In “Artificial Intelligence and Computer Science”, Nova
Science Publishers, New Y ork, 2005, pp. 61

Measuring Power of Algorithms, Programs, and Automata

Mark Burgin

Department of Mathematics
University of California, Los Angeles
405 Hilgard Ave.

Los Angeles, CA 90095

Abstract

We are living in a world where complexity of systems created and studied by people grows
beyond all imaginable limits. Computers, their software and their networks are among the most
complicated systems of our time. Science is the only efficient tool for deding with this
overwhelming complexity. One of the methodologies developed in science is the axiomatic
approach. It proved to be very powerful in mathematics. In this paper, we develop further an
axiomatic approach in computer science initiated by Manna, Blum and other researchers. In the
traditional constructive setting, different classes of agorithms (programs, processes or automata)
are studied separately, with some indication of relations between these classes. Thus, the
congtructive approach gave birth to the theory of Turing machines, theory of partial recursive
functions, theory of finite automata, and other theories of constructive models of agorithms. The
axiomatic context alows one to research classes of classes of algorithms, automata, and processes.
As a result, axiomatic approach goes higher in the hierarchy of computer and network models,
reducing in such away complexity of their study. The suggested axiomatic methodology is applied
to evaluation of possibilities of computers and their networks. People more and more rely on
computers and other information processing systems. So, it is vital to know better than now what
computers and other information processing systems can do and what they can’t do. The main

emphasis is done on such properties as computability, decidability, and acceptability.

Key words. computation, computing power, accepting power, axiom, solvability, computability,
decidability, acceptability

1. Introduction

Mathematical methods play more and more important role in society. Mathematics is
applied to a diversity of other fields. Mathematics provides a variety of methods for
description, modeling, computation, reasoning, constructing etc. This extensive variety of
methods is traditionally divided into two directions; constructive and axiomatic.
Beginning from Euclid's ‘Elements,” which present gometry as an axiomatic discipline,
axiomatic methods have demonstrated their power in mathematics. As Burton (1997)
writes, generation after generation regarded the “Elements” as the summit and crown of
logic and mathematics, and its study as the best way of developing facility of exact
reasoning. Abraham Lincoln at the age of forty, while still a struggling lawyer, mastered
the first six books of Euclid, solely as training for his mind. Even now, in spite of the
discovery of non-Euclidean geometries and improvements of the system of Euclid,
“Elements’ largely remains the supreme model of a book in mathematics, demonstrating
the power of the axiomatic approach.

The main goal of this paper is to show that axiomatic methods are aso very efficient
for computer science. Methods and technique developed in this paper are oriented at
various applications in computer science and technology. Examples of practical problems
that benefit from this approach are debugging and testing computer software, design of
software metrics, and comparison of computational power for different systems.

It is possible to consider three levels of axiomatization: local, global, and multiglobal.

Local or object oriented axiomatization gives axioms for a description/determination
of adngle object, e.g., a separate program or agorithm. As an example, we can take the
axiomatic theory of programs suggested by Hoare (1969).

Global or class oriented axiomatization gives axioms for a description/determination
of a definite class of objects, e.g., Euclidean geometry, vector spaces, groups.

Multiglobal or feature oriented axiomatization gives axioms for a
description/determination of a system of definite classes that have some specific features
in common, e.g., Euclidean geometry, vector spaces, groups.

In the global approach, a system of axioms is taken (built or selected) for a description
of some system. Then these axioms are used for deduction of properties of this system.
This is the standard mathematical way of axiomatic studies. It is embodied in such

classical works as Euclid's Elements, Hilbert's axiomatization of the Euclidean geometry,
and axiomatic set theories (cf. Fraenkel and Bar-Hillel, 1958): ZF of Zermelo-Fraenkel,
VN of von Neumann, BG of Bernays-Godel, and two theories of Quine — NF and M L.
The problem that is solved by a global axiomatization is what are basic properties of a
given system that allow one to deduce all other properties.

In contrast to this, the multiglobal approach is oriented not at a system but at definite

properties. The aim of multiglobal axiomatization is to characterize by simple properties

P1, ..., Pmsuch classes of systemsin which some important resultsR1, ... , Rn are valid.
Properties R , ... , Py are formulated as axioms and conditions A , ... , Ay and the
necessary results Ry , ... , R, are deduced from these axioms and conditions Az , ... , Am
astheorems Ty, ..., Ty.

This alows one not to prove the same result, for example, R , for each class from a
diverse variety separately, but to check for each of those classes only initial axioms and
then to deduce this result R; from a general theorem T; proved in the axiomatic setting.
Axiomatic form of concept introduction in modern mathematics, such as rings, fields,
Hilbert spaces, Banach spaces etc., gives classical examples of such a technique. Another
example of this approach is Blum's (1967) concept of the size of a machine, which
synthesized many measures of agorithms and programs. Another his concept is
computational complexity, which in the axiomatic form synthesized such concepts astime
complexity and space complexity of computation.

The first Godel’s incompleteness theorem (1931) shows that the problem of global
axiomatization cannot be completely solved for sufficiently rich mathematical systems.
Axioms cannot present all properties of such systems, given traditional means of
inference. Thus, it becomes more efficient to consider partia systems of axioms that
define systems of classes in the context of multiglobal axiomatization. According to the
modern methodology of science such systems of axioms become laws of the second order
(Burgin and Kuznetsov, 1994).

The reason why we need multiglobal axiomatization in computer science is existence
of a huge diversity of computer and network systems, programs and program systems, as
well as their theoretical models. Axiomatics allows one to compress information about all

these devices and systems, providing efficient means for their study and development.

An extreme case of the multiglobal axiomatization is minimal mathematics aimed at
finding minimal conditions for a possibility to prove some result or a system of results.
Multiglobal axiomatization is also closely related to reverse mathematics, which strives to
obtain the simplest conditions under which a given result (mathematical theorem) is valid.
Namely, reverse mathematics is the branch of mathematics concerned with what are the
minimal axioms needed to prove the particular theorem (Friedman and Hirst, 1990; Giusto
and Simpson, 2000). It turns out that over a weak base theory, many mathematical
statements are equivalent to the particular additional axiom needed to prove them.

Axiomatic approach brings the theory of algorithms to a new level. Historicaly, this
theory appeared when models of algorithms were constructed to prove absolute
undecidability results of some mathematical problems. Such ultimate undecidability
demanded to show that there is no agorithm for problem solution. In other words, it was
necessary to give an exact description of all possible algorithms. The goal was achieved
by constructing such ultimate classes of recursive algorithms as Turing machines, partial
recursive functions and many other models of agorithms. However, recent development
of computer science demonstrated that these classes are not absolute and there are more
powerful algorithms (cf., for example, Burgin, 2001). Thus, we have come to the situation
when it is impossible to reduce decidability problems to one universal class of agorithms.
Axiomatic setting allows one eliminate this obstacle and to prove undecidability without
constructive models of algorithms.

In this paper, we consider the most conventional class of reactive algorithms and
abstract automata. These algorithms and automata react to a given input by producing
some output or coming to some state. Active, interactive, and proactive agorithms and
automata are considered elsewhere.

The axiomatic approach brings the theory of agorithms and thus, the whole computer
science to a new higher level. Historically, the theory of algorithms appeared when models
of algorithms were constructed to prove undecidability of some mathematical problems. In
anew setting of an axiomatic theory, proofs of undecidability do not demand constructive
models of algorithms. When computers were created and utilized, the theory of algorithms
formed a core of computer science and till now this is the most developed mathematical

discipline of computer science.

Our advent in a new realm of multiglobal axiomatics of algorithms, automata, and
programs, we begin (Section 2) with an analysis of such basic for computer science
concepts as algorithms, programs, and abstract automata. The suggested approach allows
us to eliminate some contradictions and inconsistencies in the conceptual system of
computer science.

In Section 3, types of agorithms and functioning of automata and algorithms are analyzed
and formalized. A multifaceted typology is developed for algorithms aimed at axiomatizing
computer science.

In Section 4, basic axioms for algorithms are considered in three forms. postulates as
the most basic assumptions, axioms as global assumptions that represent important
properties, and conditions as local assumptions that represent specific properties.

An example of computer science postulates is the Deterministic Computation
Postulate PDC, which states that any algorithm A that takes inputs from a set X and gives
outputs that belong to a set Y determines a function fafrom X into Y.

An example of computer science axiomsisthe Universaity Axiom AU, which states
that for aclass K of automata/algorithms and some codingc: K ® V', thereis a universal
algorithm/automaton in K .

An example of computer science conditions is the Switching Condition SW, which
states that for any x and y from X, thereis aswitching for x and y algorithm/automaton in a
classK.

In Section 5, power of algorithms and automata is investigated. Exact mathematical methods
are developed for comparison and evaluation of algorithms and automata.

In Section 6, properties and related problems of algorithms and automata are classified and
studied. All properties and problems are separated into several classes: linguistic, functional,
description, operational, etc. Some of these classes have been intensively studied for different
models of algorithms, such as finite automata, Turing machines and some others. Here these
properties and problems are considered in axiomatic setting, allowing one to essentially expand
the scope of applications. Other studied here properties and problems have been beyond the
scope of conventional computer science athough they are important for practice.

In Section 7, boundaries for algorithms and computation are found. In particular, it is proved
that al non-trivial linguistic (Theorem 7.5) and functional (Theorem 7.6) properties are

undecidable for alot of classes of agorithms. For Turing machines, this implies classical results
of Rice (1951). At the same time, for other kinds of properties (e.g., operational properties), there
are both decidalde and undecidable nonttrivial properties.

Applications of the theoretical results to software and hardware verification and testing are
considered in Section 8.

Denotations and basic definitions:
N isthe set of al natural numbers;
wis the sequence of all natural numbers,
/E is the empty sef;
Thelogical symbol " means*“for any”;
Thelogical symbol $ means “there exists’;
If P isaproperty, then @P is the complementary property, i.e., an object x has the
property P if and only if it does not have the property @P.
R isthe set of all real numbers;

A binary relation T between setsX and Y is a subset of the direct productX” Y. The
set X is called the domain of T (X = D(T)) and Y is called the codomain of T (Y =
CD(T)). The rangeof therelation TisR(M) ={ y;$x1 X (x YT T)}. The
definability domain of therdation TisDD(T) ={ x; $yT Y((x,y)T N}.

A function or total function fromX toY is a binary relation between setsX and Yin
which there are no elements from X which are corresponded to more than one element
from Y and to any element from X is corresponded some element from Y. Often total
functions are also called everywhere defined functions.

A partial function f from X to Y is a binary relation in which there are no elements
from X which are corresponded to more than one element from Y.

For a partial function f, its definability domain DD(f) is the set of all elements for
whichf is defined.

For any set, S, c4(X) isits characteristic function, that is, ¢ {X) is equd to 1 when x
I Sand isequal to Owhenxi S, and CqX) isits partia characteristic function, that

is, Cqx) isequal to 1 whenx] Sandisundefinedwhenx i S.

An alphabet or vocabulary A of aformal language is a set consisting of some
symbols or letters. A vocabulary is an alphabet on a higher level of hierarchy because
words of a vocabulary play the same role for building sentences as symbolsin an
alphabet for building words. Traditionally any alphabet is a set. However, amore
consistent point of view isthat an aphabet is amultiset (Knuth, 1981), containing an
unbounded number of identical copies of each symbol.

A string or word is a sequence of elements from the alphabet. A* denotes the set of
al finite words in the alphabet A. Usudly there is no difference between strings and
words. However, having alanguage, we speak about words of this language and not
about its strings. A** denotes the set of all (finite and infinite) words in the alphabet A.
A" denotes the set of all non-empty finite wordsin the alphabet A. A™ denotes the set
of al non-empty (finite and infinite) words in the alphabet A.

A formal languagelL is any subset of A*.

The length I(w) of aword w is the number of letters in the wordw.

e isthe empty word.

L isthe empty symbol.

When an algorithm/automaton A gives y as the result being applied to X, it is denoted by
A(X) =y. When an algorithm/automaton A gives no result being applied to X, it is denoted by
A(X) =+.

D(A) is the domain of an algorithm A, i.e, the set X of such elements that are
processed by A.

DD(A) isthe definability domain of an agorithm A, i.e, is the set X of such elements
that if any of them is given asinput to A, then A gives a result/output.

C(A) is the codomain of an agorithm A, i.e, the set Y of such elements that are
tentative outputs of A.

2. Algorithms, Programs, and Abstract Automata

We begin with clarification of relations between such basic concepts of computer

science as agorithms, programs, and automata.

In many cases, these terms are used interchangeably. However, computing practice and
research experience show that these concepts are different. For instance, programmers and
computer scientists are aware that the same algorithm can be represented in a variety of
ways. Algorithms are usually represented by texts and can be expressed practicaly in any
language, from natural languages like English or French to programming languages like C*™.
For example, addition of binary numbers can be represented in many ways: by a Turing
machine, by a fama grammar, by a program in C™*, in PASCAL or in FORTRAN, by a
neural network, or by a finite automaton. Besides, an algorithm can be represented by
software or by hardware. That is why, as it is stressed by Shore in (Buss et al, 2001), it is
essential 0 understand that algorithm is different from its representation and to make a
distinction between algorithms and their descriptions.

The same situation exists even for the simplest algorithms — instructions. Cleland (2001)
emphasizes that “it is important to distinguish instruction-expressions from instructions.”
The same instruction may be expressed in many different ways, including in different
languages and in different terminology in the same language. Also, some instruction may be
communicated non-verbally, e.g., when one computer sends a program to another computer.

Similar situation emerges in the case of numbers and their representations. For example,
the same rational number may be represented by the following fractions %2, 2/4 , 3/6, as well
as ty the decima 0.5. Number five is represented by the Arab (or more exactly, Hindu)
numera 5 in the decima system, the sequence 101 in the binary number system, and by the
symbol V in the Roman number system. There are, at least, three natural ways for separation
of agorithms from their descriptions such as programs or systems of instructions.

In the first one, which we cal the model approach, we chose some type D of
descriptions (for example, Turing machines) as amodel description, in which thereis a one-
to-one correspondence between algorithms and their descriptions. Then we introduce an
equivalence relation R between different descriptions of algorithms. This relation has to
satisfy two axioms:

(DA1) Any description of an algorithm is equivaent to some element from the model
classD.

(DA2) Any two elements from the model class D belong to different equivalence classes.

This approach is used by Moschovakis, who considers the problem of unique
representation for agorithms in his paper “What is an Algorithm? (2001). He makes

interesting observations and persuasively demonstrates that machine models of agorithms
are only models but not agorithms themselves. His main argument is that there are many
models for one and the same agorithm. To remedy this, he defines algorithms as systems of
mappings, building thus, a new model for algorithm. Moschovakis calls such systems of
mappings, which are defined by recursive equations, recursors. Thisis an essential progress
in understanding and mathematical modeling algorithms. However, this does not solve the
problem of separating algorithms as something invariant from their representations. This
type of representation is on higher level of abstraction than traditional representations, such
as Turing machines or partia recursive functions. Nevertheless, a recursor (in the sense of
Moschovakis) is only a model for algorithm but not an algorithm itself.

The second way to separate algorithms and their descriptions is called the relational
approach and is based on an equivalence relation R between different descriptions of
algorithms. Having such relation, we define algorithm as a class of equivalent descriptions.
Equivalence of descriptions can be determined by some natural axioms, describing, for
example, properties of operations:

Composition Axiom. Composition (sequential, parallel, etc.) of descriptions
represents the corresponding composition of agorithms.

Decomposition Axiom. If adescription H defines a sequential composition of
algorithms A and B, a descriptionK defines a sequential composition of algorithms C
and B,and A = C, thenH isequivaent to K.

At the same time, the equivalence relation R between descriptions can be formed on the
base of computational processes. Namely, two descriptions define the same algorithm if
these descriptions generate the same sets of computational processes. This definition
depends on our understanding of equal processes. For example, in some cases it is natural to
consider processes on different devices as different, while in other cases it might be better to
treat some processes on different devices as equal.

In particular, we have the rule suggested by Cleland (2001) for instructions:

Different instruction-expressions, i.e., representations of instructions, express the ame
instruction only if they prescribe the same type of action.

Such structural definition of agorithm depends on organization of computationa
processes. For example, let us consider some Turing machine T and another Turing machine
Q. The only difference between T and Q isthat Q contains all instruction of T and one more

instruction that is never used in computations of the machine Q. Then, on one hand, it is
possible to assume that this additional instruction has no influence on computational
processes and thus, T and Q define one and the same agorithm. On the other hand, if a
Turing machine in a course of computation aways go through al instructions to choose the
one to be performed, then the processes are different and consequently, T and Q define
different algorithms.

The third way to separate algorithms and their descriptions is caled the structural
approach because a specific invariant (structure) is extracted from descriptions. This
structure is called an agorithm. Here we understand structures in the sense of (Burgin,
1997). Thus, we come to the following understanding, which separates algorithm from its
descriptions.

Definition 2.1. An algorithm is a (finite) structure that contains for some performer
(classof performers) exact information (instructions) that allows this performer () to pursue
a definite goal.

Consequently, algorithms are compressed constructive, i.e., giving enough information
for realization, representations of processes. In particular, they represent intrinsic structures
of computer programs. Hence, algorithm is an essence that is independent of how it happens
to be represented and is similar to mathematical objects. Once the concept of algorithm is so
rendered, its broader connotations virtualy spell themselves out. As a result, algorithm
appears as consisting of three components. structure, representation (linguistic, mechanical,
electronic etc.), and interpretation.

It is important to understand that not all systems of rules represent agorithms. For
example, you want to give a book to your friend Johns, who often comes to your office. So,
you decide to take the book to your office (the first rule) and to give it to Johns when he
comes to your office (the second rule). While these simple rules are fine for you, they are
much too ambiguous for a computer. In order for a system of rules to be applicable to a
computer, it must have certain characteristics. We specify these characteristics later in
formal definitions of an agorithm. Now we only state that formalized functioning of
complex systems (such as people) is mostly described and controlled by more genera
systems of rules than algorithmic structures. They are called procedures.

