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Abstract

Recent years have seen extensive diversification of the

“underground economy” associated with malware and the

subversion of Internet-connected systems. This trend to-

wards specialization has compelling forces driving it: mis-

creants readily apprehend that tackling the entire value-chain

from malware creation to monetization in the presence of

ever-evolving countermeasures poses a daunting task requir-

ing highly developed skills and resources. As a result,

entrepreneurial-minded miscreants have formed pay-per-install

(PPI) services—specialized organizations that focus on the in-

fection of victims’ systems.

In this work we perform a measurement study of the PPI

market by infiltrating four PPI services. We develop infrastruc-

ture that enables us to interact with PPI services and gather and

classify the resulting malware executables distributed by the

services. Using our infrastructure, we harvested over a million

client executables using vantage points spread across 15 coun-

tries. We find that of the world’s top 20 most prevalent fami-

lies of malware, 12 employ PPI services to buy infections. In

addition we analyze the targeting of specific countries by PPI

clients, the repacking of executables to evade detection, and the

duration of malware distribution.

1 Introduction

Recent years have seen extensive diversification of the

“underground economy” associated with malware and

the subversion of Internet-connected systems. This trend

towards specialization has compelling forces driving it:

miscreants readily apprehend that tackling the entire

value-chain from malware creation to monetization in

the presence of ever-evolving countermeasures poses a

daunting task requiring highly developed skills and re-

sources. As a result, market forces foster a service cul-

ture that has brought about a wide range of specialized

providers for all stages in the malware-monetization life-

cycle, such as malware toolkits [3, 15], packing tools to

evade antivirus (AV) software [21], “bullet-proof” host-

ing [4], and forums for buying and selling ill-gotten

gains [10].

At the heart of this ecosystem lies the infection of vic-

tim computers. Virtually every enterprise in this market

ultimately hinges on access to compromised systems. To

meet the demands for wholesale infection of Internet sys-

tems, a service called pay-per-install (PPI) has risen to

predominance. Such PPI services play a key role in the

modern malware marketplace by providing a means for

miscreants to outsource the global dissemination of their

malware. Miscreants simply determine the raw number

of victim systems (including specific geographical distri-

bution, if desired) that fits within their budget, supply a

PPI service with payment and malware executables of the

miscreants’ choice, and in short order their malware is in-

stalled on thousands of new systems. In today’s market,

the entire process costs pennies per target host—cheap

enough for botmasters to simply rebuild their ranks from

scratch in the face of defenders launching extensive, en-

ergetic, take-down efforts [6].

In this work we perform a measurement study of the

PPI market by infiltrating four PPI services. We develop

infrastructure that enables us to (1) interact with PPI ser-

vices by mimicking the protocol interactions they ex-

pect to receive from affiliates with whom they have con-

tracted, and (2) gather and classify the resulting malware

executables as distributed by the PPI services. We report

results of infiltrations we conducted in the six months

between August 2010 and February 2011.

To our knowledge, our work reflects the first system-

atic study of the PPI ecosystem as seen from the perspec-

tive of the downloads pushed out by PPI services down

to their victims. Security analysts have previously exam-



ined PPI services in a top-down manner, by becoming

affiliates of particular services [7, 29]. Our study is in-

stead based on infiltrating PPI services in a bottom-up

manner, by creating custom programs that can continu-

ously download malware specimens that the PPI services

distribute, enabling us to track the infiltrated PPI services

over time.

We harvested over a million client executables us-

ing vantage points spread across 15 countries. The

month of August 2010 yielded 57 malware families, in-

cluding many of the most prevalent infections at the

time. They include spam bots (Rustock, Grum), fake

antivirus (Securitysuite, Securityessential), information-

stealing trojans (Zbot, Spyeye), rootkits (Tdss), DDoS

bots (Russkill, Canahom), clickers (Gleishug), and ad-

ware (SmartAdsSolutions).

Using our geo-diverse vantage points, we measure dif-

ferences in the geographical preferences of the different

malware families. We identify families that exclusively

target the US, the UK, and a variety of European coun-

tries. We also analyze the rate at which malware authors

repack their wares to evade hash-based signatures. On

average, they repack specimens every 11 days, and some

malware families repack up to twice daily. We track the

dynamics of campaigns during which a service dissem-

inates a given malware family in an ongoing push, ob-

serving a wide temporal range, from specimens that are

continually distributed over weeks, to pointwise efforts

lasting only a few hours. We also analyze the particulars

of how different PPI services interact with their affili-

ates, including surprising evidence suggesting that some

affiliates who sell installs to a particular PPI service not

only buy installs from rival PPI services, but also from

the very service to which they sell installs—apparently

to exploit arbitrage.

2 An Overview of Pay-Per-Install

The PPI market, as depicted in Figure 1, consists of three

main actors: clients, PPI providers (or services), and

affiliates. We begin with an overview of these actors,

followed by discussion of the transactions they perform

(Section 2.1) and the means and importance of evading

detection (Section 2.2).

Clients are entities that want to install programs onto a

number of target hosts. They wish to buy installs of their

programs. The PPI provider receives money from clients

for the service of installing their programs onto the target

hosts, where installation comprises distributing the pro-

Figure 1: The typical transactions in the PPI market. PPI

clients provide software they want to have installed, and

pay a PPI service to distribute the software (➊). The PPI

service conducts downloader infections itself or employs

affiliates that install the PPI’s downloader on victim ma-

chines(➋). The PPI service pushes out the client’s exe-

cutables (➌). Affiliates receive commission for any suc-

cessful installations they facilitated (➍).

grams to the target hosts, executing the client programs,

and tracking successful executions for accounting.

The PPI provider develops a program, called a down-

loader, that retrieves and runs client’s executables upon

installation. The PPI provider may conduct the instal-

lation of the downloader itself or may outsource distri-

bution to third parties called affiliates. When a provider

has affiliates, the provider acts as a middle man that sells

installs to the clients while buying installs from affili-

ates that specialize in some specific distribution method

(e.g., bundling malware with a benign program and dis-

tributing the bundle via file-sharing networks; drive-by-

download exploits; or social engineering). PPI providers

pay affiliates for each target host on which they execute

the provider’s downloader program. Once the down-

loader runs, it connects to the PPI provider to download

the client programs. If the PPI provider does the distri-

bution itself, we call the service a direct PPI service. If

the PPI provider runs an affiliate program, we call it an

affiliate PPI service.

