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SUMMARY

We propose a measure of predictability based on the ratio of the expected loss of a short-run
forecast to the expected loss of a long-run forecast.  This predictability measure can be tailored to
the forecast horizons of interest, and it allows for general loss functions, univariate or multivariate
information sets, and covariance stationary or difference stationary processes.  We propose a
simple estimator, and we suggest resampling methods for inference.  We then provide several
macroeconomic applications.  First, we illustrate the implementation of  predictability measures
based on fitted parametric models for several U.S. macroeconomic time series.  Second, we
analyze the internal propagation mechanism of a standard dynamic macroeconomic model by
comparing the predictability of model inputs and model outputs.  Third, we use predictability as a
metric for assessing the similarity of data simulated from the model and actual data.  Finally, we
outline several nonparametric extensions of our approach.
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     1 We do not advocate comparing models to data purely on the basis of predictability.  Rather,
predictability simply provides an easily-digested summary distillation of certain important aspects
of dynamics.  More complete frameworks for assessing agreement between models and data are
developed in King and Watson (1996) and Diebold, Ohanian and Berkowitz (1998).

     2 See Jewell and Bloomfield (1983), Jewell et al. (1983), Hannan and Poskitt (1988), and
Granger and Newbold (1986).

1.  INTRODUCTION

It is natural and informative to judge forecasts by their accuracy.  However, actual and forecasted

values will differ, even for very good forecasts.  To take an extreme example, consider a zero-

mean white noise process.  The optimal linear forecast under quadratic loss is simply zero, so the

paths of forecasts and realizations will look different.  These differences illustrate the inherent

limits to predictability, even when using optimal forecasts.  The extent of a series’ predictability

depends on how much information the past conveys regarding future values of this series; as a

result, some processes are inherently easy to forecast, and others are difficult.  In addition to

being of interest to forecasters, predictability measures are potentially useful in empirical

macroeconomics.  Predictability provides a succinct measure of a key aspect of time series

dynamics and is therefore useful for summarizing and comparing the behavior of economic series,

as well as for assessing agreement between economic models and data.1 

Remarkably little attention has been paid to methods for measuring predictability.  Existing

methods include those based on canonical correlations between past and future, and those based

on comparing the innovation variance and unconditional variance of stationary series.2  Those

methods, however, are inadequate in light of recent work stressing the possible presence of unit

roots, rich and high-dimensional information sets, non-quadratic and possibly even asymmetric
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     3 See, among others, Stock (1995), Diebold and Mariano (1995), Christoffersen and Diebold
(1996, 1997) and Forni and Reichlin (1998).

     4 See, for example, Cooley and Prescott (1995).

     5 See, for example, Ball and Cecchetti (1990).

loss functions, and variations in forecast accuracy across horizons.3

The lack of methodological development coincides, not surprisingly, with a lack of

substantive exploration.  Even for the major macroeconomic aggregates, very little is known

about comparative predictability.  At first glance, the assertion that we know little about

predictability seems exaggerated.  We know, for example, that consumption is less volatile than

output, and that investment is more volatile than output.4  Such statements, however, concern

unconditional variances, whereas predictability concerns variances conditional on varying

information sets.  The two concepts are very different, as illustrated for example in studies of

inflation, in which the unconditional variance simply measures inflation variability, whereas the

conditional forecast error variance measures inflation uncertainty.5

In this paper, we contribute to the theory of predictability measurement and apply our

results in several macroeconomic contexts.  In section 2, we discuss some of the difficulties

involved in predictability measurement and propose a simple measure of relative predictability

based on the ratio of the expected loss of a short-run forecast to the expected loss of a long-run

forecast.  Our measure allows for covariance stationary or difference stationary processes,

univariate or multivariate information sets, general loss functions, and different forecast horizons

of interest.  In Section 3, we propose parametric methods for estimating the predictability of

observed series, and we suggest using bootstrap methods for inference.  We also illustrate the

implementation of  predictability measures based on fitted parametric models for several U.S.
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     6 The exercises we undertake in section 4 are similar in spirit to Rotemberg and Woodford
(1996).  Rotemberg and Woodford’s primary concern is with a certain class of real business cycle
models, and their analysis of predictability is very tightly and appropriately linked to the
assumptions of the particular models they study.  Our primary focus, in contrast, is on general
macro-econometric methods of assessing predictability that can be applied in a variety of
situations, under minimal assumptions.