Definition 2.2. A procedureisa compressed operational representation of a process.

10

For example, you have a set of instructions for planting a garden where the first step
instructed you to remove all large stones from the soil. This instruction may not be effective
if thereis atenton rock buried just below ground level. So, this is not an algorithm, but only
a procedure. However, if you have means to annihilate this rock, this system of rules
becomes an algorithm.

It is necessary to remark that the above given definition describes procedure in the
theoretical sense. There is aso anotion of procedure in the sense of programming.

A procedure in a program or subrouting is a specificaly organized sequence of
instructions for performing a separate task. This allows the subroutine code to be called from
multiple places of the program, even from within itself, in which case the form of
computation is called recursive. Most programming languages alow programmers to define
subroutines. Subroutines, or procedures in this sense, are specific representations of
algorithms by means of programming la nguages.

There are three classes of representation for algorithms and procedures:

Automaton representations. Turing machines and finite automata give the most known
examples of such representations.

Instruction representations. Formal grammars, rules for nference, and Post productions
give the most known examples of such representations.

Equation representations. Here an example of such recursive equation is given.

1 when n=1,
Fact (n) =
nfFact(n-1) when n>1

The fixed point of this recursive equation defines a program for computation of the
factorial n!

Algorithms are connected to procedures in a general sense, being special cases of
procedures. If we consider agorithms as rigid procedures, then there are aso soft

procedures, which have recently become very popular in the field of soft computing.

11

To discern algorithms from procedures, it is assumed that algorithms satisfy specific
conditions:

1 Operational decomposition: There is a system of effective basic operations that are
performed in a simple way with some basic constructive objects, while al other operations

can be reduced to the basic operations.
2 Purposefulness: Execution of algorithms is aimed at some purpose.

3 Discreteness: Operations are performed in a discrete time, that is, step by step and
each such step is separated from the others.

Some experts demand additional conditions that are not aways satisfied both in the
theory of agorithms and practice of computation:

4. Substantial finiteness All objects of operation in agorithm and the number of
objects involved into operation on each step are finite.

5 Operational finiteness. The number of operations in agorithm and operations
themselves arefinite.

6. Temporal finiteness: The result of the algorithm functioning/execution is obtained in
finite time.

7. Demonstrativeness Algorithm provides explicit information when it obtains the
necessary resullt.

8 Definability: Given arelevant input, agorithm always obtains the result.

It is possible to formalize all these conditions in the context of a multiglobal axiomatic
approach.

Like algorithms, procedures (in a general sense) are aso different from their descriptions.

Definition 2.3. A representation/description of a procedure/algorithm is a symbolic
materialization of this procedure/algorithmas a structure.

According to this understanding, algorithms and procedures are similar to mathematical
objects because, as it is demonstrated in Burgin (1998), al mathematical objects are
structures. This explains why agorithms in a strict sense appeared in mathematics, were
named after a mathematician, and have been developed into a powerful and advanced

mathematical theory — the theory of algorithmsand computation.

12

However, in the theory of algorithms and computation there is no distinction between
algorithms and their descriptions. In what follows, we follow this tradition to make
comprehension easier.

Going from more abstract and implicit, it is natura to consider three levels of agorithm
representations:

1. Ananalytical description.
2. Aprescriptive description.

3. Anembodied description.

An analytical description represents an agorithm in form of some formulas, e.g., a set
of equations, regular expressions, recursive functions, formulas of the | —calculus etc.
Formulas represent relations in sets of processed/computed data. It is an implicit form
because it is necessary to derive rules for computation from these formulas.

A prescriptive description provides rules for computation in an explicit form. The most
popular examples of this form are computer programs, formal or generative grammars,
deduction rulesin logical calculi, finite automata, and inference rules in expert systems.

An embodied descripion provides not only rules for computation but also a description
of adevice that performs these computations. Usually this form is called an abstract machine
or automaton. The most popular examples of this form are different versions of Turing
machines, random access machines, Boolean circuits etc.

Any kind of representation of algorithms must include, implicitly or explicitly, metarules.
These metarules define how an algorithm starts functioning, where from it takes its input,
how the rules from the algorithm are applied to data, in what cases the algorithm stops, how
and where it gives its output, and what is the result of its functioning. As a result, the same
hardware and software allow one to define automata of different types. For example,
metarules for result determination can give three different types of automata: computing,
accepting or deciding. Thus, we have computing and accepting finite automata, computing,
accepting, and deciding Turing machines and so on. The same structure (hardware) of a
Turing machine and the same rules (software) alows one to define ordinary Turing
machines, inductive Turing machines (Burgin, 1983), infinite time Turing machines

(Hamkins and Lewis, 2000) or persistent Turing machines (Goldin and Wegner, 1988).

13

It is possible to cal metarules from an agorithm representation by the name
metasoftware. Computers aso have metasoftware in the form of user instructions. There are
many kinds of such instructions: instructions to the computer as a whole, instructions to
different program systems and separate programs, instructions to separate devices (printer,
scanner etc.) and so on.

We begin with an abstract automaton as the most complete representation of algorithm. The
first abstract automaton was Turing machine created by Turing (1936). Von Nemann (1951)
introduced a general concept of an abstract automaton. Finite automata were formalized,
modified and studied by Mealy (1953), Kleene (1956), and Moore (1956). Potentially infinite
automata were formalized, modified and studied by Church (1957).

Abstract automata and algorithms work with symbols, words, and other symbolic
configurations, transforming them into other configurations of the same type. For example,
words are transformed into words. While words and strings are linear configurations, there
are many useful abstract automata and a gorithms work with such configurations as graphs,
vectors, arrays, etc. (cf., for example, Kolmogorov, 1953; Rabin, 1969; Pratt, Rabin, and
Stockmeyer, 1974; Burgin and Karasik, 1975; Burgin, 1982a; Van Leeuwen and
Wiedermann, 1985).

An abstract automaton consists of an abstract information processing device (@abstract
hardware), an algorithm/program of its functioning (abstract software), and
description/specification of information which is processed (abstract infware).

In agenera case, the hardware of an abstract automaton, consists of three main parts: abstract

input device, abstract information processor, and abstract output device, which are presented in

Figure 1. For example, Turing machine can have specia input and output tapes or one and the

same tape works as an input/output device and a part of the processor. Neural networks also have

these parts: the input device that comprises all input neurons, output device that consists of al

output neurons, and information processor that includes al hidden neurons. In some cases, input

and output neurons are combined into one group of visible neurons. In some cases, as for
example, for finite automata, input and output devices are not specified.

14

Abstract Abstract Abstract

input device information processor output device

Figure 1. The structure of an abstract automaton

Accordingly, we have a structural classification of automata (Fisher, 1965):

1 Abstract automata without input device. They are called generators.

2 Abstract automata without output device. They are called acceptors.

3 Abstract automata with both input and output devices. They are called transducers.

A finite state transducer, for example, is afinite state machine with aread-only input and a
write-only output. The input and output cannot be reread or changed. Decision tables (Humby,
1973) represent the simplest case of transducers that have no memory. Basically any abstract
automaton can be considered as a transducer.

At the same time, any transducer can also work as an acceptor or as a generator. For example,
very often Turing machines are considered as accept ors (cf. Hopckroft et al, 2001), although
they produce some output, which is written in their tapes at the time when they stop. In some
cases, it is assumed that Turing machines always start from the initia state with empty input. It
means that they work as generators. However, it is possible to prove that theoretically both only
accepting and only generating Turing machines are equivalent with respect to their power to
such Turing machines as work as transducers.

Let us consider some examples of different models of algorithms.

Example 2.1. A finite automaton A.

Infware of A isthe linguistic structureL = (S, Q, W) inwhich S isafinite set of input
symbols, Q isafiniteset of states, and Wis afinite set of output symbols of the automaton A.

Hardware of Aisthe structure S = (Q,qo, F) where ¢pisan element from Q that is
called the start state and F is a subset of Q that is called the set of final (in some cases,
accepting) states of the automaton A.

15

Software or program of A isthe transitionfunction
da:S Q® QW

For a deterministic finite automaton A, d is afunction. For a nondeterministic finite
automaton A, d is abinary relation or correspondence from S” Q to Q" W. For an e-
nondeterministic finite automaton A, d is a binary relation or correspondence from Sg” Qto
Q Wwhere Se=SE{e}.

A finite automaton C without output, or an accepting finite automaton, does not have
output symbols in its linguistic structure and therefore its transition function is simpler:

dc:S'Q® Q

Example2.2. A Turing machine T.

Infware of the Turing machine T consists of languagesL = (L, Lw , Lo) whereL, isthe
input language, Ly isthe working language, and Loisthe output language of T.

Hardware or device of the Turing machine T. What is the hardware d a computer? It
consists of all devices (processor, system of memory, display, keyboard, etc.) that constitute
the computer. In asimilar way, a Turing machine T has three abstract devices. afinite
automaton A, which we may the controller of T and which controls performance of the
Turing machine T; a processor or operating device h, which is traditionally called the head
of the Turing machine T; and the memory L, which istraditionally called the tape or tapes of
the Turing machine T.

Software of the Turing machine T is a single program in aform of simple rules. In the
traditional representation, these rules have the following form.

i ® a0k, ® Rk, gnai® Lk

Each rule directs one step of computation of the corresponding Turing machine.

If such rules are given without any specified hardware, we have the second type of
algorithms representation: a program. Examples of programs that represent algorithms are
computer programs in any programming language: LISP, ALGOL, C™*, Java etc.

Analytical repr esentations of algorithms does not contain all information presented in a
program. For example, analytical representation does not necessarily include data types.
Analytical, prescriptive, and embodied representations are divided into two classes: formal

and informal. Examples of formal analytical representations are formal grammars, primitive

16

recursive, recursive and partia recursive functions. Examples of informal prescriptive

representations are different block schemes and flow charts.

3. Functioning of Automata and Algorithms

Processes represented by algorithms have different types. This implies the corresponding
classification of algorithms.

Transformation algorithms describe how to transform some input into a definite output,
for example, how to calculate 123 + 321.

Performance algorithms describe some activity or functioning, for example, algorithms
of functioning of a car engine or agorithms of humarrcomputer communication.
Performance algorithms also describe organized mental activity.

Construction algorithms describe how to build objects.

Decision algorithms are examples of construction algorithms because they describe

decision-making and construct decisions.

Algorithms are also classified by objects that are involved in the processes they describe.
In such away, we have:

1 Material algorithms, which work with material objects (for example, agorithm of a
vending machine or algorithms of pay phone functioning);

2 Symbolic algorithms which work with symbols (for example, computationa
algorithms are symbolic algorithms that control computing processes);

and

3 Mixed algorithms, which work both with material and symbolic objects (for
example, agorithms that control production processes or algorithms of robot functioning).

All mathematical models of agorithms are symbolic algorithms. Thus in computer
science and mathematics, only symbolic algorithms, i.e., algorithms with symbolic input and
output are studied.

Algorithms that work with finite words in some alphabet X are the most popular in the
theory of algorithms. As a rule, only finite aphabets are utilized. For example, natural
numbers in the decimal form are represented by words in the aphabet X ={0, 1, 2, 3,4, 5, 6,
7, 8, 9}, while in binary form they are represented by words in the aphabet X = {0, 1}. The

17

words in X may represent natural numbers or other entities, but in any way there is a natural
procedure to enumerate all such words. This makes it possible, when it is necessary, to
assume that algorithms work with natural numbers. In such a way, through enumeration of
words, any algorithm A defines a partial function fa : N ® N (cf., (Burgin, 1985)). However,
there are many reasons to consider algorithms that work with infinite words (Vardi and
Wolper, 1994) or with such infinite objects as real numbers (Abramson, 1971; Blum, et al.
1998).

Computer algorithms, i.e., such agorithms that are or may be performed by computers,
form an important class of all algorithms. Thus, we come to the concept of computation.
There are two approaches to this @ncept. According to an engineer, computation is any
thing computer can do. On one hand, this restricts computation to computers that exist at a
given time. Each new program extends the scope of computation. On the other hand, not
everything that computers do is computation. For example, interaction with users or with
other computers, sending emails, and connecting to the Internet are not computations.
Mathematical approach reduces dependence on computers. According to a mathematician,
computation is a sequence of symbolic transformations that are performed according to
some algorithm. From the mathematical point of view, computers function under the control
of agorithms, which are embodied in computer programs. So, to understand possibilities of
computers and their boundaries, we have to study algorithms.

To form an agorithm, a system of rules must have a description how these rules are applied.
This description consists of metarules for an algorithm, given in a form of some abstract
machine. Metarules have often the form of an abstract automaton.

Taking the most general case of automata with input and output devices, we see that there are
three main types of automata with respect to their connection with environment.

1 Reactive automata that need to be given some input, to produce output.

2 Proactive automata that themselves find initial information to produce output.

3 Interactive automata can work both as reactive and proactive automata.

Reactive automata represent the classical approach to computation (cf., for example, (Turing,
1936)). Proactive automata represent the intelligent agent approach to computation (cf., for
example, (Russel and Norvig, 1995)). Interactive automata represent the interactive approach to

computation (cf., for example, (Wegner, 1998)).

18

The general idea of abstract automaton implies that there are three main modes of processing
input data by an abstract or real information processing system:

1. Thecomputing mode when an automaton produces (computes or outputs) some words
(its output or configuration) as aresult of its activity.

2. Thedeciding mode when an automaton, given aword/configuration u and a set X of
words/configurations, indicates (decides) whether this word/configuration belongsto X or
not.

3. The accepting mode when an automaton, given aword/configuration u, either accepts
this word/configuration or rejectsit.

Remark 3.1. Automata without output device can work only in the accepting mode.
Automata without input device can work only in the computing mode. Automata with all three
devices can work in all three modes.

In addition, there are two partial deciding modes:

4. The positive deciding mode when an automaton, given aword/configuration u and a set X
of words/configurations, indicates (decides) whether this word/configuration belongsto
X

5. The deciding mode when an automaton, given aword/configuration u and aset X of
words/configurations, indicates (decides) whether this word/configuration does not
belongto X.

Sometimes (cf., for example, (Hamkins and Lewis, 2000)), the positive deciding mode is called
semi-decidable.

These types not only reflect the principal modes of computer functioning, but also define the
main utilization modes for algorithms and programs. There are several kinds of each mode. For
example, there is acceptation by a state and by aresuilt.

Definition 3.1. An automaton A acceptsaword u by a result if A gives some result, or gives a
definite result (e.g., the symbol 1 or the word yes), when u isitsinput.

For example, a Turing machine T acceptsaword u if and only if: 1) T gives some output
when u is its input; after producing the output T halts. At the same time, it is possible to demand
that a Turing machine T accepts aword u if and only if the produced result is equa to 1. It is

possible to show that both ways of acceptation are equivalent.

19

Remark 3.2. Asaruleit is possible to reduce acceptation by some result to acceptation by a
definite result.

To define acceptation by a state, some states of the automaton are defined as final or
accepting.

Definition 3.2. An automaton A accepts aword u by a state if to accept u, A hasto come to a
final or accepting state when u is given as its input.

Remark 3.3. For many classes of algorithms or abstract automata, acceptance of a word u
means that the automaton/algorithm that works with the input u comes to an inner state that is an
accepting state for this algorithm or automaton. Finite automata give an example of such aclass.
However, for such agorithms that produce output, the acceptance assumption means that
whenever an agorithm comes to an inner accepting state it produces some chosen result (e.g.,
the number 1) as its output. In such a way, this agorithm informs that it has reached an inner
accepting state.

Another way to define an accepting state is to ®nsider a state of some component of an
abstract automaton. For example, pushdown automata accept words not only by an accepting
inner state, but also by an empty stack, that is, by a definite state of their stack, which is an
external state for these autamata.

Definition 3.3. An automaton A accepts aword u by a component state if a chosen
component of A comesto afinal or accepting state when u isthe input of A.

For a Turing machine, such accepting component is its control device, while for push down
automaton such accepting component is either its stack or its control device (Hopcroft et al,
2001).

Remark 3.4. For finite automata (Trahtenbrot and Barzdin, 1970) and for pushdown automata
(Hopcroft et al, 2001), it is proved that acceptance by a result isfunctionally equivalent to
acceptance by a state.

It is possible to prove the following genera result.

Theorem 3.1. If aclass K of automata allows one to enhance each automaton from with an
output that informs about the inner state of this automaton, without changing the process (result)
of acceptation, then acceptance by a state is reducible to acceptance by aresult.

On the other hand, it is possible to do the inverse reduction.

20

Theorem 3.2. If aclass K of automata allows one to enhance each automaton from with an
output register that stores output, without changing the process (result) of acceptation, then
acceptance by aresult is reducible to acceptance by a state.

All these forms of acceptation are datic. At the same time, there are dynamic forms of
acceptation. They depend on the behavior of the automaton. For example, a finite automaton A
accepts infinite strings when A comes to an accepting state infinitely many times. Such automata
are called Buchi automata (Buchi, 1960). Another example is inductive Turing machine (Burgin,
2003). It produces a result or accepts a word when its output stabilizes.

An important distinction exists between deterministic and non-deterministic algorithms. At
first, such condition as complete determination of each stepof an agorithm was considered as
necessary for a genera model of algorithm. For along time, all models were strictly
deterministic. However, necessity to reflect rea situations and model computational processes
influenced introduction of non-deterministic algorithms (Rabin and Scott, 1959).

Thus, we may have an impression that the extensive diversity of models resultsin a smilar
diversity for the concepts of algorithm, computation and computable function. Nevertheless,
mathematicians and computer scientists found that the algorithmic reality is well-organized.
They have found a unification law for this reality, which was called the Church Turing Thesis.

