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Abstract We propose new dependence measures for two real random variables
not necessarily linearly related. Covariance and linear correlation are expressed
in terms of principal components and are generalized for variables distributed
along a curve. Properties of these measures are discussed. The new measures are
estimated using principal curves and are computed for simulated and real data
sets. Finally, we present several statistical applications for the new dependence
measures.
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1 Introduction

Correlation coefficient and covariance are appropriate dependence measures be-
tween two random variables when they are linearly related. However, it is usual
to find situations where this condition is not fulfilled.

Several works have introduced non-linear dependence measures between two
random variables. Rényi (1959) enunciated seven properties which should be
verified by any dependence measure between two random variables defined over
the same probability space. These axioms were discussed and partially modified
by Bell (1962), Scheizer and Wolff (1981) and Nelsen (2006), among others.

Nonparametric functional estimation methods have given rise to several def-
initions of dependence measures. Bjerve and Doksum (1993) defined a measure
on the plane called a correlation curve (observe that this is not a scalar mea-
sure). It is based on locally estimated coefficients of nonparametric regression
and measures local linear correlation conditioned on one variable. Therefore,
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Politècnica de Catalunya, 08034 Barcelona, Spain. pedro.delicado@upc.edu
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the correlation curve is not symmetric and one of Rényi’s axioms is violated.
Bjerve and Doksum (1993) proposed a symmetric version. See also Doksum
et al. (1994) for extension to several dimensions and Doksum and Froda (2000)
for the smoothing parameter choice. Jones (1996) criticized correlation curves
and defined local dependence measure based on nonparametric bivariate den-
sity estimation (see also Holland and Wang, 1987, and Wang, 1993). This local
dependence function satisfies some of Rényi’s axioms, but has the disadvantage
of being a whole function over R2.

In this paper we propose two new dependence measures for two real random
variables that are non-linearly related. First, we express correlation and covari-
ance in terms of the first principal component (Section 2). Then, in Section 3
they are generalized for random variables in R2 distributed along a curve. In
Section 4 we discuss the properties of these measures regarding Rényi’s axioms.
Section 5 shows how the new measures can be estimated using principal curves
(Hastie and Stuetzle, 1989; Kégl et al., 2000; Delicado, 2001) and how they
are applied to simulated data sets. The new coefficients are used in Section 6
to measure nonlinear dependences in a real data set concerning neighborhood
education and age distribution in Barcelona. In Section 7 several statistical ap-
plications for the new dependence measures are presented and illustrated with
this real data set. Finally, conclusions are provided in Section 8.

2 Linear relation measures in terms of principal

components

Let (X,Y ) be a two-dimensional random variable with variance matrix Σ. Let
λ1 and λ2 (λ1 ≥ λ2) be the eigenvalues of Σ, and let α be the angle between
the eigenvector associated to λ1 (the first principal component) and axis x.
Remember that λi is the variance of the i-th principal component, for i = 1, 2.

Without loss of generality we can assume that the first eigenvector of Σ
belongs to the first quadrant. Using the spectral decomposition of matrix Σ,

Σ =

(
σ2

X σXY

σXY σ2
Y

)
=

(
cosα − sin α

sin α cos α

)T (
λ1 0
0 λ2

)(
cosα − sin α

sin α cos α

)
.

Then V(X) = σ2
X = λ1 cos2 α + λ2 sin2 α, V(Y ) = σ2

Y = λ1 sin2 α + λ2 cos2 α,

Cov(X,Y ) = σXY = (λ1 − λ2) cos α sin α. (1)
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We can also express the correlation coefficient as a function of λ1, λ2 and α:

ρXY =
σXY

σXσY
=

(λ1 − λ2) cos α sinα

(λ1 cos2 α + λ2 sin2 α)
1
2 (λ1 sin2 α + λ2 cos2 α)

1
2
. (2)

Note that the expressions of covariance and correlation are symmetric in α and
(π/2− α), which is equivalent to saying that σXY = σY X and ρXY = ρY X .

3 Non-linear dependence measures on R2

In this section we define dependency measures for two random variables jointly
distributed in R2 along a one-dimensional curve. We use expressions (1) and
(2) to define measures of local linear relationship; then by aggregating them we
obtain global measures of dependence.

Let c : I ⊆ R 7→ R2 be a one-dimensional smooth curve in the plane. We
assume that c is parameterized by the length of arch, or equivalently that c

is unit speed: ‖c′(s)‖ = 1 for all s ∈ I. Let v(s), s ∈ I, be a unitary vector
field orthogonal to c (that is, c′(s)T v(s) = 0 for all s ∈ I). We define χc :
I×R 7→ R2 by χc(s, t) = c(s)+ tv(s). Assume that; (S, T ) is jointly distributed
in A ⊆ I × R with density h(S, T ); that E(T |S = s) = 0 and V(S) > V(T |S =
s), and that χc : A 7→ χc(A) is a one-to-one application. Function χc is a
particular case of the function defined by Hastie and Stuetzle (1989) in the proof
of their Proposition 6, which has also been used in Delicado (2001), Delicado
and Huerta (2003) and Delicado and Smrekar (2007). This latter paper includes
the derivation of the expression of the density of (X, Y ) in terms of the curve c

and the density of (S, T ). Necessary conditions for χc being one-to-one can be
found in Hastie and Stuetzle (1989).

Definition 1 Let (X, Y ) be the bivariate random variable obtained as

(X, Y ) = χc(S, T ) : A 7→ R2.

