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Abstract Conformance checking techniques compare observed behavior (i.e.,

event logs) with modeled behavior for a variety of reasons. For example, discrep-

ancies between a normative process model and recorded behavior may point to

fraud or inefficiencies. The resulting diagnostics can be used for auditing and

compliance management. Conformance checking can also be used to judge a pro-

cess model automatically discovered from an event log. Models discovered using

different process discovery techniques need to be compared objectively. These

examples illustrate just a few of the many use cases for aligning observed and

modeled behavior. Thus far, most conformance checking techniques focused on

replay fitness, i.e., the ability to reproduce the event log. However, it is easy to

construct models that allow for lots of behavior (including the observed behavior)

without being precise. In this paper, we propose a method to measure precision of

process models, given their event logs by first aligning the logs to the models. This

way, the measurement is not sensitive to non-fitting executions and more accurate

values can be obtained for non-fitting logs. Furthermore, we introduce several

variants of the technique to deal better with incomplete logs and reduce possible
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bias due to behavioral property of process models. The approach has been imple-

mented in the ProM 6 framework and tested against both artificial and real-life

cases. Experiments show that the approach is robust to noise and applicable to

handle logs and models of real-life complexity.

Keywords Precision measurement � Log-model alignment � Conformance

checking � Process mining

1 Introduction

The starting point for most business process management (BPM) activities are

process models, as they provide insights into possible scenarios (Hofstede et al.

2010). Process models are used for analysis (e.g., simulation van der Aalst and

van Hee 2004), enactment (Hofstede et al. 2010), redesign (Dumas et al. 2013),

and process improvement (Pande et al. 2000, Porter and Parker 1993). Therefore,

they should reflect the dominant behavior accurately. The increasing availability

of event data enables the application of conformance checking (van der Aalst

2011b, 2012; Rozinat and van der Aalst 2008). Conformance checking

techniques compare recorded process executions in the form of event logs with

process models to quantify how ‘‘good’’ are the models with respect to their

executions.

Conformance can be viewed along multiple orthogonal dimensions: (1) fitness,

(2) precision, (3) generalization, and (4) simplicity (van der Aalst 2011b; Buijs et al.

2012). In this paper, we focus on the precision dimension. Given an event log and a

process model, precision penalizes the model for allowing behavior that is unlikely

given the observed behavior in the log. Take for example the two models and the

event log in Fig. 1. Both models show a cancer patient handling process in a

hospital and are shown using Petri net formalism (Murata 1989).1 All traces in the

log can be reproduced by both models, i.e., the traces perfectly fit the models.

However, notice that the ‘‘flower’’ model (F) may provide misleading insights, as it

also allows for much more behavior not appearing in the log. In contrast, the other

model (P) only allows traces that occur in the log. Hence, the precision of model

P is better than model F with respect to the log.

Many existing precision metrics (e.g., Munoz-Gama and Carmona 2011; Rozinat

and van der Aalst 2008; de Weerdt et al. 2011b) do not explicitly take into account

possible deviations between the behavior observed in the event log with the

behavior modeled in the models, while many case studies show that such deviations

often occur in practice (e.g., Banescu and Zannone 2011; Cook and Wolf 1999;

Gerke et al. 2009; Greco et al. 2006; Petkovic et al. 2011; Rozinat et al. 2009;

Weidlich et al. 2010; Weijters et al. 2006). Thus, these metrics might be biased due

to unfitting logs and models. In this paper, we explicitly take deviations between the

1 For the reader not familiar with Petri nets, a Petri net is a bipartite graph that contains two types of

nodes: places (circles) and transitions (boxes). A place may contain tokens (black dots), and a transition

can fire if its predecessor places contain a token. When fired, a transition removes a token from each input

place and adds a token to each successor place.
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observed behavior in event logs and the modeled behavior in process models into

account and propose a robust approach to measure the precision between a (possibly

non-fitting) event log and a model. First, we align the log and the model to find, for

each trace, those complete activity sequences in the model that are most similar to

the trace. Then we use these alignments to measure precision between the original

log and the model. In this paper, we generalize the approach presented in

Adriansyah et al. (2013b) by introducing various possible ways of computing

precisions based on alignments, their log completeness requirements, and their

issues in order to obtain accurate precision values.

The remainder of this paper is organized as follows. Section 2 shows the

notations and preliminary concepts that are used throughout this paper. Alignments

between event logs and models are explained in Sect. 3. The alignment-based

precision approach is presented in Sect. 4. In Sect. 5 we propose a series of

extensions for the basic precision approach. Experimental results are given in Sect.

6. Section 7 concludes the paper.

2 Preliminaries

Conformance checking requires as input both a process model and an event log.

Therefore, we first formalize process models and logs after introducing a set of

notations that is used in the remainder of this paper.

2.1 Sequence and multiset

LetW be a set. For (finite) sequences of elements over a setW, we use � to denote an
empty sequence. A concatenation of sequences r1 and r2 is denoted with r1 � r2.W

*

denotes the set of all finite sequences over W. We refer to the ith element of a

sequence r as r[i] and we use |r| to represent the length of sequence r. We say that

any x 2 ðW �WÞ is a pair. We use p1(x) and p2(x) to refer to the first and the

second element of pair x respectively. We generalize this notation to sequences:

piðrÞ ¼ hpiðr½1�Þ; . . .; piðr½jrj�Þi. For example, p1ðhða; bÞ; ðb; cÞ; ðb; dÞiÞ ¼
hp1ðða; bÞÞ; p1ððb; cÞÞ; p1ððb; dÞÞi ¼ ha; b; bi. For all Q � W ;r#Q denotes the

projection of r 2 W� on Q, e.g., ha; a; b; ci#fa;cg ¼ ha; a; ci. PðQÞ denotes the

powerset of Q, e.g., Pðfa; bgÞ ¼ ffg; fag; fbg; fa; bgg.

Fig. 1 Example of an extremely imprecise (underfitting) and precise model (overfitting) for a given log
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A multiset m over W is a mapping m : W ! N. We overload the set notation,

using [ for the empty multiset and 2 for the element inclusion. We write e.g.,

m = [p2, q] or m = [p, p, q] for a multiset m with m(p) = 2, m(q) = 1, and

m(x) = 0 for all x 62 fp; qg. We use |m| to indicate the total number of elements in

multiset m (e.g., |[p2, q]| = 3).

2.2 Event log and process model

The starting point for conformance checking is an event log. An event log records

the execution of all cases (i.e., process instances). Each case is described by a trace,

i.e., an activity sequence. Different cases may have exactly the same trace. In

reality, not all activities performed in a process are logged. We define the set of all

logged activities from the universe of activities A as AL � A. An event log over AL is

a multiset L : AL
� ! N. For example, the log in Fig. 1 is formalized as

½ha; b; c; di1230; ha; c; b; ei1442; ha; f ; g; hi435; ha; b; i; b; c; di1893�. Note that for sim-

plicity, we omit brackets for sequences of activities in Fig. 1.

Similarly, a process model defines a set of sequences of activities that leads to

proper termination of the process. Furthermore, some activities in a process may not

appear in its model. Thus, we define a set of modeled activities over the set of all

activities A as AM � A. A process model is a (possibly infinite) set of complete

activity sequences M � AM
�, i.e., executions from the initial state to some final

state. Consider for example the precise model (P) in Fig. 1. Assuming that the end

state is reached when the ‘‘end’’ place contains exactly one token, the model is

formalized by the finite set fha; b; c; di; ha; c; b; ei; ha; f ; g; hi; ha; b; i; b; c; dig: Note
that the set of modeled activities and the set of logged activities may be disjoint, i.e.,

AM \ AL can be the empty set. We consider activities that appear in event logs but

not modeled in process models as activities that are allowed to occur anytime.

