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Abstract

Motivation: Determining whether a trait and phylogeny share some degree of phylogenetic signal

is a flagship goal in evolutionary biology. Signatures of phylogenetic signal can assist the reso-

lution of a broad range of evolutionary questions regarding the tempo and mode of phenotypic

evolution. However, despite the considerable number of strategies to measure it, few and limited

approaches exist for categorical traits. Here, we used the concept of Shannon entropy and propose

the d statistic for evaluating the degree of phylogenetic signal between a phylogeny and categorical

traits.

Results: We validated d as a measure of phylogenetic signal: the higher the d-value the higher the

degree of phylogenetic signal between a given tree and a trait. Based on simulated data we pro-

posed a threshold-based classification test to pinpoint cases of phylogenetic signal. The assess-

ment of the test’s specificity and sensitivity suggested that the d approach should only be applied

to 20 or more species. We have further tested the performance of d in scenarios of branch length

and topology uncertainty, unbiased and biased trait evolution and trait saturation. Our results

showed that d may be applied in a wide range of phylogenetic contexts. Finally, we investigated

our method in 14 360 mammalian gene trees and found that olfactory receptor genes are signifi-

cantly associated with the mammalian activity patterns, a result that is congruent with expectations

and experiments from the literature. Our application shows that d can successfully detect molecu-

lar signatures of phenotypic evolution. We conclude that d represents a useful measure of phylo-

genetic signal since many phenotypes can only be measured in categories.

Availability and implementation: https://github.com/mrborges23/delta_statistic.

Contact: aantunes@ciimar.up.pt

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenetic signal represents the tendency for closely related spe-

cies to resemble each other more than less related taxa, as the result

of shared evolutionary history. The concept of phylogenetic signal

has been used to answer a wide range of questions about how, when

and why different traits evolve: e.g. solving primate behavior, ecol-

ogy and life history (Kamilar and Cooper, 2013), assessing

pathogen-host interactions (Antunes et al., 2008; Gilbert and Webb,

2007), predicting patterns of ecological similarity (Losos, 2008),

understanding niche dynamics (Pearman et al., 2008), measuring ex-

tinction risk in mammals (Fritz and Purvis, 2010), evaluating species

vulnerability to climate change (Thuiller et al., 2011), reconstructing

ancient language history (Dunn, 2005), improving phylogenetic

analyses (Simmons and Ochoterena, 2000) and solving phylogenetic
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conflicts (Burleigh and Mathews, 2004). Because of the central

importance of phylogenetic signal in comparative phylogenetics,

several methods to measure it have been proposed over the last

20 years.

The first attempt to estimate phylogenetic signal was proposed by

Pagel in 1999 (Pagel, 1999). Pagel’s k has been extensively used in

phylogenetic studies and it is defined under the Brownian motion

model of evolution (i.e. a Gaussian random process in which the trait

variance accumulates proportionally to evolutionary time) (Pagel,

1999). Pagel’s k ranges between zero and one: zero indicating inde-

pendent evolution between the trait and the phylogeny, and one indi-

cating co-evolution according to the expectation of the Brownian

motion (Pagel, 1999). Pagel’s k expresses the transformation of the in-

ternal branch lengths that best predicts the distribution of traits: when

zero, the internal structure of the tree is entirely eliminated (yielding a

star phylogeny in which all the species evolved independently); in con-

trast, when k approaches 1 the internal branch lengths stay almost un-

changed, suggesting the trait evolved according to the phylogeny.

Several other statistics of phylogenetic signal followed Pagel’s k,

each differing in terms of the approach to measure phylogenetic signal

(autocorrelation or evolutionary, model-based or not), the inferential

framework and the type of data they can cope with (Table 1). As

these statistics follow alternative approaches, they all measure differ-

ent aspects of phylogenetic signal and, consequently, respond differ-

ently to inaccurate phylogenetic information, low sample sizes and

the absence of branch length information (Münkemüller et al., 2012).

Most diagnostics of phylogenetic signal were created to analyze

continuous data, while few are able to deal with categoric data: the

D statistic and that presented in this work. The main reason for this

is the difficulty to translate the Pagel’s principle to categorical data:

it is impossible to calculate variances and co-variances with categor-

ical traits. For example, the D statistic avoids working directly with

categorical traits by defining a trait discretization based on a con-

tinuous trait that evolves under the Brownian motion (Fritz and

Purvis, 2010). Therefore, the D statistic cannot be used in studies

where categorical traits do not evolve according to a Brownian mo-

tion threshold model (Felsenstein, 2005). Although few statistics of

phlylogenetic signal exist for categorical data, these types of varia-

bles are common in evolutionary studies, as several aspects of the

species’ ecology, physiology, morphology and behavior can only be

characterized in categories.