We say that (X, Y ) is distributed along the curve c(I), that c(I) is the generating
curve, and that (S, T ) is the generating bivariate random variable.

The random variable (X, Y ) can be described as generated by a random
point on the curve c(I) plus an orthogonal random noise. Then the curve c(I)
summarizes the structure of the (X,Y ) distribution. For the particular case of
c(I) being a straight line, the statistical dependence between X and Y can be
said to be linear, and it is well measured using covariance and correlation.
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Figure 1: Linearizing the distribution of (X, Y ) around c(s) and c(t).

In order to generalize linear dependence measures, we start by defining local
measures (of variance and covariance) around a point c(s) in R2. The underlying
idea is to linearize the distribution of (X, Y ) around c(s); that is, we look for a
random variable (Xs, Ys) distributed along a straight line in such a way that the
distributions of (Xs, Ys) and (X, Y ) are similar around c(s). Figure 1 illustrates
this linearization process for two points c(s) and c(t). Local measures are defined
as follows.

Definition 2 Let (X, Y ) = χc(S, T ) be a bivariate random variable distributed
along the curve c(I). For s ∈ I, let α(s) be the angle between c′(s) and the
abscissas axis. We define local variances of X and Y at c(s) as

LVX(s) = V(S) cos2 α(s) + V(T |S = s) sin2 α(s),

LVY (s) = V(S) sin2 α(s) + V(T |S = s) cos2 α(s).

Local covariance at c(s) is defined as

LCov(X,Y )(s) = {V(S)−V(T |S = s)} cosα(s) sin α(s),

and local correlation at c(s) as

LCor(X,Y )(s) = LCov(X,Y )(s)/{LVX(s)LVY (s)}1/2.

Once local dependence measures have been defined, we aggregate them to
obtain two global measures. It is important to notice that the local covariance
and correlation have the sign of the curve slope c′(s). So local measures can have
different signs in different points of curve c(I), and they may cancel out when
they are aggregated. Therefore it is convenient to aggregate squared values of
local measures and then take the square root. We propose to do aggregation by
taking expectations with respect to the distribution of the random variable S.
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Definition 3 In the context of Definition 2, the Covariance of X and Y along
their generating curve c is defined as

CovGC(X, Y ) =
(
ES [{LCov(XY )(S)}2])1/2

,

and their Correlation along the curve c is

CorGC(X, Y ) =
(
ES [{LCor(XY )(S)}2])1/2

.

These definitions are a generalization of the absolute value of covariance and
correlation, respectively, as is established in the next Proposition.

Proposition 1 Let (X, Y ) = χc(S, T ) be a bivariate random variable distrib-
uted along the curve c(I). Assume that the curve c(I) is in fact a straight line
(c′(s) = β for all s ∈ I, β ∈ R2, ‖β‖ = 1) and that V(T |S = s) does not depend
on s. Then, for all s ∈ I, LVX(s) = V(X), LVY (s) = V(Y ),

LCov(X,Y )(s) = Cov(X,Y ), LCor(X,Y )(s) = Cor(X,Y ),

CovGC(X,Y ) = |Cov(X, Y )| and CorGC(X, Y ) = |Cor(X,Y )|.
Proof. The proof of this result is straightforward. The only point requiring
some care is to show that the straight line c(I) is in fact the first principal
component of (X, Y ). For its proof, let Z = a1X + a2Y , with a2

1 + a2
2 = 1, a

normalized linear combination of X and Y . By Definition 1, there exist b1 and
b2, with b2

1 + b2
2 = 1, such that Z = a1X + a2Y = b1S + b2T . Assuming that

V(T ) < V(S), we have

V(Z) = b2
1V(S) + b2

2V(T ) ≤ V(S)

with equality if and only if b1 = 1 and b2 = 0. We conclude that the first
principal component is the generating straight line c(I). ¤

Three examples illustrate the computation of non-linear dependence measures.
Example 1: Data on a ring. Let (S, T ) be a uniform random vector on A =
I×J with I = [−π, π) and J = [−ε, ε], ε ∈ (0, 1). Let c(s) = {cos(s), sin(s)}T be
the usual parametrization of the unit circumference S1 in R2, and χ : A 7→ R2

the corresponding one-to-one function. Then χ(A) = {x : x ∈ R2, 1 − ε ≤
‖x‖ ≤ 1 + ε}. We define (X, Y ) = χ(S, T ). (X,Y ) is generated as a uniform
random point in the S1 circumference plus an orthogonal uniform random noise
(see Figure 2, graph bottom left). Observe that c′(s) = {− sin(s), cos(s)} =
{cos(s + π/2), sin(s + π/2)} and it follows that α(s) = s + π/2. The square of
the CovGC is

CovGC2(X, Y ) = ES

(
[{ES(S2)− ET (T 2|S)} cosα(S) sin α(S)]2

)
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Figure 2: Generating variables (S, T ) (top graphic) and two examples of random

variables (X, Y ) distributed along a curve. In the bottom left graphic the generating

curve is the circumference S1, and in the bottom right graphic the generating curve is

a straight line.

=
(

π2

3
− ε2

3

)2 ∫ π

−π

{
cos

(
s +

π

2

)
sin

(
s +

π

2

)}2 1
2π

ds =
1
8

(
π2

3
− ε2

3

)2

.

Then,

CovGC(X,Y ) =
1

2
√

6
(π2 − ε2).