In general, both reputable and not-so-reputable enti-

ties use PPI services. In this paper we focus on the use

of PPI services as a distribution mechanism for malware,

e.g., bots, trojans, fake AV software, and spyware. To



avoid determining what constitutes malware, we limit the

scope of the paper to PPI services that perform (or al-

low their affiliates to perform) silent installs on the target

hosts, i.e., installations that lack the informed consent of

the owner of the system. Hereafter we use the term PPI

providers to refer exclusively to those providers that per-

form or facilitate silent installs.

2.1 The PPI Ecosystem

We describe the PPI ecosystem in terms of the transac-

tions that take place between clients and PPI providers,

and between PPI providers and their affiliates.

Clients. Clients profit from the malicious activities en-

abled by malware they want to deploy on target hosts,

such as click fraud, stealing user information (e.g., credit

card numbers, credentials), or selling software to the user

under false pretense (e.g., fake AV).

PPI providers allow clients to choose the geographic

distribution of target hosts. This distinction creates price

differentiation in the market due to varying demand for

machines in certain regions and varying target host sup-

ply. Clients pay only per unique install, i.e., for one in-

stallation of their program on a given target host.

PPI providers. PPI providers profit from installation

fees paid by the clients. PPI install rates vary from

$100–$180 for a thousand unique installs in the most

demanded regions (often the US and the UK, and more

recently other European nations), down to $7–$8 in the

least popular ones (predominantly Asia) [12, 13, 19]. In

this study, we observe PPI providers installing multiple

client programs on the same target host, and have not ob-

served attempts to secure exclusive use of a target host

on behalf of a client. Exclusivity of a host is difficult to

guarantee because a PPI provider cannot generally know

whether a target host already runs other malware (e.g.,

a rival PPI downloader that installs competitors of the

client program). In addition, it is very difficult for clients

to validate that the PPI service only installed their mal-

ware on a host.

Affiliate PPI services give their affiliates a PPI down-

loader program personalized with their unique affiliate

identifier. The service credits affiliates for executing their

specific PPI downloader on a target host. Affiliates only

receive credit for confirmed installs of their PPI down-

loader. The confirmation takes the form of the PPI down-

loader sending the personalized affiliate identifier to the

PPI provider after downloading and executing the client

programs. Thus, affiliates receive credit only after deliv-

ering the installs.

Affiliates. Affiliates profit from the installs performed on

behalf of the PPI provider, with the distribution method

remaining transparent to the clients. Affiliates might in

fact be botmasters that compromise hosts, install their

own malware, and then task their malware with down-

loading and installing the PPI downloaders as one means

for monetizing their botnet. When doing so, the bot-

master relinquishes exclusive control of the hosts in ex-

change for the install payments from the PPI service. The

same botmasters might work with multiple PPI providers

simultaneously to maximize the income from each bot,

installing multiple affiliate binaries on each of their hosts.

Indeed, the market has a somewhat fundamental

conflict-of-interest, in that the more installs a botmas-

ter/affiliate provides, the more payment they receive; but

each install degrades the quality of previous installs, be-

cause the likelihood of the owner of the system discern-

ing they have become infected, and remedying the situ-

ation, rises with the volume of malicious installs on the

system.

2.2 Evading Detection

AV software may detect and block any program in the

installation chain, making it difficult to sustain installs.

Therefore, providing stealthy executables is a key objec-

tive for both PPI providers and clients. In the PPI ecosys-

tem, clients are often in charge of making their programs

stealthy before giving them to the PPI provider, while af-

filiates rely upon the PPI provider to provide them with

a stealthy downloader.

To render programs stealthy, both PPI providers and

clients employ packer programs sold by third parties [21,

23]. Packers change the program content so that its sig-

nature (e.g., MD5 hash) differs even though the pro-

gram’s functionality has not changed. Sophisticated

packers may also change the program size and add de-

tection techniques for debuggers and virtual machines,

which are commonly used by analysts. PPI providers

have responsibility for packing the PPI downloaders for

each affiliate and testing that the resulting executable

remains undetected by AV software. In addition, PPI

providers instruct affiliates and clients not to test their

programs on free malware scanners [30, 32], because

these services often redistribute samples to AV ven-

dors. The vendors may then add new signatures to their

databases, thus uncloaking the programs. We analyze
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Figure 2: Brands used by the LoaderAdv PPI service

over time. The domains under each brand correspond

to known front-ends for affiliates.

how frequently clients repack their programs in Sec-

tion 4.2.

3 Infiltrating PPI Infrastructure

In this section, we first describe how we identified the

four PPI services we infiltrate, and evaluate our coverage

of the PPI ecosystem. We then explain the processing

pipeline we have developed for milking executables from

PPI services and classifying them.

3.1 Identifying PPI services

A good starting point for identifying PPI services to in-

filtrate is PPI forums [27, 28], which mainly serve as a

means for advertising affiliate PPI services to attract new

affiliates. General underground forums sometimes offer

the same advertisements. One challenge when study-

ing PPI services concerns how to identify the different

brands used by the same PPI service over time. We ap-

proached this task by analyzing public information, in-

cluding copies of any old front-ends [14], forums used

to advertise affiliate PPI services [27, 28], and previous

analysis by security analysts [7, 29].

We selected four affiliate PPI programs for infiltration:

LoaderAdv, GoldInstall, Virut, and Zlob. We use these

names to refer to the respective PPI services, regardless

of their branded program names over time. Figure 2 il-

lustrates such branding, employed by the LoaderAdv ser-

vice.