Thus, different definitions of algorithm bring us to the conclusion that algorithms consist
of rules or instructions. As arule, it is supposed that each instruction is performed in one
step. Thisimplies several features of agorithms:

1. Algorithmsfunctioninadiscretetime.

2. Allinstructions are sufficiently simple.

3. Relationsbetween operational stepsof algorithm determine topology of
computation.

These properties ook very natural. However, some researchers suggest models of
computation with continuous time. Examples are given by real number computations in the
sense of Shannon (1941) and Moore (1996). Instructions may look simple, but their
realization may be very complex. For example, even addition with infinite precision of two
transcendental numbers in numerical form is, as arule, impossible, in spite that its
description in an algebraic form is really simple.

Algorithms for computers generate and direct a diversity of computations. These

computations have different characteristics. One of the most important of them is the

21

computation topology. The most popular types of the computation topology wih the

corresponding computing architecture are:

1. Sequential computation.
2. Parallé or synchronous computation.

3. Concurrent or asynchronous computation.
Each of these types has severa subtypes:

1. Sequential computation may be:
11 Acydic, i.e., such that it has no cycles,
12. Cyclic, i.e., organized in one cycle;
13. Incyclic, i.e, it is not one cycle, but contains cycles.
2. Parallel computation may be:
2.1. Branching, which means parallel processing of different data from one package of
data;
22. Pipeline which means synchronous processing of similar elements from different
packages of data (Kogge, 1981);
2.3. Extending pipeling which combines properties both of branching and pipeline
computations (Burgin, Liu, and Karplus, 20014).
3. According to the control system for computation, concurrent computation may be:
3.1 Instruction controlled, which means paralel processing of different data from one
package of data;
32. Data controlled, which means synchronous processing of similar element from
different packages of data;
3.3. Agent controlled, which means that another program controls computation.
While two first approaches are well known and popular, the third type exists without
recognition and is not considered as a separate approach. However, even now the third
approach is often used implicitly for organization of computation. Examples of agent
controlled computations are utilization of an interpreter, which taking instructions of the
program, transforms them into machine code, and then this code is executed by the
computer. Interpreter is the agent that controls the process. Universal Turing machineis a

theoretical example of agent controlled computations. In this case, the program of the

22

universal Turing machine is the agent that controls the process. In future the role of agent
controlled computations will grow immensely.

Usually, it is assumed that algorithms satisfy specific conditions of norrambiguity,
simplicity and effectiveness of separate operations, which have to be organized for an
automatic performance. Thus, each operation in an algorithm must be sufficiently clear so
that it does not need to be simplified for its performance. Since an algorithm is a collection
of rules or instructions, we must know the correct order in which to execute the instructions.
If the order is unclear, we may perform the wrong instruction or we may be uncertain which
instruction should be performed next. This characteristic is especially important for
computers. A computer can only execute an algorithm if it knows the exact order of stepsto
perform.

Thus, it is assumed traditionally that the principal characteristics of algorithm are:

1) analgorithm consists of a finite number of rules;

2 therules constituting an algorithm are unambiguous (definite), simple to follow

(effective), and have simple finite description (are constructive);

3 analgorithmisapplied to some collection of input data and aimed at a solution of

some problem.

This minimal set of properties allows one to consider agorithms from a more genera
perspective: those that work with real numbers or even with continuous objects; those that
do not need to stop to produce a result; and those that use infinite and even continuous time
for computation.

We are not going to discuss here what algorithm is or to give a comprehensive definition.
Our goal istofind some simple properties of algorithms in general, to present these
properties in aform of axioms, and to deduce from these axioms theorems that describe
much more profound properties of algorithms. This allows one, taking some class A of
algorithms, not to prove these theorems but only to check if the initial axioms arevaid in A.
If thisis the case, then it makes possible to conclude that all corresponding theorems are true
for the class A. Aswe know, computer scientists and mathematicians study and utilize a
huge variety of different classes and types of algorithms, automata, and abstract machines.
Consequently, such an axiomatic approach allows them to obtain many properties of studied

algorithmsin asimple and easy way.

23

4. Basic Axiomsfor Algorithms

We consider three types of a priori assumptions. postul ates, axioms, and conditions.

Postulates are the most basic assumptions. Any class that is considered satisfies, at
least, one postulate.

Axioms are global assumptions that represent important properties of algorithms and
are used frequently in different situations.

Conditions are local assumptions that represent specific properties of algorithms and
are used only for definite results.

The first group of postulates defines what agorithms are doing and in what mode
abstract automata are functioning.

Let K be aclass of automata/algorithms that take inputs from a set X and give outputs
that belongtoasetY.

Computation Postulate PCM. Any agorithm A from K determines a binary relation
rain the direct product X Y of al its inputs Xa and all its outputs Ya .

Examples of classes that compute relation and not a function are: non-deterministic
computing finite automata, algorithms for multiple computations (Burgin, 1983), and
interactive algorithms (Wegner, 1998; Van Leeuwen and Wiedermann, 2000).

Definition 4.1. The set Xa is caled the domain of A and the set Ya is called the
codomain of A.

Definition 4.2. A relation r in the direct product X" Y is caled computable in K if r =
rafor some algorithm A from K.

Deterministic Computation Postulate PDC. Any algorithm A from K determines a
function fa from X into Y.

Informally it means that given some input, A aways produces the same result.

Remark 4.1. Functions may be partial and total. The latter are defined for al elements
of X.

Definition 4.3. A function f from Xinto Y is called computable in K if f = f5 for some
algorithm Afrom K.

Totality Axiom AT. Any agorithm A from K determines a total function fa from X
intoY.

Informally it means that A gives output for any input.

24

Classes of finite automata and primitive recursive functions satisfy Totality Axiom.

Classes of Turing machines and partia recursive functions do not satisfy Totality
Axiom.

This axiom brings us to the distinction between the domain and definability domain of
an agorithm.

Definition 4.4. The domain D(A) of an agorithm A is the set X of elements that are
processed by A.

Definition 4.5. The definability domain DD(A) of an algorithm A is the set X of
elements from D(A) such that if any of them is given as input to A, then A gives a
result/output.

This alows us to define domains for a class K of algorithms/automata.

Definition 4.6.D+(K) = Caik D(A) is the lower domain of K.

Definition 4.7.D"(K) = Ex k D(A) is the upper domain d K.

These concepts make possible to consider classes of agorithms that work with
different entities, e.g., numbers, words, graphs, etc.

Definition 4.8.DD+(K) = Caik DD(A) is the lower definability domain of K.

Definition 4.9.DD*(K) = Ejk DD(A) isthe upper definability domain of K .

Lemma 4.1.D«(K) I D*(K), DD«(K) i DD*(K), DD+(K) [D+«(K), and DD*(K) i
D*(K).

Lemma 4.2. If the empty, i.e., nowhere defined, function f£ is redlized by some
algorithm from K, then DD+(K) = A&

Lemma 4.3. If the identity furction is realized by some agorithm from K, then
DD'(K) =D'(K).

In asimilar way, we define codomains and ranges for the class K.

Definition 4.10. C«(K) = Cai k C(A) is the lower codomain of K .

Definition 4.11. C (K) = Eai k C(A) is the upper codomain of K .

Definition 4.12. R«(K) = Cai k R(A) is the lower range of K.

Definition 4.13. R*(K) = Eaik R(A) is the upper range of K.

Lemma4.4.C«(K) i C*(K),R(K) I R*(K),R(K)I C«(K),andR*(K) I C*K).

Lemma 4.5. If the identity function is realized by some agorithm from K , then D"(K)
= R*(K).

25

Acceptation Postulate PAM. Any agorithm A from K determines a subset L(A) in
the set of al itsinputs X.

When X = V* is the set of all words in some alphabet V, then L(A) is caled the
language of the agorithm A.

Finite automata and Turing machines determine such sets by fina states.

Push-down automata determine such sets by fina states or by empty stacks.

In general, one of the most popular ways to determine a subset Z of aset X is to define
the characteristic function czof Zin X. Traditionally (cf., for example, (Fraenkel and Bar-
Hillel, 1958)) this function is defined by the following rules:

¢z (X) = 1 when x isan element from Z and ¢z (xX) = 0 when x does not belong to Z.

A separation function is a generaization of the characteristic function. Namely, the
separation functionsz of Zin X is defined by the following rules:

there is an element a in the range of sz such that s; (xX) =a when x is an element from

Zands (X) =b for some b ! awhen x does not belongto Z.

Decision Postulate PDM. Any agorithm A from K determines the separation function
for a subset K(A) in the set of al its inputs X, giving a fixed output on all e ements from
K(A) and another output on all elements that do not belong to K(A).

A dichotomic separation function of Zin X is a separation function of Z in X that takes
one and the same value for al eements that do not belong to Z. A characteristic function
is an example of a dichotomic separation function. Usually, computability in aclassK of a
separation function for some set Z implies computability in the class K the dichotomic
separation function for the same set.

Some classes of algorithms do satisfy PDM athough they satisfy its weaker version
PSM.

Semidecision Postulate PSM. Any algorithm A from K determines the indicator
function for a subset K(A) in the set of al its inputs X, giving a fixed output a for all
elementsfrom K(A) as inputs and only for them.

Here afunction h(x) is cdled the indicator function for aset Z, if there is an element
such that h(x) = a if and only if xT Z. An example of an indicator function is the partial

characteristic function c; of Z in X defined by the following rules:

26

¢z (X) = 1 when xisan element from Z and cz (X) isundefined when x does not belong
toZ.

Lemma4.6. PSM implies PAM.

Lemma4.7. PDM implies PSM if the following condition is satisfied in the class K :

(2) For any algorithm A from K and any element a from the set Ya, there is an

algorithm B from K such that B(x) = A(x) when A(X) = a and B(x) is undefined when A(x)
1 a.

Remark 4.2. This condition is true for many natural classes of agorithms and
programs. For instance, when a Turing machine gives some ¢t a as its result, it is possible
to change the rules of the machine so that it goes into an infinite cycle after getting c.

Types of algorithms defined by Postulates PCM, PAM, and PDM correspond to the main
modes of automaton/algorithm functioning. Given an automaton/algorithm A, we say that A:

computes a set Xa (aformal language L a) if Xa (correspondingly, La) consists of all outputs of
A

accepts aset Xa (aformal language L ») if Xa (correspondingly, L ») consists of all elements
(words) accepted by A;

decides a sat Xa (aformal language L) if A, given a word/configuration u, indicates (decides)
whether this word/configuration belongs to Xa (toLa) or not.

It is possible to explain differences in practical meaning of these forms of information
processing in the following way. Computability is a way to build objects and to find (compute)
their properties. Decidability is away to find if an object has some property or not. Thus, in a
deciding mode, an automaton begins with a property and appliesit to an object. In contrast to
this, in a computing mode, an automaton begins with an object and derives its properties.
Acceptability isaway to select (choose) objects according to their properties.

Definition 4.14. The language L ais called the computation (acceptation or decision)
language of the algorithm/automaton A.

Remark 4.3. Usualy, when the mode of computation isfixed, La is caled ssimply the
language of the automaton/algorithm A. For example, in (Hopcroft et al, 2001) only the
accepting mode is treated. This makes possible to speak about languages of finite automata, push

down automata and Turing machines.

The second group of postulates defines objects with which algorithms are working.

27

Usually algorithms and abstract automata work with words in some a phabet V. An example
is Turing machines. We call V the working alphabet of algorithms/automata from a given class.
Sometimes it is assumed that they transform natural or whole numbers into natural or whole
numbers. An example is recursive functions. These properties are formulated as postul ates.

Domain Semiotic Postulate PDS. The domain D(A) of A is the setVV* of al finite
words in some alphabet V.

Unrestricted Domain Semiotic Postulate PUDS. The domain D(A) of A is the set
V** of al strings, finite and infinite, in some alphabet V.

Domain Numeric Postulate PDN. The domain D(A) of A isaset of natural numbers.

Unrestricted Domain Numeric Postulate PUDN. The domain D(A) of A is a set of
numbers.

Codomain Semiotic Postulate PCS. The codomain C(A) of A is the set V* of dl
finite words in some a phabet V.

Unrestricted Codomain Semiotic Postulate PUCS. The codomain C(A) of A is the
set V** of dl strings, finite and infinite, in some aphabet V.

Codomain Numeric Postulate PCN. The codomain C(A) of A is a st of natura
numbers.

Unrestricted Codomain Numeric Postulate PUCN. The codomain C(A) of A is a set
of numbers.

Remark 4.4. Many agorithms (cf., for example, (Krinitsky, 1977) or (Burgin, 1985)) work
with more genera entities than words. As an example, it is possible to consider as data such
configurations that were utilized by Kolmogorov (1953) in his analysis of the concept of
algorithm and construction of the most general definition. Configurations are sets of symbols
connected by relations and may be treated as multidimensiona words, arrays or hypertexts.
Hypertext technology is now very important in information processing both for people and
computers (Barrett, 1988; Nielsen, 1990; Landow, 1992). Discrete graphs are also examples of

configurations.

The axioms and conditions from third group provide means for operationsw ith agorithms
and automata. These operations represent transformations, joins, and combinations of programs,

computers, and networks. Finding properties of algorithmic operations, we discover regularities

28

in such areas as software reusability and interoperability, network integration, computer
clusterization and reliability.

Definition 4.15. An algorithm C is called acomputing sequential composition of algorithms
Aand B if C(x) is defined and equal to B(A(X)) when: 1) A(x) is defined and belongs to the
domain of B ; 2) B(A(x)) is defined. Otherwise, C gives no result being applied to x, i.e,, C(X) = «.

A computing sequential composition of algorithms A and B is denoted by A - B.

Remark 4.5. In ageneral case, a sequential composition of algorithms A and B is not unique.
For instance, we can take a Turing machine C that is a sequential composition of two Turing
machines T and Q. Then we can rename some inner states of C or add to the rules of C such rules
that are never performed. This will give us another Turing machine K that is functionally
equivaent to C. Thus, by Definition 4.15, K is also the sequential composition of the same
machines T and Q by

Sequential C-Composition Axiom ASC. For any two agorithms A and B from K,
their computing sequential canposition A - B dso belongsto K.

Accepting sequential compositions are organized in a more complicated way.

Definition 4.16. Analgorithm C is called an accepting sequential composition of the first
typeof algorithms Aand B when C accepts aword x if and only if there are words u and v such
that x = uv, A acceptsu, and B accepts v.

Accepting sequential compositions of the first type are used in classes of finite automata (cf.,
for example, (Hopcroft et al, 2001)).

Sequential A-Composition Axiom AAC1. For any two algorithms A and B from K,
their accepting sequential composition A - B of the first type aso belongs to K.

Definition4.17. An agorithms C is called anaccepting sequential composition of the second
typeof algorithms Aand B when C accepts aword x if and only if A acceptsx and B accepts the
word z written on the tape of A after A acceptsx and stops.

Accepting sequential compositions of the first type are used in classes of Turing machines
(cf., for example, (Sipser, 1997) or (Hopcroft et al, 2001)).

Sequential A-Composition Axiom AAC2. For any two algorithms Aand B from K,
their accepting sequential composition A - B of the second type also belongsto K .

Remark 4.6. In addition to sequentia compositions, there are other kinds of compositions of
algorithms. An important classis formed by parallel compositions (cf., for example, (Burgin,

1983)). However, other kinds of compositions are studied elsewhere.

29

A specific kind of composition is related to universal automata and agorithms, which play an
important role in computing and are useful for different purposes. The construction of such
automata and algorithms is usually based on some caodification (symbolic description) c: K ® X

of all automata/algorithmsin K.

Definition 4.18. An automatoryalgorithm U is universal for the classK if given a

description c(A) of an automaton/algorithm A from K and some input data x for it, U
gives the same result as A for the input x or gives no result when A gives no result for

the input x.

In some cases, it isimportant not only to compute the same function, but also to
simulate the behavior of other automata/algorithms. This condition is reflected in the

concept of a strictly universal automaton/algorithm.

Definition 4.19. An automaton/algorithm U is strictly universal for the classK if
given adescription c(A) of an automaton/algorithm A fromK and some input data x
for it, U smulates A, working with the same input x, and gives the same result asA or
gives no result when A gives no result for the input x.

Universal automata/algorithms combine together input data and automaton/algorithm
descriptions like computers combine together input data and programs. Thus, descriptions of the
form c(A) (cf. the Codification Axiom AC) play the role of programs for U.

Assuming the Domain Semiotic Postulate PD S we have a set V* as the domain of al
agorithms in K. Usually algorithms from K are codified in the setV* that consists of all finite
nonempty words in an alphabet V.

Codification Axiom AC. Thereis an injective mapping c: K ® V™.

Theword c(A) isthe “code’ or “description” of the algorithm A.

The most popular kind of such a codification is the Godel numbering or enumeration of
algorithms or computable functions (cf., for example, (Rogers, 1987)).

It is possible to codify any finite system of symbols by words of equal length in abinary
alphabet. Thisimplies the following resuilt.

Proposition4.1. Axiom AC implies that there is an injective mapping b : K ® {1, 0}".

However, to have a codification is not enough kecause we have to work with it. Thus, we

need stronger axioms.

30

Constructive Codification Axiom CAC. Thereisan algorithm in K that realizes an
injectivemappingc: K® V.

Decidable Codification Axiom DAC. There is a decidable injective mapping c: K ®
V', i.e, thereis an agorithm in K such that given aword w it decides whether w is a code
for some algorithm from K and is able to restore this algorithm.

Usually classes of recursive algorithms, such as Turing machines, partial recursive
functions or two-register push down automata, satisfy both axioms CAC and DAC. Many
classes of subrecursive algorithms, such as recursive functions or polynomial time Turing
machines, also satisfy both axioms CAC and DAC. In addition, Many classes of super-
recursive algorithms, such as limiting partial recursive functions or inductive Turing
machines, also satisfy both axioms CAC and DAC.

Universality Axiom AU. For some coding ¢ : K ® V', thereis a universal algorithm
inK.

Let the domain X of the agorithmsin K contains more than one element.

Definition 4.20. An automaton/algorithm Aciscalled shifting if for any xfrom X, Ac(X)
1 x

For the future, we will need the following property.