The square of CorGC is

CorGC2(X, Y ) =
∫ 2π

0

(
π2

3 − ε2

3

)2

cos2 α(s) sin2 α(s)

{π2

3 cos2 α(s) + ε2

3 sin2 α(s)}{π2

3 sin2 α(s) + ε2

3 cos2 α(s)}
1
2π

ds

=
∫ 2π

0

(π2 − ε2)2 sin2 s cos2 s

(π2 sin2 s + ε2 cos2 s)(π2 cos2 s + ε2 sin2 s)
1
2π

ds =
(π − ε)2

π2 + ε2
.

Then,

CorGC(X, Y ) =
π − ε√
π2 + ε2

.

Example 2: Data in a rectangle. We define two elements of R2: a =
(π/

√
2, π/

√
2) and b = (−ε/

√
2, ε/

√
2). Let B be the rectangle delimited by

the points (a + b), (a− b), (−a + b) and (−a− b), according to Figure 2, graph
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bottom right. Let (S, T ) and A be as in Example 1, but now with ε ∈ (0, π). Let
χ be a rigid rotation transformation (with angle α = π/4) such that χ(A) = B,
and let (X, Y ) = χ(S, T ). Therefore (X, Y ) is a uniform random variable in
the rectangle B. Moreover (X, Y ) is distributed along the line x = y. The
corresponding value α(s) = α = π/4 for all s. Let us compute the squares of
CovGC and CorGC:

CovGC(X, Y )2 = ES [{ES(S2)− ET (T 2|S)} cos2 α sin2 α]

=
(

π2

3
− ε2

3

)2 ∫ π

−π

(
1√
2

1√
2

)2 1
2π

ds =
1
4

(
π2

3
− ε2

3

)2

,

CorGC(X,Y )2 =
∫ 2π

0

(
π2

3 − ε2

3

)2

cos2 α sin2 α

(π2

3 cos2 α + ε2

3 sin2 α)(π2

3 sin2 α + ε2

3 cos2 α)
1
2π

ds

=
(π2 − ε2)2(1/2)(1/2)

{π2(1/2) + ε2(1/2)}{π2(1/2) + ε2(1/2)} =

(
π2 − ε2

)2

(π2 + ε2)2
.

Therefore

CovGC(X,Y ) =
1

2
√

3
(π2 − ε2), CorGC(X,Y ) =

π2 − ε2

π2 + ε2
.

The covariance along the generating curve in the rectangle (coinciding with
its covariance) is

√
2 times that in the ring (Example 1). In both cases the

distribution over the generating curve is the same, but local angles between the
curves and the abscissas axis are different. The correlation along the generating
curve in the ring is lower than that in the rectangle for all ε ∈ (0, 1).

Example 3: It is worthwhile to note the CorGC value is not always greater than
the usual correlation coefficient, as the following example makes clear. Consider
the following points in R2: O = (0, 0)T , P = (0,−1)T , Q = (1, 0)T . Let (X,Y )
be a uniform random variable in the set B = PO ∪ OQ. Then Cor(X,Y ) > 0,
but CorGC(X, Y ) = 0, because the angle between the generating curve (which
is just the parameterization of the set B) and the abscissas axis is 0 or π/2.

4 Rényi’s axioms

Rényi (1959) gives a list of seven desirable properties (known as Rényi’s axioms)
which should be satisfied by any measure, δ(·, ·), of dependence between two
random variables, X and Y , defined on the same probability space. Rényi’s
axioms are the following:
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A. δ(X, Y ) is defined for any pair of random variables X and Y , neither of
them being constant with probability 1.

B. δ(X, Y ) = δ(Y, X).

C. 0 ≤ δ(X, Y ) ≤ 1.

D. δ(X, Y ) = 0 if and only if X and Y are independent.

E. δ(X, Y ) = 1 if there is a strict dependence between X and Y , i.e. ei-
ther X = g(Y ) or Y = f(X), where g(·) and f(·) are Borel-measurable
functions.

F. If the Borel-measurable functions f(·) and g(·) map the real line in a
one-to-one way into itself, then δ{f(X), g(Y )} = δ(X, Y ).

G. If the joint distribution of X and Y is normal, then δ(X, Y ) = |R(X, Y )|,
where R(X, Y ) is the correlation coefficient of X and Y .

This set of axioms has been considered too restrictive by various authors (see,
e.g., Scheizer and Wolff, 1981, and Nelsen, 2006) who have proposed slight
modifications. Scheizer and Wolff (1981), for instance, restrict their attention to
pairs of continuously distributed random variables, modify axioms E (replacing
“if” by “if and only if” and limiting f and g to be a.s. strictly monotone
functions), F (see F’ below) and G (they allow δ(X,Y ) to be a strictly increasing
function of the absolute value of R(X, Y )), and add a continuity axiom H.

Here we adapt Rényi’s axioms A, E and F as follows (F’ is borrowed from
Scheizer and Wolff, 1981):

A’. δ(X, Y ) is defined for any pair of random variables (X, Y ) distributed
along a curve according to Definition 1.

E’. Let (X, Y ) be two random variables distributed along a curve c according
to Definition 1, with generating variables (S, T ). δ(X, Y ) = 1 if and only
if there is a strict dependence between (X, Y ) and S, that is, X = c1(S)
and Y = c2(S), or equivalently T is identically 0.

F’. If f(·) and g(·) are strictly monotone almost surely (a.s.) on Range X and
Range Y , respectively, then δ{f(X), g(Y )} = δ(X,Y ).