Our coverage. Several other PPI services exist that we

did not infiltrate. To get an idea of our coverage of the

malware ecosystem, we compare our malware harvest

with contemporary reports by the security industry. In

July 2010, FireEye posted the list of the top 20 malware

families they observed using their network during April–

June 2010 [22]. Table 1 correlates these 20 families with

the contents of our “milked” malware corpus for Au-

gust 2010. The column labeled kit designates families

NAME % MONETIZATION KIT SEEN

1 Palevo 7.50 DoS,Info stealer ✓ ✓

2 Hiloti 4.69 Downloader/PPI ✓

3 Zbot 3.62 Info stealer ✓ ✓

4 FakeRean 3.47 Rogue AV(s) ✓

5 Onlinegames 2.94 Info stealer ?

6 Rustock 2.66 Spam ✓

7 Ldpinch 2.64 Info stealer ✓ ?

8 Renos 2.58 Rogue AV(s) ?

9 Zlob 2.54 Rogue software ✓

10 Autoit 2.53 Downloader/PPI

11 Conficker 2.48 Worm

12 Opachki 1.95 Click Fraud ✓

13 Buzus 1.91 Info stealer

14 Koobface 1.17 Downloader

15 Alureon 1.16 Downloader ✓ ✓

16 Bredolab 1.15 Downloader/PPI ✓ ✓

17 Piptea 1.13 Downloader/PPI ✓

18 Ertfor 0.91 Rogue AV(s) ✓

19 Virut 0.91 Downloader/PPI ✓

20 Storm 2.0 0.80 Spam

Table 1: FireEye’s top 20 malware families observed in

their MAX Cloud network on the April–June 2010 time

period [22] and whether we observe them in our milk for

August 2010.

that are crimeware kits, software that one can purchase

and customize in order to build botnet variants. Each kit

sold may represent an individual botnet with a separate

owner. For popular kits such as zbot, many distinct bot-

nets instances exist [33]. The column labeled seen indi-

cates whether we see samples of the family in our milk-

ing data. We milk 12 of the top 20 families, remain un-

sure about the phylogeny of 3, and miss 5 (AutoIt, Buzus,

Conficker, Koobface, Storm 2.0). We contacted FireEye

to inquire about the 3 unknown families, and based on

their response we believe they reflect generic tags used

by AV vendors, rather than specific families of malware.

3.2 “Milking” PPI Providers

This section starts the description of our milking opera-

tions. Figure 3 illustrates its architecture from milking

the executables until their classification.

PPI “milker” requirements. Each PPI service uses at

least one downloader program. A PPI downloader has

three main tasks to perform: download the client pro-

grams, execute them, and communicate successful in-

stallation to the PPI service for accounting. For each

downloader used by a PPI service that we infiltrated, we

built our own program that mimics the network com-



Figure 3: Architecture of our PPI milking system. The milkers contact the PPI services through Tor and store the

executables for processing (➊). We then use Bro to distill network traffic summaries from packet traces recorded for

each sample’s contained execution (➋). A behavioral classifier then processes these summaries and stores clustering

and tagging results to a database (➌).

munication used by the downloader to obtain the client

programs, but does not implement the rest of the down-

loader’s functionality, namely executing the client pro-

grams and accounting. In particular, we do our best to

identify and avoid any accounting communication to pre-

vent the PPI service from crediting an affiliate. We call

such programs milkers because we use them to milk the

client programs that the PPI provider distributes.

Although each PPI downloader program uses a differ-

ent method to download the client programs from the

PPI service, we observe two large classes. Basic PPI

downloaders use plain HTTP and have a set of hard-

coded URLs supplying client programs. The downloads

remain unencrypted and could be spotted easily by any

network monitoring device. The LoaderAdv and one of

the GoldInstall downloaders (GoldInstall-dl) belong to

this class. Advanced PPI downloaders have a propri-

etary, often encrypted, C&C protocol. These download-

ers first contact the C&C infrastructure to receive the list

of URLs supplying client programs. The Zlob, Virut, and

an alternative GoldInstall downloader (GoldInstall-list)

fall into this category. These downloaders still use HTTP

for the downloads, at times encrypting the executables or

disguising them as a benign file (e.g., by prefixing them

with a fake GIF header).

Building the milkers. Building a milker is most chal-

lenging for downloaders using undocumented C&C pro-

tocols and encryption routines. Our approach lever-

ages previously proposed techniques for automatic bi-

nary code reuse [5,16], which, given an executable, iden-

tify and extract parts of the executable related to a given

function or specific functionality defined by the analyst.

Our milker building process is semi-automatic because

we also manually decompile parts of the extracted binary

code. The final milker uses a mixture of C source code

and assembly instructions. For this project, building and

testing a basic milker required on average one day of full

work, while the advanced milkers required from two to

five days of work. It is worth noting that while build-

ing and testing the milker it is important to minimize the

amount of traffic exchanged with the real C&C servers,

which the PPI administrators may monitor. We learned

this the hard way when the Zlob PPI service banned one

of our computers during the testing phase. Moving to a

different IP address fixed the issue.

Updating the milkers. All PPI services frequently

change their download URLs to bypass blacklists. When

a PPI service changes its download URLs, our advanced

milkers simply download the updated list from the PPI

C&C infrastructure and keep milking. However, our ba-

sic milkers, which have the old download URLs hard-

coded, stop working until we update the URLs. To up-

date the download URLs for the basic milkers, we first

develop network signatures for the basic PPI download-

ers. Then, we use two different approaches. First, we use

the network signatures to look for new PPI downloaders

within the executables we milk. If we find a match, our

processing automatically extracts new URLs and adds

them to our basic milkers. In addition, we also periodi-

cally query search engines and repositories that perform

malware analysis [30] for any new traffic that matches

the network signatures. Due to the prevalence of the PPI

services in this study, we often find the new URLs in

public repositories immediately after URLs change.

Anonymity and geographical diversity. To provide

anonymity and geographical diversity for the milkers,

we route them, when possible, through Tor [31]. A

milker achieves geographical diversity by using 15 Tor

circuits in parallel, each circuit terminating in an exit

node in a different country. We chose these countries



in accordance with different price points advertised by

PPI providers. We verify with the MaxMind GeoIP

database [20] that the exit node’s IP address indeed re-

sides in the desired country. For GoldInstall, Loader-

Adv, and Virut, we conduct all network communication

through Tor. We cannot access Zlob through Tor. We

suspect the Zlob operators blacklist the Tor exit nodes,

which are publicly known. To achieve geographical di-

versity for this provider, we run its milkers on Ama-

zon’s EC2 cloud [9] from hosts in two different coun-

tries, without using Tor. We discuss the targets and re-

sults of geographically diverse milking in Section 4.4.