     7 In particular, questions such as “Are exchange rates predictable?” really are questions about
the usefulness of a particular information set for forecasting.  In this paper, we take the
information set as given.

macroeconomic time series.  In Section 4, we illustrate the use of these parametric predictability

measures in assessing the propagation mechanisms of economic models, and in assessing

agreement between economic models and data.6  Section 5 discusses alternative nonparametric

measures of predictability and directions for future research.

2.  POPULATION PREDICTABILITY MEASURES

The expected loss of an optimal forecast will in general exceed zero, which illustrates the inherent

limits to predictability, even when using optimal forecasts.  Put differently, poor forecast accuracy

does not necessarily imply that the forecaster failed.  The extent of a series’ predictability in

population depends on how much information the past conveys regarding the future values of this

series; given an information set, some processes are inherently easy to forecast, and others are

difficult.  This point is not purely academic.  For example, a policy-maker may choose to target

nominal income rather than inflation, if the former turns out to be much more predictable

(Cecchetti, 1995).

In measuring predictability it is important to keep three points in mind.  First, the question

of whether a series is predictable or not should be replaced by one of how predictable it is. 

Predictability always is a matter of degree.7  Second, the question of how predictable a series is
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     8 Essentially the same measure of predictability has been proposed by Nelson (1976).  The
Granger-Newbold measure also is formally identical to Parzen’s (1982) prediction variance
horizon.  Öller (1985) uses the Parzen measure to capture the information content of forecasts.

     9 Here and throughout, E(.) denotes mathematical expectation conditional on the information
set S. 

G '
var ŷt% j,t

var yt% j

' 1 &
var et% j,t

var yt% j

,

cannot be answered in general.  We have to be clear about the relevant forecast horizon and loss

function.  For example, a series may be quite predictable at short horizons, but not very

predictable at long horizons.  Third, to compare the predictability of several series we need a

common numeraire.  It may be tempting to simply compare the expected losses of forecasts for

two series to assess their relative predictability, but that ignores the possibility that the two series

may be measured on different scales. 

 Granger and Newbold (1986, p. 310) therefore propose a natural measure of the

forecastability of covariance stationary series under squared-error loss, patterned after the familiar

R2 of linear regression,

where  is the optimal (i.e., conditional mean) forecast and  The Granger-ŷt% j,t et% j,t ' yt% j& ŷt% j,t.

Newbold measure with j = 1 has been used, for example, by Barsky (1987) to assess the

predictability of inflation.8

Our approach to predictability measurement is squarely in the tradition of Granger and

Newbold, with the important difference that we relax several constraints that limit the broad

applicability of their methods.  The essence of the Granger-Newbold suggestion is that it is natural

to base a measure of predictability on the difference between the conditionally expected loss of an

optimal short-run forecast,  and that of an optimal long-run forecast,  .9 EL(et% j,t) , EL(et%k,t) , j«k
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     10 In fact, we can allow for even greater generality by writing L(y,ŷ).

P(L,S,j,k) ' 1 &
EL(et% j,t)

EL(et%k,t)
,

If  we say that the series is highly predictable at horizon j relative to k,EL(et% j,t)  « EL(et%k,t) ,

and if  we say that the series is nearly unpredictable at horizon j relative toEL(et% j,t) . EL(et%k,t) ,

k.  Thus, we define a general measure of predictability as

where the information set S can be univariate or multivariate, as desired.  The Granger-Newbold

measure emerges in the special case in which the series is covariance stationary, L(x) = x2 (and

hence the optimal forecast is the conditional mean), the information set is univariate, and k=4. 

The advantages of our generalization include:

 (1)  It is valid for both covariance stationary and difference stationary series, so long as k<4.