Observe that axioms A’ and E’ are well suited to random variables distributed
along a curve with no noise.

The following Theorem checks which axioms are verified by CorGC defined
in Section 3. Observe that the same axioms (except C, E’ and G) are verified
by CovGC as well. See also the remarks following the proof.
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Theorem 1 CorGC verifies axioms A’, B, C, E’ and G. CorGC also satisfies
the following properties:

D’1. If X and Y are independent, then CorGC(X,Y ) = 0.

D’2. Let (X, Y ) be distributed along a curve according to Definition 1. If
CorGC(X, Y ) = 0 and S and T are independent, then X and Y are inde-
pendent.

CorGC does not verify axiom F’.

Proof. The definition of CorGC implies that it verifies A’. CorGC satisfies
condition B because of the symmetrical character of the function cos(α)sin(α)
in α and (π − α).

Let us prove that CorGC verifies C. The CorGC(X,Y ) ≥ 0 because CorGC
is the expectation of a positive function of a random variable. We now see
that CorGC(X, Y ) ≤ 1. If cos α(S) = 0 a.s. or sin α(S) = 0 a.s. then
CorGC(X, Y ) = 0 ≤ 1. In other cases,

CorGC(X,Y )2 =
∫

[{V(S)−V(T |S = s)} cosα(s) sin α(s)]2

LVX(s) LVY (s)
fS(s)ds

=
∫ {V(S)−V(T |S = s)}2fS(s)

V(S)2 + V(T |S = s)2 + V(S)V(T |S = s){tan2 α(s) + tan−2 α(s)}ds

≤
∫ {V(S)−V(T |S = s)}2

V(S)2 + V(T |S = s)2 + 2V(S)V(T |S = s)
fS(s)ds

=
∫ {V(S)−V(T |S = s)}2
{V(S) + V(T |S = s)}2 fS(s)ds ≤

∫
fS(s)ds = 1,

then 0 ≤ CorGC(X, Y ) ≤ 1. We have used that the function g(x) = x2 +(1/x)2

has its minimum in R+ at x = 1.
In the previous derivation we see that CorGC(X,Y ) = 1 if and only if

V(T |S = s) = 0. This implies that axiom E’ is verified by CorGC. It follows
from Proposition 1 that in the bivariate normal case CovGC and CorGC coincide
with the absolute value of covariance and linear correlation, respectively. So
CorGC verifies G.

Now we prove D’1 and D’2. Let X and Y be independent. Assume that
V(X) ≥ V(Y ). Then the marginal variance on the curve c(s) = {s, E(Y )}
is greater than the marginal variance on the curve d(t) = {E(X), t}, and the
(X, Y ) distribution is along c(s) = {s,E(Y )}, with χc the identity function
in R2. Therefore α(s) is constantly 0 and CorGC and CovGC are also null.
This proves D’1. According to Definition 1, V(S) > V(T |S = s) for all s. So,
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if CorGC and CovGC are zero then α(s) = 0 for all s and X = S, Y = T .
Therefore X and Y are independent and D’2 is verified.

Property F’ does not hold for CorGC. See Remark 2 below and Example 5
given in Section 5. ¤

Remark 1. The measure CorGC almost verifies Rényi’s axiom D, which is
slightly stronger than D’1 plus D’2.

Remark 2. Let us examine more thoroughly why CorGC does not verify axiom
F’, which means invariance against strictly monotone transformations of vari-
ables X and Y . First at all, given (X,Y ) distributed along a curve (according
to Definition 1), and f(·) and g(·) strictly monotone functions on Range X and
Range Y , respectively, in general it is not guaranteed that {f(X), g(Y )} are
distributed along any curve. So CorGC{f(X), g(Y )} may not exist. On the
other hand, even if CorGC{f(X), g(Y )} is well defined, we must not expect
that CorGC{f(X), g(Y )} = CorGC(X, Y ), because in the definition of CorGC
orthogonalities play a central role and in general are not preserved when trans-
forming (Range X × Range Y ) by {f(·), g(·)}.

From Scheizer and Wolff (1981) and Nelsen (2006) it follows that axiom F’
obliges us to measure the dependence between X and Y from their copula CXY ,
a distribution function on [0, 1]×[0, 1] verifying FXY (x, y) = CXY {FX(x), FY (y)},
for all reals x, y (see Theorem 1 in Scheizer and Wolff, 1981) where FX , FY and
FXY are the distribution functions of X, Y and (X,Y ), respectively. Any de-
pendence measure between two absolute continuous random variables X and Y

satisfying axiom F’ must depend only on CXY : δ(X,Y ) = δ{FX(X), FY (Y )} =
δ(U, V ), with U = FX(X) and V = FY (Y ) uniforms on [0, 1] and (U, V ) having
the same copula as (X, Y ). This result has its counterpart when measuring de-
pendence from a bivariate random sample: the sampling analogue of axiom F’
implies that any sampling dependence measure may depend only on the ranks
of the observations. Kendal’s τ and rank correlation Spearman’s ρ are examples
of such sampling dependence measures.