In this work, we propose a phylogenetic analog of the Shannon

entropy for measuring the degree of phylogenetic signal between a

categorical trait and a phylogeny, d. We used simulated data to test

the performance of our statistic, which validates the usefulness of d
to test for phylogenetic signal. An application of d to 14 360 mam-

malian gene trees shows its practicality to identify biological proc-

esses underlying the evolution of complex phenotypes.

2 Materials and methods

2.1 Introducing and calculating the d statistic
Translating the principle of phylogenetic signal to categorical data is

challenging because one cannot calculate standard summary statis-

tics such as expected values, variances and co-variances. We circum-

vent this difficulty by, instead, measuring the entropy contained in

ancestral inferences. Ancestral reconstructions using categorical

data return the probability of each trait category occurring in each

node. It is our expectation that the better a phylogeny is associated

with a given trait, the better it is able to retrace the trait’s evolution,

or in probabilistic terms, to infer the ancestral states with minimal

uncertainty. To assess the uncertainty of the ancestral inferences, we

used the concept of Shannon’s entropy from Information Theory

(Shannon, 1948), which measures the expected information con-

tained in probabilistic messages. Figure 1 schematically represents

the kind of relationship between ancestral inferences, entropy and

phylogenetic signal, which will be introduced and discussed in the

following sections of the manuscript.

Consider a k-state categorical trait for which ancestral recon-

structions have been performed for the N nodes of a given phyl-

ogeny with s species. The probability of observing the state i in the

node j is defined as pj
i (state probabilities). Our method uses previ-

ously calculated node probabilities that can be obtained by any

method returning probability vectors for the ancestral reconstruc-

tions: e.g. time-continuous discrete-trait Markov chain models with

maximum likelihood or Bayesian inferential frameworks (but not

parsimony). Our strategy to calculate the quantity of information in

the node probabilities included transforming pj
i using a linear ver-

sion of the Shannon entropy (Equation 1)

ej
i ¼

pj
i if pj

i � 1=k
1

1� k
pj

i �
1

1� k
if pj

i > 1=k
:

8<
: (1)

ej
i is the ith state entropy and measures the quantity of information

given by the probability of state i to occur in node j (Equation 1):

when pj
i is either 0 or 1 the entropy becomes 0, while the maximum

entropy is obtained when pj
i ¼ 1=k. The last assumption becomes

clear by noting that the scenario of absolute uncertainty occurs

when all the k-states are inferred with equal probability (i.e. a uni-

form vector: pj
i ¼ 1=k for all i).

The jth node entropy ej can be obtained summing up the state

entropies (Equation 2)

ej ¼
Xk

i¼1

ej
i: (2)

ej varies between 0 and 1, which corresponds to situations of abso-

lute certainty (one of the pj
i is 1 and all the others are 0) and

Table 1. Statistics of phylogenetic signal

Statistics Approach Model based Statistical framework Data References

Moran’s I Autocorrelation No Permutation Continuous Moran (1950)

Abouheif’s C Autocorrelation No Permutation Continuous Abouheif (1999)

Pagel’s k Evolutionary Yes Maximum Likelihood Continuous Pagel (1999)

Blomberg’s K Evolutionary Yes Permutation Continuous Blomberg et al. (2003)

D statistic Evolutionary Yes Permutation Categoricala Fritz and Purvis (2010)

d statistic Evolutionary Yes Bayesian Categorical This work

Note: Diagnostics of phylogenetics signal can be classified based on the approach to estimate phylogenetic signal: evolutionary approaches are generally model-

based, while methods that rely on autocorrelation are based on summary statistics of correlation.
aBased on the Brownian motion threshold model (Felsenstein, 2005). Table adapted from Münkemüller et al. (2012).
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uncertainty (all the pj
i are 1=k), respectively. We summarized our ap-

proach for the whole phylogeny using the node entropies of the N

nodes and implemented a Bayesian inferential scheme. Given that ej

is defined in the ½0; 1� interval, its likelihood was set to follow a beta

distribution with parameters a and b. Considering a and b both as

having independent exponential priors with rate parameter k0, the

resulting posterior distribution is (see Supplementary Table S1 for

derivation)

log pða;bjeÞ / �Nbða; bÞ � a k0 �
X

j

ej
� �

� b k0 �
X

j

log ð1� ejÞ
� �

; (3)

where bð:Þ is the logarithm of the Euler integral. To obtain random

samples from the posterior distribution, the conditional posteriors

of a and b were computed and implemented in a Markov chain

Monte Carlo scheme including two Metropolis-Hastings steps in a

Gibbs sampler algorithm (Supplementary Table S1). d is defined as

the expected ratio between the posterior distributions of b and a

d ¼ E
pðbja; eÞ
pðajb; eÞ

� �
: (4)

d is higher than one when b > a, i.e. when the distribution of

entropies favors lower over higher entropies. Hence, the higher the

d-value, the greater the quantity of information given by the ances-

tral inferences. The code to compute the d statistic was implemented

in the R language and can be accessed in the GitHub branch

mrborges23/delta_statistic.