Furthermore, modeled activities in process models that never occur in event logs are

considered as unlogged activities. Thus, their absence in the logs is not counted as

violations to the models.

3 Cost-optimal alignment

An alignment between an event log and a process model relates the occurrences of

activities in the log to the execution steps of the model. As the execution of a case is

often performed independently of the execution of another case, aligning is

performed on the basis of traces.

For each trace in an event log that fits a process model, each ‘‘move’’ in the trace

(i.e., an event observed in the log) can be mimicked by a ‘‘move’’ in the model (i.e.,

an action executed in the model). However, this is not the case if the trace does not

fit the model perfectly. We use the symbol � to denote ‘‘no move’’ in either the log

or the model. Hence, we introduce the set AL
�
= AL [ {�} where any x 2 A�

L

refers to a ‘‘move in log’’ and the set AM
�
= AM [ {�} where any y 2 A�

M refers to a
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‘‘move in model’’. Formally, a move is represented by a pair ðx; yÞ 2 A�
L � A�

M such

that:

• (x, y) is a move in log if x 2 AL and y = �,

• (x, y) is a move in model if x = � and y 2 AM;
• (x, y) is a synchronous move/move in both if x 2 AL; y 2 AM ; and x = y,

• (x, y) is a illegal move in all other cases.

We use ALM to denote the set of all pairs of legal moves, i.e., all possible pairs of

move in log, move in model, and move in both.

Along this section, let L be a log over AL, let rL 2 L be a trace, and let M be a

model. An alignment between rL and M is a sequence c 2 ALM
� where the

projection of the first element (ignoring �) yields rL (i.e., p1ðcÞ#AL
= rL) and

projection of the second element (ignoring �) yields a complete sequence of

M (i.e., p2ðcÞ#AM
2 M).

Take for example an unfitting trace rL ¼ ha; b; d; ei and the model in Fig. 2.

Assuming that the end state of the model is reached when place p5 in the model

contains exactly one token, the model has an infinite set of complete activity

sequences (i.e., fha; b; c; di; ha; c; b; di; ha; b; c; ei; ha; c; b; ei; ha; f ; g; hi; ha; b;
i; c; b; ei; . . .gÞ. Some possible alignments between rL and the model are shown

in Fig. 3.

The moves are represented vertically in Fig. 3, e.g., the second move of c1 is

(�, c), indicating that the model moves c while the log does not make any move.

Note that the projection of an alignment between a trace and a model to all of its

movements on model yields a complete activity sequence allowed by the model.

This property is not always ensured by other conformance checking approaches. For

example, given a trace and a process model, when using the approach in Rozinat

and van der Aalst (2008), the so-called ‘‘missing tokens’’ are added to allow the

activities that occur in the trace but not supposed to occur according to the model.

The addition of such missing tokens introduces extra behavior that is not allowed in

the original process model.

To measure the cost of an alignment, we define a distance function d : ALM ! N

where for all ðaL; aMÞ 2 ALM ; dððaL; aMÞÞ ¼ 0 if aL = aM and d(aL, aM) = 1

otherwise.2 The distance function can be generalized to alignments c 2 ALM
� by

taking the sum of the costs of all individual moves: dðcÞ ¼
P

ðaL;aMÞ2c
dððaL; aMÞÞ:

Using this function, the cost of alignment c1 is d(c1) = d((a, a)) ? d((�,

c)) ? d((b, b)) ? d((d, �)) ? d((e, e)) = 0 ? 1 ? 0 ? 1 ? 0 = 2. Note that the

function returns the number of mismatches in the alignment.

Given a trace from an event log and a process model, we are interested in an

activity sequence from the model that is similar to the trace. Therefore, we define

the set of alignments CrL;M ¼ fc 2 ALM
� j c is an alignment between rL and M} to

be all possible alignments between rL and M. Accordingly, we define the set of

optimal alignments as the set of all alignments with minimum cost, i.e.,

Co
rL;M

¼ fc 2 CrL;M � j � 8c02C
r
L
;
� dðcÞ� dðc0Þg. It is easy to see that there can be

2 The distance function can be user-defined, but for simplicity we use a default distance function that

assigns unit costs to moves in log/model only.
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more than one optimal alignment between a trace and a model. For example,

{c1, c2, c3, c4, c5} is the set of optimal alignments between the trace rL ¼
ha; b; d; ei and the model in Fig. 2.

For all alignments c 2 ALM
�; �kMðcÞ ¼ p2ðcÞ#AM

denotes the projection of c to

modeled activities. By definition, the bottom part of all alignments yields a

complete activity sequence of the model. Thus, given an optimal alignment c

between rL and M, the projection �kMðcÞ provides an activity sequence that both

perfectly fits M and closest to rL. In the example shown in Fig. 2, �kMðc1Þ ¼
ha; c; b; ei is one of the complete activity sequences ofM that is most similar to trace

ha; b; d; ei:
Given a log and a model, constructing all optimal alignments between all traces

in the log and the model is computationally expensive (Adriansyah et al. 2011,

2013a). Thus, computing all optimal alignments between traces and process models

with real-life complexity may not always be feasible in practice. Thus, instead of

computing all optimal alignments between traces in the log and the model to obtain

insights into deviations, one may also compute just some representative optimal

alignments for each trace. In this paper, we investigate both approaches. We define

three functions that provide optimal alignments between traces in the log and the

model:

• K�
M : A�

L ! A�
LM returns all optimal alignments between traces of L and M, such

that for all rL 2 L;K�
MðrLÞ ¼ Co

rL;M
,

• K1
M : A�

L ! ALM
� returns one optimal alignment between traces of L and M, such

that for all rL 2 L;K1
MðrLÞ 2 Co

rL;M
; and

• KR
M : A�

L ! A�
LM returns representatives of optimal alignments between traces of

L and M, such that for all rL 2 L;KR
MðrLÞ � Co

rL;M
:

Fig. 2 Process model that is

neither overfitting nor imprecise

for the log in Fig. 1

Fig. 3 Some alignments between trace rL ¼ ha; b; d; ei and the model in Fig. 2
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In Adriansyah et al. (2011a, b, 2013a) various approaches to obtain an optimal

alignment between a trace and a model with respect to different cost functions are

investigated. Given a trace rL of L and a model M, if there are multiple optimal

alignments, K1
M chooses one of them according to other external criteria. With our

previous example, suppose that K1
M selects an alignment that has the longest

consecutive occurrence of synchronous moves in the beginning, K1
MðrLÞ ¼ c4:

In Adriansyah et al. (2011a, 2013a), an A*-based algorithm is proposed to

compute one optimal alignment between a trace and a model. The same algorithm

can be extended to provide more than one optimal alignment between them. Given a

trace rL of L and a model M, the algorithm constructs one optimal alignment by

computing a shortest path from the initial to the final state of the state space of the

synchronous product between rL and M. It is shown in Adriansyah et al. (2013a)

that all shortest paths from the initial to the final state of the state space yields an

optimal alignment. For each state in the state space, the algorithm records a shortest

path from the initial state to reach this state and thus, becomes the representative of

all other shortest paths from the initial state to the state. An optimal alignment is

constructed from a shortest path from the initial state to the final state that is also

representing all other shortest paths that connect the same pair of states. By

recording all represented shortest paths during state space exploration for each state,

we can obtain all shortest paths from the initial to the final state of the state space

(i.e., obtain all optimal alignments).

Furthermore, we can form groups of all shortest paths from the initial to the final

state according to some criteria and take one representative path for each group.

