua Guo .

relatively easy to determine owing to the rapid development

of algorithms and devices for pedestrian tracking [4]. In par-

ticular, deep learning-based methods [3] and sensing devices

such as LiDAR sensors [26] havemade the accurate, real-time

collection of pedestrian movement possible [26].

The density of people in a certain area could be selected

as an indicator to quantify the bustle or activity of the area.

However, the density alone cannot determine whether peo-

ple engage in certain activities in the area or only pass the

area on their way to another destination (Figure 1). We are

interested in quantifying the activities of people rather than

how crowded the area is. Therefore, we introduce the concept

of the Nigiwai of the area, where Nigiwai is the Japanese

term for a bustle of people. Although there is no consensus

on the rigorous definition of Nigiwai, we make the following

assumptions:

1) The Nigiwai of an area is an amalgamation of the

Nigiwai defined for the places and pedestrians in the

area.
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FIGURE 1. (a) The area is filled with people; however, their purpose does not involve any activity in the area; instead, they are
traveling to other destinations (photo courtesy of www.pxfuel.com). (b) These people have visited the area to engage in shopping and
sightseeing activities (photo courtesy of Dieter Karner CC BY 2.0).

2) The Nigiwai for a place or person is determined by the

interaction thereof with other people nearby.

3) A person contributes to the Nigiwai if she/he has a

purpose for being in the place and participates in a

certain activity happening there.

According to our assumptions, a person who is simply pass-

ing the place to visit another place is not considered as

creating Nigiwai, whereas a person engaged in shopping or

a group of people gathered together should be assumed as

contributing to Nigiwai.

Based on the above principles, we introduce a set of

indicators to measure Nigiwai in Section III. To define the

indicators, we rely only on the trajectories of people, and not

on other information such as personal and sales data. The

indicators are demonstrated to discern a simulated shopping

street with shoppers from the same street full of passersby,

revealing a higher value for the former. There are two key

concepts underlying the proposed method. The first concept

considers the relative velocity as well as the distance between

pedestrians and from region of interest (ROI) points such

as shop locations. In this manner, our indicators take into

account the interactions among people. The use of the relative

velocity in addition to distances is analogous to classical kine-

matics, in which not only positions but also their derivatives

are used as independent variables for the system modeling.

The relative velocity allows us to distinguish people passing

one another from people walking together, which cannot be

achieved by simply observing the relative positions. Note

that, on a street with a crowd of people moving in one direc-

tion, the relative velocity among them is expected to be small.

However, this is only true in the long-term average, whereas

the relative velocity between two strangers who are close and

who are walking in the same direction naturally fluctuates

owing to physical and psychological reasons. Therefore, our

indicators are still expected to discern a group of people

walking together from a group of strangers walking in the

same direction, which is indeed confirmed with the simula-

tion presented in Section IV-B.

The second concept is to consider the local quantities

first and to define the global indicators for the area as the

aggregation of the local indicators. This results in a finer,

localized, targeted, and easily interpretable metric for the

analysis and visualization (Section IV-B). Based on these

concepts, we define local Nigiwai indicators, which measure

the contribution of each person or place to the Nigiwai. The

indicator for a person can be viewed as the level of partici-

pation of that person in the activity taking place in the area.

The indicator for a place estimates, for example, the level of

attractiveness of a shop. Our principle is that the global (or

total) Nigiwai of an area is an aggregation of the local Nigiwai

created by each pedestrian and ROI in the area.

The contributions of this work can be summarized as

follows:

• We propose an indicator that measures the contribution

of each person to the Nigiwai in the area. The same

indicator for an ROI measures the degree of attraction

of people to the place (for example, a shop).

• We evaluate our indicators with simulated pedestrian

trajectories in different settings. We show that our indi-

cators can clearly distinguish a scenario in which peo-

ple are shopping from one in which people are simply

passing.

• We demonstrate our method with real pedestrian trajec-

tories extracted from a surveillance camera by employ-

ing an existing deep learning-based tracking algorithm.

• We reveal that our indicators are robust against

mis-tracking of people. This robustness is important for

real applications, as even state-of-the-art tracking tech-

niques suffer from non-negligible mis-tracking rates.

An outline of the proposed method1 is depicted in Figure 2.