2.2 Simulated data
Simulated data was generated for a categorical trait with 2–5 states

(k ¼2, 3, 4 and 5) observed in 10–180 species (s ¼10, 20, 40,

80 and 160). 1000 random draws of each combination of k and s

were obtained using the rtrait function (GitHub branch:

mrborges23/delta_statistic), which simulates the evolution

of a categorical trait based on a given binary tree and rate matrix.

In particular, we set a time-reversible rate matrix q (Equation 5) in a

time-continuous Markov model, defined based on the trait station-

ary frequencies (p) and the exchangeabilities between the trait states

(q, with qij ¼ qji, where i and j are two possible states)

qij ¼ piqij: (5)

We then examined the behavior of d for phylogenetic scenarios

of interest by decreasing phylogenetic signal, rising trait saturation,

increasing tree uncertainty and testing different scenarios of trait

evolution: unbiased and biased trait evolution (by respectively set-

ting p / 1 and p / ðk; k� 1; . . . ; 1Þ) and trait saturation. These

scenarios were simulated using the rtrait function, but additional

functions from other R packages were also considered (R Core

Team, 2015): uncertainty at the topology was employed by the

nearest-neighbor-interchange (NNI) using the rNNI function in

phangorn (Schliep, 2011), the matrix exponential was calculated

using the expm function (Goulet et al., 2017); and the package ape

allowed to calculate the ancestral probability vectors and generate/

manipulate random phylogenetic trees (Paradis et al., 2004).

2.3 Case study
The OrthoMaM database was used to obtain 14 524 maximum like-

lihood gene trees (Douzery et al., 2014) with up to 43 mammalian

species. Overall, 164 gene trees were excluded from the case study

for having less than 20 species. Data for the mammalian activity pat-

terns (categorical trait: nocturnal, diurnal and cathemeral;

Supplementary Fig. S1) were retrieved from Bennie et al. (2014).

Ancestral character reconstructions were performed using the ape

package of the R statistical software using the ace function in the

ape package (Paradis et al., 2004; R Core Team, 2015): i.e. a time-

continuous Markov model with an all-rates-different rate matrix.

Ancestral probability vectors were obtained by maximum likeli-

hood. Gene ontology (GO) enrichment analysis was performed in

the web-based application GOrilla (Eden et al., 2009).

Fig. 1. Node probabilities, entropies and phylogenetic signal. Scenarios A and B depict situations of phylogenetic signal (trait vector with three states follows the

hierarchical structure of the phylogeny and therefore closely related species resemble each other more than distantly related ones) and no phylogenetic signal

(random trait vector), respectively. Pie charts represent the node probabilities of the ancestral reconstructions for each state. Box plots represent the node entro-

pies for each scenario. Node entropies were calculated based on the linear version of the Shannon entropy presented in this work. In scenario A, more inform-

ative inferences are obtained, and therefore node entropies are close to 0. Differently, in situation B, most ancestral inferences are uninformative, which leads to

node entropies close to 1. The d, measuring the degree of phylogenetic signal between a trait vector and a phylogeny, is thus higher in scenario A than B. This ex-

ample can be reproduced using the code available on the GitHub branch: mrborges23/delta_statistic
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3 Results

d is proposed to measure the degree of phylogenetic signal between a

phylogeny and a categorical variable. We analyzed empirical and simu-

lated data to validate key statistical and phylogenetic aspects of the

d-approach. We have not compared d with other statistics of phylogen-

etic signal, as the only one available, the D statistic (Fritz and Purvis,

2010), assumes a Brownian motion threshold model that specifically

copes with discrete traits that may have a continuous trait underlying

them (Felsenstein, 2005). In our analyses, we do not simulate the evolu-

tion of continuous traits, neither we used them to define the categories.