(2)  It allows for general loss functions.  The loss function  need not be quadratic, and needL(@)

not even be symmetric; we only require that L(0) = 0 and that  be strictly monotoneL(@)

on each side of the origin.10  By the restrictions imposed on , we have that for allL(@)

covariance stationary or difference stationary processes   withP(L(@),S,j,k) 0 [0, 1],

larger values indicating greater predictability. 

  (3)  It allows for univariate or multivariate information sets, and economic theory may suggest

relevant multivariate information sets.  Implicit in the information set S is the choice of

whether any constraints, such as linearity in past observations, are imposed when solving

for the minimum-expected-loss forecast.

(4)  It allows for flexibility in the choice of j and k and enables one to tailor the predictability

measure to the horizons of economic interest.  
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Our predictability measure is closely related to Theil's (1966) U statistic, which we define

for the 1-step-ahead horizon as 

To make the relationship transparent, specialize P to the quadratic, univariate, j=1 case and write

it as

or

Thus, under certain conditions, 1-P is similar in spirit to Theil’s U.  The key difference is the

numeraire.  Theil’s U assesses 1-step forecast accuracy relative to that of a “naive” no-change

forecast, whereas P assesses 1-step accuracy relative to that of a long-horizon (k-step) forecast. 

In the general case,
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     11 Diebold and Nerlove (1990) discuss the variance ratio and its relationships to other popular
persistence measures.

P(L(@),S,j,k) ' 1 &
EL(et,t& j)

EL(et,t&k)
.

Vj '
varyt&yt& j

varyt&yt&1

' j.

Thus, P( ,S,j,k) is effectively one minus the ratio of expected losses of two forecasts of theL(@)

same object, yt.  One forecast, , is (typically) based on a rich information set, while the otherŷt,t& j

forecast, , is typically based on a sparse information set.ŷt,t&k

The formula for P( ,S,j,k) also makes clear that the concept of predictability is relatedL(@)

to, but distinct from, the concept of persistence of a series.  Suppose, for example, that the series

yt is a random walk.  Then P( ,univariate,j,k) = , as will be shown later.  But for a randome 2 1& j
k

walk the variance ratio at horizon j, a common measure of persistence, is11

It is clear, however, that although P( ,univariate,j,k) and Vj are deterministically related in thee 2

random walk case (P = 1 - V/k), they are not deterministically related in more general cases.

3.  SAMPLE PREDICTABILITY MEASURES

Predictability is a population property of a series, not any particular sample path, but predictability

can be estimated from a sample path.  We proceed by fitting a parametric model and then

transforming estimates of the parameters into an estimate of P.  To keep the discussion tractable,

and in keeping with the empirical analysis of subsequent sections, we postulate a quadratic loss

function L(e)=e2 for estimation, prediction, model selection, and construction of predictability
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     12 Techniques for estimation, prediction, and model selection under other loss functions are
discussed in Christoffersen and Diebold (1996, 1997).

     13 In section 5 we discuss alternative nonparametric implementations of the predictability
measure.

yt ' A1yt&1 % ut

measures.12  It is clear that parametric measures of the degree of predictability of a time series in

general will depend on the specification of the parametric model.  Here we focus on univariate

autoregressive models, although one could easily generalize the discussion to other parametric

models, such as vector ARMA models.13 

We construct P by simply reading off the appropriate diagonal elements of the forecast

MSE matrices for forecast horizons j and k.  To build intuition, consider a univariate AR(1)

population process with innovation variance Eu: 

Then for A1 = 0 the model reduces to white noise, and short-run forecasts are just as accurate as

long-run forecasts.  As a result, relative predictability is zero:  P(j,k) = 1- Eu/Eu = 0 for all j.  In

contrast, for A1 = 1 the model becomes a random walk, and relative predictability steadily declines

as the forecast horizon increases:  P(j,k) = 1- (jEu)/(kEu ) = 1- j/k.