II. RELATED WORK

People flow analysis has become an active research area

as a basic tool in numerous applications, including visual

1Our codes are available at https://github.com/shizuo-kaji/Nigiwai
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FIGURE 2. An outline of the proposed method. Standard or existing techniques were used for the phases
presented in blue boxes, whereas the pink boxes indicate the contributions of our study..

surveillance [16], crowd management [7], and public space

design [8]. People flow analysis can be categorized as two

types in terms of the scale.

The macroscopic monitoring of the people flow in a large

area can provide a source of information for urban planning,

disaster response, and emergency preparation. For this pur-

pose, a statistical summary consisting of many people and a

long duration is considered rather than individual pedestrian

behavior. For example, in [21], abnormal events such as

disasters and road accidents were detected in a large area

by analyzing mass GPS data. In [1], a smart platform for

monitoring the people flow on a large campuswas introduced,

in which Wi-Fi tracking and environmental parameters such

as the CO concentration, temperature, and humidity were

used. The people flow prediction in a large urban area was

achieved by using cellular data in [5].

In contrast, people flow analysis in small areas focuses

on individual pedestrian trajectories, which is relevant to

our present work. One of the main research topics in this

direction is the clustering of pedestrians [18]. Certain cluster-

ing techniques use the Euclidean distance [14] to determine

groups, and others additionally take into account the velocity

and orientation [9]. Numerous motion-based methods have

been proposed for detecting pedestrian behavior in a group.

For example, in [24], a potential model was introduced to

determine the probability distributions of the relative distance

and motion between two interacting people in a group. This

work was extended in [22] by applying the same method to

larger groups and with different densities of people. An inter-

esting fact regarding the relation between the group motion

velocity and surrounding people density was noted in [23],

where it was reported that individuals walk faster than a group

of two, and similarly, a group of three walk slower than a

group of two. In [25], a method was presented for analyzing

the pedestrian dynamics in groups based on their intrinsic

properties, and it was demonstrated that the velocity and size

of the groupwere affected by the gender, age, and height of its

constituents. The interaction among pedestrians was studied

in [20] by identifying groups and estimating the intensity of

the interactions between people. In [19], a method was pro-

posed for identifying the social relations between pedestrians

in a group based on their motion trajectories and velocity,

as well as the height differences between group members.

These studies placed greater focus on the mechanics of the

individuals and groups, which was reflected in their trajecto-

ries, but not on the effect they produced on the entire area.

In addition, some studies have focused on pedestrian

motion in shopping areas. In [17], pedestrian paths in a

hypermarket were collected and analyzed by interviewing

the shoppers, who were asked to draw their routes during

their shopping after they had completed their shopping. In

[12], laser detectors were used to collect pedestrian move-

ment paths in a shopping mall and video cameras were

used to capture their head motions and eye gaze. Based

on these data, shoppers were manually grouped into three

categories—randomly walking, walking straight, and finding

their way—and then analysis was conducted for each cat-

egory. In [10], a system for analyzing the shopper activity

was introduced using a depth camera. First, the person’s head

was detected and tracked. Then, shopper interaction with the

products was detected by analyzing the person’s movement

within the shelf zone. In [13], a system for forecasting the

customer navigation in an indoor retail area was introduced.

Designated devices were installed in each cart and basket

for obtaining the shopper paths, and the customer attraction

level for different products was predicted by learning Hidden

Markov Models. Note that these methods require expensive

data collection equipment or process, including inquiry, head

and eye tracking, designated shopping carts, manual labeling,

and training models. In contrast, our method utilizes only

ordinary surveillance cameras. Moreover, the previous stud-

ies mainly targeted indoor scenarios. Our goal in this paper is

VOLUME 9, 2021 24861
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different from the previous studies in that we aim at providing

quantitative information of the shopping behavior (Nigiwai)

in both indoor and outdoor shopping areas based only on

pedestrian motion without any training data.