In order to define a dependence measure between X and Y being related with
CorGC and verifying axiom F’, we should assume that (U, V ) = {FX(X), FY (Y )}
is distributed along a curve, and then use the measure given in Definition 3 on
(U, V ). Nevertheless we consider that it is not natural to impose that (U, V ) (a
random variable on [0, 1]× [0, 1] with uniform marginals) is distributed along a
curve. From a practical point of view, in Section 5 we present a sampling version
of CorGC, and the possibility exists of applying it to the ranks of a sample.
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5 Estimating the new dependence measures

In previous sections we introduced the dependence measures CovGC and CorGC
for bivariate random variables distributed along a curve. Now we deal with
definitions of analogous concepts for random samples drawn from such random
variables, that is, definitions of estimators of the population concepts. Following
Definitions 2 and 3, we need to estimate several elements before computing
estimations of CovGC and CorGC: the generating curve c(I), the interval I ⊆ R,
where it is defined, the speed vectors c′(s) (and the corresponding angles α(s)),
the variance of the generating variable S, the variance V(T |S = s) orthogonal
to the curve at each point c(s), and the distribution of the generating variable
S.

The natural way to estimate I, c(s) and c′(s), s ∈ I, is by means of a
principal curve fitting algorithm. For more information on principal curves
see, for instance, Hastie and Stuetzle (1989), Kégl et al. (2000) or Delicado
(2001), where three different concepts of principal curves are introduced. The
algorithm proposed by Hastie and Stuetzle (1989) is implemented in the pack-
ages princurve and pcurve of R (R Development Core Team, 2005). A Java
implementation for Kégl et al. (2000) is available on the web page of one of
the authors (http://www.iro.umontreal.ca/%7Ekegl/research/pcurves/).
The algorithm proposed by Delicado (2001) has been implemented in C++ (see
Delicado and Huerta, 2003). It is available, with interfaces in both MATLAB
and R, at http://www-eio.upc.es/%7Edelicado/PCOP/.

The afore-mentioned concepts of principal curves (and others that can be
found in the literature) share an undesirable property: if a random variable
(X, Y ) is distributed along a curve c(I) (as defined in Definition 1), then the
curve c(I) is not a principal curve according to any of those definitions (Deli-
cado, 2001). Nevertheless, given a data set, the differences between the three
estimated principal curves are usually small, and they are close to the gener-
ating curve. Therefore as the first step to computing CovGC and CorGC, we
propose using any of these algorithms to fit a principal curve to a bivariate data
set.

Once the curve has been estimated, the nonparametric estimation of the
other required elements in the definition of CovGC and CorGC is straightfor-
ward. In this paper we use the afore-mentioned implementations of the proposals
of Hastie and Stuetzle (1989) and Delicado (2001). We denote them by HS and
PCOP, respectively. Routines in R to compute CovGC and CorGC are available
at http://www-eio.upc.es/%7Edelicado/PCOP/.
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Table 1: Numeric summary of the simulation results. Mean and standard devi-
ation (in brackets) for 500 simulations.

Population Estimated Estimated
Example CorGC Correl. Coef. CorGC, HS CorGC, PCOP
1, ε = .2 .9344 – .9347 (.0087) .9037 (.0753)
1, ε = .4 .8657 – .8740 (.0144) .8513 (.0357)
2, ε = 1.32 .7 .7001 (.0222) .7055 (.04094) .7035 (.0224)
4, ρ = .7 .7 .7011 (.0355) .7102 (.0354) .7014 (.0348)
4, ρ = .85 .85 .8506 (.0196) .8558 (.0188) .8508 (.0201)
5, ρ = .85 – .8190 (.0221) .8661 (.0199) .8511 (.0265)

As an illustration of the use of the new sampling dependence measures, we
apply them to a battery of simulated data sets. We focus on the estimation of
CorGC.
Example 1: Data on a ring (continued). We generate 500 samples of
200 bivariate data following the distribution described in Example 1 (Section
3). We fix ε = 0.2 and ε = 0.4, which gives values of CorGC = 0.9344 and
CorGC = 0.8657, respectively. A numeric summary of the simulation results
appears in Table 1. For ε = 0.4, Figure 3 (left graph) shows the density func-
tion estimated from the 500 sampling CorGC values when both principal curve
methods, HS and PCOP, are used. Both estimators of CorGC are biased (in
different directions), but the MSE of the HS based estimator is lower than that
of the PCOP based estimator. This is because the HS principal curve estimator
fits closed generating curves better than the PCOP method.
Example 2: Data in a rectangle (continued). Now we use the uniform
distribution on a rectangle described in Example 2 (Section 3). We generate 500
samples of 200 bivariate data from it. We fix ε = 1.32 in order to obtain a value
of CorGC = 0.7, which in this case coincides with the population correlation
coefficient. Figure 3 (right grap) shows the density function estimated from the
500 sampling CorGC values when usual correlation coefficient and both principal
curve methods, HS and PCOP, are used. Table 1 provides a numeric summary
of the results. The CorGC estimator based on PCOP and the absolute value
of the sampling correlation coefficient are comparable in this case. The CorGC
estimator based on HS is also approximately unbiased, but presents much more
variability. Results for greater values of ε (not presented here) indicate that
the PCOP based estimator is more suitable for this kind of data. The reason is
that the HS principal curve estimator does not fit well data having a non-closed

12
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Figure 3: Nonparametric density estimation for 500 estimations of CorGC. Left
panel: Data on a ring (Example 1). Right panel: Data in a rectangle (Example
2).