3.3 Running the Executables

We run each new milked executable under containment

in the GQ malware farm [18], a platform for hosting all

manner of malware-driven research in safe, controlled

fashion. GQ confines each piece of malware in its ex-

ecution by a custom, manually created containment pol-

icy that allows us to decide per-flow whether to allow

traffic to interact with the outside, drop it, rewrite it, or

reflect it to other machines inside the environment. In our

scenario, the malware family and behavior is completely

unknown when we run a newly milked sample. Thus, we

create a containment policy that allows us to run all of

our samples safely, and to classify them based on their

network traffic.

We use this containment policy, called SinkAll, to au-

tomatically run thousands of executables, fully unsuper-

vised. This policy blocks network connections and redi-

rects them to internal sink servers within the farm. The

only traffic from the malware allowed on the Internet is

DNS. The reason for allowing DNS is to try to get the

malware sample to attempt C&C communication, since

part of our classification process (Section 3.4) examines

the traffic content. While our DNS sink server could

simply reply to all DNS requests with a valid response

that includes a fixed IP address, some malware sam-

ples resolve benign domains (e.g., microsoft.com,

google.com) and check the returned IP addresses

against a hard-coded list in the malware. Thus, our DNS

sink server proxies DNS requests and responses. If the

DNS response is a failure, the sink server spoofs a suc-

cessful DNS response with a fixed IP address to try to get

the malware to attempt C&C communication.

SinkAll forwards all non-DNS TCP traffic from the

malware to internal sink servers. For some well-known

protocols, e.g., HTTP and SMTP, these servers mimic

a valid session. This is important because some mal-

ware samples will test connectivity first using these pro-

tocols, and a valid session may entice them to attempt

C&C communication. All other TCP traffic goes to a

generic sink server that accepts arbitrary connections but

does not provide a response; it simply completes the TCP

handshake and accepts any data sent by the malware.

Finally, to detect anti-virtualization capabilities, sam-

ples that do not send any traffic are rerun on a bare (non-

virtualized) host, also within the farm. (This did not of-

ten make a difference in practice.)

3.4 Classifying the Executables

We classify executables based on the network traffic they

produce. First, we manually cluster them based on traf-

fic similarity and create a cluster signature. Then, when

possible, we tag clusters with names used by the com-

munity such as Rustock or Palevo.

Each run of a malware sample in the farm produces a

trace of its network communication. We process the net-

work trace with the Bro intrusion detection system [24],

using a number of custom analysis scripts we developed.

The scripts first check whether the sample generated any

network traffic at all. If it did not, then we queue the

executable for running on a bare host to check for anti-

virtualization techniques. If the sample did generate traf-

fic, we extract a number of features to characterize the

network traffic that we later use during clustering.

The first feature is the list of protocols used by the

sample. To extract this feature, we leverage Bro’s dy-

namic protocol detection capabilities, which detects traf-

fic for well-known protocols (e.g., DNS, HTTP, SMTP,

and IRC), regardless of the port with which the commu-

nication happens [8]. Another feature is the list of end-

points that communicate with the sample. For this, we

extract from the DNS traffic the domains requested by

the sample. If the sample starts a connection without a

previous DNS request, we also add the IP address it con-

tacts to the list of end-points. Another feature is the list

of TCP/UDP destination ports for connections started by

the sample. Finally, we extract a content feature from the

payload of any connection. For any HTTP request orig-

inated by the malware, the content feature is the method

and the list of parameters from the URL. We ignore the

path in the URL and the parameter values because they

tend to change often between samples. For other proto-

cols, the content feature is simply the first 16 bytes sent

by the malware.

We use the extracted features for clustering executa-

bles with similar network behaviors. In contrast to ex-



MILKER DOWNLOADS DISTINCT START DATE

LoaderAdv 696,714 4,334 Aug 1, 2010

GoldInstall 361,325 4,488 Aug 1, 2010

Virut 4,841 72 Aug 1, 2010

Zlob 504 259 Jan 3, 2011

Total 1,060,895 9,153

Table 2: Number of downloads and distinct MD5s col-

lected from each PPI service, starting August 1, 2010

and ending February 1, 2010.

isting clustering systems for domain names [26], HTTP

requests [25], and similar communication patterns [11],

our system must accommodate any type of C&C, includ-

ing custom binary protocols. In this work we therefore

use our own, simple, clustering method, based primar-

ily on manual inspection, but forsee integrating other ap-

proaches as the need arises.

Our clustering first groups all executables with identi-

cal features into a single cluster, with the list of features

acting as the initial cluster signature. We then manually

merge similar clusters, assigning the new cluster a signa-

ture of simply the disjunction of the signatures of each

merged cluster. Using this process on the August 2010

milk, we identify 57 clusters. The cluster signatures vary

from a domain list—of limited value due to continual up-

dates to C&C domains—to binary and HTTP signatures

that prove more useful long-term.

For tagging, we prioritize clusters by the total number

of times we milked them. For each cluster we manually

check if we can find labeled traffic that matches the clus-

ter signature in public repositories and malware analysis

reports. If so, we change the cluster tag to match the pub-

licly available name. This process is painful due to the

disparity of names used for the same families (and bina-

ries) in the community. We were able to tag 35 of the

57 clusters. In Section 4.1 we describe the results from

our classification.