III. NIGIWAI INDICATORS

Our model is based on the distances and relative velocities

between agents, where an agent may represent a pedestrian

or an ROI (such as a shop). We assume that the pedestrian

trajectory data are provided as a set of tuples (x, i, t), where

x ∈ R
2 are the two-dimensional coordinates of the pedestrian

with ID i at frame t . The input trajectory is interpolated if

necessary, so that for any t and i, x is known if pedestrian i

exists in the area at frame t . Let Nt be the set of pedestrians

that exists at frame t and NROI be the set of ROI points, that

is, the fixed locations that do not depend on t . (For example,

Figures 4 (d) and (e) present the configurations of the ROI

points for a simulated scene: one is uniformly distributed and

the other is placed at shop locations.)

The Euclidean distance between agents i and j is denoted

by di,j,t = |xi,t − xj,t |, where xi,t ∈ R
2 are the coordinates of

agent i at frame t . To reduce the effect of noise in the tracking

position, we use the moving average distance d̃i,j,t , which is

defined by

d̃i,j,t = αdi,j,t + (1 − α)d̃i,j,t−1, (1)

where 0 ≤ α ≤ 1 is a hyperparameter that is selected

depending on the strength of the noise. If one of the moving

agents (i or j) does not exist in the previous frame (t−1), d̃i,j,t
is taken to be di,j,t . Similarly, the absolute relative velocity is

defined by

ṽi,j,t = βvi,j,t + (1 − β)vi,j,t−1, vi,j,t =
|d̃i,j,t − d̃i,j,t−1|

1t
,

(2)

where 0 ≤ β ≤ 1 is a hyperparameter for the moving average

and 1t is the interval of the frames.

The local Nigiwai indicator for a pedestrian or an ROI

i ∈ (Nt ∩ Nt−1) ∪ NROI has the following form:

NigL(i, t) =
∑

j∈(Nt∩Nt−1)\{i}

wjf (d̃i,j,t , ṽi,j,t ), (3)

where f (d̃i,j,t , ṽi,j,t ) is a non-negative real-valued function

that decreases with respect to both variables, and wij is the

weight that is pre-assigned according to the characteristics

of i and j. The weights wij may be constant for all pairs of

i and j, but additional information (such as the age of the

pedestrians) can be used if available. The rationale behind

Eq. (3) is as follows: When two people (or a person and a

shop) are close, they are assumed to contribute to creating

Nigiwai only when their relative velocity is small. Thus, for

example, two people walking together contribute to Nigiwai,

but two people passing by do not. Similarly, a person stopping

near a shop contributes to Nigiwai, whereas one passing by

the shop does not. The local Nigiwai indicator for a pedestrian

(i ∈ Nt ) measures the degree of participation of that person

in the activity taking place in the area. The local Nigiwai

indicator for an ROI (i ∈ NROI ) reflects the attractiveness

of the place to people; it identifies the places or shops which

people visit and where they spend more time when compared

with other places or shops.

In the remainder of this paper, we focus on the following

particular form:

f (d̃i,j,t , ṽi,j,t ) = h(d̃i,j,t ) · g(ṽi,j,t )

h(d̃i,j,t ) = exp(−d̃i,j,t/Wd )

g(ṽi,j,t ) =
1

(ṽi,j,t/Wv + 1)2

NigL(i, t) =
∑

j∈(Nt∩Nt−1)\{i}

h(d̃i,j,t ) · g(ṽi,j,t )

=
∑

j∈(Nt∩Nt−1)\{i}

exp(−d̃i,j,t/Wd )

(ṽi,j,t/Wv + 1)2
, (4)

where Wv,Wd > 0 are hyperparameters. Note that both h

and g are decreasing functions. The parameter Wv controls

the weight of the relative velocity term For example, with a

small value of Wv, the relative velocity will have a greater

effect on the Nigiwai score, whereas with Wv = ∞, g(ṽi,j,t )

has a constant value of one regardless of the relative velocity,

and hence, the model simply becomes a density estimation

around the agent. Similarly, Wd controls the weight of the

distance.

Two global scores for the duration from ts to tf are defined

based on the local Nigiwai score determined for each pedes-

trian or ROI, as follows: The global pedestrian Nigiwai is

defined by

NigPG(ts, tf ) =
1

tf − ts + 1

tf
∑

t=ts

√

∑

i∈Nt

NigL(i, t), (5)

where the local pedestrian Nigiwai are aggregated over time.