This way, we can get a number of representatives of all shortest paths between one

up to the total number of all shortest paths from the initial to the final state. There

are many possible ways of grouping shortest paths (i.e., grouping optimal

alignments). One possibility is to group them based on their sub-path similarity

(i.e., the followed sub-path in the state space). For example, one may group them

based on the last step taken in the paths before they reach the final state. Such a

grouping can be easily performed without much extra computation using the

constructed state space. Moreover, this way of grouping allows computation of the

exact number of represented optimal alignments for each representative by iterating

through the state space. The interested reader is referred to Adriansyah et al. (2011a,

2013a) for details on the constructed state space with the A*-based algorithm

approach. Note that to minimize the number of states that need to be explored, some

optimizations can be performed to avoid visiting ‘‘similar’’ states more than once

(e.g., pruning, prioritization of states Kristensen et al. 2006; Schmidt 1999). In such

cases, the constructed state space may be pruned. Thus, the number of represented

shortest paths computed using the approach proposed before may only provide a

lower bound to the actual number of represented shortest paths.

Given a set of representatives of all optimal alignments, each representative may

represent a different number of optimal alignments. For all representatives c 2

KR
MðrLÞ; repMðcÞ denotes the number of optimal alignments represented by c.

Furthermore, due to possible pruning of state space, for all c1; c2 2 KR
MðrLÞ :P

c02KR
MðrLÞ

repM(c
0

) � jCo
rL;M

j; i.e., the total number of represented optimal
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alignments by the representatives is a lower bound of the total number of all optimal

alignments.

Take for example a trace rL ¼ hai. All optimal alignments between the trace and

the model in Fig. 2 are shown in Fig. 4. Suppose that we define function KR

according to the extension to the A* algorithm we described before, KRðrLÞ ¼
fc7; c9; c10g where repM(c7) = 1 (c7 represents {c7}), rep(c9) = 2 (c9 represents {c8,

c9}), and rep(c10) = 2 (c10 represents {c10, c11}). In this example,
�kðc7Þ;

�kðc9Þ;
�kðc10Þ are ha; f ; g; hi; ha; c; b; di, and ha; c; b; ei respectively.

For simplicity, in the remainder we omit the model notation M in functions

K�
M;K

1
M ;K

R
M ;

�kM , and repM if the context is clear. Note that in cases where a process

model has duplicate tasks (more than one task to represent an activity) or invisible

tasks (tasks whose execution are not logged), approaches to construct alignments

(e.g., Adriansyah et al. 2011a, b) keep the mapping from all model moves to the

tasks they correspond to. Hence, given an alignment of a trace and such models, we

know exactly which task is executed for each model move. We refer to Adriansyah

et al. (2011a, b) for further details on how such mapping is constructed.

4 Computing precision

Given an event log and a model, the technique described in the previous section

provides a set of optimal alignments for each trace in the log. This section presents a

technique to compute precision based on the use of these optimal alignments per

trace. The technique considers ‘one’ or ‘all’ optimal alignments, and is based on the

methods described in Munoz-Gama and Carmona (2010, 2011, 2012). However,

there is a fundamental difference: whereas in Munoz-Gama and Carmona (2010,

2011, 2012) precision is measured based on log-based model replay, the approach in

this section is based on alignments (Adriansyah et al. 2013b). The advantages are

manifold. First of all, traces in the log do not need to be completely fitting. In

Munoz-Gama and Carmona (2010, 2012) the non-fitting parts are simply ignored.

For most real-life situations, this implies that only a fraction of the event log can be

used for computing precision. Second, the existence of indeterminism in the model

poses no problems when using the alignments. In Munoz-Gama and Carmona

(2010, 2011, 2012), ad-hoc heuristics were used to deal with indeterminism. Finally,

the use of alignments instead of log-based model replay improves the robustness of

conformance checking. The remainder of this section is devoted to explain how

precision can be calculated from the alignments.

Precision is estimated by confronting model and log behavior: imprecisions

between the model and the log (i.e., situations where the model allows more

behavior than the one reflected in the log) are detected by juxtaposing behavior

allowed by the log and the one allowed by the model. This juxtaposition is done in

terms of an automaton: first, an automaton is built from the alignments. Then, the

automaton is enhanced with behavioral information of the model. Finally, the

enhanced automaton is used to compute the precision. In the remainder of the
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section we will use the following running example: the model shown in Fig. 2 and

the log L = [r1, r2, r3, r4, r5], containing the five traces that appear in in Table 1.

In order to build the automaton, log behavior must be determined in terms of

model perspective, i.e., we consider the optimal alignments (K1 or K�) of each trace

in the log for this purpose. For example, given the running example log

L = [r1, r2, r3, r4, r5] and the model in Fig. 2, the trace r1 has 5 optimal

alignments, K�ðr1Þ ¼ fc7; c8; c9; c10; c11g, shown in Fig. 4. For this example, we

assume that the alignment assigned to r1 by K1 based on an external criterion

corresponds to c7, i.e., K
1ðr1Þ ¼ c7. On the other hand, traces r2. . .r5 are perfectly

fitting, and therefore, each trace has only one optimal alignment containing only

synchronous moves. In particular, given an alignment c, in order to build the

automaton, we only consider the projection of model moves, i.e., �kðcÞ. Table 1

shows all the projection of model moves for the alignments of log

L = [r1, r2, r3, r4, r5]. We use �kðK1ÞL and �kðK�ÞL to denote the application of

function �k on all the alignments provided by the functions K1 and K� respectively

for the traces in log L. We can omit the subindex L whenever the context is clear.

Note that, by definition, any alignment projection �kðcÞ is a valid complete activity

sequence of the model.

Using K1 (or K�), the automaton is built considering all the prefixes for the

sequences in �kðK1Þ (or �kðK�Þ) as the states. For instance, given a sequence ha; b; c; di

resulting of �kðK1Þðr2Þ, the states considered are �, hai, ha; bi, ha; b; ci and ha; b; c; di.
Formally, the alignment automaton AA ¼ ðQ;R; d; �;xÞ is defined such that:

• The set of states Q corresponds to all prefixes.

• The set of labels R corresponds to the activities.

• The arcs d : Q� R ! Q define the concatenation between prefixes and

activities, e.g., states ha; b; ci and ha; b; c; di are connected by arc labeled d.

• The state corresponding with the empty sequence � is the initial state.

• The function x : Q ! R determines the weight of each state according to its

importance for the precision computation.

Figures 5 and 6 show the resulting automata for the model in Fig. 2 and log

L using the functions K1 and K� respectively.3 Function x is represented as the

number in the states of the figures: informally, x(s) represents the importance

(frequency, but also alignment variation, as explained below) of state s. For

Fig. 4 All optimal alignments between trace rL ¼ hai and the model in Fig. 2

3 For the sake of readability, in the figures, we use the label abc as an abuse of notation for referring to

the sequence ha; b; ci:
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instance, given the automaton of K1 (Fig. 5), the state hai must have more weight

than the state ha; ci because there are more traces with prefix hai (all five sequences

of �kðK1Þ) than the ones with prefix ha; ci (only ha; c; b; ei). A naive approach for

Table 1 Model perspective of

the alignments (‘one’ and ‘all’)

for the model in Fig. 2 and the

log [r1, r2, r3, r4, r5]

L

Trace Freq �kðK1ÞL
�kðK�ÞL

r1 ¼ hai 1 ha; f ; g; hi ha; f ; g; hi

ha; c; b; ei

ha; c; b; di

ha; b; c; di

ha; b; c; ei

r2 ¼ ha; b; c; di 1 ha; b; c; di ha; b; c; di

r3 ¼ ha; c; b; ei 1 ha; c; b; ei ha; c; b; ei

r4 ¼ ha; f ; g; hi 1 ha; f ; g; hi ha; f ; g; hi

r5 ¼ ha; b; i; b; c; di 1 ha; b; i; b; c; di ha; b; i; b; c; di

Fig. 5 Automaton using K1 and

the model of Fig. 2

Fig. 6 Automaton using K� and

the model of Fig. 2
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defining the x function would be to split equally the importance of the process

among all the alignment projections. This naive approach is valid for the automaton

for K1, since each trace in the log has just one alignment associated. However, in the

case of the automaton for K�, this naive approach will be biased, giving more

importance to those log traces with more optimal alignments.