Forecast errors from consistently estimated processes and processes with known

parameters are asymptotically equivalent.  In practice, we estimate P by replacing the underlying

unknown parameters by their least squares estimates.  The legitimacy of this predictability

measure is invariant to the possible presence of unit roots in the autoregressive lag order

polynomial.  To determine the autoregressive lag order we use the Akaike Information Criterion

(AIC) with a suitable upper bound on the admissible lag orders.  The AIC is less likely to

underestimate the lag order in small samples than alternative criteria.  The latter property is crucial
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     14 Note that the univariate autoregressive representation of the series may be interpreted
without loss of generality as a marginalized reduced form of a more general vector autoregressive
model.

in preserving the higher-order dynamics implicit in P (see Kilian 1999).  Throughout this paper,

inference is based on the bias-corrected bootstrap method proposed by Kilian 1998 (a,b).  We

account for lag order uncertainty along the lines suggested by Kilian (1998c).  Recent theoretical

results by Inoue and Kilian (1999a) suggest that -- with the exception of some pure random walk

models -- the method of bootstrap inference we propose is asymptotically valid both for stationary

and for unit root processes.  Some preliminary Monte Carlo evidence of the small-sample

accuracy of the proposed bootstrap method can be found in Diebold and Kilian (1999).

We now turn to an illustrative example.  Figure 1 shows point and interval estimates for

the predictability of several post-war quarterly U.S. investment series from the national income

and product accounts.  For expository purposes, we use univariate information sets and fix

 and k=40, as we vary the near-term forecast horizon j.14  We plot P (in percent) againstL(e)' e 2

near-term forecast horizons j = 1, ..., 20.  Higher values of P indicate greater predictability.  All

data are in logs and seasonally adjusted.  We model the data as level autoregressions and, with the

exception of the inventory series, allow for a linear time trend.

Private investment spending is one of the least predictable components of real

expenditures.  Although predictability is close to 80% at a horizon of one quarter, it drops sharply

at higher horizons.  Our estimates suggest that the predictability of private investment one year

into the future is merely 20%.  Beyond a horizon of two years it is essentially zero.  Broken down

by component, changes in inventories of nonfarm businesses are least predictable, followed by

residential and nonresidential investment, in that order.  Within nonresidential investment
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spending, however, structures are much more predictable than producer durables.  This example

highlights the fact that there are important differences in predictability across expenditure

components that are potentially useful for macroeconomic modeling.   For example, changes in

inventories are virtually unpredictable for horizons in excess of one year.  In contrast, the

predictability of investment in structures remains in excess of 20% even after five years. 

We also show the corresponding  nominal 90% bootstrap confidence intervals.  

The confidence intervals often are rather wide, reflecting the limited information available in

macroeconomic data, but not so wide as to render the exercise futile.  Moreover, the degree of

sampling uncertainty may differ substantially across investment components.  For example, the

predictability of structures is rather uncertain, whereas that of inventories is very precisely

estimated, especially at higher horizons.

4.  COMPARING PREDICTABILITY OF MODEL INPUTS, MODEL OUTPUTS, AND

REAL DATA

Predictability measures are potentially useful for assessing the internal propagation mechanisms of

economic models, and for assessing agreement between models and data.  We illustrate both uses

with the indivisible labor model of Hansen (1985).  In that model, the representative agent

chooses labor input, ht, and next period’s capital stock, kt+1, to maximize expected lifetime utility,

subject to the constraints,
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kt%1 ' (1&*) kt % it

zt%1 ' (1&() % ( zt % gt%1,

where  and  are given, 0 < $ < 1, 0 # * # 1, and .  We parameterize the modelk0 z0 gt - N(0, F2)

as in Hansen (1985) and solve for the associated linear decision rules for ht and kt+1 in terms of the

current period states kt and zt.  All data are quarterly.

4.1. Propagation Mechanisms:  Comparative Predictability of Model Inputs and Model 

       Outputs

To assess the internal propagation mechanism of Hansen’s model, we compare the predictability

of the model input (the exogenous technology shock) and the model outputs (the endogenous

model variables).  A weak propagation mechanism, assessed in terms of predictability, is

associated with nearly identical input and output predictability, and conversely.