Shifting Condition SH. There isa shifting algorithmin K.

The magjority of natural classes of algorithms satisfy SH. In particular, we have the
following result.

Proposition 4.2. Any class K of algorithms that contains the class DFA of all
deterministic finite automata satisfies SH.

Let the lower domain D«(K) of K contains more than one element and coincides with
the lower codomain C«(K) of K.

Definition 4.21. An automaton/algorithm A, is called switching for xand y from X if
Asv(X) = yand Aw(y) = x.

Switching Condition SW. For any xand y from X, there is a switching for x and y
algaithmin K.

Local Switching Condition L SW,, . For given x and y from X, there is a switching

for xandy agorithminK.

31

It is possible to redlize a switching algorithm by a simple finite automaton. This
implies the following result.

Proposition 4.3. Any dass K of automata/algorithms that includes the class of all
finite automata satisfies Condition SW.

Condition CA2. The alphabet V that is used for building words processed by agorithms
fromK has, at least, two different elements.

Definition 4.22. An automaton/algorithm A is called weakly switching for x and y from X if
the automaton Aw given the input y gives no output and given the input X, gives y as the output.

Weak Switching Condition WSW. For any x and y from X, there is a weakly switching for
xandy algorithmin K.

Weak Local Switching Condition WL SW,y. For given xand y from X, there is aweakly
switching for xand y algorithm inK.

A-Composition Condition CSH. For any agorithm A from K and the shifting
algorithm A, their sequential composition belongsto K.

Asi-Composition Condition CSW. For any algorithm A from K and the switching
agorithm Agy, their sequential composition belongsto K.

Let us assume that K satisfies Postulates PCM (or PAM), PDS (or PDN), and PCS
(or PCN), aswell as Conditions SH and CSH .

Theorem4.1. AXiomsAT and AU are mutually exclusive for the class K.

Proof. Let us assume that a class of agorithms K aso satisfies Axiom AT and a universa
agorithm U with respect toacoding ¢ : K ® V*exigsin K. Then U is everywhere defined as K
satisfies AT. Conditions SH and CSH dlow usto build in K the algorithm D = P -U - Ac where
P is a pairing algorithm that given a word w produces the pair (v, w) and Ac is the shifting
algorithm.

Let us consder words w = ¢(D) and x = D(w). The word x exists because K satisfies AT.
Then we have P(w) = (w, w) = (c(D), w) and U(c(D), w) = D(w) by the definition of a universa
algorithm. At the same time, A((D(w)) * D(w) and we come to the contradiction that D(w) =
ALU(P(W))) = ALU(c(D), w)) = Ac(D(w)) * D(w). This completes the proof of the theorem.

Informally, Theorem 4.1 means that either the class K has a universal algorithm but its

algorithms are not everywhere defined or they are everywhere defined but the class K

32

does not have a universal agorithm. In other words, universality is incompatible with
totality.

Theorem 4.1 implies following resuilts.

Corollary 4.1. In the class of al recursive functions, there are no universal algorithms.

Corollary 4.2. In the class of al primitive recursive functions, there are no universal
algorithms.

Corollary 4.3. In the class of al finite automata, there are no universal algorithms.

5. Power of algorithms: comparison and evaluation

Having such a diversity of models for agorithms, we need to canpare them. To do this, we
introduce such concept as power of an algorithm or of a class of algorithms.

Definition 5.1. Power of an algorithm (of a class of algorithms) is a measure of what this
algorithm (algorithms from this class) can do.

Algorithms are used to solve problems. So, it is natura to estimate power by those problems
that algorithms can solve.

It is natural to consider two kinds of power for algorithms: absolute that is defined with
respect to problems and relative that only compares different algorithms and different classes of
algorithms.

Definition 5.2. The absolute problem solving power of an algorithm A (of aclass K of
algorithms) is the set of all problems solvable by this algorithm (by agorithms from this class).

Usudly it is impossible to describe the absolute problem solving power of a complex
algorithm or a big algorithmic class. That is why we introduce relative problem solving power of
agorithms.

Definition 5.3. The problem solving power of an algorithm A (of aclassH of dgorithms) is
less than or equal to (iscognitively weaker than or equivalent to) the problem solving power of
an agorithm B (of aclassK of algorithms) when the algorithm B can solve any problem that A
can (any problem that can be solved by a algorithm fran H can be aso solved by some
algorithm from K). Naturally, the algorithm B is cognitively stronger than or equivalent to (has

more than or the same problem solving power) the algorithm A.

33

We denote theserelation by A £psB, A< B, A=psB,H £ K, H <psK, and H = K.

For instance, if T isthe class of all deterministic Turing machines and DFA isthe class of al
deterministic finite automata, then DFA < T. If NFA isthe class of al non-deterministic finite
automata, then NFA =,s DFA.

Different modes of information processing alow one to introduce specia concepts:
computing power , accepting power , decision power, and equivalence of algorithms and their
classes.

Definition 5.4. The computing power of an algorithm A isless than or equal to (is weaker
than or equivalent to) the computing power of an algorithm B when the algorithm B can compute
everything that A can compute. Naturally, the algorithm B is stronger than or equivalent to (has
mor e than or the same computing power) the algorithm A.

Let us take as an example algorithms that solve some agorithmic problem P for a class of
algorithms A. Such problem P may be: to define whether a given algorithm from A givesthe
result for some data; to define whether a given agorithm from A gives the result for all possible
data; or to define whether a given agorithm from A has more computing power than another
given algorithm fromA.

Proposition 5.1. If an algorithm A solves the problem P for the class A, an agorithm B
solves the problem P for the classA, and A1 T A, then the computing power of B islarger than
the computing power of A.

Definition 5.5. Two agorithms Aand B are functionally equivalent (or smply, equivalent) if
the algorithm B can compute everything that A can compute and the algorithm A can compute
everything that B can compute.

Taking into account different modes of algorithm functioning, we come to a more general
concept.

Definition 5.6. Two algorithms are called functionally equivalent with respect to
computability (acceptability , positive decidability, negative decidability or decidability) if they
define in the corresponding mode the same function fa or relation ra .

Example5.1. In the theory of finite automata, functional equivaence means that two finite
automata accept the same language (Hopcroft et al, 2001). Thisrelation is used frequently to
obtain different properties of finite automata. The same is true for the theory of pushdown
automata.

However, in general, functional equivalence is stronger than linguistic equivalence defined
below.

Definition 5.7. Two algorithms are called linguistically equivalent with respect to
computability (acceptability , positive decidability, negative decidability or decidability) if they
define in the corresponding mode the same language L a .

AsLaistherange of the function fa (relation ra), we have the following result.

Proposition 5.1. Two agorithms are linguistically equivalent with respect to computability
(acceptability, positive decidability, negative decidability or decidability) if they are functionally
equivalent with respect to computability (acceptability, positive decidability, negative
decidability or decidability).

The inverse statement is not true in genera as the following example demonstrates.

Example5.2. Let algorithm A computes the function fa(n) =n + 1fordln=1,2,3,...and E
isan identity agorithmontheset {2, 3, ... },i.e, E(M=mforaln=23,.... Then Aand E
are linguistically equivalent with respect to computability, but they are not functionally
equivalent with respect to computability.

While in practice, we usualy compare individua algorithms, for theory it is even more
important to compare power of different classes of algorithms.

Definition 5.8. A class of algorithms A hasless or equal computing power than (is weaker
than or equivalent to) a class of algorithms B when algorithms from B can compute everything
that algorithms from A can compute. Naturally, the class of algorithms B is stronger than or
equivalent to (has more or equal computing power than) the class of algorithms A.

Remark 5.2. Any mathematical or programming model of algorithms defines some class of
agorithms. Thus, comparing classes corresponding to models, we are able to compare power of
these models.

For example, the class of al finite automata is weaker than the class of al Turing machines. It
means that a Turing machine can compute everything that can compute finite automata.
However, there are such functions that are computable by Turing machines while finite automata
cannot compute them.

Remark 5.3. Definitions 5.2 - 5.4 and 5.8 are not exact because they contain such aterm as
everything, which is very imprecise. To develop a mathematical theory of algorithms and

automata, we need completely formal constructions. Formalization is achieved in different ways.

35

The first one isto relate to an agorithm the function that it computes. Such formalization is done
in Definitions 5.5, 5.7, 510, and 5.11. The second approach is based on introduction of sets or
languages defined by an automaton/algorithm and consideration of three modes of automaton
functioning: computation, acceptation, and decision. Such formalization is done in Definitions
5.6 and 5.9.

Asit isknown, any set of words form a formal language This dlows us to consider full
output of algorithms, that is, the set La of all words that an algorithm A computes, accepts or
decides.

This alows us to compare computing, accepting and deciding power of agorithms.

Definition 5.9. A class of algorithms A hasless or equal linguistic computing (accepting or
decision) power than (is linguistically weaker than or equivalent to) a class of algorithms B
when algorithms from B can compute (accept or decide, correspondingly) any language that
algorithms from A can compute (accept a decide). Naturally, the class of agorithms B is
linguistically stronger than or linguistically equivalent to (has more or equal linguistic
computing (accepting or decision) power than) the class of algorithms A.

Instead of using sets or languages, it is possible to use functions for comparison of computing
power.

Definition 5.10. A class of agorithms A hasless or equal functional computing power than
(is functionally weaker than or equivalent to) a class of agorithms B when algorithmsfrom B
can compute any function that algorithms from A can compute.

Definition 5.11. Two classes of algorithms are functionally equivalent (or simply, equival ent)
if they compute the same class of functions, or relations for non-deterministic algorithms.

Remark 5.7. Linguistic equivalence of algorithms is stronger than functional equivalence
because more algorithms are glued together by linguistic equivalence than by functional
equivalence. Really, when two agorithms compute the same function, then they compute the
same language. However, it is possible to compute the same language by computing different
functions. For example, let us take the alphabet {a, b} and two automata A and B. Thefirst one
gives as its output the word that is its input. It computes the identity function f(x) = x. The
automaton B gives the following outputs: B(e) =e,B(a) = b,and B(b) = a. Asaresult, Aand B
are equivalent, but not functionally equivalent.

36

6. Problems and Related Properties of Algorithms
There are three main types of problems: cognitive, constructive, and sustaining or preserational.
A cognitive problem is aimed at knowledge acquisition.
A constructive problem is aimed at building, transforming or finding some thing.
A sustaining problem isaimed at preserving something (a pr ocess, data, knowledge,
environment, etc.).

To define an algorithmic problem, we at first, consider parametric or class problems in classes
of objects. Let us consider a class of objects X.

Definition 6.1. A parametric or class problem in a class X asks about some property
(properties) of an arbitrary object from X. Such problems have one parameter with X as a range
and are called unary parametric problems.

For instance, when X is a set of computers, we have following parametric problems:

What is system memory capacity for a given computer ¢ from X ?
What is hard disk capacity for a given computer cfrom X ?
What is processor clock speed for a given computer ¢ from X ?

It is possible to consider problems with severa parameters that have some sets X3 , X», ...,
Xn as their ranges.

Definition 6.2. A parametric problem in classes X;, X;, ..., X, asks about a relation(s)
between arbitrary objects a; , &, ..., a,from X, , X5, ... , X,,, correspondingly. Such problems are
caled n-ary parametric problems.

As a rule, we are interested not in solving a pararmetric problem for one vaue of the
parameter, but in finding a possibility to solve this problem for al values of its parameters.
Algorithms can provide such a possibility.

Definition 6.3. An algorithmic problem (in classes X1, X2, ..., Xn) asksto find an algorithm
for solving some a parametric problem (in these classes) for al values of its parameters.

Remark 6.1. There are parametric problems that are not algorithmic. For example, the
following problems are parametric in the class X of all real continuous functions:

Find a solution of the differential equation du/dx = f(x) in the class C(R, R) of al red

continuous functions.

37

Find necessary and sufficient conditions for amatrix A to be invertible in the classM ,, of all
real n-dimensional matrices.
Find the mass of such subatomic particle as neutrino. Because there are many neutrino, thisis

also a parametric problem.

However, actudly it is possible to correspond to any problem an algorithmic one. Indeed, if
we have a problem A, then we can correspond to it an agorithmic problem “Find an algorithm
that solves A.”

Here we are mostly interested not only in finding an algorithm solving some problem, but in
having a good or, at least, reasonable agorithm for this purpose. Thus, we study her agorithmic
problems with respect to chosen classes of algorithms, abstract automata, formal languages, and
programs.

Definition 6.4. An algorithmic problem (in classes X; , X2, ..., Xn) with respect to a class K
asks to find an algorithm from K for solving some a parametric problem (in these classes) for al
values of its parameters.

Let us consider some important algorithmic problems in a class K of algorithms with the
input domain X and output domain .

Definability Problem Rp : given an arbitrary algorithm A from K and an arbitrary element x
from X, find if A(X) is defined.

Loca Definability Problem Rpa : for a fixed algorithm A from K and an arbitrary element x
from X, find if A(x) is defined.

Fixed Output Problem Rop, : given an arbitrary algorithm A from K and an arbitrary element
x from X, find for afixed eement b fromY if A(X) = b.

Local Output Problem L op : given an arbitrary element x from X, find for afixed algorithm A
from K and afixed element b from Y if A(x) =b.

Free Output Problem Foyp, : given an arbitrary algorithm A from K, an arbitrary element b
from Y, and an arbitrary element x from X, find if A(x) =b.

Lemma 6.1. Decidability of Rp in K implies decidability of Rpa inK ..

Lemma 6.2. Decidability o Fop in K implies decidability of Ropin K and decidability of
Ropin K implies decidability of Lopin K.

Lemma 6.3.1f Y isfinite, then decidability of Rpain K implies decidability of RpinK.

38

Many problems are related to some properties. If we have some property P, then we can
define two mass problems:

1 Theproblem P that demands to find if an arbitrary object from the property domain D(P)

has this property P or not.

2 The problem "P that demands to find if an arbitrary object from the property domain

D(P) hasthis property P.

The difference between problemsP and " P is that P demands to give an answer in both cases
- when an object has the property P and when an object does not have the property P, whilein
"P we are interested only in objects that have this property.

In addition to properties of agorithmsautomata, there are relations between
algorithms/automata. However, relations are kinds of properties (Burgin, 1984). Binary relations
can be viewed as properties of pairs. Ternary relations can be viewed as properties of triples and
so on. Thus, agorithmic problems are corresponded not only to properties but also to relations.
For instance, if we have a binary relation R, then we correspond to it two problems. P and " P.
The first one P demands to find if a given pair belongs to R or not, while the second problem " P
demandsto find if agiven pair belongsto R.

Definition 6.5. A binary relation is called trivial if it is empty or contains al pairs from its
domain.

At the same time, relations induce mary properties in the same domain. For instance, any
binary relation Rin K for each A from K determines the property Ra = "B has the property Ra if
the pair (A, B) belongs to R” This property Ra is called a section of the relation R. Sections
allow usto prove different decidability results.

Definition 6.6. A property is caled trivid if there are no objects with this property or al
objects from its domain have this property.

Lemma 6.1. A binary relation is nontrivia if and only if it has some nontrivial section.

Let H be aclass of algorithms.

Proposition 6.1. If abinary relation R has an undecidable in H section, then the relation R is
also decidablein H.

Proposition 6.2. Any section of adecidable in H relation is also decidableinH.

39

Definition 6.7. A mass/parametric problem Q is solvable in aclassK of algorithms if there is
such an agorithm Re such that gives a solution to this problem for values of the problem
parameters.

Solvability of problems in many cases is related to decidability of properties.

Definition 6.8. A property P is decidable in aclassK of agorithms if there is an algorithm
Re such that it defines if an arbitrary object (from X) has the property P or not when this object
or its description is given to Rp asinput.

LetaclassK satisfiesthe Local Switching Condition L SWyn.

Proposition 6.3. A property P is decidable in K if and only if the property @P is aso
decidablein K.

Definition 6.9. A property P is semidecidable in aclass K of agorithms if there is such an
algorithm Rp such that it defines if an arbitrary object (from X) has the property P when this
object or its description is given toRp as input.

For many classes of algorithms, there are more semidecidable properties than decidable. For
instance, halting property of Turing machines is semidecidable but not decidable in the class of
al Turing machines.

Proposition 6.4. A mass problem P with the domain X is solvablein aclassK of agorithms
if the corresponding property P is decidable.

Corollary 6.1. A mass problem P issolvable in K if and only if the mass problem JP is dso
solvableinK

Proposition 6.5. A mass problem "P with the doman X is solvable in a class K of
agorithms if the corresponding property P is semidecidable.

For many classes of algorithms, there are more semidecidable properties than decidable. It is
known for many classes of recursive algorithms, such as Turing machines. In a general setting,

we will see thisin the next section.

When we consider such objects as abstract automata and algorithms, we come to specific
classes of properties.

Definition 6.10. A property P of algorithms from K iscaled linguistic if for any two
automata/algorithms Aand B, L(A) = L(B) implies P(A) = P(B).

Linguistic Properties:

For an automaton/algorithm B:

L(B) = A
L(B)* A&
bl L(B);
bl L(B).
For two automata/algorithms A and B:
L(A) =L(B);
LA L)
L(A) CL(B) = A&
L(A)CL(B)! A.

Linguistic Problems:

Linguistic Equivalence Problem R g: given two arbitrary algorithms Aand B from K, find
if L(A) =L(B).

Linguistic Inclusion Problem R ;: given two arbitrary algorithms A and B from K, find if
LA T L(B).

Linguistic Membership Problem Ry y: given an arbitrary algorithm A from K and an
arbitrary element b from Y, findif b1 L(B).

Linguistic Non-membership Problem R : given an arbitrary algorithm A from K and an
arbitrary element b from Y, findif b T L(B).

Remark 6.2. It is possible to consider linguistic properties of algorithms as properties of
languages determined by algorithms.