4 Insights into the PPI Business

We now present results from our infiltration by analyz-

ing the executables we collected. We began our milking

operations on August 1, 2010. As of February, 2011,

we downloaded 1,060,895 client executables, yielding

9,153 distinct binaries during approximately 6 months

of infiltration. The modest proportion (0.8%) of unique

executables arises due to our frequent milking, and the

fact that our geo-diverse milking frequently retrieves the

same executable from multiple locations. We began

FAMILY MILKED DIST. DAYS CLASS PPI

Rustock 61,017 15 31 spam L

LoaderAdv-ack 60,770 62 31 ppi L

CLUSTER: A 11,758 8 31 clickfraud G

Hiloti 10,045 43 31 ppi L

CLUSTER: B 8,194 9 31 ? G

Gleishug 7,620 15 31 clickfraud L

Nuseek 5,802 2 30 clickfraud G

Palevo2 16,101 21 29 botnet G,L

Securitysuite 15,403 100 29 fakeav L

Zbot 3,684 49 29 infosteal G,L

CLUSTER: D 5,723 1 28 ? G

SmartAdsSol. 18,317 6 26 adware L

Spyeye 4,522 16 25 infosteal G,L

Securitysuite-avm 4,732 45 20 fakeav L

Grum 2,974 54 20 spam G,L

Tdss 4,893 12 19 ppi G,L

Otlard 677 7 16 botnet G,L

Blackenergy1 1,135 15 15 ddos L

Palevo 2,594 2 14 botnet G

Harebot 1,617 13 14 botnet G,L,V

Table 3: Top 20 malware families we milked during Au-

gust 2010. The columns indicate the total number of

executables milked, distinct executables per family, the

number of days seen, the families’ general class, and

PPI services that distribute the family: LoaderAdv (L),

GoldInstall (G), Virut (V).

our infiltration with LoaderAdv, GoldInstall, and Virut,

adding Zlob in Jan. 2011. Table 2 shows the breakdown

of our harvest by PPI service. The download rate varies

across PPI providers since each PPI has a different num-

ber of endpoints to download malware and our milkers

access each through geo-diverse locations.

4.1 Family Classification

We developed a set of classification signatures and vetted

them based on extensive manual analysis of the 313,791

executables we milked during August 2010. These signa-

tures classify 92% of the total August downloads. If we

then apply these same signatures to milk from September

2010, the proportion matched only diminishes to 86%,

and for October 2010, 77%. Thus, in terms of classi-

fying the most prevalent downloads, the power of such

milk-derived signatures decays fairly slowly with time.

(Certainly we do expect their power to diminish, how-

ever, as PPI providers acquire new clients, and existing

clients release variants of their malware that no longer

manifest the behavior targeted by our signatures.)



For the 8% of August downloads unmatched by our

signatures, we have assigned a general label reflecting

absence of any generated traffic. We manually evaluated

the behavior of 243 executables in this group and con-

firmed that the executables appear corrupted and do not

execute. We also ran most on bare hardware and con-

firmed that their failure to execute does not reflect anti-

virtualization checks.

While our signatures work quite effectively for classi-

fying the bulk of downloads, the picture changes if we in-

stead consider distinct binaries (only 0.6% of the overall

volume). For these, we classify only 36%. However, it

is unclear that this latter figure holds much significance:

a single malware specimen whose behavior we have not

specifically classified can account for a large number of

failures to classify distinct binaries if the specimen hap-

pens to be repacked frequently.

To examine the malware families distributed by each

PPI provider, we limit our discussion to the August 2010

milk. Since the distributed malware changes over time,

focusing on a single month facilitates a clear presentation

of our results, while still spanning a significant breadth

of activity. Table 3 lists the top 20 malware families we

milked during August 2010, the number of times milked,

the number of distinct executables, the number of days

we saw the family being dropped, the overall class for

the family’s predominant activity (“botnet” represents

generic malware platforms), and the different PPI ser-

vices that distributed the family.

Some of the malware families are crimeware kits

(Palevo2, Spyeye, Zbot, Bredolab), which means they

may be distributed by otherwise independent clients.

When computing statistics for individual clients, we thus

remove these kits to avoid potential aliasing. We observe

that out of the 20 malware families, 7 are distributed by

more than one PPI service. If we assume each (non-kit)

malware family belongs to one actor, the results show

that clients do not feel tied to a single PPI provider.

Distribution over time. Figure 4 shows distribution

timelines for each family we could label by activity class,

for August 2010. We visualize availability continuously

whenever a family was available at least once in three

hours. We make several observations. Programs push

clickbots at virtually all times, but DDoS platforms much

more sporadically. The latter perhaps reflects some sort

of Just-In-Time DDoS-for-hire service. With the ex-

ception of the GoldInstall-list downloader, we see PPI

downloaders pushed for weeks at a time. Spambots show

no uniform availability pattern: relatively short-lived

push-outs for Pushdo and Grum, but continual push-outs

DAYS TO REPACK

FAMILY # DISTINCT MEAN MIN MAX

Rustock 15 2.12 0.00 8.51

LoaderAdv-ack 62 2.21 0.00 7.14

CLUSTER: A 8 7.46 2.63 12.34

Hiloti 43 0.76 0.00 2.58

CLUSTER: B 9 4.42 0.34 23.62

Gleishug 15 3.57 0.00 8.60

Nuseek 2 14.08 5.04 23.13

Palevo2 21 1.77 0.00 10.15

Securitysuite 100 0.37 0.00 1.17

CLUSTER: D 1 28.22 28.22 28.22

Table 4: Repacking rates for the 10 most-milked fam-

ilies (Aug. 2010), excluding crimeware kits. The

columns show the number of distinct binaries and the

mean/minimum/maximum time to repack, in days. A

minimum time of zero means that one of the distinct ex-

ecutables appeared in only a single milking instance.

for Rustock. In the PPI setting, botmasters can afford

to push out their bots as convenient, which will keep

the installs relatively “silent”; by contrast, propagation

campaigns driven by social engineering (e.g., as used

by Storm [17]) require more careful design and timing.

4.2 Repacking Rate

The rate at which malware distributors repack their prod-

ucts reflects their concern about content-driven AV sig-

natures. In this section we analyze the repacking rate

for the client programs that we milk, which are typically

repacked by the client themselves. In addition, we de-

scribe how the Zlob service repacks their affiliate down-

loader binaries on-the-fly.

In the milk from August 2010, a malware family is

repacked on average at least once every 11 days. Ta-

ble 4 summarizes the individual repacking rate for the

top 10 families (excluding crimeware kits) milked in Au-

gust 2010. The data for the top 10 families shows that

they are repacked on average every 6.5 days. This indi-

cate that the top malware families are repacked more of-

ten than the average malware family. Among these fami-

lies, the most often repacked are Securitysuite (more than

twice a day) and Hiloti (at least once per day). CLUS-

TER:D has the slowest repacking rate, only 1 executable

was seen during the month, followed by Nuseek (2 exe-

cutables).