We calculate the predictability of the technology shock analytically, based on population

parameter values.  We calculate the predictability of the model outputs numerically.  We can

calculate the predictability of the model outputs to any desired degree of accuracy by simulating a

long enough realization from the model (the “model data”) and then estimating predictability by

fitting a univariate autoregressive model and constructing our substitution estimator.  We

compute the predictability of the model data on output, consumption, investment, productivity,

capital stock, and hours using a simulated realization of length 10,000.

The results appear in Figure 2, in which we show the comparative predictability of the

technology shock and the model outputs.  We again fix  and set k=40, as we vary theL(e)' e 2

near-term forecast horizon j = 1, ..., 20.  Figure 2 makes clear that many of the model outputs
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have very different predictability patterns than does the model input.  Model real GNP is about as

predictable as the technology shock.  In contrast, model investment and hours are less predictable

than the technology shock, and consumption, productivity and the capital stock in the model are

more predictable than the technology shock.

These results indicate that the indivisible labor model has a strong internal propagation

mechanism, in the sense that the predictabilities of model outputs are distinctly different from that

of the technology shock and different from one another.  Some model series are more predictable

than the technology shock, some are less predictable, and the differences arise endogenously from

the model's internal propagation mechanism.  This result is surprising, insofar as other studies

using other criteria have concluded that models such as Hansen’s have weak internal propagation

mechanisms (e.g., Cogley and Nason, 1995a).

Thus far, neither the model input nor the model outputs have been logged or filtered,

which effectively amounts to population linear detrending of both the input and output series,

because no trends are operative.  In our judgement that is the right way to proceed if we are

interested in assessing the propagation mechanism of the model.  In many applications, however,

the focus is on how well the dynamics in simulated model data match those of the cyclical

component of the actual data (expressed in percent deviations from a smooth trend).  A common

approach is to log and HP-filter the model outputs.  We show the results of doing so in Figure 3. 

All model outputs are now much less predictable than the technology shock, which is not

surprising, because the HP filtering removes highly-predictable low-frequency components.  Thus

it is nonsensical to compare model input and output predictabilities when only the outputs have

been HP filtered.  We can, however, still compare the predictability of the various model outputs:
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     15 A number of earlier studies have documented such effects, from perspectives different from
predictability.  They include King, Plosser and Rebelo (1988), Singleton (1988), Harvey and
Jaeger (1993), and Cogley and Nason (1995b).

with the possible exception of the capital stock, all become strikingly similar after HP filtering. 

To an unsuspecting observer this finding may seem to suggest that the technology shock imparts a

common pattern of predictability.

A natural conjecture, however, is that common predictability pattern of HP-filtered model

outputs is an artifact of HP filtering.15  To explore that conjecture, we compute the predictability

of the logged and HP-filtered technology shock, whose dynamics of course cannot have anything

to do with the model’s propagation mechanism.  For illustrative purposes we consider six

alternative values for the persistence of the technology shock, including the value of ( = 0.95 used

in Hansen (1985).  The result appears in Figure 4:  for all realistic values of (, the predictability of

the HP-filtered technology shock looks the same as the predictability of the typical HP-filtered

model output!  We conclude that HP filtering tends to make predictabilities look similar, and

thereby masks the strong propagation mechanism in Hansen’s model that is revealed in unfiltered

data.

4.2. Goodness of Fit:  Comparative Predictability of Model Data and Real Data

We compute the predictability of model data, and we estimate the predictability of the actual U.S.

data for 1955:III-1984:I, using the methods already described.  Computation of the predictability

of the model data is not subject to sampling error, while the estimation of predictability of the real

data is; thus, we compute interval estimates only for the latter.  We consider the model to be

consistent with the data if the model measure of predictability is contained in the confidence bands

estimated from the U.S. data.
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The real business cycle school favors logging and HP filtering both the model data and the

real data, so we begin with that strategy.  In Figure 5 we show the predictability of model data

and actual data, where both have been HP filtered and logged.  Disregarding some minor

discrepancies, the model data and real data predictabilities generally agree.  Only at very short

time horizons the model data are not contained in the confidence bands for the U.S. data.  Of

course, the relative success of the model may simply reflect the small sample size of the U.S. data

and the large degree of sampling uncertainty.  Furthermore, note that although the predictabilities

of model data and actual data generally agree, they always have the same humped shape --

precisely the same humped shape that the HP filter tends to impart, as we showed earlier.  Thus

we are naturally suspicious that the results may be an artifact of HP filtering.  To address this

possibility, we continue to treat the model data and real data symmetrically by using identical

detrending procedures, but we use standard linear detrending instead of HP filtering.