Hence we propose the x function to distinguish the two situations that arise

regarding the alignments used. Let us first define the x function for alignment

depending of the alignment automaton used:

• Case K1 Let M be a model, let L be an event log, let rL 2 L be a trace in L, let

L(rL) be the frequency of rL, and let c ¼ K1ðrLÞ be the optimal alignment

between rL and M obtained by K1. The weight of c is defined as: x(c) = L(rL),

i.e., the weight is directly related with the frequency of the trace. For instance,

given that all traces in the log of Table 1 have a frequency of 1, the weight of

alignment K1ðr5Þ is 1 (the same for the rest of alignments of K1).

• Case K� Let M be a model, let L be an event log, let rL 2 L be a trace in L, let

L(rL) be the frequency of rL, and let c 2 K�ðrLÞ be one of the optimal

alignments between rL and M. The weight of c is defined as

xðcÞ ¼ LðrLÞ � 1=jK
�ðrLÞj, i.e., the weight is split equally among all the

alignments of the log trace, taking into account the frequency of the trace within

the log. For instance, the weight of alignment c9 of trace r1 is 1 � 1=5 ¼ 0:2,
while the weight of unique alignment of r5 is 1 � 1=1 ¼ 1:

Once function x is defined for alignments in K1 and K�, we define it for a prefix

(intermediate state) as follows: let s be a state of the automaton, and let K be the

sequences used to construct the automaton (K1 or K�). The weight of state s is

defined as

xðsÞ ¼
X

8c2K

xðcÞ if s is a prefix of �kðcÞ ðor 0 otherwiseÞ

The weights of the states of Figs. 5 and 6 are shown next to the states. For example,

in Fig. 5, the state hai appears in all five sequences of �kðK1Þ, and therefore, its

weight is 5. In Fig. 6, the state ha; f i appear in model moves projection of two

alignments of K� (one with weight 0.2 since the trace r1 has five optimal align-

ments, and the other with weight 1). Therefore, the weight of state ha; f i is 1.2.
Once the log behavior has been determined in terms of an automaton, the

confrontation with the actual model behavior is required in order to determine the

precision of the system. For each state of the automaton, we compute its set of

available actions, i.e., possible direct successor activities according to the model

(av), and then compare it with the set of executed actions, i.e., activities really

executed in the log (ex). Take for example state ha; b; ci of automaton created using

the function K1 shown in Fig. 5, and the model in Fig. 2. The set of executed actions

of the state is exðha; b; ciÞ ¼ fdg, i.e., for all traces with prefix ha; b; ci; their direct
successor is only d. The set of available actions for the state is avðha; b; ciÞ ¼
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fd; e; ig because after performing the sequence of activities ha; b; ci; the model

allows to do d, e, or i. Note that, by construction exðsÞ � avðsÞ, i.e., the set of

executed actions of a given state is always a subset of all available actions according

to the model.

The activities that are allowed according to the model, but do not occur in the

event log are used to collect the imprecisions of the system, i.e., an activity that

escapes from the log behavior. These imprecisions are represented as small filled

states in the automaton in the figures. For example, the imprecisions of the state

ha; b; ci are fd; e; ig n fdg ¼ fe; ig: The computation and analysis of these impre-

cisions are the cornerstone of the precision checking technique presented in this

paper. All identified imprecisions can be analyzed and further used to correct the

model and make it more precise. Furthermore, in order to globally estimate

precision, these imprecisions in turn are weighted. Consequently, we define the

align-precision (ap) metric of a system represented by the automaton AA ¼
ðQ;R; d; �;xÞ as follows:

apðAAÞ ¼

P
s2Q xðsÞ � jexðsÞjP
s2Q xðsÞ � javðsÞj

:

For example, the precision for the automaton derived from K1 shown in Fig. 5 is

0.79. The precision for the automaton of K� shown in Fig. 6 is 0.83.

The presented precision approach in this section relies on the concept of

alignments. Alignments are only defined for process models whose terminating

states are reachable from their initial states. A process model whose termination

state is not reachable from its initial state does not have any sequence of activities

that leads to proper termination. Thus, the approach in this paper is limited to

process models whose proper terminations are reachable from their initial states.

In practice, process models may have tasks whose execution are not logged or

simply not labeled with any activity, i.e., invisible tasks. Furthermore, some tasks

may have the same activity label, i.e., duplicate tasks. Both invisible and duplicate

tasks may influence the behavior allowed by process models, therefore they need to

be taken into account explicitly when measuring precision. We use tasks in place of

activities when measuring precision of models with duplicate/invisible tasks, i.e.,

given a log and a model with duplicate/invisible tasks, ap is computed by taking into

account tasks that are executed in the log (obtained from alignments between traces

in the log and the model) and possible direct successor tasks according to the model.

Furthermore, although all models in this paper are shown as Petri nets, the approach

is extendable to all process models for which translations to Petri nets are available,

such as BPMN (Dijkman et al. 2008), YAWL (Hofstede et al. 2010), and Causal

nets (van der Aalst et al. 2011).

5 Extensions of the precision metric

The approach presented in Sect. 4 uses the prefix of complete activity sequences to

represent states of the automaton. This implies that given a complete activity
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sequence r, other sequences with slightly different permutation of activities are

placed in different branches of constructed automaton than than r. Given a process

model that allows many possible interleaving of activities, and an event log, the

approach can only provide a perfect precision value if all permutations of the

interleaving activities are observed in the log. This requirement may be too

restrictive in some cases.

Take for example the process model and the log shown in Fig. 7. The model

allows for the interleaved execution of b, c and d. This behavior is also reflected in

the log, containing all possible permutations of b, c and d. The model also allows the

interleaving of f, g and h, and all possible permutations of f, g and h are also

contained in the log. One may expect a perfect precision of 1 for such model and

log. However, given the presented approach, the precision is 0.8. The automaton of

Fig. 7 shows the imprecisions detected. Notice that prefix ha; b; ci of trace

ha; b; c; d; e; f ; g; h; ii and prefix ha; c; bi of trace ha; c; b; d; e; g; f ; h; ii manifests as

two different states even when the executed activities and their frequency in both

prefixes are the same. For the given example, the minimum number of traces

necessary to reach a precision of 1 is 36. This number increases exponentially with

the increasing degree of concurrency of the considered model. In such cases, some

level of abstraction in the way states are represented is desirable.

In Sect. 4 we show that different ways of aligning traces of event logs to process

models (i.e., using one optimal alignment or all optimal alignments per trace) may

also influence precision. While computing one optimal alignment is computation-

ally less expensive than computing all optimal alignments, it only provides

approximations of the precision value without much more diagnostics information

that can be exploited to obtain insights into precision. Representative alignments

may offer a better degree of trade-off between measurement accuracy, additional

insights into precision, and computation time.

Finally, other than the way states are represented, the direction for which the

automaton is constructed may also influence precision measurement. Most of the

existing approaches, e.g., (Adriansyah et al. 2013b; Munoz-Gama and Carmona

2010), construct an automaton from the beginning of the traces forward. Thus,

choices that are made in the beginning of traces may have bigger influence on

precision value than choices that are made towards the end of traces.

In this section we present three extensions of the technique presented in Sect. 4:

• Different state representations that do not take into account ordering of

activities to deal with the possible incompleteness of the log (Sect. 5.1),

• Using representative alignments to get better trade-off between measurement

accuracy and computation time (Sect. 5.2), and

• Different directions to construct automaton to deal with the possible bias

produced by the direction used to compute precision (Sect. 5.3).