In Figure 5, we contrast the repacking of the Rustock

and Securitysuite families (with two variants of the lat-

ter) over the course of August. We plot distinct vari-
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Figure 4: Malware family availability via infiltrated PPI services in August 2010. We only show families with a known

activity class.
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Figure 5: Repacking activity according to binary changes over time for the Securitysuite and Rustock families. Some

Securitysuite binaries detected virtualized execution; we separate these by color.



ants on the y-axis, with entries ordered by first appear-

ance. Rustock changes executables less frequently, and

with little version overlap. Furthermore, the program

dropped Rustock during the whole month, while Secu-

ritysuite has more complex availability: Securitysuite-

avm, a Securitysuite subfamily with anti-VM capabil-

ities (for VMware, specifically), filled the availability

gaps when Securitysuite was not pushed out.1 In aggre-

gate, Securitysuite was thus likewise available through-

out, though with differing anti-VM capabilities. One

possible explanation is that the Securitysuite gang uses

two off-the-shelf packers, but only one provides anti-VM

capabilities.

Zlob affiliate downloader repacking. Unlike for the

malware that their clients provide, PPI providers typi-

cally repack affiliate downloader binaries on a periodic

basis and notify their affiliates to switch to the fresh

downloader [29]. We found that the Zlob service has in-

corporated a twist on this approach. They provide a web

service for affiliates to request a fresh binary, which, in-

terestingly, apparently repacks the affiliate binaries on-

the-fly. We requested the downloader for a single affili-

ate 27 consecutive times, resulting in 27 distinct, work-

ing Zlob binaries with identical sizes but differing MD5

hashes. Attackers could likewise apply such on-the-fly

packing to other areas, such as drive-by-downloads, to

create unique malware for each compromised host.

4.3 PPI Behavior

In this section we look at the behavior and distinct struc-

ture manifested by each PPI provider for managing their

downloads.

LoaderAdv. The LoaderAdv downloader has hard-

coded two domains and a set of file paths that it com-

bines with the two domains to create the URLs to locate

the malware executables. If we ignore the domain part

of the URL (the second domain is only used for redun-

dancy) we observe two classes of URLs: single-client

and multi-client. Single-client URLs always return the

same family of malware, while multi-client URLs cycle

through a set of clients that changed over the course of

our infiltration. These latter also yielded different down-

loads based on the geo-location of the milker’s IP ad-

dress, an aspect we examine further in Section 4.4.

Figure 6 shows the behavior of a single multi-client

URL as seen by our milkers. We show the different fami-

1Detecting the presence of Securitysuite-avm versus Securitysuite

was the only significant identification we obtained by using our “bare

metal” setup in addition to our VM-based execution environment.

lies in separate boxes, and the y-axis represents the coun-

tries involved. (The gaps on August 5 and 11 arise due

to failures of the milkers to connect through Tor.) As

we milk binaries from this URL, we typically see Se-

curitysuite or SmartAdsSolutions binaries. We also ob-

tain Zbot for a brief 11-hour period and GoldInstall-list

for about three days. During August 2010 our Loader-

Adv milker downloads malware from a total of 19 unique

URLs (ignoring the domains). Three of these are single-

client URLs only serving Rustock, while the remaining

16 drop malware matching 31 of our signatures.

GoldInstall. GoldInstall has two downloaders. The

GoldInstall-list downloader contacts the PPI C&C server

to obtain a list of URLs hosting the client executables.

The received list varies based on the geographic loca-

tion. Goldinstall-dl has a hard-coded list of URLs in the

binary that serve executables independent of geographic

location. Both the GoldInstall-list and GoldInstall-dl

downloaders fetch the executables using HTTP, with

each distinct URL representing a single family of mal-

ware. Often, the service hosts the same client executable

in multiple locations, with the path components of the

URL (such as 1.exe) remaining constant. When the

path is the same, typically so is the family of malware,

though we also observed common URL paths used for

multiple families (e.g., bot.exe). The download lo-

cations show no evidence of checking the geo-location

of the downloader before serving malware. Thus, the

GoldInstall-dl downloader does not download executa-

bles based on geographic location. Throughout the

month, the program periodically distributed new URLs

to the PPI executable, 41 total. These on average con-

tinued to return valid executables for 36 days after first

provided by the C&C (maximum 162 days, minimum 14

hours).

Virut. The Virut downloader uses a custom IRC-based

C&C protocol to receive a list of URLs hosting the client

executables. We observe a total of six distinct URLs

throughout August 2010, distributing 15 distinct executa-

bles matching signatures for three families. Four of the

URLs use a domain with the same whois entries as the

Virut C&C, and each URL can return a different exe-

cutable for each request.

Zlob. The Zlob downloader uses a custom encrypted

C&C protocol to request a list of URLs to locate client

programs. The received list varies based on the geo-

graphic location. The service replicates the list of URLs

so that every two received URLs correspond to one exe-

cutable, at two locations apparently for redundancy.
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Figure 6: Availability of malware families over time, from a single LoaderAdv URL. The empty family shows when

the URL provided a non-executable response.

4.4 Geographic Breakdown

To investigate the geographical preferences of the dif-

ferent malware families, we analyze the milk from the

LoaderAdv, GoldInstall, and Virut services, since as ex-

plained in Section 3.2 for these three services the milker

used 15 Tor circuits in parallel, each terminating in a

different country. We selected 15 countries using price

points advertised by PPI providers: AT, BR, DE, ES, FR,

GB, GR, IT, JP, KR, NL, PL, PT, RU, and US.

For most malware families we observe clear geograph-

ical preferences. Figure 7 shows the frequencies with

which we obtained a sample of the Ertfor, Gleishug,

Rustock, Securitysuite, and SmartAdsSolutions families,

each of which our milkers downloaded at least 100 times

during August. We selected these groups to highlight

characteristics we observe in geographical distribution;

other families exhibit similar patterns.

Three trends in geographical distribution emerge.