In Figure 6 we show estimates of the predictability of model data and U.S. data based on

log- linear detrending.  The predictabilities of model data and actual data summarized in Figure 6

show a pronounced divergence: only model output, investment, consumption, and capital stock

match the data; hours worked in the model are not nearly predictable enough, whereas

productivity in the model is too predictable for the first three years.  This result is robust to

whether a trend is fitted to the model data, or the population trend of zero is imposed.  We

conclude that the HP filter is a likely source of spurious fits between model data and actual data,

casting doubt on the use of this filter in applied work.

5.  CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH
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     16 See, for example, DeJong and Whiteman (1994), Diebold and Senhadji (1996), and the
references therein.

We have proposed operational methods for measuring predictability and put them to work in

several contexts -- measuring the predictability of a variety of U.S. macroeconomic series,

assessing the internal propagation mechanism of a simple macroeconomic model, and assessing

agreement between the model and the data.  Our main intent is the introduction and illustration of

an approach to predictability measurement, not provision of a complete evaluation of a particular

macroeconomic model or the HP filter.  Nevertheless, our results reveal some successes and some

failures of the model and the filter.

There are many useful directions for future research.  Some are obvious, but nevertheless

important, variations on the applications reported here.  To take one example, in our applications

we estimate predictability on the basis of univariate information sets, whereas the theory allows

for multivariate information sets.  Empirical predictability measurement on the basis of

multivariate information sets, and comparison of the univariate estimates to various multivariate

estimates, will be of interest.  To take a second example, we have allowed for deterministic linear

trends in the models from which we estimate predictability.  The linear deterministic trend is

certainly a great workhorse in applied econometrics, and it often compares favorably to

competitors in forecasting and macroeconometric studies.16  Nevertheless, it will be of interest to

explore models with nonlinear deterministic trends and models that allow for stochastic trends

only.  

Other directions for future research are wide-ranging and fundamental, and hence more

interesting.  We shall briefly discuss three.
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     17 The asymptotic validity for the stationary case of bootstrapping predictability measures
based on the sieve approximation has been established by Inoue and Kilian (1999b).

F2 ' exp
1

2B m
B

&B

ln 2B f(T) dT ,

5.1. Nonparametric Predictability Estimation

We presented our approach, based on fitting autoregressive models, as a parametric

method.  This convention facilitated the exposition and allowed us to draw on established results

for bootstrap inference.  However, in general, we need not assume that the fitted autoregression is

the true data-generating process; rather, it may be considered an approximation, the order of

which can grow with sample size.  Thus the autoregressive model can also be viewed as a sieve in

the sense of Grenander (1981).  In that sense our approach actually is nonparametric.17 

Nevertheless, the sieve approach has a parametric flavor.  For any fixed sample size, we

assess predictability through the lens of a particular autoregressive model.  In the future, it may be

of interest to develop an approach with a more thoroughly nonparametric flavor by exploiting

Kolmogorov’s well-known spectral formula for the univariate innovation variance,

where f is the spectral density function.  Kolmogorov’s result has been extended to univariate h-

step-ahead forecast error variances by Bhansali (1992), and to multivariate h-step-ahead forecast

error variances by Mohanty and Pourahmadi (1996).  Several technical problems remain,

however, before we can operationalize those methods in our context.

5.2. Predictability of Financial Asset Returns and Volatilities
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     18 Mean absolute error (MAE), for example, may be more useful for measuring the accuracy of
forecasts of financial series, because it exists in a wider range of situations.  In high-frequency
financial data, for example, fat-tailed distributions are common, in which case MSE may be
infinite but MAE often remains finite.

We have focused on the application of predictability measurement to macroeconomics. 