3.1 d and phylogenetic signal
We tested d for different scenarios of phylogenetic signal by random-

izing half and then for all the species (R50 and R100, respectively,

Fig. 2). Our expectation is that d decreases as trait randomization

increases, as ancestral inferences should be more prone to produce

unresolved nodes for random or partially random trait vectors. Our

results validated this expectation. For all the combinations of the

number of species and states tested, d decays by a factor of 0.25 or

less (0.03–0.25, Fig. 2) when the trait vector is completely random-

ized. We also observed that even when half of the trait vector is

randomized d already significantly decays (0.04–0.34, Fig. 2).

We verified that the loss of phylogenetic signal is more pronounced

in the species-rich analysis: d decreases to less than 15% when 20–160

species are analyzed (Fig. 2). For 10 species, the distribution of d in R0

and R100 largely overlap, which may complicate the task of attributing

d-values to a scenario of phylogenetic signal or total randomization.

We defined a classification test to pinpoint scenarios of phylo-

genetic signal or independent evolution. In particular, we fixed the

test specificity (or true negative rate) by determining an acceptance

threshold that is a quantile in the R0 distribution. R0 is the distribu-

tion of d in scenarios of no phylogenetic signal and therefore permits

to calculate a threshold that controls for the percentage of tests that

wrongly classify a scenario of independent evolution as evidence of

phylogenetic signal. The specificity and sensitivity (or true positive

rate) of the test was assessed via ROC (receiver operating character-

istic) curves (Fig. 3 and Supplementary Fig. S3). The ROC curves

showed that analyses with 10 species have the worst performance:

even for considerably high false positive rates (0.10–0.15; Fig. 3),

the sensitivity of the test is always lower than 50%. For more than

10 species, we observed that a false positive rate of 0.05 guarantees

a good level of sensitivity (higher than 60%; Fig. 3). For more con-

servative false positive rates (i.e. lower than 0.05), the true positive

rate decreases significantly, in some cases, for less than 50%

(Fig. 3). Similar results were obtained from the analyses of ROC

curves for more than two states (Supplementary Fig. S3).

3.2 d, trait evolution and saturation
We tested the performance of d in two possible scenarios of trait

evolution: an unbiased scenario, in which all the states are equally

preferred (uniform stationary vector p / 1), and a biased scenario,

in which one of the states is preferred over the others (asymmetric

stationary vector with weights p / k : k� 1 : . . . : 1). We observed

that d is similarly estimated in both scenarios (similar means,

medians and quantiles; Fig. 4 and Supplementary Fig. S2B and C).

We tested d for state saturation by controlling the number of

expected state changes in the tree. We define three quantities from

low to high number of expected changes: 2k, 2kþ s=2 and 2kþ s,

corresponding to E1, E2 and E3, respectively (Fig. 4). We observed

that d rapidly diminishes as the expected number of state-changes

increases (relative differences of 0.01–0.42 for two states, Fig. 4).

The decay of d due to state saturation is always more pronounced

for species-rich analyses; differently, d decays more slowly with state

saturation in state-rich analyses (Supplementary Fig. S2B and C).

3.3 d and tree uncertainty
We tested the influence of branch length and topology uncertainty

in d. We perturbed the branch length by randomizing both half and

the total branch lengths (while maintaining tree height; B50 and

Fig. 2. d vs. phylogenetic signal. Simulated distributions of d for scenarios of

high (R0), partial (R50) and low (R100) phylogenetic signal. Scenarios of

decreased phylogenetic signal were employed by partially or fully randomiz-

ing the trait vector. d-values are represented in the log scale. Each box plot

summarizes 1000 simulations while whiskers represent the 5 and 95% quan-

tiles. Gray shaded circles represent the expected value of d and the dashed

lines the relative differences of d-values (not in the log scale) between the

tested scenarios
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B100, respectively; Fig. 5A). Perturbations on the topology were

employed by the NNI tree rearrangement affecting 10 and 50% of

the branches of the true topology (NNI10 and NNI50, respectively;

Fig. 5B). We observed that uncertainty at the topology affects the

distribution of d more than the branch length uncertainty (Fig. 5):

the relative differences of d-values were of 0.4–0.87 and 0.31–0.58

in BL50 and NNI50 (for k¼2, Fig. 5A and B), despite the same

number of branches being perturbed in each case. Similar patterns

were observed for three to five states, but with a slightly less pro-

nounced effect of branch length and topology uncertainty (i.e. d
decays slowly, Supplementary Fig. S2D and E, k ¼ 3–5). We further

observed that the higher the number of species in the analysis, the

more pronounced the effect of branch length and topology uncer-

tainty on d: an expected impact on d of �31 to �11% was obtained

for 160 species, while an expected difference of �4 to �11% was

obtained for 10 species; Fig. 5 and Supplementary Fig. S2D and E.