5.1 Abstraction on the state representation

In van der Aalst et al. (2010), the states of an event log can be obtained by taking

the set, multi-set, and sequence of activities. To measure precision, we propose two
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possible state representations that can be chosen depending on the desired level of

abstractions:

• Ordered A state is a sequence of activities. This is the same representation as the

one used in Adriansyah et al. (2013b, Munoz-Gama and Carmona 2010, 2011,

2012). For example, the states for prefix ha; b; ci and ha; c; bi in Fig. 7 are

different.

• Unordered A state is a multi-set of activities, i.e., the order among tasks does not

matter, but the number of executions of each task does. For example, the states

for ha; b; ci and ha; c; bi are the same, i.e., [a, b, c]. However, the states for

ha; b; ii and ha; b; i; bi are not the same, i.e., [a, b, i] and [a, b2, i] respectively,

because frequency matters.

Figures 8 and 9 show the automata for the running example of Section 4,

considering the unordered state representation. These automata contain differences

Fig. 7 Example of and event log and a process model that allows the interleaving of several activities.

Precision of the model using the approach in Adriansyah et al. (2013b) is less than perfect although all

interleaving of activity b, c, d and f, g, h appear in the log
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with respect to their ordered homologous (Figs. 5, 6). For example, instead of

having two states ha; b; ci and ha; c; bi for prefixes ha; b; ci and ha; c; bi, both

prefixes are now represented as a single state [a, b, c]. This representation reduces

the number of imprecisions and hence increases precision values. Using unordered

state representation and precision calculation as explained in Sect. 4, the model in

Fig. 7 has a precision value of 1 (perfect). It is worth mention that in van der Aalst

et al. (2010), the authors also propose the use of set as state representation.

However, this is not applicable to our case: unlike sequence or multiset, a set does

not preserve the number of activities executed, and therefore, it may represent a

(possible infinite) number of different model states. For example, given the model in

Fig. 2, the set {a, b, i} represents ha; b; ii; ha; b; i; bi; ha; b; i; b; ii; . . .: The idea of

using the state representation of an aligned trace to measure precision is also

introduced in van der Aalst et al. (2012), where precision is measured after

representing the states of traces to the states of the models constructed with an

ordered representation (i.e., sequence). However, similar to Adriansyah et al.

(2013b), the metric values are highly influenced by choices that are made in the

beginning of the trace rather than the one that are made towards the end of the trace.

5.2 Representative alignment

Given a trace and a process model, K� provides all optimal alignments. However, as

shown in Adriansyah et al. (2013b), it is an expensive option in terms of

computation time. The use of only one alignment per trace (i.e., K1) solves this issue

in cases where time is a priority, but may sacrifice accuracy. As a trade-off between

time and accuracy, in this paper we propose precision measurement based on

Fig. 8 Automaton using K1

(unordered state representation),

and the model of Fig. 2

Fig. 9 Automaton using K�

(unordered state representation)

and the model of Fig. 2

Measuring precision of modeled behavior 51

123



representatives of all optimal alignments (see Sect. 3). In this section, we revisit the

precision measurement to include this notion.

Figure 10 shows the model moves projection of the representatives of all optimal

alignments (�kðKRÞ) for the running example shown previously in Sect. 4. The

construction of the automaton is defined identically as in the presented approach,

with only one difference: the weight function of the alignments. Let rL be a trace of

log L, let L(rL) be the frequency of rL, let M be a model, and let c 2 KRðrLÞ be a

representative alignment for trace rL. In such case, the weight of the alignment x(c)

needs to be proportional to the number of alignments represented by c, i.e., rep(c).

Thus, we define xðcÞ ¼ LðrLÞ � repðcÞ=
P

c02KRðrLÞ
repðc0Þ. For instance, given the

trace r1 in Fig. 10, let c1 be the representative alignment such that �kðc1Þ ¼
ha; c; b; di: The number of alignments represented by c1 is rep(c1) = 2. The total

number of optimal alignments represented by the representative alignments

associated with r1 is
P

c02KRðr1Þ
repðc0Þ ¼ 5. Hence, the weight xðc1Þ

¼ 1 � 2=5 ¼ 0:4. As another example in Fig. 10, let c2 be the only representative

alignment associated with r5, such that �kðc2Þ ¼ ha; b; i; b; c; di. The representative

alignment c2 represents 1 optimal alignment. Since the number of all optimal

alignments represented is
P

c02KRðr5Þ
repðc0Þ ¼ 1; the weight of c2 is xðc2Þ ¼

1 � 1=1 ¼ 1:
Figures 11 and 12 reflect the automata for the running example of the previous

section, when representative alignments and different state representations are used.

Note that there can be more than one ways to compute representative alignments

from a given model and a trace. Given an event log and a model, the selection of

representative alignments between each trace in the log and the model obviously

influences the automata that can be constructed between the log and the model.

5.3 Forward and backward precision

In the approach presented in Sect. 4, the prefixes of the complete activity sequences

are used to build the automaton. For example, given a complete activity sequence

ha; b; c; di, the states constructed from the sequence are the empty sequence �
(corresponding with h	a; b; c; di, where • indicates a point of interest in the

sequence), hai (for ha 	 b; c; di), ha; bi (for ha; b 	 c; di), ha; b; ci (for ha; b; c 	 di)

Fig. 10 Process model, traces, and representatives of all optimal alignments of all traces
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and finally ha; b; c; di (for ha; b; c; d	i). In other words, only the activities in the past

are used and we move forward on the complete activity sequences. This approach is

used by all existing precision checking techniques (Munoz-Gama and Carmona

2010, 2011, 2012).

In van der Aalst et al. (2010), the authors show that any point in the sequence

(represented as •) may represent two complementary visions: the past activities seen

until that point (as it has been shown above), but also the future activities to come

until the ending of the case. For instance, given ha; b 	 c; di, ha; bi are the activities
occurred, while hc; di are the activities to happen. Both ha; bi and hc; di are used in

van der Aalst et al. (2010) as two different states that can be derived from the same

point in the sequence. In this section, we use the same idea to present a backward

precision measurement, that complements the forward approach presented before.

The combination of both metrics will lead to a measurement unbiased by the

direction of the precision checking. For the sake of clarity we will use ordered state

representation to illustrate the remainder of the section, although the analogous

procedure is applicable for unordered representation.

Let K be the option chosen to compute precision, i.e., K1; K� or KR. In order to

build the automaton for the backward precision measurement, we consider the

prefixes of the reversed complete activity sequences in �kðKÞ. In other words, given
�kðcÞ ¼ ha; b; c; di of the alignment c 2 K, we use �k0ðcÞ ¼ hd; c; b; ai to determine

Fig. 11 Automaton using KR

(ordered state representation)

and the model of Fig. 2

Fig. 12 Automaton using KR

(unordered state representation)

and the model of Fig. 2
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the states, resulting in the following five states: � (corresponding with h	d; c; b; ai),
hdi (for hd 	 c; b; ai), hd; ci (for hd; c 	 b; ai), hd; c; bi (for hd; c; b 	 ai) and finally

hd; c; b; ai (for hd; c; b; a	i). Analogously, the set of complete activity sequences of

M is also reversed.4 The rest of the precision checking is performed as it is described

in Sect. 4.

Figure 13 shows an example of two automata constructed by moving in forward

direction (left) and by moving backward (right). Notice the difference of identified

imprecisions shown by the two automata. Finally, precision values obtained using

forward and backward-constructed automaton can be combined (e.g., the average),

resulting in a balanced precision metric unbiased by the direction of the automaton

constructed. Note that more sophisticated and flexible combinations of both metrics

are also possible. In Sect. 6, we investigate the differences in precision values

produced by the various approaches using a variety of even logs and models.