As the number of interacting pairs of pedestrians is quadratic

in the number of pedestrians, the square root is taken after

summing all Nigiwai scores for the pedestrians at each frame.

The global ROI Nigiwai is defined by

NigRG(ts, tf ) =
1

(tf − ts + 1)|NROI |

tf
∑

t=ts

∑

i∈NROI

NigL(i, t), (6)

where the local Nigiwai at ROI points NigL(i, t) are averaged

over time and the number of ROI points.

IV. EXPERIMENTS AND ANALYSIS

In this section, we analyze the effectiveness and robust-

ness of the proposed method based on the evaluation of the

Nigiwai indicators using both simulated and real data.2 In

Section IV-A, the simulation scenarios used in our experi-

ments are described. In Section IV-B, we demonstrate that

2The codes and the data used in the experiments are available at
https://github.com/shizuo-kaji/Nigiwai

24862 VOLUME 9, 2021



M. A. Abdelwahab et al.: Measuring ‘‘Nigiwai’’ From Pedestrian Movement

FIGURE 3. Basic elements in Vadere simulator. Agent represents a
pedestrian, source produces pedestrians, target attracts pedestrians,
absorbing target represents an exit of pedestrians, and obstacle is
avoided by pedestrians.

the proposed indicators can successfully distinguish between

the simulated pedestrian trajectories of shoppers and numer-

ous passersby. We discuss the role of the hyperparameters.

In particular, setting one of them to infinity reduces the

model to one that is concerned only with the local density

of the pedestrians; we demonstrate that this reduced model

cannot distinguish shoppers from passersby, thereby proving

the advantage of our method. In Section IV-C, the robustness

of the proposed method is evaluated against the mis-detection

of pedestrians. In Section IV-D, we present the verification of

the proposed method by applying it to pedestrian trajectories

extracted from real video samples.

A. PEDESTRIAN SIMULATION

The simulated trajectories were produced by an open-source

crowd simulator known as Vadere3 [6]. In our study, we used

the Optimal Steps Model [15] to create the pedestrian move-

ment. The basic components for constructing a scene are

depicted in Figure 3.

Using the Vadere simulator, we designed two specific sce-

nario types for pedestrian movements: shopping scenarios

and passing scenarios. In the former, we emulated people

shopping in a mall or shopping street, whereas in the latter,

we emulated people passing by the same mall or through the

street. For example, Figure 4 (a) depicts a shopping street,

withmany small shops on both sides of the street. Figure 4 (b)

shows a shopping scenario based on the base region in (a),

whereas (c) presents a passing scenario in the same base

region. In the shopping scenario, peoplemove between shops,

taking different paths. The entrance to the street is modeled

with sources and the exit to the street is modeled with spe-

cial targets with an absorbing facility. In a shopping sce-

nario, shops are simulated using targets with different waiting

times. For each shop (target), the waiting time represents the

probability of this shop attracting people and them staying

therein. In a passing scenario, people are guided to move

from the entrance to the exit directly, without visiting any

shops.

We demonstrate that the shopping and passing scenarios

could be distinguished using the proposed Nigiwai model,

3https://gitlab.lrz.de/vadere/vadere

even when the number of total pedestrians was much higher

in the passing scenarios.

B. COMPARISON OF SIMULATED SHOPPING AND

PASSING SCENARIOS

In this section, the distinction between the passing and shop-

ping scenarios is evaluated. Several simulated scenarios were

used, in which the proposed Nigiwai indicators were com-

puted and compared for the passing and shopping scenar-

ios. The hyperparameters for all simulated scenarios were

assigned asWv = 0.01,Wd = 4, α = 0.9, and β = 0.9.