3.4 Selecting genes associated with mammalian

lifestyles
Mammals show a great variety of activity patterns: while most

mammals are diurnal or nocturnal, some can also be cathemeral

(characterized by the equal use of the night and day) (Borges et al.,

2018; Walls, 1942). We employed the d-statistic in 14 360 case

study gene trees to unravel those associated with the mammalian

lifestyles (three categories: nocturnal, diurnal and cathemeral). In

addition, we calculated the distribution of d for scenarios of random

trait evolution: we simulated random trees and random trait-vectors

with three characters for 37 species (average number of species per

tree in the case study; trees with less than 20 species were excluded

from the analysis). We observed that the distribution of the case

study d clearly deviates from the simulated one (medians of 2.4 and

0.7, respectively; Fig. 6A), with the case study d-values being on

average higher than the random d-values. We obtained 9400 genes

showing evidence of phylogenetic signal with mammalian activity

patterns (d threshold of 2.1, by defining a test specificity of 95%;

Fig. 6A).

To check whether our results have biological signatures of inter-

est, we performed enrichment analyses for GO terms, by ranking the

study genes according to their d-values (i.e. top-ranked genes have

higher d). We found three significant GO categories (GO: 0050907,

GO: 0050911 and GO: 0009593, FDR corrected P-values ¼ 0.007,

0.016 and 0.021, respectively; Supplementary Table S2) appearing

densely at the top-ranked genes. These GO-terms are all associated

with the detection of chemical stimulus involved in sensory percep-

tion of smell. Selected genes include mostly olfactory receptors, but

also taste receptors and receptor transporter/interacting proteins

(Supplementary Table S2). We observed that olfactory receptors

have generally an elevated d-value, being most of them above the d
threshold for evidence of phylogenetic signal (Fig. 6B).

4 Discussion

The use of d can be generalized to every model or type of inference

that returns probability vectors for the ancestral nodes (which is not

the case for parsimony); these are required to calculate the node

Fig. 4. d vs. type and rate of evolution. Distributions of d for scenarios of un-

biased (A) and biased (B) trait evolution were simulated by setting uniform

and asymmetric stationary vectors, respectively. d-values are represented in

the log scale. The impact of trait saturation on d is simulated by setting an

increasing number of expected character-changes per tree: E1, E2 and E3

refer to 2k, 2k þ s=2 and 2k þ s events, respectively. Each box plot summa-

rizes 1000 simulations while whiskers represent the 5 and 95% quantiles.

Gray shaded circles represent the expected value of d and the dashed lines

the relative differences of d-values (not in the log scale) between the tested

scenarios. The plots for three to five states are in Supplementary Figure S2B

and C

Fig. 3. ROC analysis for classifying d-values. A classification test was built by

fixing the specificity (or the true negative rate, x-axis) of the test and defining

a d-threshold that is a quantile in the distribution R0. R0 is the distribution of

d-values in scenarios of independent evolution and therefore permits to cal-

culate the percentage of tests that wrongly classify a scenario of independent

evolution as evidence of phylogenetic signal. The sensitivity of the test (or the

true positive rate, y-axis) corresponds to the percentage of tests that correctly

classify a scenario of phylogenetic signal. ROC curves for three to five states

are in Supplementary Figure S3
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entropies. Here, we used a time-continuous discrete-state Markov

chain to obtain the ancestral inferences, but d could be easily inte-

grated with more-complex models. These include the more-complex

semi-Markovian and the non-stationary Markov models that are

becoming increasingly common in phylogenetics (Kaehler et al.,

2015; McAuliffe et al., 2004).

4.1 d: a measure of phylogenetic signal
We validated d as a possible approach to measuring the degree

of phylogenetic signal between categorical traits and phylogenies.

We showed that d increases when the trait evolves according to the

phylogeny, but more importantly, that d decreases when the trait

evolves independently. The d can be any positive real number: the

higher the d-value, the higher the degree of phylogenetic signal be-

tween a given trait and the phylogeny.

We tested the statistical behavior of d for several conditions of

the number of species and trait states in the analysis. We proposed a

test that classifies d-values based on the distribution of d given no

phylogenetic signal (i.e. random attribution of trait vector to the

phylogeny). This distribution can be easily simulated for the number

of species and states in the analysis. Our results showed that fixing

the specificity of the test to 95% guarantees a good true positive rate

(sensitivity higher than 60%). Our test is conservative in the sense

that it may reject some d-values of phylogenetic association;

however, that is the best compromise to avoid wrongly classifying

d-values as evidence of phylogenetic signal (which may happen for

more stringent false positive rates).