6 Experiments

We have implemented the proposed precision calculation as a ProM 6 plugin named

‘‘Check Precision based on Align-ETConformance’’ in the ‘‘ETConformance’’

package, publicly available from http://www.processmining.org. We used it to

perform a range of experiments to test the robustness of our proposed approach

using both synthetic and real-life models (Petri nets) and logs.

6.1 Evaluating unidimensionality of metrics

The first set of experiments was performed to evaluate the precision measurements

provided by the proposed metrics. In particular, we measured whether the proposed

precision metrics are unidimensional (de Weerdt et al. 2011a), i.e., not sensitive to

non-fittingness of event logs. We measured precision between various logs and

Fig. 13 Example of model and resulting automaton for both forward and backwards approaches

4 Notice that, for the case of Petri nets with one unique initial and final markings, the set of all reversed

complete activity sequences can be generated by simulating the behavior of a net obtained from the

original net by reversing its arcs and swapping their initial with final marking.
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models whose expected values are known. Furthermore, we compared the values

obtained against existing state-of-the-art metrics for precision: etcP (Munoz-Gama

and Carmona 2010), behavioral precision (de Weerdt et al. 2011b), and weighted

behavioral precision (vanden Broucke et al. 2012).

By combining the models and log in Fig. 1 in various ways, we created new

models whose expected precision values are between the two extremes. Two models

were combined by merging the end place of one with the initially marked place of

another. The merged models were named according to the name of their original

models, e.g., PF model is the result of merging the end place of P with the initially

marked place of F. The activity names in the original models and logs were renamed

before the models and logs were merged such that the original models and logs can

be easily distinguished from the merged results. Precision values were measured 30

times using 30 event logs, each consists of 5,000 traces, generated by simulating the

precise model (i.e., PP). For sake of completeness, we also measured the precision

of the overfitting model (P) and the flower model (F) using 30 logs of 5,000 traces

generated by simulating the P model. This way, each log contains all the possible

behavior of the model that generates it (i.e., all directly follow relations between

two activities that are allowed according to the model are recorded in the log).

The top part of Fig. 14 shows the alignment-based precision values, measured

using all optimal alignments per trace of the logs. The experiment with one and

representative alignments per trace yields identical results. This result shows that by

observing sufficiently enough behavior in the event logs, all alignment-based

metrics provide similar intuition about precision of models, i.e., overfitting models

have high precision values and ‘‘flower’’ models have low precision values. Note

that there are slight differences between various configurations of metrics, i.e., states

(ordered/unordered) and forward/backward constructed automata.

Fig. 14 Precision values of the logs/models in Fig. 1 and their combinations provided by alignment-

based approach (i.e., computed using all optimal alignments, ordered, and forward-constructed automata).

If all behavior are observed in the original logs, all measurements are insensitive to non-fitting traces
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To evaluate the robustness of the metrics against non-fitting logs, we took the

models and logs from the previous experiments and created unfitting logs by

removing n random events per trace from the fitting logs. To ensure that the logs are

unfitting, only activities that belong to the precise part (i.e., mapped to P part) are

removed. Furthermore, the measurements are compared against existing metrics.

We use the CoBeFra tool (vanden Broucke et al. 2013) to measure behavioral

precision (de Weerdt et al. 2011b) and weighted behavioral precision (vanden

Broucke et al. 2012) and use ProM 6 to measure etcP. The bottom part of Figs. 14,

15 and 16, and Table 2 show some of the results.

The bottom part of Fig. 14 shows that the metrics proposed in this paper are

robust to fitness problems. Even in cases where almost half of the events in all traces

are removed, all alignment-based metrics provide similar value as the ones provided

for perfectly fitting traces. Figure 15 shows a comparison between the precision

values provided by alignment-based metrics and other existing metrics. For

readability, we only show one alignment-based metric: the one computed using all-

optimal alignments and forward-constructed automata whose states are constructed

by taking into account activity ordering. Note that in cases where logs are perfectly

fitting the models, all metrics provide similar precision intuition. In fact, the

alignment-based precision values shown in Fig. 15 are the same as the etcP values.

Fig. 15 Comparison between precision values obtained using alignment-based approach (i.e., computed

using all optimal alignments, ordered, and forward-constructed automata) and other metrics (etcP Munoz-

Gama and Carmona 2010, behavioral precision de Weerdt et al. 2011b), and weighted behavioral

precision (vanden Broucke et al. 2012). Only the alignment-based approach is not sensitive to non-fitting

logs/models

Fig. 16 Precision values of different metrics for perfectly fitting logs and non-fitting logs created by

removing some events in the logs. Only the alignment-based approach metric (i.e., computed using all

optimal alignments, ordered, and forward-constructed automata) is insensitive to non-fitting logs
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However, in cases where logs are non-fitting, other metrics may show misleading

precision insights. The etcP metric provides low precision for model PF with respect

to perfectly fitting logs (i.e., 0.25). However, the value rises to 0.82 when 3 events

are removed from the logs, because for all non-fitting traces it ignores the rest of the

traces after the first non-fitting event occur. Similarly, both weighted and

unweighted behavioral precision metrics provide lower precision values for non-

fitting logs than the ones provided for perfectly fitting logs. Even for overly fitting

models P and PP, both metrics provide precision values below half (i.e., indicating

the models are imprecise). This occurs because both metrics mixed both perfectly-

and non-fitting traces in construction of artificial negative events, which leads to

misleading construction of artificial negative events.

Figure 16 shows the influence of noise by removing some events in the logs. As

shown in the figure, other than the alignment-based precision metric, precision

values of all metrics may change significantly even with only one event removed

from all traces. Due to the randomness of the location of removed events, the etcP
metric may both increases or decreases with the presence of non-fitting traces. Both

weighted and unweighted behavioral precision metrics decreases when more events

are removed because incorrect artificial negative events are introduced. Note that

the number of negative events tends to decrease when traces in the log gets more

vary because of the removal of events.

The set of experiments also shows some interesting insights into differences

between alignment-based metrics. Table 2 reports the results for model PF. In cases

where the whole behavior is recorded in event logs, precision values only depend on

the state representation of the automaton (ordered/non-ordered) and the direction for

the automata construction. When all possible behavior are observed, the automata

constructed using one-alignment and all-alignments per trace are identical. Similar

Table 2 Precision values of the PF model, measured using different state representations (ordered/

unordered) and direction (forward/backward)

#Removed Automata construction direction

Forward Backward Combined

0 1 2 3 0 1 2 3 0 1 2 3

Ord.

One 0.25 0.24 0.24 0.24 0.19 0.19 0.19 0.18 0.22 0.22 0.21 0.21

Rep 0.25 0.25 0.24 0.24 0.19 0.19 0.19 0.19 0.22 0.22 0.22 0.21

All 0.25 0.25 0.24 0.24 0.19 0.19 0.19 0.19 0.22 0.22 0.22 0.21

Unord.

One 0.26 0.25 0.25 0.25 0.19 0.19 0.19 0.18 0.22 0.22 0.22 0.22

Rep 0.26 0.26 0.25 0.25 0.19 0.19 0.19 0.19 0.22 0.22 0.22 0.22

All 0.26 0.25 0.25 0.25 0.19 0.19 0.19 0.19 0.22 0.22 0.22 0.22

If all behavior are observed, both one-alignment and representative alignment provide good approxi-

mation of all-alignments

Ord./unord. ordered/unordered state representations

One/rep/all one/representative/all alignments
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results are obtained from the experiments using the other models (P, F, FP, PP,

FF). Table 2 shows slight differences between precision values that are measured

using different state representations or different directions in the automata

construction.