Linguistic properties and problems are the most popular in the theory of agorithms
because algorithms and automata are usually related to formal languages (cf., for example,
(Rogers, 1987) or (Hopckroft et al, 2001)). However, there are other important properties of
algorithms, prog-ams, and automata.

Definition 6.11. A property P of algorithms from K iscalled functional if for any two
automata/algorithms Aand B, As = B implies P(A) = P(B).

Functional Properties:

For an automaton/algorithm B:

1 Bi=fg
2. Bit fg;

41

3. DD(By) = *;
4. DD(By)=N.

For two automata/algorithms A and B:
1. Algorithms Aand B compute the same function, i.e.,As = Bs;
2. " X (A () £ Bi(X)).
3. Algorithms Aand B have the same definability domain, i.e., DD(A) = DD(B).
4. DD(Ar) CDD(By) = A&
5 DD(Ar) CDD(Br)* £.

Functional Problems:

1. Find if agorithms A and B have the same characteristic function of the definability
domain.

2. Find if algorithms A and B have the same semicharacteristic function of the definability
domain.

3. Functional Equivalence Problem Rgg: given two arbitrary deterministic algorithms A and

B from K, find if algorithms A and B compute the same function, i.e., fa=fg.

Remark 6.3. It is possible to consider functional properties of algorithms as properties of
functions determined by algorithms.

Sometimes to demands that all results of algorithms coincide, as we do in the definition of
afunctional property, istoo much. Thus, we introduce weak functional properties.
Let Z be a subset of the lower definability domain DD+(K) of K.

Definition 6.12. A property P of algorithmsfrom K iscalled weak functionalon Z if for
any two automata/algorithms A and B, P(A) = P(B) when the equality As(X) = Bi(X) is true for
all for al x fromZ.

Weak Functional Properties:

1. Sdf-application property:

1 if being applied to c(A), the algorithm A gives the resullt;

SAPQ) =

0 otherwise,

42

2. Sdf-acceptation property:

1 if being applied to c(A), the algorithm A accepts c(A);
SACA) =
0 otherwise.

3. Sdf-approva property:

1 if being applied to c(A), the algorithm A gives the result yes;
SARA) =
0 if being appliedto c(A), the algorithm A gives the result no.

By definition, any functional property is aweak functional property. It
implies the following result.
Proposition 6.6. If for some subset Z of the lower definability domain DD+(K),

al weak functional properties of algorithms/automata from K are decidable
(undecidable, semidecidable) in K, then al functional properties of
algorithmg/automata from K are decidable (undecidable or semidecidable,
correspondingly) in K.

Comparing functional and linguistic properties, we find that there is a gtrict
correspondence between properties of both kinds. To build it, we need additional
axioms and conditions.

Condition CD. C(K) = D(K).

Axiom of a pair correspondence APC. Thereisaninjectionp: DK) D(K)® D(K)

Axiom of a computablepair correspondence ACPC. Thereisaninjectionp:
D(K)" D(K) ® D(K) such that p(Rs) iscomputablein K for any computable in K function f.

Axiom of a decidable pair correspondence ADPC. Thereisa decidable injection p:
D(K) D(K) ® D(K)

Remark 6.4. In conventional set theories, such as ZF (cf. Fraenkel and Bar-
Hillel, 1958), APC holds if and only if D(K) is an infinite set. As the mgjority of

computational models works with inputs from infinite domains, usually, words or

numbers, APC istrue for aimost all conventional models. For classes of recursive
algorithms, such as Turing machines or partial recursive functions, these injections
are decidable and thus, computable.

Axiom CL . For any algorithm/automaton A from K , the language La computed
by A is equal to theimage Im fa

Let LP(K) and FPK) be classes of al linguistic and functional properties of
algorithms/automata from K, correspondingly.

Theorem 6.1. If the Axiom ACPC istrue, then there are natura injections r el
FP(K)® LPK) and ch: LPK) ® FP(K).

Proof. At first, we show that taking an arbitrary function f: D(K) ® D(K), itis
possible to correspond a subset L of the set D(K) toit sothat if g: DK) ® D(K) is
another function, then f = g if and only if L= L. Really, there are defined in a
standard way binary relations R, Rg | D(K)" D(K) such thatf = g if and only if R =
Rg. Then we put Lt = p(R) and Ly = p(Ry) where p isgivenin the Axiom ACPC. L¢
and Lg areformal languages and f = g if and only if L = Ly because p is an injection.

For aproperty P of algorithmsfrom K , wedefinerelP)={ H:H1 P andH
computes the language Ly = p(Ry) for the function f = Fasome AT P}. Thenif Pisa
functional property of algorithms from K, r el(P) is alinguistic property. Indeed, let us
consider two algorithms H and F from K and assume that H has the property r el(P)
and they both compute the same language L. It means that Ly = Lg . At the same time,
Ly = p(Rr) for the function f = Fasome AT P. Consequently, Lr= p(R) for the
functionf=Fasome AT P { A;AT P} and by the definition F also has the property
rel(P). Thus, r e(P) is alinguistic property.

Let ustake as ch the identity mapping, i.e., ch(Q) = Q for any property Q, and
consider some linguistic property P of agorithms from K. We show that P isdso a
functional property. Indeed, let us consider two algorithms A and B from K and
assumethat A has the property P and they both realize the same function f. We know
by the Axiom CL that the language La computed by A is equa to the image Im f, and
the language Lg computed by B is equal to theimage Imfg. Asfa=fg,Imfa=Im fg
AsPisalinguistic property P, B aso has the property P. As Aand B are arbitrary
algorithms from K , P isafunctiona property.

Corollary 6.2. Any linguistic property is a functional property.

Remark 6.5. There are functional properties that are not linguistic. To show this
let us consider the following property Po of Turing machines with the alphabet {1, 0} :

A Turing machine does not give the result for the input O.

It is possible to define a Turing machine T that realizes the function f such that
f(Ow) = w and f(Iw) = w for any nonempty word w, while f(Ow) andf(1) are
undefined. If E is a Turing machine that realizes the identity function e(x) = x, then f =
fr1 fe=eX)and L = L . By the definition, the Turing machine T has the property Po,
while the Turing machine E does not have this property. Consequently, Pyisnot a
linguistic property.

Correspondence between functional and linguistic properties allows usto
establish connections between decidability of these properties.

Corollary 6.3. If al functional properties of algorithms/automata from K are decidable
(undecidable, semidecidable), then all linguistic properties of algorithms/automatafrom K are
decidable (undecidable or semidecidable, correspondingly).

Corollary 6.4. If not al linguistic properties of algorithms/automata from K are decidable
(undecidable, semidecidable), then not al functional properties of algorithms/automata from

K are decidable (undecidable or semidecidable, correspondingly).

If A is an algorithm/automaton, then Tra(x) denotes the computational trgjectory of A
generated by an input x. Let Z be a subset of the lower definability domain DD«(K) of K .

Definition 6.13. A property P of algorithms from K is called aperformance property (on
Z) if the equality Tra(x) = Trg(xX) for al x (from Z) implies P(A) = P(B).

Performance Properties:

1 Giveninput x, aTuring machine T fromaclass T starts from an empty cell.

2 Giveninput X, the head of a Turing machine T comesinto the cell with number n.

3 Giveninput x, aTuring machine T uses only (1) cells for its computation.

4. Giveninput x, the head of a Turing machine T comes two times into the cell with
number n.

5 A Turing machine T never stops.

Performance Problems:

1 Findif starting with input x, the head of a Turing machine T comes into the cell with
number n.

2 Findif aTuring machine T from aclass T starts from an empty cell.

3 Findif starting with input x, the head of a Tuing machine T comes two times into the cell
with number n.

4. Find if starting with input x, a Turing machine T from aclassT never stops.

Definition 6.14. A property P of algorithmsfrom K is called aweak performance property
(on Z) if the equivalence Tra(x) ~ Trg(x) for dl x (from Z) implies P(A) = P(B).

For instance, we assume that two trajectories are equivalent when either they are both infinite
or they both bring automata to the same output result. In the case of Turing machines that either
give no final result or stop functioning in the same final state, this equivalence coincides with the
functional equivalence.

Remark 6.6. For non-deterministic automata, one input can result in many (sometimes even
infinitely many) different trajectories. Thus, fa a definition of performance properties, it is
natural to consider systems of trajectories instead of separate trgjectories in the case of non-
deterministic automata.

If Aisan algorithm/automaton, then Opy(q, X) denotes the operation that A performs having
input X, being in a state g. For automata with memory, the state includes the state of memory.

Definition 6.15. A property P of algorithms from K iscalled operational the equality Om(q,
X) = Ops(q, X) for al inputs x and all states g implies P(A) = P(B).

Operational Properties:

1. The head of a Turing machine moves only to the right for a given input.
2. The head of a Turing machine returns into the first cell for a given input.
3. Thehead of a Turing machine comes to the n-th cell, at least, two times for agiven
input.
The head of a Turing machine comes to the n-th cell for a given input.
The head of a Turing machine moves only to the right for al inputs.
The head of a Turing machine returns into the first cell for al inputs.
The head of a Turing machine comes to the n-th cell, at least, two times for all

N o g A~

inputs.

46

Operational Problems:

1. Findif starting with input X, the head of a given Turing machine moves only to the
right.

2. Findif starting with input x, the head of a given Turing machine returns into the first
cel.

3. Findif starting with input x, the head of a given Turing machine returnsinto the first
cel.

4. Findif starting with input x, the head of a given Turing machine comes to then-th
cel.

Proposition 6.6. Any operational property is a performance property.

Remark 6.7. Not al performance properties are operational properties as the following
example shows.

Example 6.2. Let us take the class Tg of all automata with the same structure as Turing
machines with one linear tape and one head, in which dl machines are enumerated and the n-th
machine starts from the n-th cell in the tape. It is possible to consider the following property Px:

“Given an input X, a machine A from T g starts from an empty cell.”

Thisis a performance property as the equality Tra(x) = Trg(X) means that given the input x, A
and B start functioning with the head in the same cell. At the same time, P is not an operationa
property. Indeed, there are machines A and B in T g such that have the same active performance
rules, but different numbers because one of them (say A) has many passive rules, i.e., rules that
are never used. Consequently, these machines start functioning with their heads in different cells.
Thus, there is an input x such that A starts from an empty cell and B fran a cell with some
symbol. Asaresult, Py(A) 1 PyB), meaning that Py is not an operational property.

Correspondence between performance and operational properties allows us to establish
connections between decidability of these properties.

Corollary 6.5. If all operational properties of algorithms/automata from K are decidable
(undecidable), then all performance properties of algorithms/automata from K are decidable
(undecidable).

Corollary 6.6. If not al performance properties of algorithms/automata fromK are
decidable (undecidable), then not all operationa properties of algorithms/automata from K are
decidable (undecidable).

47

Proposition 6.7. Any performance property is an operational property if all agorithms from
K start functioning from the same state g, given the same input Xx.

Corollary 6.7. For the class T of al Turing machines, performance and operational
properties are the same.

Corollary 6.8. For the class T of al deterministic finite automata, performance and
operational properties are the same.

Corollary 6.9. All operationa properties of agorithms/automatafrom K are decidable
(undecidable) if and only if all performance properties of algorithms/automata from K are
decidable (undecidable).

Definition 6.16. Descriptive properties are properties of algorithm descriptions.

Descriptive Properties:
1. The description d(A) of an algorithm A contains the letter “&’.
2. A given description d(A) of an agorithm A is minimal for al agorithms that
compute the same function.
3. A given description d(A) of an agorithm A is minimal for all agorithms that

compute theword x without input.

Descriptive Problems:
1. Does the description d(A) of an algorithm A contain the letter “a’?
2. Is a given description d(A) of an agorithm A is minimal for al agorithms that
compute the same function?
3. Is a given description d(A) of an agorithm A is minimal for al algorithms that
compute theword x without input?
4. What is the length of the description d(A) of a minimal agorithm A that computes
theword x without input?
Remark 6.8. There are properties of algorithms that belong to several types. For instance,
the following property Py :
“A Turing machine T computes a total function and has a description d(T) with the length
lessthann,”
is at the same time functional and desaiptive.

7. Boundariesfor Algorithmsand Computation

In this section, we determine what problems are agorithmically solvable and what problems
are not.

Condition E. Theclass K contains an algorithm E such that for any input, it gives 1 asits
output.

Condition CE. For al automata A in K, a sequential composition A - E is a member of K.

Condition UC. If U isauniversa in K algorithm, then for any automatonA in K,
sequential compositions U - AandA - U are members of K .

Theorem 7.1. If aclassK satisfies Axioms AU and CAC, and Conditions E and CE, then
the problem Rp is semidecidable in K.

Proof. Let U be auniversal inK algorithm and C be acoding algorithm for K, i.e,, Ci: K ®

V'. Then the algorithm R defined by the sequential composition C » U ° E belongs to K. This

algorithm works in the following manner. Given a pair (x, A) with x7 V' and AT K, Rcodifies
A by means of C and then sends the pair (X, c(A)) to U. The algorithm U simulates functioning of
A with input x. When being applied to x, A gives the result, this result goes to E and E outputs 1.
Otherwise, R produces no result. This means that R computes the semicharacteristic function for

all positive solutions of the problem Rp. Consequently, Rp is semidecidableinK .

Theorem 7.1 and Lemma 6.1 imply the following result.
Theorem 7.2. If aclassK satisfies Axioms AU and CAC, and Conditions E and CE, then
the problem Rpa is semidecidablein K.
However, as it is demonstrated in Theorems 7.4 and 7.5, problems Rp and Rpa are
undecidable.
Condition CA.K contains a converting agorithm Ac such that it checks whether a

givenword w isequa to c(A) for someA inK and then if thisis true it converts wto
(c(A), w).

Condition CS For all automata A inK , the sequential composition A - Acisa
member of K.

Condition CC. For al automata A in K, the sequential composition Ac- Aisa

member of K .

49

Remark 7.1. Conditions CSand CC follow from Axiom ASC. However, for some
classes Condition CS may be true, while Axiom ASC isinvalid. Inductive Turing
machines of the first order (Burgin, 2003) is an example of such aclass. This class
does not include al sequential compositions of its members, but has al sequential
compositions of its members with finite automata, while it is possible to realize
algarithms Ac and C by finite automata.

Let usconsider aclass A of algorithms/automata that satisfies postulates PDC,PD S and
PCS (or PDN, and PCN),axiomsAT,AC, and conditionsCA2, L SWy» (or SW), CA, CC,
and CS (or axiom ASC).

Remark 7.2. Astheworking alphabet V of algorithmsfrom A contains more than one
element, by renaming, we can assume that y and n are elements of V.

Theorem 7.3. The Fixed Output Problem Royis unsolvablein A, i.e., thereisno
automaton H in A such that for al algorithms A in A, and for all strings w inV*, this
automaton H can check if A(w) =y a not.

Proof. Let us assume that such as automaton H existsin A. It means that given a
pair (c(A) ,w) wherec:K ® V" isdefined by the axiom AC, H producesy when

A(w) =y and prodwces n otherwise. Properties of the class A provide us with the
automata Acand Agy, and alow us to build the sequential composition B= Ac o H -

Asy , Which also belongsto A and in which the automaton As,, Switchesy and n.
This composition B is presented in Figure 2.

w (c(A),w) u v

Figure2. A hypothetical automaton B

50

Let us consider functioning of the automaton B when it works with theword c(B) =

First, asc(B) = w and the output of H isequal either to y or to n, the output B(w) of
Bisasoequa eithertoy or ton.

Second, when B(w) =y, the automaton H also outputs y. This symbol goes to the
automaton Asy , which switches y and n. As the result, the output of Bis n. Thisisa
contradiction, which shows that it isimpossible thatB(w) =y.

Third, when B(w) = n, the automaton H also outputs n. This symbol goes to the
automaton Agy , Which switches y and n. As the result, the output of B isy. Thisisa
contradiction, which shows that it is impossible thatB(w) = n.

Thus, we come to a situation in which B gives no output. Thisis impossible. So,

Theorem 7.3 is proved by contradiction.

Theorem 7.3 and Lemma 6.2 imply the following resullt.

Corollary 7.1. The Free Output Problem Foy is undecidable in A.

Let usconsider aclassK of agorithms/automata that satisfies postulates PDC, PD S and
PCS, axiom AC, and conditions CA2, WL SWy, , CA, CS, andCC.

Theorem 7.4. The Decidability Problem Rp is unsolvablein K , i.e., there is no automaton H
inK such that for al agorithms A in K, and for al stringsw inV*, this attomaton H can check
if A(w) is defined or not.

Proof. Let us assume that such as automaton H existsin K . It means that given a pair (c(A) ,

w), H producesy when A(w) = a for some element a from V*, and produces n whenA gives no

result. Properties of the classK allow us to build the sequential compositionD = AcoH < Ay,

which also belongsto K and in which the automaton A, given the input y gives no output and
given the input n, givesy as the output.

This composition D is presented in Figure 3.

w (c(A),w) u v

Ac H Ay

Figure 3. A hypothetical automaton D

51

Let us consider functioning of the automaton D when it works with the word c(D)
=w.

First, asc(D) = w, the output of H is equa either to y or to n, and the output of A,
can be only n, the output B(w) of B can aso beonly n.

Second, when B gives no output, the automaton H outputs n. This symbol goesto
the automaton Aw , which switches y and n. As the result, the output of B isy. Thisisa
contradiction, which shows that it isimpossible thatB gives no outpui.

Third, when B(w) = n, the automaton H outputsy. This symbol goes to the
automaton Asy , Which gives no output. As the result, B also gives no output. Thisisa
contradiction, which shows that it isimpossible thatB(w) = n.

Such automaton B that neither gives no output nor gives some output cannot exist.

So, Theorem 7.4 is proved by contradiction.

Let in addition the class K satisfies Axiom AU.

Corollary 7.2. The Local Decidability Problem Rpa isunsolvable in K, i.e, thereis an
algorithms A in K such that no automaton H in K can check for all stringsw inV* if A(w) is
defined or not.