1) SCENARIOS WITH THE SAME NUMBER OF PEDESTRIANS

To evaluate the performance of the proposed method,

we started by using scenarios with the same number of peo-

ple. To this end, we designed shopping and passing scenarios

for a shopping street, as illustrated in Figure 5, in which

pedestrians move circularly around a middle barrier, without

a new person entering or exiting for a certain period. Specif-

ically, pedestrians enter at the same rate for 200 frames in

both scenarios, following which they stop entering for the

next 100 frames. During this time (the final 100 frames),

the number of people in both scenarios is the same. In the

shopping scenario, targets are used to simulate shops with

different attraction probabilities and different waiting times,

where pedestrians are attracted to these targets with different

paths (Figure 5 (a)). In the passing scenario, targets are used

to guide pedestrians to walk circularly, without stopping at

any shops (Figure 5 (b)). The proposed Nigiwai indicators

were evaluated as follows:

To compute the local Nigiwai for pedestrians, Eq. (4)

was applied considering only the moving agents (pedestri-

ans), following which the global pedestrian Nigiwai could

be obtained using Eq. (5). Figure 6 (a) depicts the global

pedestrian Nigiwai in each frame versus the time (frame

number) for the shopping and passing scenarios. The right

and left axes represent the global pedestrian Nigiwai and

pedestrian number in each frame, respectively. Note that both

scenarios had the same increasing people rate and the number

of people was fixed from frames 200 to 300. It is obvious from

this figure that the Nigiwai score in the shopping scenario was

always higher than that in the passing scenario.

To determine the local place Nigiwai, Eq. (4) was

used to compute the Nigiwai score at the ROI points,

where 48 × 80 points were selected in both scenarios, similar

to those in Figure 4 (d). Figure 6 (b) presents a comparison

between the two scenarios according to the global ROI Nigi-

wai (Eq. (6)) in each frame. The shopping scenario achieved

a higher score than the passing one.

Moreover, by aggregating the ROI scores in a period,

we could identify the most attractive places for pedestri-

ans during that period. Figure 7 provides an example of

aggregating the ROI scores for the shopping scenario from

frames 200 to 300, in which a stronger red color indicates

a more attractive region. In this example, we assigned three

different waiting times to the simulation shops. A shop with a

VOLUME 9, 2021 24863
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FIGURE 4. (a) Example of a shopping street, (b) pedestrian trajectories in a shopping scenario, (c) pedestrian trajectories in a passing scenario,
(d) uniformly placed ROIs, and (e) ROIs placed at selected shops.

FIGURE 5. Trajectory samples of (a) shopping and (b) passing scenarios.
The pedestrians move circularly, without a new person entering or exiting.

TABLE 1. Global pedestrian/ROI Nigiwai for the shopping and passing
scenarios with different numbers of people.

long waiting time activated more ROIs around it, as indicated

in the figure.

To compute the global Nigiwai indicators in a certain

period, we used Eqs. (5) and (6) to obtain the global

Nigiwai for the pedestrians (NigPG) and ROIs (NigRG) from

frames 200 to 300, respectively. Different numbers of peo-

ple were employed in both scenarios. Specifically, the

global Nigiwai indicators were estimated for scenarios with

100, 300, 500, and 700 people. For simplicity, we use, for

example, shopping-100 to indicate the shopping scenario

FIGURE 6. Comparison between the Nigiwai of the shopping and passing
scenarios with the same number of people. (a) Global pedestrian Nigiwai
in each frame. (b) Global ROI Nigiwai in each frame.

with 100 people. Table 1 summarizes the global indicators

for these numbers of people in both scenarios. Notably,

Table 1 demonstrates that the Nigiwai score (NigPG or NigRG)

for shopping-100 was higher than that for passing-700. This

indicates that the proposed global indicators could distinguish

24864 VOLUME 9, 2021
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FIGURE 7. Calculation of the attraction level of each ROI by aggregating
its Nigiwai score over time. The ROIs at the shop locations had a high
Nigiwai, and three attraction levels corresponding to three different
waiting times can be observed.

between the shopping and passing scenarios even though the

number of people in the passing scenario was higher than that

in the shopping scenario. In the following sections, we focus

on the global ROI Nigiwai (NigRG), which we simply refer to

as the global Nigiwai.

To investigate the effect of changing the hyperparameters

Wv andWd , we computed the global Nigiwai scores under dif-

ferent values of Wv and Wd . Figure 8 (a) presents the effects

of varying Wv, with Wd = ∞, on the distinction between

the passing and shopping scenarios. For Wv < 0.1, we could

clearly distinguish between all passing and shopping sce-

narios whereas setting Wv ≥ 100 eliminated the effect of

the relative velocity, and the distinction between passing and

shopping scenarios became ambiguous. Figure 8 (b) depicts

the results of using Wv = 0.01 and changing Wd . According

to these graphs, we selected Wv = 0.01 and Wd = 4 in all of

the simulation experiments.