Figure 17 shows a comparison between precision values provided by the two

metrics for models PF and FP. As shown in the figure, precision values of

alignment-based metrics provided by forward-constructed automata for model PF is

higher than the values provided by backward-constructed automata for the same

model, regardless of the noise level and the state representation (ordered/

unordered). In contrast, the values provided by the latter is higher than the former

for the FP model. This shows that the position of the precise part of the models

influences precision values. Precision values are higher when the direction of

constructed automata starts with precise part of process models. In this case, we

clearly see the influence of forward/backward direction of constructed automata to

precision values. To balance the influence, one of the simplest way is to take the

average between the values provided by both directions. Figure 17 shows that the

precision values obtained by combining both values are almost similar between

model PF and FP.

In this section, non-fitting logs are created by removing activities randomly.

Given a process model and a fitting trace, there are other ways to make the trace

non-fitting, such as swapping some activities and add extra activities to the trace

randomly. Regardless of the approach to introduce noise, an optimal alignment

between a non-fitting trace and the model provides a good ‘‘guess’’ of a complete

activity sequences allowed by the model that should have occurred instead of the

trace. This way, precision is measured independently from other conformance

metrics, i.e., the fitness metric. Other approaches investigated in this section do not

explicitly handle such non-fittingness. Hence, they are not unidimensional and may

yield misleading results as shown by the experiment results.

6.2 Observed behavior requirements

The second set of experiments were conducted to investigate how much behavior

must be observed in the event logs in order to measure perfect precision accurately.

We use two models that, despite having the same number of activities, have totally

different number of complete activity sequences. The first model only allows choice

among activities (i.e., is named ‘‘Choice’’ model) and the second model allows the

interleaving of all activities (i.e., is named ‘‘Parallel’’ model) (see Fig. 18). For our

experiments, we used models that consist of nine activities (with invisible task

‘‘start’’ and ‘‘end’’ for the ‘‘Parallel’’ model).

Similar to the set of experiments in Sect. 6.1, we randomly generated perfectly

fitting logs for both models with various number of traces per log and then measured

their precision values. Experiments are repeated 30 times for each combination of

models and number of traces per log. We conducted the same experiments with

models constructed by merging the two models in various order (‘‘Choice–Choice’’,

‘‘Choice–Parallel’’, ‘‘Parallel–Choice’’, ‘‘Parallel–Parallel). The results of the

experiments are shown in Figs. 19 and 20.
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Both Figs. 19 and 20 reveal that even if logs are generated from models, all

alignment-metrics require some degree of log completeness before they provide

perfect precision value of 1.00. As expected, a perfect precision value for a

‘‘Choice’’ and a ‘‘Choice–Choice’’ models can be obtained after observing much

fewer traces than the ones required to obtain the same precision value for both

‘‘Parallel’’ and ‘‘Parallel–Parallel’’ models. In theory, the minimum number of

traces in an event log required to see all possible behavior of a ‘‘Choice’’ model

with 9 activities is 9, while the minimum number of traces to see all possible

interleaving of activities in a ‘‘Parallel’’ model is 9! = 362,880 traces. In all

experiments, alignment-based precision metrics with unordered automata state

Fig. 17 Precision values of the PF and FP using all-alignments per trace, with different state

representations (ordered/non-ordered) and direction (forward/backward). Higher precision is obtained

when the direction of automata construction starts with precise part of the models

Fig. 18 i A model that only

allows one activity per trace, and

ii a model that allows

interleaving between all

activities

Fig. 19 Alignment-based precision values for ‘‘Parallel’’, ‘‘Choice’’, ‘‘Parallel–Parallel’’, and ‘‘Choice–

Choice’’ models. The values provided using unordered representation of states automata provide perfect

precision without having to observe all interleaving behavior. Missing values on weighted/unweighted

behavioral precision indicate that no result was obtained after 1 h computation
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representation provide perfect precision values with less number of observed

traces than the one with ordered automata. This shows that in conditions where

not all behavior are observed in event logs, precision values computed using

unordered automata state representation provides an upper-bound for the ones

computed using ordered automata. The figure also shows that in all experiments,

the etcP values are the same as the alignment-based precision values computed

using ordered automata state representation because all traces perfectly fit their

models. Interestingly, in the experiments with model ‘‘Choice’’ and ‘‘Choice–

Choice’’, both the weighted and unweighted behavioral precision metrics provide

a perfect value (1.00) for logs with only one trace but provide very low values

(below 0.2) for other logs that contain more than one trace (i.e., logs with 10, 100,

1,000, to 5,000 traces). The reason the (un)weighted behavioral precision values is

so high is that the artificial negative events construction only take into account

logged activities. When an activity in a trace of the logs is replayed to construct

artificial negative events, other than the logged activity both models allow only

unlogged activities (invisible tasks). Thus, no negative artificial events were

constructed and therefore the precision of the models with respect to the logs are

1.00. Furthermore, the results also show that the time spent to compute alignment-

based metrics is not necessarily higher than the time required to compute other

existing metrics such as the (un)weighted behavioral precision. In some of the

experiments with models ‘‘Parallel’’ and ‘‘Parallel–Parallel’’, no result was

obtained after 1 h computation for (un)weighted behavioral precision while the

alignment-based precision metrics were computed in \1 min for each pair of

model and log.

Figure 20 shows the precision values obtained from experiments with models

‘‘Choice–Parallel’’ and ‘‘Parallel–Choice’’. Interestingly, the results of the exper-

iment with ‘‘Choice–Parallel’’ model performed using forward automata construc-

tion (i.e., top–left-most of Fig. 20) is identical to the one given by the experiment

with ‘‘Parallel–Choice’’ model using backward automata construction (bottom-

second from left of Fig. 20). Similarly, the results of experiment with ‘‘Parallel–

Choice’’ model performed using forward automata construction (i.e., bottom–left of

Fig. 20) is identical to the one given by the experiment with ‘‘Choice–Parallel’’

model using backward automata construction (top-second from left of Fig. 20).

These results show that precision values are influenced by the location of parallel-

choice constructs: precision values are higher when automata are constructed from

the direction where parallel construction lies. The combined precision value

computed by averaging the precision values obtained from both forward and

backward-constructed automata is less influenced by such construction as shown in

the third figures from the left side of Fig. 20. As shown in the figures, the measured

precision values for both ‘‘Choice–Parallel’’ and ‘‘Parallel–Choice’’ models using

the combined precision values are identical. None of non-alignment-based

approaches in this set of experiments managed to provide perfect precision values.

Note that no result was obtained after 1 h of computation for both weighted and

unweighted behavioral precision metric calculations and logs of size of 1,000 traces

and larger.
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6.3 Real-life logs and models

To evaluate the applicability of the approach to handle real life logs, we used 8 pairs

of process models and logs from two different domains (see Table 3), where seven

logs and models were obtained from municipalities in the Netherlands. In particular,

we took the collections of logs and models from the CoSeLoG project (van der Aalst

2011a; Buijs et al. 2012). The remaining pair of log and model is obtained from a

hospital in the Netherlands.5 The logs and models from municipalities are related to

different types of building permission applications, while the hospital log is related

to patient handling procedure. All processes have unlogged tasks, and some of the

models allow loops. Table 3 shows an overview of the logs and models used in the

experiments. #Deviations/trace column indicates the number of asynchronous

moves after aligning all traces in the logs with their corresponding models. As

shown in Table 3, all logs are not perfectly fitting to the corresponding models. We

measure the precision values for all logs and the computation time required. The

results are shown in Figs. 21 and 22.

Figure 21 reports the precision values obtained for real-life logs and models.