Indeed, taking a universal inK algorithmU as A, we see that decidability of Rpu is
equivalent to decidability of Rp.

Corollary 7.3. Thereis no finite automaton that can check for any given finite
automaton if it accepts a given word, w.

However, Turing machines can solve this problem (cf., for example, (Hopcroft et
al, 2001)).

Corollary 7.4. There is no recursive function that can check for any given
recursive function f(x) satisfiability of the condition f(x) =n for afixed number n and
any given number X.

Definition 7.3. A linguistic problem P (linguistic property P) is called nonttrivia in K if
there is a language L generated by some automaton from K that has the related property P and
there is a language L generated by some automaton from K that does not have the related
property P.

Trivia linguistic properties are such properties that either there are no computable in K

languages with such properties or all computablein K languages have these properties.

52

Condition EL . The empty language £ is generated by some automaton fromK .

Remark 7.3. Condition EL isinconsistent with Axiom AT .

Let us assume that the class K satisfies Postulates PDC, PDS, and PCS, Axioms AC and
AU, and Conditions CA2, WL SWy,, EL, CA, CS, and CC.

Theorem 7.5. Any norttrivial in K linguistic problem P is unsolvable in the class K.

Proof. The problem P is related to a property P. Let us consider the class L p of all languages
that have the property P and assume that the empty language 4 does not belong to L p. As the
property P and the problemP are nontrivial in K, there is an automaton T from K such that it
generates some norrempty language L = L(T).

Taking some agorithm A from K and an arbitrary word x in the alphabet V and using

conditions G and GC, we can build the automaton Ba x in K that is represented by the schemain
Figure 4.

Figure4. The structure of the machine Mq

Theautomaton Bax consists of four parts: T, A, Fx, and G. The automata and are described
above. The automaton G performs the function of gates. Initialy it is closed and does not let
through anything. Any input that comes from A opens G and it gives as output its input v that
comes from T. This ouput is also the output of Bax The automaton G generates the word X,
given any input, and then sends thisword x to A.

This construction results in the following property of the automaton B . When A produces a
result, given x as its input, the automaton Bax generates the language L. When A produces no
result, given x as its input, the automaton Bax generates the empty language A Thus, the
language L(Bayx) has the property P if and only if the value A(X) is defined. If there is an
automaton in K that solves the linguistic problem P for all automataBay, then this automaton, or

53

its simple modification, can solve the Decidability Problem Rpa. However, by Corollary 7.2,
this problem is unsolvable when A = U is a universal agorithm in K. Consequently, he
linguistic problem P is aso unsolvable.

To finish the proof, we have to consider the situation when the empty language A belongs to
Lp. If the problem P issolvablein K, then by Corollary 6.1 the problem @GP isalso solvablein K
and A does not belong to the classL gp of all languages that do not have the property P . The
property @P is linguistic and nontrivia because the property P is linguistic and nontrivial.
However, it has been demonstrated that any problem related to a nontrivia linguistic praperty is
unsolvable. So, both problems P and @P are unsolvable.

Theorem 7.5 is proved.

Remark 7.4. It is possible to prove Theorem 7.5 without Axiom AU, but with constructive
forms of composition axioms. Constructive forms mean not only existence of al necessary

compositions, but also that there is an algorithm in K that builds all these compositions.

Theorem 7.5 and Lemma 6.3 imply the following result.
Corollary 7.5. The Fixed Output Problem R oy is unsolvable in K.
Theorem 7.3 and Lemma 6.2 imply the following result.
Corollary 7.6. The Free Output Problem Foyis unsolvable in K.
Corollary 7.7. The problem whether an arbitrary given agorithm A from K is everywhere
defined (satisfies Axiom AT) isunsolvable in K.
Corollary 7.8. The problem whether a subclssH of K satisfies Axiom AT is unsolvablein

Corollary 7.9 (Rice Theorem in the linguistic form, cf. (Davis, 1982; Rogers, 1987)). Any
non-trivial linguistic property P of Turing machines (recursive agorithms in the sense of
(Burgin, 2001)) is undecidable in the class T of all Turing machines (recursive algorithms).

Rice Theorem is an important result for computer science because it sets up boundaries for
research in that area, as well as for software design. It informally states that only trivia

properties of programs in genera programming languages are algorithmically decidable.

Definition 7.4. A functional problem P (functional property P) is caled non-trivid in K if
thereis afunction f realized by some automaton from K that has the related property P and there
isafunction g realized by some automaton from K that does not have the related property P.

Trivia functiona properties are such properties that either there are no computable in K
functions with such properties or al computable in K functions have these properties.

Condition EF. Thefunction f £, whichis undefined for al elements from the domain of K, is
realized by some automaton fromK .

Remark 7.4. Condition EF isinconsistent with AXiomAT.

Let us assume that the class K satisfies Postulates PDC, PDS, and PCS, Axioms AC and
AU, and Conditions CA2, WL SWy, , EF, CA, CS, and CC.

Theorem 7.6. Any nonttrivial in K functional problem P is unsolvable in the classK.

Proof. The problem P isrelated to a property P. Let us consider the class Fp of all functions
g: V¥ ® V* that have the property P and assume that the empty function f£ does not belong to
Fp. Asthe property P and the problem P are non-trivid in K, there is an automaton T from K
such that it realizes some nonempty functionsf: V* ® V*.

Taking some algorithm A from K and an arbitrary word x in the alphabet V and using
conditions G and GC, we can build the automaton B x in K that is represented by the schemain

Figure 5.

BA,X

Fx X A

Figure5. The structure of the machine Mq

The automaton B x consists of four parts: T, A, Fx, and G. The automata and are described
above. The automaton G performs the function of gates. Initidly it is closed and does not let
through anything. Any input that comes from A opens G and it gives as output its input v that
comesfrom T. This output is aso the output of Bax The automaton G generates the word X,

given any input, and then sends thisword x to A.

55

This construction results in the following property of the automaton Ba . When A produces a
result, given x as its input, the automaton Bay realizesthe function f. When A produces no result,
given x as its input, the automaton Bayx realizes the empty function fg . Thus, the function
computed by the automaton Bax has the property P if and only if the value A(x) is defined. If
there is an automaton in K that solves the functiona problem P for all automata Bay, then this
automaton, or its simple modification, can solve the Decidability Problem Rpa. However, by
Corollary 7.2, this problem is unsolvable when A = U is a universa agorithm in K.
Consequently, the functional problem P is also unsolvable.

To finish the proof, we have to consider the situation when the empty function f £ belongs to
Fp. If the problem P is lvablein K, then by Corollary 6.1 the problem @P isaso solvablein K
and A does not belong to the class F gp of al functions that do not have the property P. . The
property @P is functional and nontrivial because the property P is functional and nontrivid.
However, it has been demonstrated that any problem related to a nontrivial functional property is
unsolvable. So, both problems P and @P are unsolvable.

Theorem 7.6 is proved.

Remark 7.5. It is possible to deduce Theorem 7.5 from Theorems 7.6 and 6.1 However, a
direct proof gives a better insight in the situation with unsolvability.

Remark 7.6. It is possible to prove Theorem 7.6 without Axiom AU, but with constructive
forms of composition axioms.

Corollary 7.7 (Rice Theorem in the functional form (Rice, 1951)). Any non-trivial
functional property P of Turing machines (recursive agorithms in the sense of (Burgin, 2001))

is undecidable in the class T of al Turing machines (recursive algorithms).

Theorem 4.1 implies that for many classes of everywhere defined algorithms (Axioms AT)
universal algorithms do not exist (negation of Axiom AU). However, there are classes of
everywhere defined algorithms with universal agorithms. For instance, let us take some
everywhere defined Turing machine M that works with words in the alphabet { 1, 0}. If aword
w in this alphabet contains O, then it is possible to represent w in the form w = vOu where the
word v does not contain zeroes. This allows us to correspond to each word v in this aphabet
the Turing machine T, for which T,(u) = M(w) with w = vOu. This Turing machine T, is
everywhere defined and M is a universal machines for the class Ty of al machines T..

56

Condition OF. Thereis an element a in V such that the set f, that isidenticaly equal to a is
generated by some agorithm/automaton from A.

Let us consider aclassA of algorithms/automata that satisfies Postulates PT,PDS, and PCS,
Axioms AT, AC and AU, and conditionsCA2, L SWy, ,CA,CS, OF, and CC.

Theorem 7.7. Any norttrivial in A functional problem P is unsolvable in the classA.

Condition OL. Thereis an element a in V such that the set L, = {a} is generated by some
algorithm/automaton fromA.
Theorems 7.7 and 6.1 imply the following result.
Let us consider aclassA of agorithms/automata that satisfies Postulates PT,PDS, and PCS,
Axioms AT, AC and AU, and conditionsCA2, L SWy, ,CA,CS, OL,and CC.
Theorem 7.8. Any nonttrivial in A linguistic problem P is undecidable in the class A.
In contrast to functional and linguistic properties, some nontrivial operational properties are
decidable in the class T of al Turing machines, while others are not.
The following properties are decidable (Sipser, 1997):
1. “The head of a Turing machine moves only to the right for a given input.”
2. “The head of a Turing machine does not make turns.”
The following properties are undecidable (Sipser, 1997):
1. “The head of a Turing machine returns into the first cell for a given input.”
2. “The head of a Turing machine comes to the n-th cell, at least, two times for all
inputs.”
Some norttrivial descriptive properties are decidable in the class T of all Turing machines,
while others are not.
The descriptive problem “Does the description d(A) of an algorithm A contain the letter “a’?’
is decidable.
As results on Kolmogorov complexity and other dual complexity measures (Li and Vitanyi,
1997; Burgin, 1982) show, the following descriptive problems are undeciable:
> Is a given description d(A) of an agorithm A is minima for al algorithms that
compute the same function?
> Is a given description d(A) of an agorithm A is minimal for al agorithms that

compute theword x without input?

57

» What is the length of the description d(A) of aminimal agorithm A that computes the

word x without input?

It isinteresting that although all kinds of Turing machines have the same computing power
(cf., for example, (Hopckroft et al, 2001)), decidability of some properties of Turing machines
depends on the model used. It is demonstrated by the following results.

Let usconsider n > 0 and the property Vn:

“ Given input x, the head of a Turing machine comes into the cell with number n.”
Theorem 7.10. The property V, is decidable for Turing machines with one-sided linear tape.
Proof. The property V ,is equivalent to the property U,:

“Giveninput x, a Turing machine T uses only (n-1) cells for its computation.”

Indeed, for Turing machines with a one-sided linear tape, the property V nistrueif and only
if the property U, is false. Thus, both of them are either decidable or undecidable.

To check the property Uy, for an input X, we note that if this property istrue, then T works
only with words that have length less than or equal to n — 1. The number of such words is equal
to (p — 1)" Y where p is the number of symbolsin the alphabet of the Turing machine T. Let s
assumethat T has r states. ThenT either makes r(p —)™~ + 1 moves or halts. We can check
both options, using universal Turing machine. If T makesr(p — 1)*~" + 1 moves, then one of
the states of T repeats with the same word on the tape according to the pigeonhole principle (cf.,
for example, (Hopckroft et al, 2001)). Such a repetition means that that T goes into an infinite
cycle and does not use more than (n-1) cells.

Thus, if T uses more than (n1) cells, i.e,, the head comes to the cell with number n, it is
possible to find this simulating not more than r(p — 1)~ + 1 moves of T. Consequently, the
validity of U, can be found by simulating not more than r(p — 1)~ + 1 movesof T. It means
that the property Uy, is decidable.

As properties V,, and Uy, are equivalent for Turing machines with a one-sided linear tape, the
property U, is aso decidable.

Theorem is proved.

For a dlightly changed model, the same property appears to be undecidable.

Theorem 7.11. The property V is undecidable for Turing machines with atwosided linear
tape.

58

Proof. Let T be an arbitrary Turing machine with one-sided linear tape and T 3 be the class of
al such machines. As usualy, we assume that the one-sided tape goes from the zero cdll to the
right. By theinitial condition, the number n in the property V ,islarger than zero. We correspond
to T aTuring machine T, with a two-sided linear tape and the same statesas T, but working in a
different manner.

The input word is written in the left part of the tape of T,, starting with the zero cell. At the
beginning, T, works only with the left part of its tape, i.e., with cells with numbers 0, -1,-2, -3,
..., Starting with its head in the zero cell. The rules of T2 consist of two parts: R1and Rz. The
rules of the first part R; are obtained from the rules of the machine T by changing al left moves
of the head of T to the right moves of the head of T, and all right moves of the head of T to the
left moves of the head of To. Asaresult, T» imitates all moves of themachine T, with its head
going to the opposite direction.

At the same time, the machine T, does not have final states. To each final state g of T, there
isasystem of corresponding rules from R, that have the following form

ga® Rq

Herea isan arbitrary symbol from the aphabet of T or the empty symbol L.

Asaresult, when T, comes to some final state of T, instead of halting, the head of T, starts
moving to the right without stopping. Consequently, given input X, the head of T, comesto the
cell with number n if and only if T hats given input x. Here X' is obtained from the word x by its
reversion, e.g., if x=abc, then X' = cba. Thus, when the problem V,, is decidable, we can build
an agorithm that decides the halting problem for al Turing machines with one-sided linear tape.
As the property “to halt starting with a given input” is undecidable, the property V,,isaso

undecidable and theorem is proved.

8. Softwar e and hardwar e verification and testing

Here we show how results about abstract chsses of algorithms are related to real life

problems of building computers and networks, designing their software and developing
information technology in general.

59

As an application of theoretical results obtained in previous sections, we consider
problems of verification of program/device correctness and of program/device testing
with the goal to diminate bugs. At first, we reflect on software verification. AsVoas
and Miller (1995) write, “software verification is often the last defense against
disasters caused by faulty software development. When lives and fortunes depend on
software, software quality and its verification demand increased attention. As
software begins to replace human decision-makers, a fundamental concern is whether
amachine will be able to perform the tasks with the same level of precision asa
skilled person. If not, a catastrophe may be caused by an automated system that is less
reliable than a manua one.”

To be able to apply theoretical results in this area, which are mostly mathematical
by their nature, it is necessary to have an exact definition of software verification.
Informally, verification answers the question whether a given program is correct.
Although program correctness looks very simple property, experience of
programmers and computer scientists demonstrates that this is a very sophisticated
and complex property, which has different meanings. Programs are written to solve
problems. So, a correct program p solves correctly some problem(s) P. Solving this
problem isthe god of p, which is formulated to a program developer. For along time,
users simply explained what they want. Now this process is formalized, and to give an
explicit and sufficiently unambiguous explanation of this goal, specifications of
programs to be dcesigned are written. There are various specification languages and
different models for correctness are used (Burgin and Greibach, 2002). As aresult, it
is possible to define program correctness in severa ways.

Definition 8.1. A program is correct if it matches the needed/demanded
specification.

Thisis avery general and thus, not completely formalized definition of
correctness because we have two undefined concepts: “to match” and “ specification”.

A natural way to determine a program specification in a an exact form isto
correspond to a program p some functionf: X ® Y. It is assumed that the program p

has to process inputs taken from X into the outputs that belong to Y. This program

60

representation is reflected in the Deterministic Computation Postulate PDC. It gives
us one of the definitions of program correctness.

Definition 8.2. The program p isfunctionally correct if it realizes/computes a
function f given by specification.

Usually we consider programs written in some popular programming language,
such as C™, Java, ALGOL, SIMULA or PROLOG, and compare them to Turing
machines.

Definition 8.3. A programming language is called Turing complete if it is
functionally equivalent to the class T of all Turing machines.

Itis, asarule, proved that the classK of all programs in such languages is Turing
complete. That is why these languages are called general programming languages as
the majority of programming languages satisfies this condition.

To realize some function is a nontrivial functional property P;. Thus, by Theorem
7.6, this property is undecidable in the class T. Asclasses T andK are functionally
equivaent, we have the following result.

Theorem8.1. It isimpossible to create a software system V written in agenera
programming language L such that V verifies functional correctness of all programs
writtenin L.

Let us consider some system C of logical statements of the form:

If x has property P, theny has property Q.

Definition 8.4. The program p is logically correct with respect to the system C if
al statementsfrom C are true when x belongs to the domain X of p and x belongs to
therange Y of p.

It is possible to express the property Ps in the form:

If x belongs to the domain of the function f, then p(x) = f(X).

As aresult, Theorem 8.1 implies the following result.

Corollary 8.1. It isimpossible to create a software system V written in a general
programming language L such that V verifies logical correctness of al programs
writtenin L.

This result shows that automatic program verification cannot verify correctness
for al programs. In particular, testing cannot find all bugs as the following result
demonstrates.

61

Corollary 8.2. It isimpossible to create a software system V written in a general
programming language L such that V debugs all programs writtenin L.

Indeed, according to the conventional model of algorithms, to give aresult a
program must halt. So, if a program does not stop, it is aresult of some bug. However,
if the programming language is Turing complete, it isimpossible by standard methods
to check whether any given program halts or not. Thisimplies the result of Corollary
8.2.

If it isimpossible to verify al programs by program verifier, it is possible to look
at logical means of program verification. There is a diverse literature on this topic (cf.,
for example, (Loeckx et al, 1985) or (Colburn et al, 1993)). However, results from
(Lewis, 2001) imply that in a general caseit is also impossible for a programmer to
verify correctness of al programs by logical methods.

Consequently, automatic program verification is impossible in general and programs
can be too complex for such verification. Thus, computer scientiststry to find ways to do
software verification, at least, partialy. One way is to consider not all progr ams but some
restricted classes, for which it might be possible to build an automatic verifier. Let us
simplify the verification problem, assuming that we are dealing only with such programs
that always give the result. So, for conventional programs, no infinite loops are alowed and
we need to check only if the program gives a correct result. For instance, we know that for
al inputs the result has to be a fixed word/number. In this case, Theorem 7.3 shows that it
isimpossible to check this by a general algorithm. It gives us the following result.