Our results showed that the number of species is a key aspect to

consider when analyzing d. We observed that the variance of d is

very large for 10 species, which made it difficult to differentiate

d from a scenario of no phylogenetic signal. In addition, the sensitiv-

ity of the test is always very low for 10 species (�50%), which will

most likely produce false negatives. Therefore, we recommend using

d when 20 or more species are analyzed.

4.2 d can be widely applied in phylogenetic contexts
We verify that the performance of d does not seem to significantly

decrease if there is some degree of tree uncertainty. However, uncer-

tain topologies are more prone to affect d than branch length uncer-

tainty. Uncertainty regarding the topology can be assessed through

the posterior clade probabilities or bootstraps (Guindon et al., 2010;

Huelsenbeck and Ronquist, 2001). We verified that topology move-

ments affecting 10% of the branches of the true topology may de-

crease d; however, the distribution of d-values is still far away from

the situation of no phylogenetic signal. Thus, in principle, we may

use the d approach even when some of the nodes in the tree have

low posterior clade probability or bootstrap values.

Branch length uncertainty is more difficult to assess because, un-

like for topology, there are no statistics to assess this. We may use

the branch length variance as a proxy for branch length uncertainty,

and testing the impact of changing those branch lengths on d.

The coefficient of variation (also known as the relative standard de-

viation) can be employed to determine the less precise branch

lengths. In principle, if the topology is well supported, branch length

uncertainty should not be a major issue. Indeed, despite d decreasing

when 50% of branches are perturbed, the distribution of d does not

really look like the scenario of no phylogenetic signal. Thus, while

we may expect our test to have less power, we can still implement d
when some branches have high variance. The long-branch attraction

[i.e. when distantly related lineages are incorrectly inferred to be

closely related (Bergsten, 2005)] is an issue that may significantly

Fig. 6. d-values for the case study 14 360 gene trees. (A) Distribution of the d-

values for simulated (light gray) and the case study data (dark gray).

Simulated d-values were obtained by recreating scenarios of no phylogenetic

signal (simulation conditions: three states and 37 species). (B) Distribution of

the case study d on the log scale, depicting the olfactory receptor genes (black

dots)

Fig. 5. d vs. tree uncertainty. (A) Simulated distributions of d for scenarios of

branch length uncertainty: 50% (B50) and 100% (B100) of the true branch

lengths (B0) were re-sampled. (B) Simulated distributions of d for scenarios of

topology uncertainty: perturbations on the true topology (NNI0) were

employed by performing a NNI rearrangement on 10% (NNI10) and 50%

(NNI50) of the tree branches. d-values are represented in the log scale. Each

box plot summarizes 1000 simulations, while whiskers represent the 5 and

95% quantiles. Gray shaded circles represent the expected value of d and the

dashed lines the relative differences of d-values (not in the log scale) between

the tested scenarios. The plots for three to five states are in Supplementary

Figure S2D and E
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affect d as it disturbs both the branch lengths and the topology.

Therefore, we call special attention when using the d-approach to

measure phylogenetic signal in phylogenetic trees affected by the

long-branch attraction artifact.

The performance of d is maintained regardless of the trait evolv-

ing in an unbiased or biased way. These scenarios express situations

in which the trait evolves under neutral and directional selection,

respectively. It seems that as long as the trait follows the tree’s hier-

archical structure, the d-approach is able to retrace the evolution of

the trait and, thus, recognize phylogenetic signal between the tree

and the trait. Another possible evolutionary scenario is when the

trait evolves directionally in some clades, but neutrally in the others:

we have not tested this situation but our results suggest that d would

perform equally well as long as the rate of trait evolution is approxi-

mately equal in both cases. Differently, in chimeric scenarios, in

which both selection and drift act with very different rates, we may

expect a decreasing of the d-statistic as it should be more difficult to

retrace trait’s evolution.

Another aspect that we have observed is that fast-evolving traits

may mimic scenarios of no phylogenetic signal. Indeed, if the trait

evolves in such a way that it re-evolves multiple times (including sev-

eral reversible changes), then it may happen that distantly related

data may resemble more than closely related data (Rheindt et al.,

2004). Consequently, one should expect d to decrease with trait sat-

uration. It is important to notice that phylogenetic signal mistakes

fast-evolving traits with independent evolution, therefore, care must

be taken when assuming that lack of phylogenetic signal implies in-

dependent evolution.