Predictability statistics should also prove useful in finance, in which the predictability of asset

returns at various horizons is a central concern.  In fact, if non-predictability was arguably the

central concern of the 1960s and 1970s literature (e.g., Fama, 1970), precisely the opposite is true

of the more recent literature (e.g., Fama, 1991, Campbell, Lo and MacKinlay, 1997).  We have

reserved application to finance for a separate paper, however, in order to devote the necessary

attention to the special concerns of that literature, including multivariate information sets, very

long-horizon predictability, conditional heteroskedasticity, and possibly non-quadratic loss

functions.18

Of equal, and perhaps even greater, importance is measuring the predictability of asset

return volatility across various horizons.  Tracking and forecasting time-varying volatility is at the

heart of the booming risk management industry.  Little attention, however, has been given to

assessing volatility predictability patterns, and in particular the speed and pattern with which

volatility predictability decays as the horizon grows.

5.3. Survey-Based Predictability Estimation

We have taken a model-based approach to predictability measurement.  Conditional upon

a particular fitted model, we make inferences about predictability.  Alternatively, we could take a

survey-based approach, based on the predictions of competitive professional forecasters. 

Conditional upon the assumption that the reported forecasts are optimal, those data can be used
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     19 Croushore (1993) provides a lucid description.

for inferences about predictability.

  The survey-based approach is of interest because the information sets used by actual

forecasters are likely much richer than simple univariate histories.  They are surely multivariate,

for example, and they also contain hard-to-quantify subjective information.  The survey-based

approach does rely on a crucial and disputable assumption (optimality of reported forecasts), but

so too does the model-based approach (adequacy of the fitted model).  The key point is that the

assumptions made by the two approaches are very different, so that they naturally complement

one another.

A number of relevant surveys exist.  They tend to focus on the major macroeconomic

aggregates, such as real GDP growth, and the forecast horizons and available samples differ.  The

former NBER-ASA Quarterly Economic Outlook Survey, now called the Survey of Professional

Forecasters and undertaken by the Federal Reserve Bank of Philadelphia, has been maintained

since 1968.19  Although the sample is long, the available forecast horizons are short -- zero

through four quarters ahead.  The Blue Chip Indicators, in contrast, are available only from the

early 1980s onward, but the available forecast horizons are substantially longer -- zero through six

years.  We look forward to using these surveys to compute survey-based estimates of

predictability, and to comparing the survey-based and model-based estimates.
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Figure 1

Predictability Estimates with 90 % Confidence Intervals
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NOTES:

All data are from CitiBase.   The sample period is 1947.II-1994.III.  For a description of the methodology
see text.  The plots are based on k = 40 and j = 1, ..., 20.   



Figure 2

The Propagation Mechanism of the Hansen (1985) Model:
Model Input (dashed line) - Model Output (solid line)

Predictability in Levels without Filtering
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NOTES:

For a detailed description of the model and its parameterization see Hansen (1985).  For a description of the
methodology see text.  The plots are based on k = 40 and j = 1, ..., 20.



Figure 3

The Propagation Mechanism of the Hansen (1985) Model:
Model Input (dashed line) - Model Output (solid line)

Predictability after Logging and HP-Filtering the Model Output Data
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See Figure 2.



Figure 4

Predictability of the AR(1) Technology Shock:
Raw Data (dashed line) - HP-Filtered Data (solid line)
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For a desription of the methodology see text. The plots are based on k = 40 and j = 1, ..., 20.



Figure 5

Model Performance in Terms of Predictability:
U.S. Data (dashed lines) - Model Data (solid line)

All Data Logged and HP-Filtered
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NOTES:

For a detailed description of the model and its parameterization see Hansen (1985).  All data are from
Hansen (1985).  For a description of the methodology see text.  The plots are based on k = 40 and j = 1, ...,
20.  The dashed lines are the 90 percent confidence intervals for the U.S. estimates.     



Figure 6

Model Performance in Terms of Predictability:
U.S. Data (dashed lines) - Model Data (solid line)

All Data Logged and Linearly Detrended
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NOTES:

See Figure 5.