Theorem 8.2. It isimpossible to create a software system V written in ageneral
programming language L such that V verifies functional correctness of al programsin
L that always give the result.

Another way is not to try to verify the program itself, but to build program models and
to verify these models. To formalize this idea, we introduce even more general definition of
program correctness.

Definition 8.5. A program p is descriptively correct if the program’s description/model
matches the needed specification.

Another way to achieve automated program verification is to make the correctness
condition weaker. Thisis done by introduction of the concept of model program

correctness.

62

Definition 8.6. A program p is model correctif the program’s model matches a defined
model of the needed specification.

This approach is based on the following model of program verification (Burgin
and Tandon, 2003):

C
Mg —M
Mg T 1 mp @
S p
S

Herep isaprogram (program system), Sp isits specification, My isits model, and
Mg, isamodel of the specification Sp. To be correct, the program p hasto allow a
correspondence ¢ with specific properties.

Finite automata are natura models of programs. At the same time, abstract
automata are used for program specification. They are especially useful for simulation
program specification as automata give diverse models of simulated systems. In
addition, automata are utilized for program synthesis. For example, Hune and
Sandholm (2000) develop a method for synthesizing control programs. The method
merges an existing control program with a control automaton. Different authors
developed specification languages based on automata. Second, abstract automata are
used for program understanding and documentation in description of the program
behavior. Third, abstract automata are used for program testing and formal
verification. A review of such approaches, including their system and methodol ogical
analysis, is given by Burgin and Greibach (2002).

Modeling programs and computing devices with abstract automata constitutes one of the
main parts of computer science, which is effectively used in information technology.

Definition 8.7. An abstract automaton A isa model for a program (program system) P if
some properties of P can be deduced from properties of A.

We consider here two types of automata models of programs: descriptiveand simulative

Definition 8.8. A model fa a program P in aform of an abstract automaton A is called

simulative if a correspondence between input, output and states of the program P and the

63

automaton A is specified and transitions of A represent execution of the program P for
corresponding data.

Definition 8.9. A model for a program P in a form of an abstract automaton A is called
descriptive if the automaton A is completely specified by its transition diagram (function or
table) and there is a structural correspondence between input, output, and states of the
program P and the automaton A.

There are different ways of building descriptive automaton models for programs. A
program P can be perceived as a collection of modules with a small, algorithmic core that
expresses how the modules are used to obtain a desired effect. In a sense, the core is
expressed in an application specific language, with control constructs implemented by the
modules. With proper separation between core and module internals one can use a distinct
language for the internas, as long as the interface is meaningful seen from either side. Rather
than describe how the “operations’ of a module work, one might describe what they achieve.
In other words, we can ascribe a system of states to each module and consider possible inputs
and outputs as words in some formal language. This allows us to consider transformation of
data performed by a module as the transition function of this module. In such a way, an
automaton is corresponded to the program module. Combining these automata, we gt an
automaton that represents the whole program P.

Since a module can be seen as implementing one or more specialized language constructs,
this view on program description is closely related to programming language semantics. In
ascribing meaning to the expressions in a program, it is necessary to determine both how
execution of the expressions will affect the underlying computer state and how the sequence
of computer state changes are related to issues of human concern. To represent these issues, it
is very natural to use abstract automata. This approach is represented in the Vienna definition
language (Wegner, 1972; Ollongren, 1974).

For example, it is possible to retrandate logical representation of program properties,
which is used in the axiomatic theory of computer programming (Floyd, 1959; Naur, 1966;
Hoare, 1969), into the automata representation of programs. As Hoare writes (1969), one of
the most important properties of a program is whether or not it carries out its intended
function. The intended function of a program, as well as of its parts, is specified by making

general assertions about the values of input and output variables. These assertions are

presented as formal expressions of the form R{P}Q where the precondition R and
postcondition Q are some logical formulas and P is a program (an instruction or command).
The meaning of such an expression is:
If the assertion R istrue before initiation of the program P, then the assertion Q istrue
on its termination.

This alows us to consider logica formulas as symbols of the input and output a phabets
of an automaton A that is corresponded to a program, while programs, commands, or
instructions form the set of the states of A. We call this automaton the state based automaton
of the program P and denote it by Ast(P). This is a descriptive model of P.

Another interpretation of the expression R{P} Q is given by Milner (1989):

If P isexecuted in a state satisfying R and it terminates, then the terminating state will
satisfy Q.

This alows us to consider logical formulas as states of an automaton A that is
corresponded to a program, while programs, commands, or instructions form symbols of the
input alphabet of this automaton A. In this case, A is an accepting automaton. We call this
automaton the symbol based automaton of the program P and denote it by Asy(P). Thisis
also a descriptive model of P.

There are other ways to correspond automata to logical specifications of programs. For
example, Hune and Sandholm (2000) utilize monadic second order logic over strings for
specifying the control automata. More exactly, they use the Monatool to trandate logical
specifications into automaton description.

After we build an automaton representation of both program specification and
description, it is possible to use formal methods for verifying/testing their relevance and
program correctness. To do this for a program P, we consider the automaton Ag, that is
designed as a specification of P or as a model of such a specification and the automaton Aqg
that is built as a description of P when the program is aready developed. We cal Ag a
specification automaton of P and Aq a description automaton of P.

Definition 8.10. The program P is accepted as a correct program if a definite
correspondence exists between the automata Asp and Aq.

There are different kinds of natural correspondences between abstract automata. Using

them, we come to different kinds of program correctness. For example, let us consider the

65

logical correctness, to get a proof of which is the main goa o the logical or axiomatic
approach to program verification (Hoare, 1969),

According to this approach, it is assumed that a program specification is done by making
definite assertions about the properties of input and output data. These assertions about a
program P are presented as formal expressions of the form R{P}Q where R and Q are some
logical formulas. When the program P is created, similar expressions are corresponded to the
instructions that constitute this program. Then definite logical formulas thet represent rules of
composition are added and from all these expressions taken as axioms, the formula R{P} Q
representing specification is deduced.

As we have demonstrated, it is possible to interpret each formula of the form R{C}Q asa
finite automaton. We can correspond a state based automaton Ast(C) and a symbol based
automaton Asy(C) to these formulas.

As aresult, we relate to the logical program specification R{ P} Q an automaton program
specification Aw(P), which is called the whole program automaton of P.

Rules of instruction composition, both in procedural and axiomatic forms, give
corresponding rules for automata composition. This allows one to construct the composite
program automaton Ac(P) of P. This automaton plays the role of a program description.
Usually, correctness of a program is verified by establishing some equivalence relation
between the specification and description automata corresponded to the program. Definition
8.10 alows us to make this idea exact.

Definition 8.11. The program P is A-correct (FA -correct) if the automata Aw(P) and
Ac(P) are equivalent (and finite).

There are different kinds of equivalence, implying different kinds of program correctness.
Here we consider algebraic forms of automata equivalence. The most evident equivaence is
equality.

As it is demonstrated above, to verify program correctness, it is necessary to
establish a correspondence between automata. It is natural to demand that such
correspondence preserves structures of these automata. To make this concept exact,
we consider here only finite automata and remind the definition of the structure of a

finite automaton.

66

According to the traditional approach, there are three forms of representation of
finite automata: analytical, dynamic, and table representations. We begin with the
analytical form

In the analytical form, a finite automaton A consists of three structures, i.e., A =
(L,S d):

The linguistic structure L = (S, Q, W) where S is a finite set of input
symbols, Q is afinite set of states, and W is a finite set of output symbols of the
automaton A,

The state structure S=(Q, qo, F) where qp is an element from Q that is
caled the initial or start state and F is a subset of Q that is called the set of final (in
some cases, accepting) states of the automaton A;

The action structure, which consists of the transition function, or more
exactly, transition relation of the automaton A

d:S'Q® Q

and of the production or output function, or more exactly, production or output

relation of the automaton A
s:SSQ® W

The dynamic form of representation of a finite automaton A is different from its
anaytic form only in its transition function representation. The function/relation d is
given in aform of atransition diagram.

The table form of representation of a finite automaton A is also different from its
anaytic form only in its transition function representation. The function/relation d is
given in aform of atable.

Here we consider the analytical form of representation of a finite automaton A as
the most appropriate for utilizing methods of modern algebra to study properties of
automata models of programs.

From the algebraic perspective, it is possible to correspond a heterogeneous
algebra in the sense of Birkhoff and Lipson (1970) and Mathienssen (1978) to any
deterministic finite automaton A.

67

Definition 8.12. A heterogeneous algebra U isaset U (the support of U) with a
system of operations S in which elements of U form an indexed system U = {A; ;i 1
I} of sets and each operation is a mapping having the form f: Aiy” Aiz ...” Ak ® A.

Other examples of heterogeneous universal algebras are modules, polygons, i.e.,
sets on which monoids act, polyadic or Hamos agebras (Hamos, 1962),
nonhomogeniuos polyadic algebras (Leblanc, 1962), relational algebras (Beniaminov,
1979), and state machines.

Heterogeneous universal algebras were studied by several authors under different
names. To mention only some of them, it is necessary to name algebras with a scheme
of operators introduced by Higgins (1963; 1973), multibase universal agebras
(Glushkov, et al, 1974; Shaposhnikov, 1999; Karpunin and Shaposhnikov, 2000), and
many-sorted algebras studied by Plotkin (1991). The term "heterogeneous algebras’ is
used more often than other related terms. Heterogeneous (multibase or many-sorted)
algebras represent the next level of the development of algebra. Namely, in ordinary
(or homogeneous) universal algebras operations are defined on a set, while in
heterogeneous algebras operations are defined on a named set (Burgin, 1990). This
makes possible to develop more adequate models for many processes and systems.
For exampl e, heterogeneous algebras are extensively used for mathematical modeling
information processing by computers. Such models as abstract automata and abstract
states machines or evolving algebras become more and more widespread in computer
science. In addition, relational algebras are extensively used for modeling relational
databases (Beniaminov, 1979; Plotkin, 1991).

It is necessary to remark that transition from a set to a named set as a basic
structure goes on not only for agebra but for other fields (cf. (Burgin, 1990)). Thus,
in many cases fibers, which are special cases of topologica named sets, replace
topological spaces in topology. Multivalued and multi-sorted logics are becoming
more and more popular in logic. Manifolds are used instead of Euclidean spaces in
mathematical analysis. Modern combinatorics is built on multisets, which are specia

cases of named sets.

68

Finite automata and state machines are directly connected to heterogeneous
algebras. A specific heterogeneous algebra Al(A) is corresponded to a deterministic
finiteautomaton A in the following way. This algebra Al(A) has the support { S,Q,W
}, two binary operations d:S" Q® Q,ands: S Q® W, and several unary operations
So,S1,...,Skontheset Q:sg=0qo,S1=0y, ..., Sk= QcWith g1, ..., g F.

In addition to the algebra Al(A), another heterogeneous algebra EAI(A) is dso
corresponded to the automaton A. This algebra EAI(A) has the support { S*, Q, W* }
where S* and W* are the sets of al finite words in the aphabets S and W,
correspondingly. Operations of EAI(A) consist of two binary operations d*: S*" Q ®
Q,and s*: S* Q ® W, and severa unary operationssg, S1, ... , Sk on the set Q
whereso=qo,S1=01, ..., Sk= gkwithqa,...qx] F.

Usually, if an automaton A represents a program, then a state of A is a set of states
of the program variables. Inputs for programs are also collections of data
Consequently, we come to the concluson that Al(A) and EAI(A) have operations
with arity higher than two.

The same constructions allow one to correspond to a nondeterministic finite automaton B
an algebraic system in the sense of Malcev (1970). This system isnot a (universal) algebrain
agenera case. Here for simplicity, we consider only deterministic automata. However, it is
possible to extend the main constructions and results to the nondeterministic case.

Definition 8.13. The program P isstrictly A-correct (FA-correct) if the automata Aw (P)
and Ac(P) are (finite and) equal as heterogeneous algebras (algebraic systems).

The assumption that automata Aw(P) and Ac(P) are finite allows us to solve the problem
of program verification because it is possible to check if two finite heterogeneous dgebras
are equd.

Theorem 8.3. The property of program strict FA-correctness is decidable.

Informally, it means that in contrast to results of Theorems 8.1 and 8.2 it is possible to
build a software system such that it verifies strict program correctness for all programs.

Applying the algebraic approach, we use another popular kind of equivalence of algebraic
systems, which is called isomorphism (Cohn, 1965; Kurosh, 1974).

69

Definition 8.14. The program P is isomorphically A-correct (FA-correct) if (the
automata Aw(P) and Ac(P) are finite and) the algebras AI(Aw(P)) and Al(Ac(P)) of the
automata Aw(P) and Ac(P) are isomorphic as heterogeneous algebras (algebraic systems).

It is possible to demand validity of a weaker condition in a definition of correctness.

Let us assume that all states of the automata Aw(P) and Ac(P) representing programs
from aclass P are distinguishable.

Theorem 8.4. The property of program isomorphic FA -correctness is decidable for the
classP.

Indeed, if we take two finite heterogeneous algebras, there is only a finite number of
mapping between them. Utilizing properties of universal agebras (cf. Kurosh, 1974), it is
possible to build an algorithm that checks if any of these mapping is an isomorphism. In such
away, we can algorithmically find whether two finite heterogeneous algebras are isomorphic
or not.

Corollary 8.3. If a program is equivalent as algorithm to a finite automaton, then its
correctness is decidable.

Having different types of program correctness, it is possible to compare them by their
verification power. Thisidea is formalized in the following definition.

Let us consider two types X and Z of program correctness.

Definition 8.15. X-correctness is stronger than Z-correctness if for any program P, X-
correctness implies Z-correctness.

Definitions 8.13, 8.14, and15 imply the following result.

Proposition 8.1. The strict A-correctness (FA-correctness) is stronger than isomorphic A-
correctness (FA -correctness).

Remark 8.1. However, if we restrict the class of possible verificators only to programs
that are equivaent to finite automata, then verification becomes once more impossible. In
other words, the verifying program has to be more powerful than a finite automaton.

We can apply theoretical results on problem solvability not only to software, but also to
hardware, utilizing general results from computer science. A general assumption in computer
science is that any genera purpose computer is equivalent to a universal Turing machine
(e.g., (Hopcroft et al, 2001)). This makes it possible to apply Theorem 8.1 to hardware and
get the following statement.

70

Theorem 8.7. It isimpossible to create a software systemV written in agenera
programming language L such that V verifies for al programs whether a given program
computes on a general purpose computer a given partial recursive function.

Taking some system of operations, it is possible to consider all possible computers with
these operations. In this context, it isimpossible to find if an arbitrary computing device is
equivaent by its functions to a general purpose computer.

Theorem 8.8. It isimpossible to create a software systemV written in agenera
programming language L such that V verifies for al possible computers whether a given

computer is a general purpose computer.

Definition 8.16. (Wikipedia) A programming language is called Turing-complete

if it is potentially equivalent in power to the class of al Turing machines.

In asimilar way, taking some system of operators, it is possible to consider al possible
programming languages with these operators.

Theorem 8.9. It isimpossible to create a software system V written in agenera
programming language L such that V verifies al possible programming languages whether a
given programming language C is a Turing complete.

9. Conclusion

We explored some basic properties of the theory of agorithms and computation. In
doing so, we developed an axiomatic setting for this theory. In contrast to the traditional
global axiomatization prevalent in mathematics and local axiomatization developed in
computer science for theory of programs, we utilize multiglobal axiomatization aimed at
study of diverse classes of algorithms and automata. This axiomatization is based on
postul ates, axioms, and formal conditions. Postul ates represent the most basic properties of
algorithmic classes. Axioms describe various essential peculiarities, while conditions
reflect specific features used for derivation more important and deep traits of algorithms
and computation.

Results comparing different modes of functioning and power of classes of agorithms,

programs and computers are proved under very general axioms or conditions. This makes

71

possible to apply these results to a vast variety of types and kinds of algorithms and their
models. Such models may be structuraly distinct like Turing machines and partial
recursive functions. They may be defined by some restrictions inside the same class of
models, e.g., polynomial time Turing machines, polynomia space Turing machines, and
logarithmic time Turing machines. In its turn, comparing different models alows one to
obtain relations between corresponding types of computers and software systems. For
example, deterministic Turing machines model conventional computers, while
nondeterministic Turing machines model quantum computers. As a result, properties of
deterministic Turing machines reflect properties of conventional computers, while
properties of nondeterministic Turing machines reflect properties of quantum computers.

In addition, axiomatic approach alows one to obtain automaticaly many classica
results of the conventional computability, which are considered in many textbooks and
monographs (cf., for example, Manna, 1974; Davis and Weyuker, 1983; Hopcroft et al,
2001; Rogers, 1987).

An important peculiarity of the axiomatic theory of algorithms and computation is that
now its development has become more urgent than in the first period of the agorithm
theory development. The main feature of the first period of the algorithm theory
development was belief of the vast majority of computer scientists and mathematicians in
the, socaled, Church-Turing Thesis. In one of its forms, the Thesis claims that any
problem that can be solved by an algorithm can be solved by some Turing machine and
any algorithrmc computation can be done by some Turing machine Most of what we
understand about algorithms and their limitations is based on our understanding of Turing
machines and other conventional models of algorithms. The Church Turing Thesis claims
that Turing machines give a full understanding of computer possibilities. However, in spite
of this Thesis, conventional models of algorithms, such as Turing machines, do not give a
relevant representation of a notion of algorithm. That is why an extension of conventional
models has been developed. This extension is based on the following observation. The
main stereotype for algorithms states that an algorithm has to stop when it gives a result.
This is the main problem that hinders the development of computers. When weunderstand
that computation can go on but we can get what we need, then we go beyond our

prejudices and immensely extend computing power.

72

The new models are called super-recursive agorithms. They provide for a much more
computing power. This is proved mathematically (Burgin, 1988). At the same time, they
give more adequate models for modern computers and Internet. These models change the
essence of computation going beyond the Church-Turing Thesis (here we give a sketch of
a proof for this statement) and form, consequently, a base for a new computational
paradigm, or metaphor as says Winograd. Problems that are unsolvable for conventional
algorithmic devices become tractable for super-recursive algorithms. The new paradigm
gives a better insight into the functioning of the mind opening new perspectives for
artificial intelligence.