One of the key concepts of the proposed model is tak-

ing into account the relative velocities between agents. To

illuminate this point, we compared the proposed model with

a similar model without using the relative velocity term.

We compared our Nigiwai indicators with those defined by

Eqs. (7) and (8), which were obtained by inserting Wv = ∞

into Eq. (4).

DenL(i, t) =
∑

j∈(Nt∩Nt−1)\{i}

exp(−d̃i,j,t/Wd ) (7)

DenRG(ts, tf ) =
1

(tf −ts+1)|NROI |

tf
∑

t=ts

∑

i∈NROI

DenL(i, t) (8)

These indicators depend only on the relative positions of

the agents, and we refer to them as the local and global

density-based models, respectively. Figure 9 compares the

FIGURE 8. Relation between variation of hyperparameters and Nigiwai
score for different passing and shopping scenarios: (a) varying Wv with
Wd = ∞ and (b) varying Wd with Wv = 0.01.

results of the proposed method and those obtained by the

density-based model. The scale is normalized such that the

maximum score is 1 in the two plots. It is obvious from

this figure that our method outperformed the density-based

model.

As a visualization example, we present the snapshot

results when using the proposed and density-based models

in Figure 10. As indicated in (a) and (b), when applying the

proposed method to the shopping scenario, the ROI points

had high Nigiwai scores only at the shops around which

pedestrians spent a certain period. In the passing scenario,

all ROI points had low scores (not red). However, according

to Figures 10 (c) and (d), the density-based model yielded

similar ROI scores around the pedestrians in both the shop-

ping and passing scenarios; therefore, it could not distinguish

between them.

2) SCENARIOS WITH VARYING PEDESTRIAN NUMBERS

To assess the validity of our method in a more realistic set-

ting, we conducted two experiments with pedestrians entering

and exiting during each scenario. In the first experiment,

VOLUME 9, 2021 24865



M. A. Abdelwahab et al.: Measuring ‘‘Nigiwai’’ From Pedestrian Movement

FIGURE 9. Comparison between the proposed and density-based models
according to their distinction between the passing and shopping
scenarios. (a) Proposed model. (b) Density-based model. The two
scenarios were clearly distinguished with the proposed model.

shopping and passing scenarios for a shopping street were

created, as illustrated in Figures 4 (b) and (c), respectively.

These scenarios had a different number of pedestrians in each

frame; however, we ensured that the instantaneous number of

people in the passing scenario was always higher than that

in the shopping scenario (by increasing the entering rate in

the passing scenario). Figure 11 presents the comparisons

between the global Nigiwai in both scenarios (right axis). The

instantaneous number of pedestrians in each frame is repre-

sented by the left axis. Two values of Wv were tested: 0.01

and ∞, as illustrated in (a) and (b), respectively. In the case

of using Wv = 0.01, that is, assigning a high weight to the

relative velocity, the shopping scenario always had a higher

Nigiwai when compared with that of the passing scenario,

whereas with Wv = ∞ (density-based model in Eq. (7)), the

passing score was higher than the shopping score. It is clear

from Figure 11 (b) that both the shopping and passing density

curves increased proportionally to the curves corresponding

to their number of pedestrians, indicating that the number of

pedestrians had a strong impact on the computation of the

score in this case.

In the second experiment, the Supermarket scenario that

was presented in [6] was employed, which simulated people

shopping in a supermarket. Shelves were simulated using

targets with different waiting times. For the passing scenario,

we made certain modifications to the shopping scenario by

FIGURE 10. Snapshots from the simulation scenarios, where pedestrians
are represented by blue circles and high ROI scores are indicated in red.
(a) and (b) ROI scores for the shopping and passing scenarios,
respectively, using the proposed method. (c) and (d) A repetition of
(a) and (b) when applying the density-based model. When using the
proposed method, the ROIs had high scores only in the shops; however,
the density-based model yielded similar scores in the shopping and
passing scenarios.

removing all waiting times for the targets and guiding people

to walk around in the supermarket, without going to a specific

shelf. Figures 12 (a) and (b) present the path images for the

two scenarios. A comparison of the Nigiwai indicators for

the two scenarios is provided in Figure 12 (c). The global

Nigiwai was computed in both scenarios, whereas the number

of people in the passing scenario was always kept higher

than that in the shopping scenario. We can observe that the

variety of paths was greater in the shopping scenario, and

accordingly, the density might be lower; the Nigiwai score

was always higher in the shopping scenario.