First, we commonly see families of malware preferen-

tially targeting Europe and the US (e.g., Ertfor, Secu-

ritysuite, and SmartAdsSolutions). Second, some fami-

lies exclusively target the US or another single country

(e.g., Gleishug). Finally, we observe families with no

geographical preferences (e.g., Rustock).

Several factors can influence a PPI client’s choice of

country. First, the class of activity in which the client’s

executable engages. A spam bot such as Rustock requires

little more than a unique IP address to send spam, while

fake AV such as Securitysuite often targets speakers of a

specific language, and may need to support user payment

methods specific to some areas. In addition, the install

rate a client pays also varies depending on the targets’

countries. We find the US and Great Britain generally at

the high end ($100–180 per thousand), other European

countries in the middle ($20–160), and the rest of the

world at the bottom (< $10) [12, 13, 19].

4.5 Affiliate–PPI Interactions

Surprisingly, among the binaries that we milk we find a

number of affiliate PPI downloaders. That is, download-
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Figure 7: Prevalence of six malware families seen by our milkers from different country vantage points.

ers not infrequently download other downloaders. This

indicates that some PPI affiliates have also signed up as

clients of PPI services. To understand these affiliate–PPI

interactions, we extracted the unique affiliate identifier

embedded in each of the PPI downloaders found in our

milk, which we can observe from its transmission (pre-

sumably for accounting purposes) during the C&C ex-

change.

Using these identifiers, we observe that affiliates from

one PPI service themselves sometimes act as clients

of other PPI services. This behavior manifests by our

milker, impersonating affiliate X for PPI service A, fetch-

ing an executable for installation that corresponds to a

downloader for affiliate Y of PPI service B.

We speculate that some of these multi-PPI-service af-

filiates represent arbitrageurs who try to take advantage

of pricing differentials between the (higher) install rates

paid to the affiliates of one service for some geographical

regions versus the (lower) install rates charged to clients

of another PPI service. For example, we observe that

LoaderAdv’s affiliate 701 signed as a client of GoldIn-

stall, using the latter to distribute 701’s personalized

LoaderAdv downloader for four days. Here, the price

differential includes the US, Canada, and Europe, from

which our GoldInstall milkers collected this executable.

Perhaps even more surprising, we find affiliates from

one PPI service who are also clients of the same PPI ser-

vice. For example, LoaderAdv’s affiliate 515 distributed

their personalized LoaderAdv downloader over Europe

and Brazil using the LoaderAdv service for a total of

20 hours. We see a similar behavior from affiliates 0625

and gol of the GoldInstall service, both clients and af-

filiates of GoldInstall. We conjecture that this happens

when affiliates try to take advantage of the price differ-

ential between the (higher) install rates paid to the af-

filiates for some geographical regions over the (lower)

install rates paid by the clients for installing on the same

regions. Note that such price differential is possible be-

cause the PPI service oversells installs: multiple clients

can pay the service for installs that cost the service only

a single affiliate payout. We suspect the PPI service can

detect this behavior would not credit both affiliates for

the install.

In a yet more convoluted case, we observed a GoldIn-

stall affiliate, e4u, signing up as a client for both GoldIn-

stall and LoaderAdv. We speculate that e4u most likely

stands for “earning4u”, the brand for the LoaderAdv PPI

service at that time. (Presumably this affiliate simply

took advantage of price differentials within the GoldIn-

stall service and with the LoaderAdv service, but possi-

bly e4u in fact represents the LoaderAdv gang itself.)

4.6 The Download Tree

One important observation of our work regards how

the nesting of downloaders-downloading-additional-

downloaders can quickly grow strikingly complex. To

capture such nesting we use a download tree. Nodes in

the tree represent programs identified by hashes of their

binary. At each branch in the tree, children represent

programs installed by the parent. Figure 8 shows an ex-

ample download tree. We term any node with children

a downloader. Nodes with a single child may be spe-

cialized downloaders for the child family, while nodes

with multiple children may reflect PPI downloaders that

charge the children for the installs. Leaf programs may

implement any of a number of recognizable malware be-

haviors, including sending spam, performing click-fraud,

and stealing personal information.

Generating the download tree requires carefully iden-

tifying the dependencies between installed programs,

e.g., which program downloads and executes other pro-

grams. To build the tree in Figure 8, the client mal-

ware programs need the freedom to download other exe-

cutables from the Internet. For this experiment we used

a different containment policy that sinks everything but

HTTP and C&C. In addition, we rate-limited the outgo-

ing HTTP and C&C traffic, and a human operator mon-



Loaderadv
687b2125e0f8c4d3ae68be2f7182f444

Torpig
a4ab5d0472d8d979fe6e249b679542b1

Pinit
2a0a8bd396359fce6bd2ffe6cbabe60e

Ambler
c55c3dd560581bd0d56c934560d3f5a5

Zbot
e400573df78d3d82523edfa8559dc320

Rustock
fdc7d559e9db995b22ed3b857dca1b7e

Goldinstall-list
a9de3aa03d35e07f2c73fe54aa9b08d6

Pushdo
bd662395b8ca156cc76519ac16bd16d9

Rustock-dl
2982fb0cf2a6d77d6fc6bd3e8ddb557f

GoldInstall-dl
9488bd937386ac84a6c70c8503541947

Loaderadv-ack
c3b7afc60b358bbe62ec625798116339

...... ...

Figure 8: A download tree starting with a single Loaderadv downloader. Stripes indicate PPI service-related binaries.

itored the execution in real-time to stop the process if

anything unexpected happened.

The download tree in Figure 8 comes from the live

execution of (originally) a single LoaderAdv PPI down-

loader that we ran in our controlled environment. Strik-

ingly, the entire execution required under 10 minutes—

with several additional leaf nodes omitted for clarity!

Thus, the example illustrates how quickly an exploited

system can transform from unmolested operation to host-

ing a veritable ecosystem of malware.

5 Discussion

Our findings have a number of implications, as follows.

Malware classification. Our work shows that we should

conceptually separate the exploitation mechanism com-

promising a system from the malware that the system

subsequently hosts. For example, it may not make sense

to characterize malware by its infection method beyond

malware that self-propagates and malware that does not.