4.3 d captures biological signatures of phenotypic

evolution
We implemented the d-statistic as a proxy to unravel the protein-

coding genes co-evolving with the mammalian lifestyles. Our case

study permitted us to identify 9400 gene trees evolving with a consid-

erable degree of phylogenetic signal with the mammalian activity pat-

terns. Among these genes, we found several olfactory receptors with

high d-values, and we further validated the olfactory reception as being

deeply associated with the activity pattern in mammals. Modifications

of the sensory system are among the most common changes that occur

when shifting from an activity pattern to another (Barton et al., 1995).

It is therefore expected that several olfactory receptors were pinpointed

by our analysis. Several works confirm the results obtained here, as

several olfactory-related adaptations have been linked to the evolution

of the activity patterns in mammals. For example, studies confirming

the relationship among olfactory receptor genes expansions and retrac-

tions, divergence and function with the mammalian lifestyles can be

found in Kishida (2008), Wang et al. (2010), Hayden et al. (2010),

Khan et al. (2015), Tsagkogeorga et al. (2017) and Hughes et al.

(2018). Thus, our statistic seems to be a valuable tool to pinpoint

genes mediating the evolution of phenotypes.

On a final note, the d-approach can be easily adapted to any

other categorical trait one may want to study. Indeed, d can be easily

integrated with other designs, namely by considering: different evo-

lutionary models of trait evolution; species trees instead of gene

trees; diverse evolutionary distances (e.g. x ¼ dN=dS); and alterna-

tive inferential methods to obtain node probabilities.

5 Conclusion

Here, we developed the d statistic that uses the concept of entropy to

test phylogenetic signal between gene trees and categorical traits.

The d can be simultaneously useful to finding genes that co-evolved

with traits of interest, as well as understanding the evolution of com-

plex traits (i.e. those requiring the integrated evolution of several

genetic players). Therefore, d is a useful approach to unravel the mo-

lecular basis of those phenotypes that can only be characterized in

categories.
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Tecnologia (Foundation for Science and Technology, FCT) (RB: SFRH/BD/

79850/2011 and CG: SFRH/BD/71041/2010). APR was partially supported

by CMUP (UID/MAT/00144/2013), which is funded by FCT with national

(MEC) and European structural funds through the program FEDER, under

PT2020 and project STRIDE—NORTE-01-0145-FEDER-000033 funded by

ERDF—NORTE 2020. AA was partially supported by the Strategic Funding

UID/Multi/04423/2013 through national funds provided by FCT and the

European Regional Development Fund (ERDF) in the framework of the pro-

gram PT2020, by the European Structural and Investment Funds (ESIF)

through the Competitiveness and Internationalization Operational Program -

COMPETE 2020 and by National Funds through the FCT under the project

PTDC/AAG-GLO/6887/2014 (POCI-01-0124-FEDER-016845).

Conflict of Interest: none declared.

References

Abouheif,E. (1999) A method for testing the assumption of phylogenetic inde-

pendence in comparative data. Evol. Ecol. Res., 1, 895–909.

Antunes,A. et al. (2008) The evolutionary dynamics of the lion panthera leo

revealed by host and viral population genomics. PLoS Genet., 4, e1000251.

Barton,R.A. et al. (1995) Evolutionary radiation of visual and olfactory brain

systems in primates, bats and insectivores. Philos. Trans. R. Soc. B: Biol.

Sci., 348, 381–392.

Bennie,J.J. et al. (2014) Biogeography of time partitioning in mammals. Proc.

Natl. Acad. Sci. USA, 111, 13727–13732.

Bergsten,J. (2005) A review of long-branch attraction. Cladistics, 21, 163–193.

Blomberg,S.P. et al. (2003) Testing for phylogenetic signal in comparative

data: behavioral traits are more labile. Evolution, 57, 717–745.

Borges,R. et al. (2018) Adaptive genomic evolution of opsins reveals that early

mammals flourished in nocturnal environments. BMC Genomics, 19, 121.

Burleigh,J.G. and Mathews,S. (2004) Phylogenetic signal in nucleotide data

from seed plants: implications for resolving the seed plant tree of life. Am. J.

Bot., 91, 1599–1613.

Douzery,E.J.P. et al. (2014) OrthoMaM v8: a database of orthologous exons

and coding sequences for comparative genomics in mammals. Mol. Biol.

Evol., 31, 1923–1928.

Dunn,M. (2005) Structural phylogenetics and the reconstruction of ancient

language history. Science, 309, 2072–2075.

Eden,E. et al. (2009) GOrilla: a tool for discovery and visualization of enriched

GO terms in ranked gene lists. BMC Bioinformatics, 10, 48.