Only the approach based on one-alignment provides precision values for all real-life

logs and models in the experiments. The approach based on all-optimal alignments

per trace had out-of-memory problems when dealing with relatively complex

process models and logs such as ‘‘Bouw-1’’ (33 places, 34 transitions), ‘‘Bouw-4’’

(31 places, 31 transitions), and ‘‘MLog-3’’ (24 places, 21 transitions). Precision

measurements based on representative of optimal alignments also had the same

problems dealing with the hospital log (i.e., ‘‘IsalaLog’’). Although the model of the

log is relatively small, it contains many unlogged tasks (tasks whose execution are

Fig. 20 Precision values of models with combination of choice and parallel control-flow patterns. Higher

precision values are obtained when automata are constructed from the direction where the parallel part of

the models exists (the first three figures). Missing values indicate that no result was obtained after 1 h

computation

5 See http://www.healthcare-analytics-process-mining.org/.
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not logged), allows loops, and allow many interleaving activities such that the size

of state space required to compute even representative of all optimal alignments is

large and does not fit memory.

Nevertheless, notice the similarity of the computed precision values using all

three alignments (one-, all-align, and representatives). From all pairs of logs and

models, only two of them have precision value below 0.7. This shows that in reality,

process models are made to be relatively precise such that meaningful insights into

the process can be obtained. Interestingly, different precision values are provided by

different metrics in the experiment with log and model ‘‘Bouw-4’’ when both one

and representative alignments are used. The precision value provided by ordered-

forward metric for the model is around 0.44 (showing imprecision) while the

unordered-backward precision metric provides a value of 0.7 (i.e., precise). As

discussed in Sects. 6.1 and 6.2, this indicates that more observations are required to

measure the particular log and model accurately.

Figure 22 reports the computation time required to measure precision of real-life

logs and models using the alignment-based approach with combined precision

values between forward and backward-constructed automata. The y-axis of the

charts are shown in logarithmic scale. As shown in the figure, the computation time

of precision measurement with all-alignments takes much longer than the ones

required by one or representative alignments. All measurements using one-

alignment/representative alignments were computed in\10 s. Notice the similarity

between the left and right graph on the figure (except the IsalaLog that has out-of-

memory problem in the approach with representative alignments). In fact, we

obtained identical results for all other combination of state representations (ordered/

unordered) and directions where automata is constructed (forward/backward). This

shows that the different directions of the automata construction and state

representations are not significantly influencing computation time. Instead, most

computation time of precision measurement is spent in the alignment of logs and

process models. Another interesting observation is that the time spent to compute

representative alignments are similar to the time spent to compute one-alignment.

Thus, we recorded the number of generated representatives for the experiments and

other statistics to investigate this. The results are shown in Table 4.

Table 4 shows that the average number of representatives per trace that one can

obtain using the extension of the A* algorithm from real-life logs and models is

close to one in all experiments (see #Representatives/trace column). This explains

why the computation time between precision based on one-alignment is not much

different than the one based on representatives. Interestingly, some traces in real-life

logs have more than ±5.3 million optimal alignments (see log ‘‘Bouw-4’’). Further

investigations found that a trace with so many optimal alignments is incomplete

(only consists of one event) while its model allows for many interleavings between

activities. Hence, there are many possible activity interleavings that one can

perform to complete the process and construct an optimal alignment from the trace.

The optimal alignment of the same trace is also the one that represents more

than ±5.3 million optimal alignments. This shows that it is also important to take
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into account fitness values before measuring precision. Precision measurements that

are based on severely non-fitting logs may be misleading.

Figure 23 shows a comparison of precision values and computation time between

alignment-based precisions (represented by the ones computed using one-alignment

per trace, unordered state representation, and averaging values between forward-

backward constructed automata) and other approaches. In most cases, the

alignment-based approach yields higher values than other approaches. The right-

side of the figure shows that the computation time of both weighted and unweighted

behavioral precision is much higher than the computation time of both the

alignment-based precision and etcP.

7 Conclusions

The quality of process models is often measured merely based on the proportion of

observed behavior in event logs that can be reproduced by the model (i.e., fitness).

Models that allow for much more behavior than the behavior observed in event logs

may provide misleading insights. Many approaches to quantify precision assume

perfect fitness, while this assumption is rarely being satisfied in practice. This results

Table 3 Real-life logs and models used for experiments

Log #Cases #Events Process model #Deviation/trace

#Place #Trans

Bouw-1 139 3,364 33 34 9.75

Bouw-4 109 2,331 31 31 7.27

MLog1 3,181 20,491 15 12 5.33

MLog2 1,861 15,708 16 19 1.45

MLog3 10,271 85,548 24 21 14.50

MLog4 4,852 29,737 16 27 2.09

MLog5 25,846 141,755 14 24 1.21

IsalaLog 77 459 26 39 0.68

Fig. 21 Precision values of real-life logs and models. Only the one-alignment approach manages to

provide precision results for all logs/models
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in unreliable precision measurements as shown in this paper. Therefore, we have

developed an approach that first aligns an event log and a process model. This step

is crucial to measure precision more accurately, especially in those cases where the

Fig. 22 Computation time comparison of alignment-based precision measurement using combined

values (from backward and forward automata construction). Y-axis values are shown in a logarithmic

scale

Table 4 Representative optimal alignments in real-life logs

Log #Opt. alignments (lower bound) #Opt. alignments represented #Representatives/trace

Min. Max. Avg. Min. Max. Min. Max. Avg.

Bouw-1 1 4,096 69.41 1 4,096 1 1 1.00

Bouw-4 1 5,300,287 146,617.87 1 5,300,287 1 2 1.01

MLog1 1 1,844 74.24 1 976 1 2 1.00

MLog2 1 6 1.05 1 6 1 1 1.00

MLog3 1 136 13.95 1 84 1 2 1.12

MLog4 1 48 3.65 1 48 1 1 1.00

MLog5 1 54 3.46 1 54 1 2 1.00

Fig. 23 Precision values (left) and computation time (right) comparison between alignment-based

precision measurements and existing precision measurements using real-life logs and models. Y-axis

values in the right chart are shown in a logarithmic scale. Missing values indicate that no result was

obtained after 1 h of computation
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log is non-fitting. The pre-alignment of log and model makes it possible to explicitly

identify deviations and measure precision more accurately.

Given a process model and an event log, we use an automata-based approach to

measure precision. Automata are mainly used as a means to juxtapose the behavior

of the model with the behavior observed in the log. We showed that the choice of

state representation in the construction of the automata influences the precision

value obtained. As illustrated by our experiments, a state representation that takes

into account the ordering of activity and not just the frequency requires much more

observed behavior to provide high precise value. In cases where the log is not

complete (i.e., more behavior in reality may occur than the behavior recorded in the

log), the state representation that ignores ordering can be used to provide an upper

bound for the precision value of the model. Furthermore, we have identified several

behavioral properties of process models that may cause a biased precision

measurement depending on the choice of direction to construct automata. To

minimize such bias, we proposed average precision value between the automata

obtained using forward and backward directions.

Computing all optimal alignments between a process model and an event log is

computationally expensive, being not feasible in practice. We showed that precision

values based on both one-alignment and representative optimal alignments are good

approximation of the values obtained using the all-optimal alignments approach.

We also showed that the precision measurement based on representative optimal

alignments provides a trade-off between computation time and metric quality,

providing more diagnostics information (i.e., lower bound of the number of optimal

alignments). Nevertheless, identifying the ‘‘optimal’’ trade-off between computation

time and rich diagnostic information remains a challenge for practical cases.

We stress that precision alone is not sufficient to determine the quality of process

model with respect to its observed behavior. Other dimensions, such as fitness,

generalization, and simplicity, must be considered altogether to provide a

comprehensive evaluation on how ‘‘good’’ is a model, given its executions.
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