generating curve with compact support.
Example 4: Bivariate normal data. We now consider data coming from a
bivariate normal distribution. Proposition 1 states that in this case the CovGC
and the CorGC must agree with the absolute values of covariance and correlation
coefficient, respectively. The results of the new estimators and the absolute
values of the usual measures were compared in 500 samples of 200 bivariate
normal data, with mean µ = (0, 0)T , unit variances and covariance equal to ρ.
Therefore the population value of CovGC, CorGC, Cov and Cor are all equal
to ρ. We show results for ρ = 0.7 and ρ = 0.85. A numeric summary of the
results can be seen in Table 1. The nonparametric density estimations for the
correlation coefficient (in absolute value) and the CorGC are represented in
Figure 4, left panel, for ρ = .85. It can be seen that both CorGC estimators
are comparable to the correlation coefficient as estimators of ρ. In fact in our
experiment the MSE of the PCOP based CorGC estimator is slightly lower than
that of the correlation coefficient when ρ = 0.7.
Example 5: Nonlinear transformation of bivariate normal data. The
simulations described in Example 4 (for ρ = 0.85) were also used to com-
pare the CorGC of the 500 samples with the CorGC of 500 samples nonlin-
early transformed. We transform (x, y) to {f(x), g(y)}, with f(x) = x and
g(y) = sign(y)

√
|y|. Observe that this transformation is one of those considered

in axiom F’ (Section 4). Therefore if CorGC verified axiom F’, we would find
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Figure 4: Nonparametric density estimation for 500 estimation of CorGC. Left
panel: Bivariate normal data, ρ = 0.85 (Example 4). Right panel: Nonlinear
transformation of bivariate normal data, ρ = 0.85 (Example 5).

that ρ = Cor(X,Y ) = CorGC(X,Y ) = CorGC{f(X), g(Y )}. One may observe
that this is not true in this example. The results are summarized in Table 1, in
Figure 4 (right panel) and in Figure 5. It is apparent that the HS based CorGC
estimator is not in accord with to axiom F’ (the same occurs for the correla-
tion coefficient). This is not so clear for the PCOP based CorGC estimator.
Nevertheless, both null hypotheses β0 = 0, β1 = 1 are rejected when a simple
regression is fitted to the data drawn in the left panel of Figure 5. We conclude
that axiom F’ is not fulfilled by CorGC.

6 A real data analysis

In order to check the proposed dependence measures with a real data set, we
consider data from the city of Barcelona regarding educational levels and age
structure. Seven variables (listed in Table 2) are measured in 246 Zones of
Study (ZRP, from the initials in Catalan), which are groupings of neighbor-
hoods defined for statistical purposes. This city division coexists with other
city divisions with lower and upper levels of aggregation. The data are obtained
from the Department of Statistics of the Barcelona Municipal Council web page
(http://www.bcn.cat/estadistica/angles/index.htm). We aggregated ed-
ucational level categories into three levels and age distribution categories into
four levels. Two of the original 248 ZRPs were clearly outliers in most of two-
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Figure 5: Joint distribution of correlation coefficient, HS based CorGC and
PCOP based CorGC for 500 samples of a bivariate normal data, ρ = 0.85, and
the same data nonlinearly transformed (Example 5).

dimensional marginal distributions. They are then removed, since otherwise
they would distort the principal curve estimation. The seven variables are mea-
suring proportions and their variability are comparable (with the exception of
the slightly more disperse variables Primary and University). For this reason we
decide not to apply any transformation to the original data. In cases where
the dispersion varies greatly from variable to variable it would be advisable to
transform the data before computing CorGC or CovGC (standardizing them or
computing the sample ranks, for instance).

For an exploratory data analysis, the matrix of scatter-plots for the seven
variables are shown in Figure 6. Principal curves are fitted to each pair of

Table 2: Variables observed in 246 neighborhoods (Zones of Study, ZRP) of the
city of Barcelona.

Variable name Description: Proportion of people in the ZRP with ...
Primary ... primary studies.
Secondary ... secondary studies.
University ... a university degree.
Age Group 1 ... age under 14 years.
Age Group 2 ... age between 15 and 24 years.
Age Group 3 ... age between 25 and 64 years.
Age Group 2 ... age over 65 years.
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variables, using both HS (solid line) and PCOP (dashed line) methods. These
graphs reveal the nonlinear nature of the dependence between most variables.
It can be seen that the two principal curve algorithms generally agree. For each
pair of variables, the CorGC is calculated using HS and PCOP algorithms. The
absolute value of correlation coefficients and the two estimated CorGC values
are given in Table 3 (upper diagonal entries).

There are many pairs of variables with a clear nonlinear joint distribution;
some of them are also highly linearly related (i.e., Secondary and University) while
others are uncorrelated (i.e., University and Age Group 3). The values of CorGC
using HS and PCOP are usually similar (PCOP based coefficient taking in
general smaller values), but there are examples where one is much higher than
the other (i.e., Secondary and Age Group 3, or University and Age Group 4). This
fact indicates that both methods are able to measure different features of the
joint distribution.

7 Statistical applications of CorGC

In this Section we introduce some statistical applications of the CorGC coeffi-
cient. They are illustrated together with the Barcelona ZRP data (see Table
2).

7.1 Testing independence between two random variables

The CorGC coefficient (estimated by a principal curve fitting procedure) can be
used as a test statistic for testing the null hypothesis of independence between
two random variables, X and Y , against the alternative that (X,Y ) are distrib-
uted along a curve. A random permutation mechanism (random assignment of
observed yj to observed xi) allows us to approximate the null distribution of
the test statistic.