Botmasters might simply purchase installation of their

malware from PPI services which can use a variety of

distribution methods.

The installation of malware from multiple clients

on a single target host has important implications for

behavior-based malware classification. For example,

when writing a malware analysis report it is easy to con-

fuse a downloader with malware that it happens to install

during one particular execution. Such confusion can then

result in misleading statistics characterizing the preva-

lence of malware families. Furthermore, malware anal-

ysis platforms that execute malware with Internet con-

nectivity [1, 2, 30] should carefully track program down-

loads and their execution, to allow separation of each

program’s runtime behavior. Without a download tree,

behavioral reports may reflect the aggregate behavior of

multiple types of malware. These aggregate reports may

result in incorrect classifications, and in the worst case

the produced signature may fail to detect individually ex-

ecuting malware.

Regarding classification techniques, we note that our

work does not aim to pursue advances in the field of be-

havioral malware signature generation, and instead em-

ploys straightforward techniques. We could fruitfully in-

corporate much of the published research in this space

into our classification approach.

Defenses. As defenders, we need to understand and ap-

preciate the threat posed by the “silent installs” industry.

PPI services have direct implications for takedown ef-

forts: even if defenders can completely clean up a botnet

(as opposed to merely severing its C&C master servers),

the botmaster could return to business-as-usual through

modest payments to one or more PPI services. Given that

multiple malware authors share use of the same PPI ser-

vices, and that the number of PPI services seems to be

significantly smaller than the number of malware fam-

ilies, PPI services are good targets for future takedown

efforts. However, the commoditization of the malware

industry could make it easy to recreate PPI services else-

where after takedown, so the focus should be on identify-

ing and apprehending the people that run such services.

Regarding detection techniques, we observe that the

content-based features of our signatures perform better

than the endpoint-based features. The former wins over

the latter in our handling of the periodic replacement

of stale URLs PPI services employ for hosting the mal-

ware executables, likely to bypass URL blacklists. We

also observe that many downloaders employ a simple

download-and-execute strategy, which in turn suggests

that defenders might realize significant protections by

employing taint-based approaches that identify the ex-

ecution of downloaded data.



Evasion. Infiltrating the PPI C&C protocols required

significant reverse-engineering effort on our part. As

miscreants become aware of this possibility and more

parties launch infiltration attempts, adversarial evolu-

tion will surely complicate this process. In particular,

we expect PPI services to harden their C&C protocols

with more robust use of cryptographic techniques and

incorporation of anti-virtualization and triggering mech-

anisms to increasingly hamper dynamic analysis. On the

other hand, the fact that a relatively modest infiltration

effort sufficed to gain insight into many of today’s top

malware families is encouraging. Analysts should re-

main on the lookout for opportunities to infiltrate core

components of the modern malware ecosystem, which

may offer broad insights into the malware landscape.

6 Conclusion

We have presented the results of the first systematic study

of the pay-per-install (PPI) ecosystem, conducted by in-

filtrating the malware distribution mechanism of PPI ser-

vices. The ability to “milk” malware binaries directly

from the source provides an unprecedented intelligence

capability to defenders. We leveraged this approach

to measure technical aspects of the market surrounding

malware installation.

Starting with a network-behavioral classification of a

one-month corpus of 313,791 binaries, we identified 12

of the 20 most prevalent families of malware. We illus-

trated how infection with several clickfraud and fake-AV

families specifically target the United States and Europe,

while other malware classes, such as spam bots, are dis-

tributed worldwide. Our examination of repacking rates

of PPI-distributed malware showed that on average bina-

ries are repacked every 11 days, with one family of mal-

ware repacking up to twice a day. Finally, we illuminated

the relationships among actors in the PPI ecosystem, in-

cluding the identification of LoaderAdv and GoldInstall

affiliates that apparently engage in pricing arbitrage by

becoming clients to other PPI providers.
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A Examples of Signatures

This appendix provides a concrete view of several of the

malware signatures that appear in Table 3. We include

four popular-but-untagged clusters, and two versions of

Palevo for reference.

Each signature consists of three parts: URL,

DOMAIN, and PAYLOAD statements followed by

associated contents. The URL can contain regular

expressions; we only use it for HTTP-based protocols.

DOMAINS can list IP addresses or domains (with or

without subdomains). PAYLOAD statements specify the

parameters for where, type, contents, and len.

where specifies the location to match, with “begin”

meaning at the beginning of the payload. We use type

to inform the engine whether to interpret the contents as

a string or as an array of bytes. Finally, len restricts the

length of the checked packet: a signature that specifies a

len will only match if the packet has exactly the given

length in bytes.

CLUSTER: A

URLS

/svc.php\?ver=

DOMAINS

sy.perfectexe.com

sy2.perfectexe.com

sy3.perfectexe.com

CLUSTER: B

URLS

/get.cgi\?.+

/data.cgi

DOMAINS

f19dd4abb8b8bdf2.cn

2bff2694930d2e21.cn

697fe322c995da1a.net

89e3aaecc2ba1734.net

ade34ea82c4f7f2f.net

CLUSTER: C

DOMAINS

ds.perfectexe.com

URLS

/active.asp\?[0-9]{2}

CLUSTER: D (URLs truncated for space)

DOMAINS

x.liruna.com

URLS

/x.ashx\?

ashx\?a=get&v=

ashx\?a=[ˆ&]+v=[ˆ&]+&fid=[ˆ&]+&id=...

Palevo

DOMAINS

193.104.186.88

76.76.99.186

f5v9w.com

e7j0h7.cn

mp1r3n.ru

URLS

/hygtrve.exe

/htrgef.exe

/htgref.exe

/hybtvr.exe

PAYLOAD

where : begin,

type : bytes,

contents : [[0x61]],

len : 7

Palevo2

DOMAINS

ff.fjpark.com

fifa2012terra.com

converter50.com

URLS

/rip.exe, /usa.exe, /575.exe,

/adv.exe, /adv2.exe, /rip2.exe,

/prr.exe, /4757exe.exe

PAYLOAD

where: begin,

type : bytes,

contents : [[0x18]],

len : 21,