Felsenstein,J. (2005) Using the quantitative genetic threshold model for inferences

between and within species. Philos. Trans. R. Soc. B Biol. Sci., 360, 1427–1434.

Fritz,S.A. and Purvis,A. (2010) Selectivity in mammalian extinction risk and

threat types: a new measure of phylogenetic signal strength in binary traits.

Conserv. Biol., 24, 1042–1051.

Gilbert,G.S. and Webb,C.O. (2007) Phylogenetic signal in plant

pathogen-host range. Proc. Natl. Acad. Sci. USA, 104, 4979–4983.

Goulet,V. et al. (2017) expm: Matrix Exponential, log, ’etc’. R Package

Version, 0.999-2.

1868 R.Borges et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/11/1862/5144670 by guest on 16 August 2022

Deleted Text:  


Guindon,S. et al. (2010) New algorithms and methods to estimate

maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

Syst. Biol., 59, 307–321.

Hayden,S. et al. (2010) Ecological adaptation determines functional mamma-

lian olfactory subgenomes. Genome Res., 20, 1–9.

Huelsenbeck,J.P. and Ronquist,F. (2001) MRBAYES: Bayesian inference of

phylogenetic trees. Bioinformatics, 17, 754–755.

Hughes,G.M. et al. (2018) The birth and death of olfactory receptor gene fam-

ilies in mammalian niche adaptation. Mol. Biol. Evol., 35, 1390–1406.

Kaehler,B.D. et al. (2015) Genetic distance for a general non-stationary

Markov substitution process. Syst. Biol., 64, 281–293.

Kamilar,J.M. and Cooper,N. (2013) Phylogenetic signal in primate behaviour,

ecology and life history. Philos. Trans. R. Soc. B Biol. Sci., 368,

20120341–20120341.

Khan,I. et al. (2015) Olfactory receptor subgenomes linked with Broad

Ecological Adaptations in Sauropsida. Mol. Biol. Evol., 32, 2832–2843.

Kishida,T. (2008) Pattern of the divergence of olfactory receptor genes during

tetrapod evolution. PLoS One, 3, e2385.

Losos,J.B. (2008) Phylogenetic niche conservatism, phylogenetic signal and

the relationship between phylogenetic relatedness and ecological similarity

among species. Ecol. Lett., 11, 995–1003.

McAuliffe,J.D. et al. (2004) Multiple-sequence functional annotation and the

generalized hidden Markov phylogeny. Bioinformatics, 20, 1850–1860.

Moran,P.A.P. (1950) Notes in continuous stochastic phenomena. Biometrika,

37, 17–23.

Münkemüller,T. et al. (2012) How to measure and test phylogenetic signal.

Methods Ecol. Evol., 3, 743–756.

Pagel,M. (1999) Inferring the historical patterns of biological evolution.

Nature, 401, 877–884.

Paradis,E. et al. (2004) APE: analyses of phylogenetics and evolution in R lan-

guage. Bioinformatics, 20, 289–290.

Pearman,P.B. et al. (2008) Niche dynamics in space and time. Trends Ecol.

Evol., 23, 149–158.

R Core Team (2015) R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rheindt,F.E. et al. (2004) Rapidly evolving traits and the comparative method:

how important is testing for phylogenetic signal? Evol. Ecol. Res., 6,

377–396.

Schliep,K.P. (2011) phangorn: phylogenetic analysis in R. Bioinformatics, 27,

592–593.

Shannon,C.E. (1948) A mathematical theory of communication. Bell Syst.

Tech. J., 27, 379–423.

Simmons,M.P. and Ochoterena,H. (2000) Gaps as characters in

sequence-based phylogenetic analyses. Syst. Biol., 49, 369–381.

Thuiller,W. et al. (2011) Consequences of climate change on the tree of life in

Europe. Nature, 470, 531–534.

Tsagkogeorga,G. et al. (2017) Comparative genomics reveals contraction in

olfactory receptor genes in bats. Sci. Rep., 7, 259.

Walls,G.L. (1942) The Vertebrate Eye and Its Adaptive Radiation. Cranbrook

Institute of Science, Bloomfield Hills, MI.

Wang,G. et al. (2010) Comparative genomic analysis reveals more functional

nasal chemoreceptors in nocturnal mammals than in diurnal mammals.

Chin. Sci. Bull., 55, 3901–3910.

Measuring phylogenetic signal in categorical traits 1869

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/11/1862/5144670 by guest on 16 August 2022


	bty800-TF1
	bty800-TF2