As an example, this test procedure is used to test independence between pairs
of variables in the Barcelona ZRP data set. The p-values (computed from 999
random permuted samples) for the independence tests using HS based CorGC
and PCOP based CorGC as test statistics are shown in the lower diagonal entries
of Table 3. The p-values for the incorrelation test using correlation coefficient
(in absolute value) are also provided as a reference. This aids in assessing the
advantage of using nonlinear dependence measures as test statistics.

There are many pairs of variables where the three independence test sta-
tistics lead to the same result (for instance, all three indicate that Primary and
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Figure 6: Scatter-plots matrix for the the Barcelona ZRP data.
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Table 3: Upper diagonal entries (from top to bottom): Correlation coefficient
(in absolute value), HS based CorGC and PCOP based CorGC for the Barcelona
ZRP data. Lower diagonal entries (from top to bottom): p-values for the test
of incorrelation and the tests of independence using correlation coefficient (in
absolute value), HS based CorGC and PCOP based CorGC as test statistics,
respectively.

.6356 .9476 .1851 .2852 .0156 .0023
Primary .6823 .9628 .6120 .4096 .5573 .2435

.6338 .9625 .5857 .3683 .5194 .1892

.000 .3575 .0462 .0617 .0305 .0276

.000 Secondary .6072 .2669 .5442 .6570 .6085

.000 .5357 .2280 .3770 .1623 .3536

.000 .000 .2083 .3184 .0096 .0041

.000 .081 University .6283 .5119 .6109 .4249

.000 .000 .5588 .4064 .6120 .2905

.005 .501 .001 Age .2391 .2803 .3872

.000 .889 .000 Group .6512 .4205 .3982

.000 .686 .000 1 .5175 .4176 .4020

.000 .325 .000 .000 Age .0362 .5290

.002 .000 .000 .002 Group .2837 .5781

.000 .061 .000 .000 2 .2518 .4907

.807 .627 .874 .000 .563 Age .6961

.002 .000 .000 .296 .147 Group .7128

.000 .935 .000 .000 .260 3 .6605

.973 .680 .948 .000 .000 .000 Age

.463 .006 .532 .035 .000 .000 Group

.300 .696 .150 .001 .000 .000 4
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University are not independent and that Primary and Age Group 4 can be consid-
ered independent). For pairs of uncorrelated variables having a U-shape joint
distribution, the existence of non-linear dependence is detected by the CorGC
based tests (this is the case for Primary and Age Group 3 or University and Age

Group 3, for instance). There are also some pairs of variables where using HS
based CorGC and PCOP based CorGC as independence test statistics do not
lead to the same conclusion. For instance, Secondary and Age Group 3 are de-
clared independent when using the PCOP based CorGC, but not when using
the HS based CorGC. The opposite occurs for Age Group 1 and Age Group 3.
This is in agreement with our remark at the end of Section 6 on the occasional
inconsistency between both CorGC computation methods.

Finally, it should be noted that similar values in HS based CorGC and PCOP
based CorGC do not correspond to similar p-values for testing independence.
For instance, for Age Group 1 and Age Group 3 the CorGC values are .4205 and
.4176, respectively, and the corresponding p-values are .213 and .000 (respec-
tively). This fact reinforces our previous observations that HS based CorGC
tend to be greater than PCOP based values.

7.2 Testing joint linear structure for two random variables

Let (X, Y ) be a bivariate random variable. Now we wish to test the null hy-
pothesis stating that the relation between X and Y , if any, is linear, against the
alternative asserting that this relation is not just linear and that in fact X and
Y are distributed along a curve (not being a straight line). A random sample
(xi, yi), i = 1, . . . , n from (X, Y ) is available.

Here joint linear structure for two random variables X and Y is understood
as the type of relation between them that can be captured by fitting a straight
line to the joint distribution of (X, Y ). Observe that two independent variables
can be said to be distributed along a straight line (with slope equal to 0 or
infinity). Therefore the null hypothesis we are testing is equivalent to stating
that X and Y are either linearly dependent or independent.

The procedure we propose for testing this null hypothesis is as follows. The
first step is to transform the observed data (xi, yi), i = 1, . . . , n, into their prin-
cipal component scores, say (ui, vi), i = 1, . . . , n. This transformation is just a
rotation in R2. By construction, (ui, vi), i = 1, . . . , n are always incorrelated.
In addition, under the null hypothesis, the data (ui, vi) can be considered as
coming from a bivariate distribution (U, V ), U and V being independent. So
the second and last step is to apply the independence test described in Section
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Table 4: P-values for the test of joint linear structure using HS based CorGC
(upper diagonal entries) and PCOP based CorGC (lower diagonal entries) for
the Barcelona ZRP data.

Primary .000 .000 .000 .002 .000 .553
.000 Secondary .000 .855 .000 .000 .001
.000 .000 University .000 .006 .000 .550
.000 .763 .000 Ag.Gr.1 .000 .306 .000
.000 .006 .010 .035 Ag.Gr.2 .076 .243
.000 .972 .000 .436 .015 Ag.Gr.3 .574
.265 .927 .057 .574 .648 .583 Ag.Gr.4

7.1 to the data set (ui, vi), i = 1, . . . , n.
This test procedure is used to test joint linear structure between pairs of

variables in the Barcelona ZRP data set. Table 4 contains the p-values (com-
puted from 999 random permuted samples) for this test using HS based CorGC
(upper diagonal entries) and PCOP based CorGC (lower diagonal entries) as
test statistics.