As aresult, an absolute class of agorithms disappeared and now computer scientists
have to deal with a huge diversity of different classes, models, and kinds of algorithms and
automata. Thus, methods that study different classes (such as multiglobal axiomatization)
are more efficient than any technique (such as constructive approach or global
axiomatization) that studies only one class of agorithms, even if this class is so useful and
popular as the class of al Turing machines.

Being applied to program correctness, theoretical results of this paper show that, on one
hand, it is impossible to find an algorithm or build a program that verifies correctness of al
programs in some Turing-complete programming language. On the other hand, when a
program and its specification are represented by appropriate models, such as, for example,
finite automata, then it is possible to verify its correctness.

It is aso necessary to remark that programs realizing inductive computations can do
much more than programs realizing recursive computations (Burgin, 2001; 2003). As a
conseguence, it is possible to build programs that work in the inductive mode and verify
correctness of much larger classesof programs than recursive verifiers. In addition,
inductive verifiers can check correctness in a stronger sense.

To conclude, we formulate some open problems of the axiomatic theory of algorithms
and computation.

Problem 1. What undecidability results from Section 7 is it possible to prove, utilizing
the Local Universality Axiom LAU instead of the Universality Axiom AU?

73

Local Universality Axiom LAU. For any finite number of algorithms/automata A; , A
, ..., Anfrom K thereis some coding c: K ® V', there is a subclass H of K such that all
A1,Az, ..., Aybeongto H and H satisfies the Universality Axiom AU.

Problem 2. What other classes of algorithms/automata, besides classes of all recursive
algorithms, such as Turing machines, satisfy the Universality AxiomAU?

Problem 3. Characterize all those operational (performance, descriptive) properties that
are decidable inthe class T of all Turing machines.

Problem 4. What axiomatic classes of agorithms/automata have the fixed point
property (cf., (Rogers, 1987))?

Problem 5. Study computable and decidable languages (sets) in axiomatic classes of
agorithms/automata.

Problem 6. Study complexity of algorithms and computations in axiomatic classes of
algorithms/automata.

Problem 7. Study dual complexity measures (Burgin, 1982) of algorithms and
computations in axiomatic classes of algorithms/automata.

References

1. Abramson, F.G. (1971) Effective Computation over the Real Numbers, 12th
Annual Symposiumon Switching and Automata Theory, Northridge, Calif.:
Institute of Electrical and Electronics Engineers

2. Adamék, J. (1975) Automata and categories, finiteness contra minimality, Lecture
Notesin Computer Science, 32, Springer Verlag, Berlin/Heidelberg/ New Y ork,
pp. 160-166

3. Adamek, J. and Trnkova, V. (1990) Automata and Algebrasin Categories,
Kluwer Academic PublishersBarrett, E., ed. Text, Context and Hypertext: Writing
with and for the Computer, Cambridge: MIT Press

4. Adleman, L., and Blum, M. (1991) Inductive Inference and Unsolvability, Journal
of Symbolic Logic, v. 56, No. 3, pp. 891-900

5. Alt, F.L. (1997) EndRunning Human Intelligence, in “Beyond Calculation: The
Next Fifty Years of Computing”, Copernicus, pp. 127-134

6. Barett, E., ed. Text, Context and Hypertext: Writing with and for the Computer,
MIT Press, Cambridge, 1988

74

7. Beniaminov, E.M. (1988) An Algebraic Approach to Models of Databases,
Semiotics and Informatics, v. 14, 1979, pp. 44-80

8. Birkhoff, G. and Lipson, J.D. Heterogeneous agebras, J. Combinatorial Theory,
8, 1970, 115-133.

9. Black, R. (2000) Proving Church’sThesis, Philos. Math., v. 8, No. 3, pp. 244-258

10. Blum, L., Cucker, F., Shub, M., and Smale, S. Complexity of Real Computation,
Springer, New Y ork, 1998

11. Blum M. (1967) On the Size of Machines, Information and Control, v. 11, pp.
257-265

12. Blum M. (1967a) A Machine -independent Theory of Complexity of Recursive
Functions, Journal of the ACM, v. 14, No.2, pp. 322-336

13. Buchi, J.R. (1960) Weak second order arithmetic and finite automata, Z. Math.
Logic and Grudl. Math., v. 6, No. 1, pp. 66-92

14. Budach, L. and Hoehnke, H.-J. (1975) Automata und Funktoren , Akademic
Verlag, Berlin

15. Burgin, M. S. (1982) Generalized Kolmogorov complexity and duality in theory
of computations, Notices of the Academy of Sciences of the USSR v. 264, No. 2,
pp. 1923 (trandated from Russian, v. 25, No. 3)

16. Burgin, M. (1982a) Products of operators of multidimensional structured model of
systems, Mathematical Social Sciences No.2, pp. 335-343

17. Burgin, M. S. (1983) Inductive Turing Machines, Notices of the Academy of
Sciences of the USSR, v. 270, No. 6, pp. 12891293 (trandated from Russian, v.
27, No. 3)

18. M.Burgin, Multiple computations and Kolmogorov complexity for such
processes, Notices of the Academy of Sciences of the USSR 1983, v. 269, No. 4,
pp. 793-797 (trandated from Russian, v. 27, No. 2)

19. M.Burgin, Systems and properties, Abstracts presented to the American
Mathematical Society, 1984, v.5, No.6

20. Burgin, M. S. (1985) Algorithms and Algorithmic Problems, Programming,
No. 4, pp. 314 (Programming and Computer Software, v. 11, No. 4)
(trandated from Russian)

21. Burgin M.S. (1990) Theory of Named Sets as a Foundational Basis for Mathematics, in
“Sructures in Mathematical Theories’, San Sebastian, pp. 417-420

22. Burgin M.S. Fundamental Structures of Knowledge and Information, Ukrainian
Academy of Information Sciences, Kiev, 1997 (in Russian)

23. Burgin, M. On the Essence and Nature of Mathematics, Ukrainian Academy of
Information Sciences, Kiev, 1998 (in Russian)

24. Burgin, M. (2001) How We Know What Technology Can Do, Communications of
the ACM, v. 44, No. 11, pp. 8288

75

25. Burgin, M. (2003) Nonlinear Phenomena in Spaces of Algorithms, International
Journal of Computer Mathematics, v. 80, No. 12, pp. 1449-1476

26. Burgin, M. and Greibach, S. (2002) Abstract Automata as a Tool for Developing
Simulation Software, in “Proceedings of the Business and Industry Simulation

Symposium” Society for Modeling and Simulation International, San Diego,
California, pp. 176-180

27. Burgin, M. and Karasik, A. (1975) A study of an abstract model of computers,
Programming and Computer Software, No. 1, pp. 72-82

28. Burgin, M. and Kuznetsov, V. (1994) Introduction to the Modern Exact Methodol ogy
of Science, International Science Foundation, Moscow (in Russian)

29. Burgin, M., Liu, D., and Karplus, W. (2001) The Problem of Time Scalesin
Computer Visuaization, in “Computational Science”, Lecture Notes in Computer
Science, v. 2074, part |1, pp.728-737

30. Burgin, M., Liu, D., and Karplus, W. (2001a) Visualizationin Human-Computer
Interaction, UCLA, Computer Science Department, Report CSD — 010010, Los
Angees, July, 2001, 108 p.

3L Burgin, M. and Tandon A. (2003) Software Verification in Algebraic Setting, in
Proceedings of the 7" IASTED International Conference on Software Engineering
and Applications, Marina Del Rey, California, pp. 499-504

32. Burton, D.M. The History of Mathematics, The McGrow Hill Co., New Y ork,
1997

3. Buss, SL., Kechris, A.S., Pillay, A, and Shore, R.A. (2001) The prospects for
Mathematical Logic in the Twenty First Century, Bulletin of Symbolic Logic, v. &,
No. 2, pp.169196

34. Church, A. (1957) Application of Recursive Arithmetic to the Problem of Circuit
Synthesis, in “Summaries of Talks presented at the Summer Institute of Symbolic
Logic at Cornell University,” 1, pp. 350

3. Cleland, C.E. (2001) Recipes, Algorithms, and Programs, Mindsand Machines, v.
11, pp. 219237

36. Cohn, P.M. Universal algebra, New York/ Evanston/London, Harper & Row,
1965

37. Colburn, T.R., Fetzer, JH., and Rankin, T.L. (Eds.) Program Verification, Kluwer
Academic Publishers, Dordrecht, 1993

Davis, M. Computability and Unsolvability. New Y ork: Dover, 1982.

Feferman, S. (1993) Working foundations - "91, in Bridging the Gap: Philosophy,
Mathematics and Physics, Boston Studies in the Philos. of Science, Kluwer,
Dordrecht, vol. 140, pp. 99-124

8 8

40. Feferman, S. (1993a) What rests on what? The proof-theoretic analysis of
mathematics, in Philosophy of Mathematics, Proceedings of the 15th International

76

41

42.

47.

40,

SL

8 &

Wittgenstein Symposium, Verlag Holder-Pichler-Tempsky, Vienna, Part I, pp.
147171

Fischer, P.C. (1965) Multi-tape and infinite-state automata, Communications of
the ACM, v. 8, No. 12, pp. 799805

Floyd, R.W. (1967) Assigning meanings to programs, Mathematical Aspects of
Computer Science, 19" Symp. of Appl. Math., AMS, Providence, Rhode Island,
19-32.

Fraenkel, A.A. and Bar-Hillel, Y. Foundations of Set Theory, North Holland P.C.,
Amsterdam, 1958

Friedman H., and Hirst, J. (1990) Weak comparability of well orderings and
reverse mathematics, Annals o Pure and Applied Logic, v. 47, pp. 11-29.

Giusto, M. and Simpson, S. G. (2000) Located Sets and Reverse Mathematics.
The Journal of Symbolic Logic, v. 65, No. 3, pp. 1451-1480

Glushkov, V.M., Zeitlin, G.E., and Yushchenko, E.L. Algebra, Languages,
Programming, Kiev, Naukova Dumka, 1974 (in Russian)

Godel, K (1931) Uber formal unentscheidbare Sétze der Principia Mathematics
und verwandter System |, Monatshefte fir Mathematik und Physik, b. 38, s.173-
198

Goldin, D. and Wegner, P. Persistent Turing Machines, Brown University
Technical Report, 1988

Halmos, P.R. Algebraic Logic, New Y ork, 1962

Hamkins, J.D., and Lewis, A. (2000) Infinite time Turing machines, Journal of
Symboalic Logic, v. 65, No. 3, pp. 567-604

Higgins, P.J. (1963) Algebras with a scheme of operators, Math. Nachrichten, v.
27, No. 1-2, pp. 115132

Higgins, P.J. Grupoidsand categories North-Holland, 1973

Hoare, C.A.R. (1969) An Axiomatic Basis for Computer Programming,
Communications of ACM, v. 12, pp. 576-580, 583

Hopcroft, J.E., Motwani, R., and Ullman, J.D. Introduction to Automata Theory,
Languages, and Computation, Addison Wesley, Boston/San Francisco/New Y ork,
2001

Humby, E. Programs from Decision Tables, MacDonald, London, 1973

Hune, T.S. and Sandholm, A.B. (2000) Using Automata in Control Synthesis - A
Case Study, in Fundamental Approaches to Software Engineering, LNCS 1783,
pp. 349-362

Karpunin, G. A. and Shaposhnikov, 1. G. (2000) Crossed homomorphisms of
finite multibase universal algebras with binary operations, Discrete Math. Appl. v.
10, no. 2, pp. 183-202

7

70.

71

74.

5.

76.

Kleene, S. (1956) Representation of events in nerve nets, Automata Sudies,
Princeton University Press, Princeton, N.J. pp. 341

Knuth, D. The Art of Computer Programming, v.2: Seminumerical Algorithms Addison
Wedley, 1981

Kogge, P. The Architecture of Pipeline Computers McGraw Hill, 1981

. Kurosh, A.G. General algebra, Moscow, Nauka Press, 1974 (in Russian)

Kolmogorov, A.N. (1953) On the Concept of Algorithm, Russian Mathematical
Surveys v. 8, No. 4, pp. 175176

Krinitsky, N.A. Algorithms around us Moscow, Nauka, 1977 (in Russian)

Landow, G. Hypertext: The Convergence of Contemporary Critical Theory and
Technology, Baltimare: Johns Hopkins University Press, 1992

Leblanc, L. (1962) Nonhomogeniuos Polyadc Algebras, Proc. American
Mathematical Society, v. 13, No. 1, pp. 59-65

Lewis, J.P. (2001) Limitsto Software Estimation, Software Engineering Notes, v.
26, No. 4, pp.54-59

Li, M., and Vitanyi, P. An Introduction to Kolmogorov Complexity and its
Applications Springer-Verlag, New Y ork, 1997

Loeckx, J., Sieber, K. and Stansifer, R.D. The foundations of program
verification, John Wiley & Sons, Inc. New York, 1985

Malcev, A.l. Algebraic systems, Moscow, Nauka, 1970 (in Russian)

Manna, Z. and Pnueli, A. Specification and Verification of Concurrent Programs
by " -Automata, Computer Science Department, Stanford University, Computer
Science Department, Weizmann Institute of Science, 1986

Mathienssen, G. (1978) A heterogeneous algebraic approach to some problemsin
automata theory, many-valued logics and other topics, Contr. to General Algebra,
Proc. Klagenfurt Conf.

Mealy, G.H. (1953) A method for synthesizing sequential circuits, Bell System
Techn. J.,, v. 34, pp. 1045-1079

Milner, M. Communication and concurrency, Prentice Hall, New
Y ork/L ondon/Toronto, 1989

Moore, E.F. (1956) Gedankenexperiments on sequential machines, in Automata
Sudies, Princeton University Press, Princeton, N.J. pp. 129-153

Moore, C. (1996) Recursion Theory on the Reals and Continuous-time
Computation: Real numbers and computers, Theoretical Computer Science, 162,
No. 1, pp. 2344

Moschovakis, Ya. (2001) What is an Algorithm?, in “Mathematics Unlimited :
2001 and Beyond”, Springer, New Y ork

Ollongren, A. Definition of programming languages by interpreting automata,
Academic Press, New Y ork/London, 1974

78

d

8L

8

%

oL

Naur, P. (1966) Proofs of algorithms by general snapshots, BIT, v. 6, pp. 310-316.

von Neumann, J. (1951) The general and logical theory of automata. in “Cerebral
Mechanismsin Behavior,” The Hixon Symposium, Willey , New York, pp. 1-31

Nielsen, J. Hypertext and hypermedia, New Y ork: Academic Press, 1990

Plotkin B.1. Universal Algebra, Algebraic Logic, and Databases, Moscow, Nauka,
1991 (in Russian)

Rabin, M.O. (1969) Decidability of Second-order Theories and Automata on
Infinite Trees, Transactions of the AMS, v. 141, pp. £35

Rabin, M.O., and Scott, D. (1959) Finite Automata and Their Decision Problems,
IBM Journal of Research and Development, v. 3, pp. 114-125

Rice, H.G. (1951) Recursive Real Numbers, Proceedings of the AMS, v. 5, pp.
784-791

Rice, H. G. (1953) Classes of Recursively Enumerable Sets and Their Decision
Problems, Trans. Amer. Math. Soc., v. 74, pp. 358-366

Rogers, H. Theory of Recursive Functions and Effective Comp utability, MIT
Press, Cambridge, Massachusetts, 1987

S.J. Russel and P. Norvig Artificial Intelligence: A Modern Approach , Prentice-
Hall, Englewood Cliffs, N.J., 1995

Shannon, C. (1941) Mathematical Theory of the Differential Analyzer, J. Math.
Physics MIT, v. 20, pp. 337-354

Shaposhnikov, I. G. (1999) Congruences of finite multibase universal algebras,
Discrete Math. Appl. 9, no. 4, pp. 403-418

Sipser, M. Introduction to the Theory of Computation, PWS Publishing C.,
Boston, 1997

Trahtenbrot, B.A. and Barzdin, J.M. Finite Automata: Behavior and Synthesis,
Moscow, Nauka, 1970 (in Russian)

Turing, A. (1936) On Computable Numbers with an Application to the
Entscheidungs -problem, Proc. Lond. Math. Soc, Ser.2, v. 42, pp. 230-265

Van Leeuwen, J. and Wiedermann, J. (1985) Array Processing Machines, in
Fundametal s of Computation Theory, Lecture Notes in Computer Science, 199,
Springer-Verlag, New Y ork/Berlin, pp. 99-113

Van Leeuwen, J. and Wiedermann J. A computational model of interaction,
Techn. Rep. Dept. of Computer Science, Utrecht University, Utrecht, 2000

Van Leeuwen, J. and Wiedermann, J. (2000b) On the Power of Interactive
Computing, Proceedings of the IFIP Theoretical Computer Science 2000, pp.
619623

Vardi, M.Y. and Wolper P. (1986) An automata-theoretic approach to automatic
program verification, in Proceedings of the 1% Annual Symposiumon Logicin
Computer Science, pp. 322-331

79

97. Vardi, M.Y. and Wolper, P. (1994) Reasoning about Infinite Computations,
Information and Computation, v. 115, No.1, pp. +—37

98. Voas, JM. and Miller, K.W. (1995) Software Testability: The New Verification,
|EEE Software, v. 12, No. 3, pp. 17-28

99. Wegner, P. (1972) The Vienna Definition Language, ACM Computing Surveys, V.
4, No. 1, pp. 563.

100. Wegner, P. (1998) Interactive Foundations of Computing. Theoretical aspects

of coordination languages. Theoretical Computer Science, v. 192, no. 2, pp. 315
351

101. Wikipedia, http://en.wikipedia.org/wiki/Turing-complete

80