C. ROBUSTNESS AGAINST TRAJECTORY DISCONTINUITY

In real-world situations, the ideal pedestrian trajectories

such as those obtained by the Vader simulator cannot
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FIGURE 11. Comparison between shopping and passing scenarios shown
in Figure 4, with different numbers of pedestrians. (a) Proposed method
(Wv = 0.01). (b) Density-based model (Wv = ∞). In the latter, the score
was strongly correlated with the number of pedestrians.

be determined. Therefore, one of the most important

issues was to evaluate the proposed method under differ-

ent mis-detection and mis-tracking levels. If a person is

mis-detected in a frame, the ID label of the person does not

exist in this frame, whereas if a person is mis-tracked, the ID

label is changed to a new value. To evaluate the effects of the

above on the results of the proposed model, the global Nigi-

wai scores were computed for the shopping-100 and passing-

700 scenarios with simulated mis-detection andmis-tracking.

We applied two levels of mis-detection and mis-tracking. In

level 1, we randomly removed the ID of each pedestrian for

10% of their existing duration to simulate mis-detection, and

we randomly changed each pedestrian ID to a new ID to

simulate mis-tracking. In level 2, we repeated the above steps

twice.

The simulation for each level of mis-detection and

mis-tracking was performed 20 times for a single original

trajectory data point. Figure 13 uses a violin plot to com-

pare the global Nigiwai distributions of the passing-100 and

shopping-700 scenarios under the two mis-detection and

mis-tracking levels. The variation was not very large and

the Nigiwai scores of the two scenarios could be clearly

differentiated.

FIGURE 12. Example of a supermarket simulation. (a) and (b) Samples of
pedestrian paths for shopping and passing scenarios, respectively.
(c) Comparison between global Nigiwai scores for the two scenarios with
regard to the number of pedestrians.

D. TRAJECTORY EXTRACTED FROM REAL VIDEO

We applied the proposed method to the MOT16-03 and

MOT16-04 videos [11] as a demonstration with real data.

The pedestrians in these videos were detected using a deep-

learning-based object detection algorithm YOLO v4 [2] with

publicly available codes.4 To match the scaling of this video,

we set Wv = 0.1, Wd = 1, α = 0.5, β = 0.1, and

γ = 0.5, where γ is a hyperparameter for estimating the

moving average of the local Nigiwai indicator.

4https://github.com/AlexeyAB/darknet
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FIGURE 13. Comparison between Nigiwai of the shopping-100 and
passing-700 scenarios. Two levels of mis-detection and mis-tracking were
applied. At each level, the violin plot presents the Nigiwai distribution for
20 iterations.

First, we computed the local Nigiwai for the pedestrians as

per Eq. (4). Examples of visualizing the pedestrian Nigiwai

are presented in Figure 14 (a, c, and e), where red indi-

cates a high Nigiwai score (a supplementary video is also

provided). As illustrated in this figure, people walking in

groups had a higher Nigiwai score than individual pedestri-

ans. This result matched with that mentioned before; that is,

the Nigiwai activity is increased when people are in groups

as opposed to individual pedestrians. To demonstrate the

advantages of the proposed model when compared with the

density-based model (Eq. (7)), we present the results of using

the density-based model for the same frames in (b, d, and f)

respectively, where Wv = ∞. It can be observed from these

figures that the pedestrian scores were only dependent on the

relative distances between them, regardless of whether they

were individual pedestrians or moving in groups.