As expected, the null hypothesis of joint linear structure (which includes
independence) is not rejected for pairs of variables where the independence was
not previously rejected (see Section 7.1 and Table 3). This is the case not
only for pairs of variables Primary and Age Group 4, Secondary and Age Group 1

and University and Age Group 4 using both HS and PCOP based CorGC as test
statistic, but also Age Group 1 and Age Group 3, and Age Group 2 and Age Group 3

using the HS based statistic, and Secondary and Age Group 3, and Secondary and
Age Group 4 using the PCOP based statistic. There is one case (Age Group 2 and
Age Group 3 using PCOP) that does not adhere completely to this general rule,
with no apparent explanation. We recommend testing first the independence
hypothesis and then testing joint linear structure only for pairs of variables
where the independence hypothesis is rejected.

There are three pairs of variables not previously declared independent, for
which the null hypothesis of linear dependency is not rejected: Age Group 1 and
Age Group 3, Age Group 2 and Age Group 4, and Age Group 3 and Age Group 4. The
scatter-plots of these pairs of variables support these results, especially for the
last case.

The test of joint linear structure proposed here has some points in common
with the test for a linear relationship defined in Bowman and Azzalini (1997),
Chapter 5: both procedures are aimed at testing the null hypothesis of linear
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relationship. Nevertheless, the proposal of Bowman and Azzalini (1997) is based
on nonparametric regression, and then the results depend on what variable has
been specified as the response. Our proposal, on the other hand, is symmetric
on the order of variables. Moreover, a permutation mechanism is not used for
computing the p-value for the test (even though it would be possible to do so).

7.3 A similarity measure between pairs of variables

The absolute value of the correlation coefficient has traditionally been used as
a similarity measure for pairs of variables (see Johnson and Wichern (2002),
Chapter 12, for instance). Similarly, the CorGC coefficient can be considered
as a similarity measure between two random variables. When this measure is
computed for all pairs of marginals in a p-dimensional random variable (or data
set), a similarity matrix S is obtained, with entries sij ∈ [0, 1], i = 1 . . . , p,
j = 1 . . . , p. A standard way to obtain dissimilarities from a similarity measure
(having diagonal entries equal to 1) is to define dij ∝

√
1− sij (see Johnson and

Wichern (2002), Chapter 12, and references therein). Let D = (dij). In fact,
this is the relation between a scalar product and a Euclidean distance defined
on a vector space A with scalar product: if sij = 〈ai, aj〉, dij = 〈ai−aj , ai−aj〉
and 〈a, a〉 = 1 for all a ∈ A, then dij ∝

√
1− sij .

The definition of CorGC does not guarantee that the similarity matrix S is
positively defined. Therefore the dissimilarity matrix D can be non-Euclidean
(a p× p dissimilarity matrix D is Euclidean if p points ai in Rp exist such that
the Euclidean distance between ai and aj is dij for all i, j; this property is
equivalent to the positive definition of the corresponding similarity matrix S).

As an example, a similarity matrix SHS can be constructed with entries sij =
sji and equal to the second row of entry (i, j) in Table 3. This is the similarity
matrix containing the HS based CorGC coefficients for the seven variables in
the Barcelona ZRP data set. The similarity matrix corresponding to the PCOP
based CorGC, SPCOP , takes the third row element in the entries of Table 3.
With the first row element we define the similarity matrix corresponding to the
absolute value of correlation coefficients, say S|ρ|. None of these three similarity
matrices are positive definite for our data set.

A similarity matrix containing CorGC coefficients (or the associated dis-
similarity matrix) can be the base for later analysis as a cluster analysis for
variables or non-metric multidimensional scaling (MDS). For instance, Figure
7 shows two planar configurations of the seven variables in the Barcelona ZRP
data set. They are built by using non-metric MDS based on S|ρ| (left panel)
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Figure 7: Two-dimensional non-metric MDS configurations for the seven vari-
ables in the Barcelona ZRP data. Absolute value of correlation coefficients (left
panel) and PCOP based CorGC (right panel) are used as a similarity measure
between variables.

and on SPCOP (right panel). We use the function isoMDS from the R library
MASS accompanying the book of Venables and Ripley (2002).

The planar configuration derived from S|ρ| is more scattered than that based
on SPCOP . This is because similarities between variables are stronger when
nonlinear relations are taken into account. For instance, variables Primary and
University are close when we use S|ρ| but they completely overlap in the map based
on SPCOP because their nonlinear dependence is stronger than that suggested
by the correlation coefficient. Similarly, variables Secondary and Age Group 2

(with low correlation and clear nonlinear dependency) are closer in the SPCOP

map than in that based on S|ρ|. The same is true for Age Group 1 and Age

Group 2. These graphs show that the two groups of variables (education related
variables on the one hand, and age variables on the other) are closer in the
SPCOP . This is in accordance with the fact that the relations between variables
of both groups are mainly nonlinear.

8 Discussion

In this paper we present two new measures of dependence between two random
variables distributed along a curve: the covariance and the correlation along
the curve. We show that they verify a set of desirable properties closely related
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to Rényi’s axioms. The sampling version is also defined, based on the concept
and estimators of principal curves. Their performance as estimators of the
population concept is addressed by a simulation study. A real data set illustrates
how the new measures can be used in several statistical applications, such as
testing independence and linearity, or defining similarities between variables.
Other applications could also be defined in a similar way as generalizations of
canonical correlations or partial least squares. The methods described in the
paper are implemented as functions in R and are available at the authors’ web
page.
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