To illustrate further, we present the Nigiwai scores for

three specific pedestrians, shown in Figure 14 (e and f), and

compare their scores using the proposed and density-based

models. The three pedestrians are labeled as P1, P2, and P3,

FIGURE 14. Application of proposed and density-based models to MOT16-03 (a-d) and MOT16-04 (e-f) videos, where the red
color indicates a high score. The images in the left column (a, c, and e) represent the proposed results and those in the right
column (b, d, and f) represent the density-based results. Note that the proposed method yielded high scores for persons in a
group rather than for individual pedestrians, whereas the density-based method did not. Detailed comparisons for three
pedestrians, shown in (e) and (f), are provided in Figure 15..
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FIGURE 15. Comparison of the proposed and density-based models using
the three pedestrians shown in Figure 14 (e, f) as a case study. Note that
P2 and P3 are walking together, whereas P1 is walking individually in the
opposite direction. (a) Relative distances between the three persons.
(b) Nigiwai scores using Wv = 0.1. (c) Scores using the density-based
model (Wv = ∞).

where P2 and P3 are walking together while P1 is walking

individually in the opposite direction. Figure 15 (a) depicts

the three relative distances between them. The Nigiwai scores

using Wv = 0.1 for the three pedestrians are indicated in

Figure 15 (b). It can be noted that the three pedestrians were

very close to each other around frame 301 (Figure 15 (a));

however, the Nigiwai of P1 was small compared to the

Nigiwai of P2 or P3. Figure 15 (c) depicts the use of the

density-based model, where Wv = ∞. In this case, we note

that P1 had a high score around frame 301 owing to the small

relative distances to P2 and P3. This also supports our claim

that the incorporation of the relative velocity into our model

is important in quantifying Nigiwai.

Finally, we compared the contributions to the local Nigi-

wai score at an ROI point by two persons, as illustrated in

FIGURE 16. Comparison of the Nigiwai contributions of a person
stopping in front of a shop and another passing by the shop (ROI).
(a) Sample frame showing the two persons in blue bounding boxes,
where the ROI point is indicated by the center of the green circle.
(b) Nigiwai contribution of each person using the proposed method
(Wv = 0.1). (c) Contribution of each person using the density-based
model (Wv = ∞). The distance to the ROI is presented by the left axis.

Figure 16 (a), where one had stopped at the front of a shop

and the other was passing by. An ROI point at the front of this

shop is represented by the center of the green circle. The local

Nigiwai at this point was computed considering only these

two persons, using Wv = 0.1. The result was compared
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with the score obtained when using the density-based model

(Wv = ∞). Figure 16 (b) presents the Nigiwai component

owing to each person when using Wv = 0.1. The relative

distance between each person and the ROI point is indicated

on the same graph. It can be noted that a stationary person

always contributed a higher value to the ROI Nigiwai than a

moving person, regardless of their distances from the shop.

Figure 16 (c), whereWv = ∞, indicates that the contribution

score of the moving person was increased around frame 515

because this person was closer to the shop than the stationary

person. We can conclude that with the proposed method, the

stationary person contributed more to the Nigiwai of the shop

than the person passing by, whereas the density-based model

determined the score based on the relative distances of the

people from the shop, without considering whether they were

passing by or had stopped in front of it.

V. CONCLUSION

A set of novel evaluation indicators for the shopping activ-

ity (Nigiwai) in a shopping area have been introduced. Our

indicators are computed solely from the pedestrian trajecto-

ries, which can easily be obtained with surveillance cameras.

The proposed method uses both the distances and relative

velocities between agents, which enables the finer struc-

tures of the pedestrian activities to be captured. Evaluations

with simulated pedestrian trajectories demonstrated that the

proposed method could successfully discern scenarios with

shoppers from those with passersby, even when the latter

had a higher number of pedestrians. Moreover, the proposed

method exhibited high robustness against mis-detection and

mis-tracking in the simulations. We also verified our method

using real data. We first extracted the pedestrian trajectories

with an existing algorithm, and our indicators were calculated

and visualized with the extracted trajectories. In a subsequent

study, we will investigate the correlation between our indica-

tors and other indicators such as sales by using real data col-

lected from a shopping street. Our study has some limitations

that are worth noting. Appropriate values of the parameters

Wv and Wd depend on the scale and frame rate of the sam-

pled trajectory data, and the geometry of the area. Heuristic

calibrationmay be required before the indicator is applied to a

specific setting. Although our indicators effectively evaluate

different people flows at the same place or areas with similar

shapes and sizes, it is not suitable for deducing absolute

Nigiwai scores, which can be used to compare people flows

measured in different areas.
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